
ARTICLE Communicated by Aapo Hyvarinen

Resonator Networks, 1: An Efficient Solution for Factoring
High-Dimensional, Distributed Representations
of Data Structures

E. Paxon Frady
epaxon@berkeley.edu
Redwood Center for Theoretical Neuroscience, University of California, Berkeley,
Berkeley, CA 94720, U.S.A., and Intel Laboratories, Neuromorphic Computing Lab,
San Francisco, CA, 94111, U.S.A.

Spencer J. Kent
spencer.kent@berkeley.edu
Redwood Center for Theoretical Neuroscience and Electrical Engineering and
Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, U.S.A.

Bruno A. Olshausen
baolshausen@berkeley.edu
Redwood Center for Theoretical Neuroscience, Helen Wills Neuroscience Institute,
and School of Optometry, University of California, Berkeley, Berkeley,
CA 94720, U.S.A.

Friedrich T. Sommer
fsommer@berkeley.edu
Redwood Center for Theoretical Neuroscience and Helen Wills Neuroscience Institute,
University of California, Berkeley, Berkeley, CA 94720, U.S.A., and Intel
Laboratories, Neuromorphic Computing Lab, San Francisco, CA 94111, U.S.A.

The ability to encode and manipulate data structures with distributed
neural representations could qualitatively enhance the capabilities of tra-
ditional neural networks by supporting rule-based symbolic reasoning,
a central property of cognition. Here we show how this may be accom-
plished within the framework of Vector Symbolic Architectures (VSAs)
(Plate, 1991; Gayler, 1998; Kanerva, 1996), whereby data structures are
encoded by combining high-dimensional vectors with operations that
together form an algebra on the space of distributed representations.
In particular, we propose an efficient solution to a hard combinatorial
search problem that arises when decoding elements of a VSA data struc-
ture: the factorization of products of multiple codevectors. Our proposed
algorithm, called a resonator network, is a new type of recurrent neu-
ral network that interleaves VSA multiplication operations and pattern
completion. We show in two examples—parsing of a tree-like data

Neural Computation 32, 2311–2331 (2020) © 2020 Massachusetts Institute of Technology
https://doi.org/10.1162/neco_a_01331

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/12/2311/1865557/neco_a_01331.pdf by guest on 13 Septem
ber 2021



2312 E. Frady, S. Kent, B. Olshausen, and F. Sommer

structure and parsing of a visual scene—how the factorization problem
arises and how the resonator network can solve it. More broadly, res-
onator networks open the possibility of applying VSAs to myriad artifi-
cial intelligence problems in real-world domains. The companion article
in this issue (Kent, Frady, Sommer, & Olshausen, 2020) presents a rigor-
ous analysis and evaluation of the performance of resonator networks,
showing it outperforms alternative approaches.

1 Introduction

Cognition requires making use of learned knowledge in contexts never be-
fore encountered, a facility that requires information to be represented in
terms of components that may be flexibly recombined. A long-standing
goal for neuroscience and psychology has been to understand how such
capacities are expressed by neural networks in the brain. Early artificial in-
telligence researchers developed frameworks of symbol manipulation to
emulate cognition, but they were implemented with local data represen-
tations (where the meaning of a bit is tied to its location) that are brittle
and nonadaptive (Kanerva, 1997). Connectionism, a movement started in
psychology (McClelland, Rumelhart, & PDP Research Group, 1986), based
itself on the premise that internal representations of knowledge must be
highly distributed and be able to adapt to the statistics of the data so as
to learn by example. Along the way, however, connectionism also gave up
many of the rich capabilities offered by symbolic computation (Jackendoff,
2002). In recent years, it has become clear that a unification of the ideas be-
hind each approach—distributed representation, adaptivity, and symbolic
manipulation—will be required for reproducing the brain’s ability to learn
from few examples, to deal with novel situations, or to change behaviors
when driven by internal information processing rather than purely by ex-
ternal events (Plate, 2003; Gayler, 2003; Kanerva, 2009; Lake, Ullman, Tenen-
baum, & Gershman, 2017).

Digital computers owe their power and ubiquity to the abstraction of
data structures, which support decomposing information into parts, refer-
encing each part individually, and composing these parts with other data
structures. Examples include trees, records with fields, and linked lists.
Connectionist theories have long been criticized because it is hard to imag-
ine how compound, hierarchical data structures could be represented and
manipulated by neural networks (Hinton, 1990). Cognitive scientists have
argued that at the very least, cognitive data structures should support three
patterns of combination, which are familiar to any computer programmer
(Fodor & Pylyshyn, 1988):

1. Key-value pairs: A key or variable is a placeholder for informa-
tion to which a value can be assigned in a particular instance. This

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/12/2311/1865557/neco_a_01331.pdf by guest on 13 Septem
ber 2021



Resonator Networks, 1 2313

association, variable binding, generates what is called the system-
aticity of cognition (Fodor, 1975; Plate, 2003).

2. Sequential structures: A sequence is an ordered pattern of organiza-
tion and computation required by many reasoning tasks.

3. Hierarchy: The notion that some aspects of knowledge can be decom-
posed recursively into a set of successively more fundamental parts.

Variable binding, sequence, and hierarchy are critical structures of cog-
nition, and a comprehensive theory of intelligence must take these into
account.

A family of models called Vector Symbolic Architectures (VSAs) encodes
these structures into distributed representations, providing a framework
that can reconcile the symbolic and connectionist perspectives (Plate, 2003;
Gayler, 2003; Kanerva, 2009). Building on the concept of reduced repre-
sentations (Hinton, 1990), VSAs allow one to express data structures holo-
graphically in a vector space of high but fixed dimensionality. The atoms of
representation are random high-dimensional vectors, and data structures
built from these atoms are vectors with the same dimension. Three oper-
ations are used to form and manipulate data structures—addition, mul-
tiplication, and permutation—which together form an algebra over the
space of high-dimensional vectors. These operations enable building rep-
resentations of sets, ordered lists (sequences), n-tuples, trees, key-value
bindings, and records containing role-filler relationships which can be
composed into hierarchies, as described in Plate (1995); Kanerva (1996,
1997); Joshi, Halseth, and Kanerva (2016); Frady, Kleyko, and Sommer
(2018), and below.

