ARTICLE Communicated by Aapo Hyvarinen

Resonator Networks, 2: Factorization Performance and
Capacity Compared to Optimization-Based Methods

Spencer J. Kent

spencer.kent@berkeley.edu

Redwood Center for Theoretical Neuroscience and Electrical Engineering and
Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, U.S.A.

E. Paxon Frady

epaxon@berkeley.edu

Friedrich T. Sommer

fsommer@berkeley.edu

Redwood Center for Theoretical Neuroscience and Helen Wills Neuroscience Institute,
University of California, Berkeley, Berkeley, CA 94720, U.S.A., and Intel
Laboratories, Neuromorphic Computing Lab, San Francisco, CA 94111, U.S.A.

Bruno A. Olshausen

baolshausen@berkeley.edu

Redwood Center for Theoretical Neuroscience, Helen Wills Neuroscience
Institute, and School of Optometry, University of California, Berkeley,
Berkeley, CA 94720, U.S.A.

We develop theoretical foundations of resonator networks, a new type
of recurrent neural network introduced in Frady, Kent, Olshausen, and
Sommer (2020), a companion article in this issue, to solve a high-
dimensional vector factorization problem arising in Vector Symbolic Ar-
chitectures. Given a composite vector formed by the Hadamard product
between a discrete set of high-dimensional vectors, a resonator network
can efficiently decompose the composite into these factors. We compare
the performance of resonator networks against optimization-based meth-
ods, including Alternating Least Squares and several gradient-based
algorithms, showing that resonator networks are superior in several im-
portant ways. This advantage is achieved by leveraging a combination of
nonlinear dynamics and searching in superposition, by which estimates
of the correct solution are formed from a weighted superposition of all
possible solutions. While the alternative methods also search in superpo-
sition, the dynamics of resonator networks allow them to strike a more ef-
fective balance between exploring the solution space and exploiting local
information to drive the network toward probable solutions. Resonator
networks are not guaranteed to converge, but within a particular regime
they almost always do. In exchange for relaxing the guarantee of global

Neural Computation 32, 2332-2388 (2020) ~ © 2020 Massachusetts Institute of Technology
https://doi.org/10.1162 /neco_a_01329

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2333

convergence, resonator networks are dramatically more effective at find-
ing factorizations than all alternative approaches considered.

1 Introduction

This article is the second in a two-part series on resonator networks. “Res-
onator Networks, 1” shows how distributed representations of data struc-
tures may be formed using the algebra of Vector Symbolic Architectures
and that decoding these representations often requires solving a vector fac-
torization problem. We introduced resonator networks as a neural solution
to this problem and demonstrated with two examples. Here, our primary
objective is to establish the theoretical foundations of resonator networks
and to perform a more comprehensive analysis of their convergence and
capacity properties in comparison to optimization-based methods.

We limit our analysis to a particular definition of the factorization prob-
lem, which may seem somewhat abstract but in fact applies to practical
usage of Vector Symbolic Architectures (VSAs). We consider bipolar vec-
tors, whose elements are £1, used in the popular “Multiply, Add, Permute
(MAP)” VSA (Gayler, 1998, 2004). These ideas extend to other VSAs, al-
though we leave a detailed analysis to future work. Part 1 included com-
mentary on the historical context and representational power of VSAs,
which we will not cover here. For the purposes of this article, it is suffi-
cient to stipulate that wherever VSAs are used to encode complex hierar-
chical data structures, a factorization problem must be solved. By solving
this problem, resonator networks make the VSA framework scalable to a
larger range of problems.

The core challenge of factorization is that inferring the factors of a com-
posite object amounts to searching through an enormous space of possible
solutions. Resonator networks do this in part by “searching in superposi-
tion,” a notion that we make precise in section 3. There are in fact many
ways to search in superposition, and we introduce a number of them in
section 5 as a benchmark for our model and to understand what makes our
approach different. A resonator network is simply a nonlinear dynamical
system designed to solve a particular factorization problem. It is defined
by equations 4.1 and 4.2, each representing two separate variants of the
network. The system is named for the way in which correct factorizations
seemingly resonate out of what is initially an uninformative network state.
The size of the factorization problem that can be reliably solved, as well as
the speed with which solutions are found, characterizes the performance of
all the approaches we introduce—in these terms, resonator networks are by
far the most effective.