In order to read out or access the components of a VSA-encoded data
structure, the high-dimensional vector representing it must be decomposed
into the primitives or atomic vectors from which it is built. This is the prob-
lem of decoding. For example, if the primitives are combined by addition
only, the distributed representation can be decoded by a nearest-neighbor
look-up or an autoassociative memory. However, hierarchical or compound
data structures, such as a multilevel tree or an object with multiple at-
tributes bound together, are built from combinations of addition, multipli-
cation, and permutation operations on the primitives. In this case, decoding
via a simple nearest-neighbor look-up would require storing every possi-
ble combination of the primitives (e.g., all possible paths in a tree or all
the possible attribute combinations) essentially amounting to a combina-
toric search problem. Past applications of VSAs have largely sidestepped
this problem by limiting the depth of the data structures or using a brute
force approach to consider all possible combinations when necessary (Plate,
2000a; Cox, Kachergis, Recchia, & Jones, 2011). As a result, the application of
VSAs to real-world problems has been rather limited, since up to now, there
has not been a solution for efficiently accessing elements of such compound
data structures containing a product of multiple components.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/12/2311/1865557/neco_a_01331.pdf by guest on 13 Septem
ber 2021



2314 E. Frady, S. Kent, B. Olshausen, and F. Sommer

The solution to this dilemma is to factorize the high-dimensional vec-
tor representing a compound data structure into the primitives from which
it is composed. That is, given a high-dimensional vector formed from an
element-wise product of two or more vectors, we must find its factors. This
way, a nearest-neighbor look-up need only search over the alternatives for
each factor individually rather than all possible combinations. Obviously,
though, factorization poses a difficult computational problem in its own
right.

Here, we propose an efficient algorithm for factorizing high-dimensional
vectors that may be interpreted as a type of recurrent neural network,
which we call a resonator network. The resonator network relies on the
VSA principle of superposition to search through the combinatoric solu-
tion space without directly enumerating all possible factorizations. Given a
high-dimensional vector as input, the network iteratively searches through
many potential factorizations in parallel until a set of factors is found that
agrees with the input. Solutions emerge as stable fixed points in the network
dynamics.

In this article, part 1 of a two-part series in this issue, we first briefly in-
troduce the VSA framework and the problem of factoring high-dimensional
VSA representations. We then show using two examples—searching a bi-
nary tree and querying the contents of a visual scene—how VSAs may
be used to build distributed representations of compound data structures
and how resonator networks are used to decompose these data structures
and solve the problem. The companion article in this issue (Kent, Frady,
Sommer, & Olshausen, 2020) provides rigorous mathematical and simu-
lation analysis of resonator networks and compares its performance with
alternative approaches for solving high-dimensional vector factorization
problems.

2 VSA Preliminaries

All entities in a VSA are represented as high-dimensional vectors in the
same space, with vector dimension N typically in the range of 1000 to
10,000. In this article, we focus on the VSA framework called Multiply-
Add-Permute (Gayler, 1998, 2003). The atomic primitives are bipolar vec-
tors whose components are ±1, chosen randomly. These vectors are used as
symbols to represent concepts. The set of atomic vectors representing spe-
cific items is stored in a codebook, which is a matrix of dimension N × D,
where D is the number of atoms.

The use of high-dimensional vectors is an important aspect of the
VSA framework, as it relies on the concentration of measure phenomenon
(Ledoux, 2001) that independently chosen random vectors are very close
to orthogonal, a property we refer to as quasi-orthogonality. This property
allows vectors to act symbolically, as the similarity (inner product) be-
tween two different atomic vectors is small compared to their self-similarity

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/12/2311/1865557/neco_a_01331.pdf by guest on 13 Septem
ber 2021



Resonator Networks, 1 2315

(L2 norm). Furthermore, a much larger set of quasi-orthogonal vectors
exists than orthogonal vectors, which may be exploited for combinatoric
search.

Data structures are composed and computations are carried out via an
algebra consisting of three vector operations: addition, multiplication, and
permutation. The elements of a data structure are then read out (decoded)
using the conventional vector dot product as a similarity measure to com-
pare to items stored in the codebook. The VSA operations of addition, mul-
tiplication, and permutation act to manipulate the vector symbols in ways
that preserve or destroy their similarity.

Formally, the VSA operations are defined as follows:

Dot product (·) is the conventional vector inner product, x · s = ∑
i xi si,

which is used to measure the similarity between vectors. This is used
to decode the result of a VSA computation by comparing the vector
to the set of vectors in the codebook:

a = X�s.

Here, X is the codebook of atomic vectors, and s is a high-dimensional
vector resulting from a VSA computation. The result of a VSA compu-
tation can be a single symbol indicated by the largest component of a.
Alternatively, the coefficients a can be considered as a weighted sum,
where each entry indicates a confidence level, probability, or intensity
value.

Addition (+) is used to superpose items together, like forming a set. It is
defined by regular vector addition, the element-wise sum:

s = x + y,

or si = xi + yi. Depending on the circumstances, the sum may be kept
as is or subsequently thresholded so that each si is ±1. In either case,
the addition operation results in a vector that is similar to each of
its superposed components; one can determine the members of the
sum by similarity to the atomic vectors. Superposition is possible be-
cause of the quasi-orthogonal property. However, superposition pro-
duces a small amount of cross-talk noise, which increases with the
number of items in the sum and is diminished with large vector di-
mensionality (see Frady et al., 2018, for a detailed characterization of
superposition).

Multiplication (�) is used to bind items together to form a conjunc-
tion, such as in assigning a value to a variable. It is defined by the
Hadamard product between vectors, that is, the element-wise multi-
plication of vector components:

s = x � y,

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/12/2311/1865557/neco_a_01331.pdf by guest on 13 Septem
ber 2021



2316 E. Frady, S. Kent, B. Olshausen, and F. Sommer

or si = xi yi. This multiplication operation is invertible (y = s � x),
and it distributes over addition, x � y + x � z = x � (y + z). Note that
in the MAP VSA, the bipolar primitive vectors are their own self-
inverses. In contrast to addition, multiplication generates a vector that
is dissimilar to each of its inputs (Kanerva, 2009).

Permutation (ρ(·)) is used to “protect” or “order” items. It operates on
a single input vector. In principle, it can be any random permutation,
but is typically a simple cyclic shift:

s = ρ(x),

or si = x(i−1)%N. Permutation distributes over both addition, ρ(x) +
ρ(y) = ρ(x + y), and multiplication, ρ(x) � ρ(y) = ρ(x � y), and its
function is complementary to addition and multiplication. Permu-
tations are used to protect the components of a data structure built
with these other operations, based on the fact that permutation and
binding are noncommutative, x � ρ(y) �= y � ρ(x). In essence, permu-
tation rotates vectors into dimensions of the space that are almost
orthogonal to the dimensions used by the original vectors. Informa-
tion is thus protected when combined with other items, because vec-
tor components will not appear similar to or interfere with those other
items. Permutations can also be used to index sequences (Frady et al.,
2018), or levels in a hierarchy, by successive application of the permu-
tation operation. For example to represent the sequence x0, x1, x2 in a
vector s = x0 + ρ(x1) + ρ2(x2), with ρ2(x) = ρ(ρ(x)).

VSAs combine these operations to form data structures and to compute
with them. The combination of atomic vectors into composite data struc-
tures is rather straightforward. But as we shall see, querying composite data
structures often results in the problem of decoding terms composed of two
(or perhaps many more) atomic vectors that are multiplied together. In or-
der to decode such composite vectors, one must search through many com-
binations of atoms. In general, this is a hard combinatorial search problem,
which typically requires directly testing every combination of factors. The
resonator network can efficiently solve these problems without needing to
directly test every combination of factors.

3 Factorization via Search in Superposition

In general, the factorization problems that arise in VSAs may involve two
or more factors, but let us assume we are given a composite vector s, formed
as a product of three vectors,

s = xi∗ � y j∗ � zk∗ , (3.1)

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/12/2311/1865557/neco_a_01331.pdf by guest on 13 Septem
ber 2021



Resonator Networks, 1 2317

where the vectors xi∗ , y j∗ , and zk∗ are drawn from codebooks X =
{x1, . . . , xD}, Y = {y1, . . . , yD}, and Z = {z1, . . . , zD}. Given s and the code-
books X, Y, and Z, the task is to find xi∗ , y j∗ , and zk∗ .

The resonator network is an iterative approach to solve this problem
without exhaustively searching through each possible combination of the
factors. A key motivating idea behind resonator networks is the VSA
principle of superposition. In VSAs, multiple symbols can be expressed
simultaneously in a single high-dimensional vector via vector addition.
Randomized atomic vectors are highly likely to be close to orthogonal in
high-dimensional space, meaning that they can be superposed without
much interference. However, there is some cross-talk noise between the su-
perposed symbols, and “clean-up memory” (such as a Hopfield network)
is thus utilized to reduce the cross-talk noise.

A resonator network combines the strategy of superposition and cleanup
memory to efficiently search over the combinatorially large space of possi-
ble factorizations. The vectors x̂, ŷ, and ẑ represent the current estimate for
each factor. These vectors can be initialized to the superposition of all pos-
sible factors—for example, x̂(0) = ∑D

i xi, ŷ(0) = ∑D
j y j. A particular factor

can then be inferred from s based on the estimates for the other two—for ex-
ample, ẑ(1) = s � x̂(0) � ŷ(0). Since binding distributes over addition, the
product x̂(0) � ŷ(0) expresses every combination of factors in superposition
because x̂(0) � ŷ(0) = ∑D

i
∑D

j xi � y j. For instance, if D = 100, then this
initial guess represents D2 = 10,000 combinations in superposition. Thus,
many potential combinations of the pair of factors may be considered at
once when inferring the third factor.

The inference process, however, is noisy if many guesses are tested si-
multaneously. This noise results from cross talk of many quasi-orthogonal
vectors and can be reduced through a clean-up memory. This is built from
the codebooks, which contain all the vectors that are possible factors of the
input s. Each clean-up memory projects the initial noisy estimate onto the
span of the codebook. This computes a measure of confidence for whether
each element in the codebook is a factor.

The result of the inference and clean-up leads to a new estimate for each
factor. The new estimate is formed by a sum of dictionary items weighted
by the confidence levels. This produces a better guess for each one of the
factors. The inference can then be repeated with better guesses, which re-
duces cross-talk noise even further. By iteratively applying this procedure,
the inference and clean-up stages cooperate to successively reduce cross-
talk noise until the solution is found.

The procedure described above, for all three factors, is specified by the
following set of equations (see Figure 1):

x̂(t + 1) = g(XX�(s � ŷ(t) � ẑ(t))),

ŷ(t + 1) = g(YY�(s � x̂(t) � ẑ(t))),

ẑ(t + 1) = g(ZZ�(s � x̂(t) � ŷ(t))), (3.2)

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/12/2311/1865557/neco_a_01331.pdf by guest on 13 Septem
ber 2021



2318 E. Frady, S. Kent, B. Olshausen, and F. Sommer

Figure 1: A resonator network with three factors.

where the function g prevents runaway positive feedback by thresholding
the elements of each vector to ±1.

If we examine the clean-up memory for x̂, which contains a matrix mul-
tiplication with XX� and thresholding function g, then we see this opera-
tion is nearly identical to a Hopfield network with outer-product Hebbian
learning (Hopfield, 1982). Except here, rather than directly feeding back into
itself, the result of the clean-up is sent to other parts of the network.

The set of equations in (3.2) defines a nonlinear dynamical system that
has interesting empirical and theoretical properties, which we thoroughly
examine through simulation experiments in Kent et al. (2020), the compan-
ion article in this issue. Empirically, the system bounces around in state
space until the correct solution appears to resonate with the network dy-
namics, popping out as if in a moment of insight. We find that while there
is no Lyapunov function governing these dynamics and no guarantee for
convergence, the resonator network empirically converges to the correct so-
lution with high probability as long as the number of product combinations
to be searched is within the network’s operational capacity. We show that
the operational capacity is given by a quadratic function of N. Compared
to numerous alternative optimization methods that we considered, this ca-
pacity for resonator networks is higher by almost two orders of magnitude.

4 Decoding Data Structures with Resonator Networks

We now turn to two examples that illustrate how VSA operations can be
combined to build distributed representations of data structures, how the
factorization problem arises when parsing these representations, and how
resonator networks can be designed to solve this problem.