The main results are as follows:

1. We characterize stability at the correct solution, showing that one
variant of resonator networks is always stable, while the other has
stability properties related to classical Hopfield networks. We show

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

©009U/66G5981/ZEET/TLITENP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2334 S. Kent, E. Frady, F. Sommer, and B. Olshausen

that resonator networks are less stable than Hopfield networks be-
cause of a phenomenon we refer to as percolated noise (see section
6.1).

2. We define “operational capacity” as a metric of factorization perfor-
mance and use it to compare resonator networks against six bench-
mark algorithms. We find that resonator networks have dramatically
higher operational capacity (section 6.2).

3. Through simulation, we determine that operational capacity scales
as a quadratic function of vector dimensionality. This quantity is pro-
portional to the number of idealized neurons in a resonator network
(also section 6.2).

4. We propose a theory for why resonator networks perform well on
this problem (see section 6.6).

2 Statement of the Problem

We formalize the factorization problem in the following way: Xi, Xy, ...,

Xp are sets of vectors called codebooks. The fth codebook contains D f

codevectors ng), ng), s ng) ’

Xpi= {ng),ng), ...,x(fo)} Vf=12,...,F

and these vectors all live in {—1, 1}. A composite vector c is generated by
computing the Hadamard product © of F vectors, one drawn from each of
the codebooks X1, X,, ..., Xp:

c=xVox?0...0xP),
WD e Xy, XD e X, .. xP e Xy
The factorization problem we wish to study is
given ¢, X, Xy, ..., X,

find xil) eXy, x¥eX,, ... xff) € Xp,

suchthat c=xP ox® o...oxP. (2.1)
Our assumption in this article is that the factorization of ¢ into F codevec-

tors, one from each codebook, is unique. Then, the total number of compos-
ite vectors that can be generated by the codebooks is M:

F
M = 1_[Df.
=1

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2335

The problem involves searching among M possible factorizations to find
the one that generates c. We will refer to M as the search space size, and at
some level it captures the difficulty of the problem. The problem size is also
influenced by N, the dimensionality of each vector.

Suppose we were to solve problem 2.1 using a brute force strategy. We
might form all possible composite vectors from the sets Xy, X;, ..., Xf, one
at a time, until we generate the vector ¢, which would indicate the appro-
priate factorization. Assuming no additional information is available, the
number of trials taken to find the correct factorization is a uniform ran-
dom variable K ~ {1, M} and thus E[K] = # If instead we could eas-
ily store all of the composite vectors ahead of time, we could compare
them to any new composite vector via a single matrix-vector inner prod-
uct, which, given our uniqueness assumption, will yield a value of N for
the correct factorization and values strictly less than N for all other factor-
izations. The matrix containing all possible composite vectors requires MN
bits to store. The core issue is that M scales very poorly with the number
of factors and number of possible codevectors to be entertained. If F =4
(4 factors) and Dy = 100 V f (100 possible codevectors for each factor), then
M =100,000,000. In the context of Vector Symbolic Architectures, it is com-
mon to have N = 10,000. Therefore, the matrix with all possible composite
vectors would require approximately 125GB to store. We aspire to solve
problems of this size (and much larger), which are clearly out of reach
for brute-force approaches. Fortunately, they are solvable using resonator
networks.

3 Factoring by Search in Superposition

In our problem formulation 2.1, the factors interact multiplicatively to form
¢, and this lies at the heart of what makes it hard to solve. One way to
attempt a solution is to produce an estimate for each factor in turn, alter-
nating between updates to a single factor on its own, with the others held
fixed. In addition, it may make sense to simultaneously entertain all of the
vectors in each Xy, in some proportion that reflects our current confidence
in each one being part of the correct solution. We call this searching in su-
perposition, and it is the general approach we take throughout the article.
What we mean by “superposition” is that the estimate for the fth factor,
%9, is given by X/ = g(Xras) where X; is a matrix with each column a
vector from X¢. The vector a contains the coefficients that define a linear
combination of the elements of Xy, and g(-) is a function from RN to RV,
which we will call the activation function. In this article, we consider the
identity g : x = X, the sign function g : x = sgn(x), and nothing else. Other
activation functions are appropriate for the other variants of resonator net-
works (e.g., where the vectors are complex valued), but we leave a discus-
sion of this to future work. Search refers to the method by which we adapt