4.1 Searching a Tree Data Structure. Consider the tree data structure
depicted in Figure 2. We can form a distributed representation of this tree
in a single high-dimensional vector by using all three VSA operations:
superposition +, binding �, and permutation ρ(·). First, each leaf in the tree
is assigned a random vector a, b, . . . , g ∈ {−1,+1}N. We also assign random

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/12/2311/1865557/neco_a_01331.pdf by guest on 13 Septem
ber 2021



Resonator Networks, 1 2319

vectors left and right that are used to describe position in the tree. Moving
from the root of the tree to a particular leaf involves a sequence of left and
right turns. The order of these turns is represented by permutation ρ(·).
The number of times permutation is applied indicates depth within the tree:
left is a left turn at depth 0, ρ(left) is a left turn at depth 1, ρ2(left) is a
left turn at depth 2, and so on. A sequence of turns is represented by the
binding of these vectors; for example, left � ρ(left) � ρ2(left) corresponds
to three left turns. We can then attach to each leaf its position in the tree,
again with binding: for example, a � left � ρ(left) � ρ2(left). Finally, the
representation for the whole tree is collapsed into a single vector, tree, via
superposition:

tree = a � left � ρ(left) � ρ2(left)

+ b � left � ρ(right) � ρ2(left)

+ c � right � ρ(right) � ρ2(left)

+ d � right � ρ(right) � ρ2(right) � ρ3(left)

+ e � right � ρ(right) � ρ2(right) � ρ3(right)

+ f � left � ρ(right) � ρ2(right) � ρ3(left) � ρ4(left)

+ g � left � ρ(right) � ρ2(right) � ρ3(left) � ρ4(right). (4.1)

The vector tree encodes the information so that we can flexibly query the
data structure using VSA operations. For instance, we can find the identity
of the leaf located at position left, right, left by “unbinding” the repre-
sentation of this location from the vector representing the tree. Binding and
unbinding are performed with the same operation since bipolar vectors are
self-inverses. When we unbind the query location by Hadamard product, it
will distribute through the superposition and cancel out with itself, leaving
the atomic vector attached to that location “exposed”:

tree � (
left � ρ(right) � ρ2(left)

) = b + noise. (4.2)

The noise term arises since the query distributes through the sum. The other
terms combine with the query but remain quasi-orthogonal to the vectors
stored in the codebook, which keeps the other items in the tree “hidden.”
That is, the terms contained in noise are dissimilar from each of the atoms
stored in the codebook, and this appears as gaussian noise when decoding
(Frady et al., 2018). The vector b + noise will have high similarity with atom
b in the codebook and will be successfully decoded by nearest-neighbor or
associative memory lookup among the atoms with high probability.

With this flexible encoding of the data structure, instead of asking for
the label at a specific position, we can ask for the position of a specific label

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/12/2311/1865557/neco_a_01331.pdf by guest on 13 Septem
ber 2021



2320 E. Frady, S. Kent, B. Olshausen, and F. Sommer

(essentially the problem of tree search). For instance, the query that exposes
the position of label c is simply

tree � c = right � ρ(right) � ρ2(left) + noise. (4.3)

This presents a new challenge, however, because we still need to decode
the composite vector right � ρ(right) � ρ2(left) + noise into the parts that
describe a position in the tree. In previous applications of VSAs, one would
exhaustively enumerate all traversals of the tree and compute similarity to
find the path. Instead, we can use a resonator network.

To set up the network for this problem, we first establish a maximum
depth to search through; the maximum depth determines the number of
factors that need to be estimated. For the tree shown in Figure 2, we need
five estimators, because this is the depth of the deepest leaves, f and g.

Each factor estimate will determine whether to go left, right, or stop,
for each level down the tree. To indicate stop, a special vector is used, the
identity vector 1 (a vector of all ones). By using the appropriate number of
these identity vectors, each location in the tree can be thought of as a com-
position with the same depth (the maximum depth), even if the location
is only partially down the tree. For instance, if we consider leaf c in Fig-
ure 2, then its position right � ρ(right) � ρ2(left) is also right � ρ(right) �
ρ2(left) � 1 � 1. This way, we can set up a resonator network for five factors
and have it decode locations anywhere in the tree.

We denote each factor estimate as x̂(0), x̂(1), x̂(2), x̂(3), x̂(4) and the codebook
matrices as X0, X1, X2, X3, X4. Each codebook matrix contains permuted ver-
sions of left and right, and 1: Xd = [

ρd(left), ρd(right), 1
]

where d indicates
the depth in the tree. The network is constructed analogous to equation 3.2,
but with five factor estimates running in parallel instead of three. For in-
stance, the update equation for the first estimate is

x̂(0)(t + 1) = g
(
X0X�

0 (s � x̂(1)(t) � x̂(2)(t) � x̂(3)(t) � x̂(4)(t))
)
. (4.4)

The process is demonstrated in Figure 2. The input vector to be fac-
torized, s, is first formed from the tree data structure and the query. For
instance, to find the location of label c, s = tree � c is the input to the res-
onator network. Different leaves in the tree can be found by unbinding the
leaf representation from the tree vector and using this result as the input.

We visualize the network dynamics by displaying the similarity of each
factor estimate x̂(d)(t) to the atoms stored in its corresponding codebook Xd.
The evolution of these similarity weights over time is shown as a heat map
(see Figure 2, right). The heat maps show that the system initially jumps
around chaotically, with the weighting of each estimate changing drasti-
cally with each iteration. But then there is a quite sudden transition to a
stable equilibrium, where each estimate converges nearly simultaneously,

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/12/2311/1865557/neco_a_01331.pdf by guest on 13 Septem
ber 2021



Resonator Networks, 1 2321

Figure 2: Tree search with a resonator network. The query of the vector tree
produces an encoding of position that the resonator network can factor. The col-
ored plots indicate the time evolution of x̂(0), . . . , x̂(4) (from left to right), show-
ing the cosine similarity of each estimate to each of the three possible vectors
ρd(left), ρd(right), 1. Purple indicates low similarity, and yellow indicates high
similarity. Initially the similarity changes significantly until the three estima-
tors find a coherent factorization and quickly converge. Red letters indicate the
converged result for each x̂(0) . . . x̂(4).

and at this point, the output for each factor is essentially the codebook ele-
ment with highest weight.

4.2 Visual Scene Analysis as a Factorization Problem. Next, we show
how VSAs can encode the compositional structure of a visual scene and how
the resonator network can be used to decode the contents of the scene. Con-
sider the scene in Figure 3 containing colored MNIST digits (LeCun, 1998)
in different positions. Position in the scene is indexed by vertical and hori-
zontal coordinates, each quantized into three possible values, (top, middle,
bottom) and (left, center, right), respectively. Each digit can take on one of
seven possible colors (blue, green, cyan, red, pink, yellow, white). The dig-
its are labeled by their semantic class (0, 1, . . . , 9), but the exact shape will
differ, as the stimuli are sampled from the 50,000 exemplars in the MNIST
training set.

Any given scene can have between one and three of these objects,
which are allowed to partially occlude one another. We generate sym-
bolic vectors cblue, cgreen, . . . , cwhite to encode color; d0, d1, . . . , d9 to
encode shape; vtop, vmiddle, vbottom to encode vertical position; and

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/12/2311/1865557/neco_a_01331.pdf by guest on 13 Septem
ber 2021



2322 E. Frady, S. Kent, B. Olshausen, and F. Sommer

Figure 3: Generating a vector symbolic encoding of a visual scene.

hleft, hcenter, hright to encode horizontal position, which are stored in
respective codebooks, C, D, V, H.

The example scene (see Figure 3) contains a cyan 7 at position top, left; a
pink 3 at position top, right; and a red 8 at position middle, left. While this
is a highly simplified type of visual scene, it illustrates the combinatorial
challenge of representing and interpreting visual scenes. There are only 23
distinct atomic parameters (10 for digit identity, 7 for color, 3 each for ver-
tical and horizontal position), and yet these combine to describe 10 × 7 ×
3 × 3 = 630 individual objects, and 630 + 6302 + 6303 = 250,444,530 possi-
ble scenes with 1, 2, or 3 objects. This number of combinations still does not
include the variability among exemplars for each shape, of which there are
50,000 in the MNIST data set.

The VSA approach to represent a scene like this is to form the conjunc-
tion of each of the four factors with the binding operation and superpos-
ing multiple objects together to form a single high-dimensional vector that
constitutes a distributed representation of the entire scene. This encoding
is depicted in Figure 3, and as in the previous examples, the encoding pro-
vides a flexible data structure such that aspects of the scene can be indi-
vidually queried. One attractive property of this representation is that its
dimensionality does not grow with the number of objects in the scene, nor
does it impose any particular ordering on the objects.

To convert a new input image into a structured VSA representation, one
challenge is to deal with the variability and correlations between the shapes
of different hand-written digits. VSAs are designed for symbolic processing
in neural networks. However, when dealing with sensor data streams, one
must solve the encoding problem, which is how to map the input data into
the symbolic space (Räsänen, 2015; Kleyko, Rahimi, Rachkovskij, Osipov, &
Rabaey, 2018). We train a simple feedforward neural network with two fully
connected hidden layers to produce the desired VSA encoding of the scene.
The feedforward network was trained on a (uniformly) random sample of
these scenes, with the MNIST digits chosen from an exclusive training set.
A generative model creates the image of the scene from a random sample
of factors for each object. From the chosen factors, the VSA representation

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/12/2311/1865557/neco_a_01331.pdf by guest on 13 Septem
ber 2021



Resonator Networks, 1 2323

of the scene is also generated through binding of VSA vectors for each fac-
tor and superposition for each object (see Figure 3). Supervised learning via
backpropagation is used to train the network to output the VSA represen-
tation of the entire scene from the image pixels as input.

The resonator network can then be used to parse the output of the feed-
forward network to identify each object and its properties. The vectors ĉ(t),
d̂(t), ĥ(t) and v̂(t) denote the guesses for each factor: color, digit, horizontal-
and vertical-location, respectively. The scene can then be decoded by iter-
ating through the resonator network:

ĉ(t + 1) = g
(

CC�
(

s � d̂(t) � v̂(t) � ĥ(t)
))

,

d̂(t + 1) = g
(

DD�
(

s � ĉ(t) � v̂(t) � ĥ(t)
))

,

v̂(t + 1) = g
(

VV�
(

s � d̂(t) � ĉ(t) � ĥ(t)
))

,

ĥ(t + 1) = g
(

HH�
(

s � d̂(t) � ĉ(t) � v̂(t)
))

. (4.5)

The encoding of visual scenes described superposes a composite vector
for each object, each of which individually is a valid solution to the fac-
torization of the scene. When we present the scene vector s to a resonator
network, it automatically hones in on a particular one of these composites,
finding its factors. For instance, in Figure 4 the resonator network first iden-
tifies the pink 3 at the top right. Once the factorization has been found,
this object is then “explained away” by subtracting it from s. What remains
are the other composites, still in superposition. The resonator network is
then reset (each resonator is reinitialized to the superposition of all possible
codevectors) and presented with the new explained-away scene vector. It
will then hone in on one of the remaining objects—in this case, the red 8.
This sequence may be repeated until all the objects have been decoded. This
technique is similar to what is known as deflation in the context of tensor
decomposition methods (da Silva, Comon, & de Almeida, 2015).

After training on 100,000 images, we used the network to produce sym-
bolic vectors for a held-out test set of 10,000 images. The vector dimen-
sionality N is a free parameter, which we chose to be 500. If the exact
ground-truth vector is provided to a resonator network, it will infer the fac-
tors with 100% accuracy provided N is large enough, a fact we establish in
the companion article in this issue. For this small, visual scene example, it
turns out N = 500 more than suffices for the number of possible factoriza-
tions to be searched. Note that N = 500 is lower than the total number of
combinations of all the factors, which is 630.

The encoder network generates VSA scene vectors that are close to the
ground-truth encoding, but there is some error. The error gets larger with
more digits in the scene, perhaps partially due to occlusion of the digits.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/12/2311/1865557/neco_a_01331.pdf by guest on 13 Septem
ber 2021



2324 E. Frady, S. Kent, B. Olshausen, and F. Sommer

Figure 4: Scene vector s is fed into a resonator network that decodes each object
in the scene. The model hones in on one object at a time, which is then explained
away by subtracting the resonator network’s converged state from the scene
vector. The network is reset and provided with this new input vector. It then
converges to another solution, which describes a different object in the scene.

Figure 5 shows that the resonator network can tolerate significant error in
the scene vector produced by the feedforward encoding network, correcting
for ambiguity not resolved in the encoding step.

5 Discussion

A major quest for modern artificial intelligence is to build computational
models that combine the abilities of neural networks with the abilities of
rule-based reasoning. Vector Symbolic Architectures, a family of connec-
tionist models, enable the formation of distributed representations of data
structures, structured computation on these representations, and has pro-
vided valuable conceptual insights for cognition and computation. How-
ever, so far, VSA models have not been able to solve challenging artificial
intelligence problems in real-world domains due to the combinatorial fac-
torization problem that arises when processing complex, hierarchical data
structures. Our contribution here has been to provide an efficient solution
to the factorization problem, the resonator network, which we show in the
companion article in this issue (Kent et al., 2020) vastly outperforms stan-
dard optimization methods.

The two applications we showed here—parsing a tree-like data structure
and decomposing a visual scene—are intended as illustrative examples to
show how factorization of multiterm products arises in querying a VSA
data structure, and they show how to design resonator networks to solve

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/12/2311/1865557/neco_a_01331.pdf by guest on 13 Septem
ber 2021



Resonator Networks, 1 2325

Figure 5: Resonator networks correct encoding errors. Visual scenes with one,
two, and three objects are separated into separate columns. (Top) Encoding
quality in terms of cosine similarity between the feedforward network output
and the ground-truth scene vector, across the test set. We define correct factor-
ization as the case where the resonator network correctly infers all the factors
of all objects. (Bottom) The empirical probability of a correct factorization as a
function of similarity to the ground-truth scene vector. Lines are logistic func-
tion fits to the data.

such problems. Having a solution to the factorization problem now makes it
possible to apply VSAs to myriad problems in computational neuroscience,
cognitive science, and artificial intelligence, from visual scene analysis to
natural language understanding and analogical reasoning.

5.1 Implications for Neuroscience. The ability to solve factorization
problems is fundamental to both perception and cognition. In vision, for
example, the signal measured by a photoreceptor contains a combination
of illumination, surface reflectance, surface orientation, and atmospheric
properties that essentially need to be “demultiplied” by the visual system
in order to recover a representation of the underlying causes in a scene
(Barrow & Tenenbaum, 1978; Adelson & Pentland, 1996; Barron & Malik,
2014). The problem of separating form and motion may also be posed as a
factorization problem (Cadieu & Olshausen, 2012; Memisevic & Hinton,
2010; Anderson et al., 2020). In the domain of language, it has been ar-
gued that a factorization of sentence structure into “roles” and “fillers” is
required for robust and flexible processing (Smolensky, 1990; Jackendoff,

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/12/2311/1865557/neco_a_01331.pdf by guest on 13 Septem
ber 2021



2326 E. Frady, S. Kent, B. Olshausen, and F. Sommer

2002). Many cognitive tasks, such as analogical reasoning, also require a
form of factorization (Hummel & Holyoak, 1997; Kanerva, 1998; Plate,
2000a; Gayler & Levy, 2009). However, to date, it has been unclear how these
factorization problems could be represented and solved efficiently by neu-
ral circuits in the brain. VSAs and resonator networks are a potential neural
solution to these problems, and indeed developing more neurobiologically
plausible models along these lines is a goal of ongoing work.

In the context of neuroscience and psychology, binding is widely theo-
rized to be an important process by which the brain properly associates fea-
tures belonging to the same physical object. However, how the brain may
accomplish this is a hotly debated subject. Various solutions to this prob-
lem, also known as the neural binding problem, have been proposed based
on attentional mechanisms or neural synchrony (Treisman & Gelade, 1980;
von der Malsburg, 1999; Wolfe & Cave, 1999). Note that in these proposals,
the binding information required to properly describe sets of compound
objects has to be added to the individual feature representations, thus in-
creasing the dimension for representing a compound object (or expanding
the representation in time).

VSAs provide a general solution to the binding problem that early vi-
sual stages could employ. By using the VSA operations to represent and
form data structures, the binding of features is easily expressed. Further, the
dimension of the compound representation is not increased. The main com-
putational challenge then becomes the factorization of VSA data structures
formed in early sensory pathways, for which the resonator network pro-
vides a neurally plausible solution. Interestingly, Feldman’s (2013) earlier
discussion of the binding problem has already pointed out that the more
fundamental problem of sensory processing is actually one of unbinding.
Feldman argued that the raw sensory signals themselves can be thought of
as being composites, containing multiple attributes that require factoriza-
tion, such as in the examples described here.

In terms of modeling computation in biological neural circuits, resonator
networks are clearly an abstraction. In particular, the implementation of
VSAs presented here assumes that information is encoded by dense bipolar
vectors (each element is nonzero), and the binding operation is performed
by element-wise multiplication of vectors. At first glance, these types of
representations and operations may not seem very biologically plausible.
However, other variants of VSAs that utilize sparse, rather than dense,
representations may help to reconcile this disconnect (Rachkovskij & Kus-
sul, 2001; Laiho, Poikonen, Kanerva, & Lehtonen, 2015). Recently, we have
shown that compound objects can be efficiently represented by sparse vec-
tors with the same dimension as the atomic representations (Frady, Kleyko,
& Sommer, 2020). The binding operation in this context relies on sigma-pi
type operations (Mel & Koch, 1990; Plate, 2000b) that are potentially com-
patible with active nonlinearities found in dendritic trees. Complex-valued

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/12/2311/1865557/neco_a_01331.pdf by guest on 13 Septem
ber 2021



Resonator Networks, 1 2327

variations of VSAs (Plate, 2003) can also be linked to spike-timing codes
(Frady & Sommer, 2019), which could further increase links to biology.

5.2 Implications for Machine Learning. In conventional deep learning
approaches, given enough labeled data, a multilayer network can be trained
end-to-end without worrying about understanding or parsing the repre-
sentations formed by the intermediate layers. Users typically consider the
interior of a deep network as a black box. However, this conceptual conve-
nience becomes a disadvantage when it comes to improving the deficiencies
of deep learning methods: susceptibility to adversarial attacks, the need for
large amounts of labeled data, and a lack of generalization to novel situ-
ations. Moreover, while most machine-learning algorithms are focused on
problems of pattern matching or learning a mapping from inputs to out-
puts, most problems in perception and cognitive reasoning require more
than just pattern matching; they also the ability to form and manipulate
data structures.

VSAs offer a transparent approach to forming distributed representa-
tions of potentially complex data structures that may be flexibly recombined
to deal with novel situations. For any desired computation, the relevant el-
ements in the data structure can be exposed, or decoded, and combined
with other information to calculate a result. Here we have shown how these
data structures can be formed and manipulated to solve challenging com-
putational problems such as tree search or visual scene analysis. The key to
solving these problems relies on the ability to factorize high-dimensional
vectors, which can now be done by resonator networks. Given that the prob-
lem of factorization arises in many other machine-learning settings, such
as simultaneous inference of multiple variables, inverse graphics, and lan-
guage, it seems likely that resonator networks could provide an efficient
solution in these domains as well.

One can potentially combine VSAs with deep learning to get the best
of both worlds. An example of this may be seen in our solution to parsing
a visual scene (see section 4.2). Rather than training a network to simply
map images to class labels, our approach trains the network to map the im-
age to a symbolic description that captures the compositional structure of a
scene—that is, multiple objects combined with their properties—which can
be used by downstream processes to reason about the scene. Importantly,
because multiple object-property bindings can be superposed in the same
space, the VSA encoding can handle the very large combinatoric space of
possible scenes (in this case, 250 million) with a single vector of fixed di-
mensionality (500). The VSA representation does have a limited capacity
and will begin to break down for more than a few objects. However it is
worth noting that human working memory has similar limitations (Miller,
1956).

While there are undoubtedly alternative deep learning approaches for
performing analysis of simple scenes, our goal here was to show how

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/12/2311/1865557/neco_a_01331.pdf by guest on 13 Septem
ber 2021



2328 E. Frady, S. Kent, B. Olshausen, and F. Sommer

analysis of visual scenes could be approached by expressing the problem
as a problem of factorization. Incorporating factorization into problems like
scene analysis may enable reasoning in much more complex spaces, as such
a system can utilize factorization to handle a very large combinatoric space.
However, the simple hybrid approach presented here still has some short-
comings, such as requiring a large amount of training data to learn the
encoding.

We believe that multilayer neural networks could be improved pro-
foundly by enabling all layers to explicitly represent, learn, and factorize
data structures. Some recent model innovations follow this direction, partic-
ularly the “transformer” neural network architecture, which encodes key-
value pairs for modeling language and other types of data (Vaswani et al.,
2017; Devlin, Chang, Lee, & Toutanova, 2018). Other model proposals en-
able the encoding of multiplicative relationships between features using the
tensor product (Nickel, Tresp, & Kriegel, 2011; Socher, Chen, Manning, &
Ng, 2013). VSAs could enable these models to represent and manipulate in-
creasingly complex data structures, but this requires solving factorization
problems. Resonator networks could thus serve as a critical component for
building trainable neural networks that form, query, and manipulate large
hierarchical data structures.

Acknowledgments

We thank members of the Redwood Center for Theoretical Neuroscience
for helpful discussions, in particular Pentti Kanerva, whose work on Vec-
tor Symbolic Architectures originally motivated this project. This work
was generously supported by NIH grant 1R01EB026955-01, NSF grants
IIS1718991 and DGE1752814, the Intel Neuromorphic Research Commu-
nity, Berkeley Deep-Drive, the Seminconductor Research Corporation and
NSF under E2CDA-NRI, DARPA’s Virtual Intelligence Processing program,
and AFOSR FA9550-19-1-0241.

References

Adelson, E. H., & Pentland, A. P. (1996). The perception of shading and reflectance. In
D. Knill & W. Richards (Eds.), Perception as Bayesian inference (pp. 409–423). New
York: Cambridge University Press.

Anderson, A. G., Ratnam, K., Roorda, A., & Olshausen, B. (2020). High acuity vision
from retinal image motion. Journal of Vision, 20(7), 34.

Barron, J. T., & Malik, J. (2014). Shape, illumination, and reflectance from shading.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(8), 1670–1687.

Barrow, H., & Tenenbaum, J. (1978). Recovering intrinsic scene characteristics from
images. Computer Vision Systems, 2, 3–26.

Cadieu, C. F., & Olshausen, B. A. (2012). Learning intermediate-level representations
of form and motion from natural movies. Neural Computation, 24(4), 827–866.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/12/2311/1865557/neco_a_01331.pdf by guest on 13 Septem
ber 2021



Resonator Networks, 1 2329

Cox, G. E., Kachergis, G., Recchia, G., & Jones, M. N. (2011). Toward a scalable
holographic word-form representation. Behavior Research Methods, 43(3), 602–
615.

da Silva, A. P., Comon, P., & de Almeida, A. L. (2015). An iterative deflation algorithm
for exact CP tensor decomposition. In Proceedings of the 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing (pp. 3961–3965). Piscataway,
NJ: IEEE.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv:1810.04805.

Feldman, J. (2013). The neural binding problem(s). Cognitive Neurodynamics, 7, 1–11.
Fodor, J. A. (1975). The language of thought. New York: Crowell.
Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A

critical analysis. Cognition, 28(1–2), 3–71.
Frady, E. P., Kleyko, D., & Sommer, F. T. (2018). A theory of sequence indexing and

working memory in recurrent neural networks. Neural Computation, 30, 1449–
1513.

Frady, E., Kleyko, D., & Sommer, F. (2020). Variable binding for sparse distributed repre-
sentations: Theory and applications. arXiv:209.06734.

Frady, E. P., & Sommer, F. T. (2019). Robust computation with rhythmic spike pat-
terns. In Proceedings of the National Academy of Sciences, 116(36), 18050–18059.

Gayler, R. W. (1998). Multiplicative binding, representation operators and analogy
[workshop poster]. In K. Holyoak, D. Gentner, & B. Kokinov (Eds.), Advances in
analogy research: Integration of theory and data from the cognitive, computational, and
neural sciences. Berlin: Springer.

Gayler, R. (2003). Vector symbolic architectures answer Jackendoff’s challenges for
cognitive neuroscience. In Proceedings of the ICCS/ASCS International Conference on
Cognitive Science. Amsterdam: Elsevier Procedia.

Gayler, R. W., & Levy, S. D. (2009). A distributed basis for analogical mapping. In
New Frontiers in Analogy Research: Proceedings of the Second International Analogy
Conference-Analogy, vol. 9 (pp. 165–174). NBU Press.

Hinton, G. E. (1990). Mapping part-whole hierarchies into connectionist networks.
Artificial Intelligence, 46(1–2), 47–75.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computational abilities. In Proceedings of the National Academy of Sciences, 79(8),
2554–2558.

Hummel, J. E., & Holyoak, K. J. (1997). Distributed representations of structure: A
theory of analogical access and mapping. Psychological Review, 104(3), 427.

Jackendoff, R. (2002). Foundations of language: Brain, meaning, grammar, evolution. Ox-
ford: Oxford University Press.

Joshi, A., Halseth, J. T., & Kanerva, P. (2016). Language geometry using random in-
dexing. In Proceedings of the International Symposium on Quantum Interaction (pp.
265–274). Berlin: Springer.

Kanerva, P. (1996). Binary spatter-coding of ordered k-tuples. In Proceedings of
the International Conference on Artificial Neural Networks (pp. 869–873). Berlin:
Springer.

Kanerva, P. (1997). Fully distributed representation. In Proceedings of the 1997 Real
World Computing Symposium (pp. 358–365). Real World Computing Partnership.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/12/2311/1865557/neco_a_01331.pdf by guest on 13 Septem
ber 2021



2330 E. Frady, S. Kent, B. Olshausen, and F. Sommer

Kanerva, P. (1998). Large patterns make great symbols: An example of learning from
example. In Proceedings of the International Workshop on Hybrid Neural Systems (pp.
194–203). Berlin: Springer.

Kanerva, P. (2009). Hyperdimensional computing: An introduction to computing
in distributed representation with high-dimensional random vectors. Cognitive
Computation, 1(2), 139–159.

Kent, S. J., Frady, E. P., Sommer, F. T., & Olshausen, B. A. (2020). Resonator net-
works, 2: Factorization performance and capacity compared to optimization-
based methods. Neural Computation, 32(12), 2332–2388.

Kleyko, D., Rahimi, A., Rachkovskij, D. A., Osipov, E., & Rabaey, J. M. (2018). Classi-
fication and recall with binary hyperdimensional computing: Tradeoffs in choice
of density and mapping characteristics. IEEE Transactions on Neural Networks and
Learning Systems, 29(12), 5880–5898.

Laiho, M., Poikonen, J. H., Kanerva, P., & Lehtonen, E. (2015). High-dimensional
computing with sparse vectors. In Proceedings of the 2015 IEEE Biomedical Circuits
and Systems Conference (pp. 1–4). Piscataway, NJ: IEEE.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building ma-
chines that learn and think like people. Behavioral and Brain Sciences, 40.

LeCun, Y. (1998). The MNIST database of handwritten digits. http://yann.lecun.com
/exdb/mnist

Ledoux, M. (2001). The concentration of measure phenomenon. Providence, RI: American
Mathematical Society.

McClelland, J. L., Rumelhart, D. E., & PDP Research Group. (1986). Parallel distributed
processing: Explorations in the Microstructure of Cognition 1. Cambridge, MA: MIT
Press.

Mel, B. W., & Koch, C. (1990). Sigma-Pi learning: On radial basis functions and cor-
tical associative learning. In D. S. Touretzky (Ed.), Advances in neural information
processing systems, 2 (pp. 474–481). San Mateo, CA: Morgan Kaufmann.

Memisevic, R., & Hinton, G. E. (2010). Learning to represent spatial transformations
with factored higher-order Boltzmann machines. Neural Computation, 22(6), 1473–
1492.

Miller, G. A. (1956). The magic number seven plus or minus two: Some limits on our
capacity for processing information. Psychological Review, 63, 91–97.

Nickel, M., Tresp, V., & Kriegel, H.-P. (2011). A three-way model for collective learn-
ing on multi-relational data. In Proceedings of the 28th International Conference on
Machine Learning.

Plate, T. A. (1991). Holographic reduced representations: Convolution algebra
for compositional distributed representations. In Proceedings of the International
Joint Conference on Artificial Intelligence (pp. 30–35). San Mateo, CA: Morgan
Kaufmann.

Plate, T. A. (1995). Holographic reduced representations. IEEE Transactions on Neural
Networks, 6(3), 623–641.

Plate, T. A. (2000a). Analogy retrieval and processing with distributed vector repre-
sentations. Expert Systems, 17(1), 29–40.

Plate, T. A. (2000b). Randomly connected sigma–pi neurons can form associator net-
works. Network: Computation in Neural Systems, 11(4), 321–332.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/12/2311/1865557/neco_a_01331.pdf by guest on 13 Septem
ber 2021



Resonator Networks, 1 2331

Plate, T. A. (2003). Holographic reduced representation: Distributed representation of cog-
nitive structure. Stanford, CA: CSLI Publications.

Rachkovskij, D. A., & Kussul, E. M. (2001). Binding and normalization of binary
sparse distributed representations by context-dependent thinning. Neural Com-
putation, 13(2), 411–452.

Räsänen, O. J. (2015). Generating hyperdimensional distributed representations
from continuous-valued multivariate sensory input. In Proceedings of the 37th An-
nual Meeting of the Cognitive Science Society. Red Hook, NY: Curran.

Smolensky, P. (1990). Tensor product variable binding and the representation of sym-
bolic structures in connectionist systems. Artificial Intelligence, 46(1–2), 159–216.

Socher, R., Chen, D., Manning, C. D., & Ng, A. (2013). Reasoning with neural ten-
sor networks for knowledge base completion. In C. J. C. Burges, L. Bottou, M.
Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in neural informa-
tion processing systems, 26 (pp. 926–934). Red Hook, NY: Curran.

Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cog-
nitive Psychology, 12(1), 97–136.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polo-
sukhin, I. (2017). Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in neural
information processing systems, 30 (pp. 5998–6008). Red Hook, NY: Curran.

von der Malsburg, C. (1999). The what and why of binding: The modeler’s perspec-
tive. Neuron, 24(1), 95–104.

Wolfe, J. M., & Cave, K. R. (1999). The psychophysical evidence for a binding problem
in human vision. Neuron, 24(1), 11–17.

Received March 2, 2020; accepted July 6, 2020.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/12/2311/1865557/neco_a_01331.pdf by guest on 13 Septem
ber 2021