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2336 S. Kent, E. Frady, F. Sommer, and B. Olshausen

ay over time. The estimate for each factor leads to an estimate for ¢ denoted
by ¢:

¢=xV0x@ 0. 0% =g¢Xja) 0gXa) @ --- © g(Xrar). (3.1)

Suppose g(-) is the identity. Then ¢ becomes a multilinear function of the
coefficients ap, ap, ... ar:

e=Vox@0...0%") =Xa; 0 X2, © - -- O Xrar. (3.2)

While this is a “nice” relationship in the sense that it is linear in each of the
coefficients as separately (with the others held fixed), it is unfortunately not
convex with respect to the coefficients taken all at once. We can rewrite it as
a sum of M different terms, one for each of the possible factorizations of c:

e= 3 ((al)dl(az)dz...(ap)dF) X oxP o oxi, (3.3)
dl.dz,.”,dp

where d; ranges from 1 to Dj, dy ranges from 1 to D,, and so on. The
term in parentheses is a scalar that weights each of the possible Hadamard
products. Our estimate ¢ is, at any given time, purely a superposition
of all the possible factorizations. Moreover, the superposition weights
((a1)a, (@2)y, - - - (ar)dp) can be approximately recovered from ¢ alone by com-
puting the cosine similarity between ¢ and the vector x,(ill) © XZ) (ORERNO) xg;).

The source of noise in this approximation is the fact that xg) © xz) Q-0

x[(;? will have a nonzero inner product with the other vectors in the sum.
When the codevectors are uncorrelated and high-dimensional, this noise is
quite small: ¢ transparently reflects the proportion with which it contains
each of the possible factorizations. When g(-) is the sign function, this prop-
erty is retained. The vector ¢ is no longer an exact superposition, but the
scalar ((a1)iy (@2)4, - - - (ap)dF) can still be decoded from ¢ in the same way;
the vector ¢ is still an approximate superposition of all the possible factor-
izations, with the weight for each of these determined by the coefficients
ay. This property, that thresholded superpositions retain relative similarity
to each of their superimposed components, is heavily relied on throughout
Kanerva’s and Gayler’s work on Vector Symbolic Architectures (Kanerva,
1996; Gayler, 1998).

One last point of notation before introducing our solution to the factor-
ization problem: we define the vector (/) to be the product of the estimates
for the other factors:

o) .=xDo...0x VoD go...oxD, (3.4)

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2337

This will come up in each of the algorithms under consideration and sim-
plify our notation. The notation will often include an explicit dependence
on time ¢ like so: X¢[t] = g(Xrar[t]). Each of the algorithms considered in
this article updates one factor at a time, with the others held fixed so, at
a given time f, we will update the factors in order 1 to F, although this
is a somewhat arbitrary choice. Including time dependence with 6/, we
have

6Nt :=xV[t+1]10--- 0%Vt +1]10x Vo --0xP[t], (3.5

which makes explicit that at the time of updating X, the factors 1 to (f — 1)
have already been updated for this iteration ¢, while the factors (f + 1) to F
have yet to be updated.

4 Resonator Networks

A resonator network is a nonlinear dynamical system designed to solve the
factorization problem 2.1, and it can be interpreted as a neural network in
which idealized neurons are connected in a very particular way. We define
two separate variants of this system, which differ in terms of this pattern
of connectivity. A resonator network with outer product (OP) weights is
defined by

KO +1] = sgn(xfx} 6t o c)). 4.1)

Suppose X[t + 1] indicates the state of a population of neurons at time
t + 1. Each neuron receives an input 6/)[t] ® ¢, modified by synapses mod-
eled as a row of a weight matrix X fX;. This synaptic current is passed
through the activation function sgn(-) in order to determine the output,
which is either +1 or —1. Most readers will be familiar with the weight
matrix X fXjI as the so-called outer product learning rule of classical Hop-
field networks (Hopfield, 1982). This has the nice interpretation of Hebbian
learning (Hebb, 1949) in which the strength of synapses between any two
neurons (represented by this weight matrix) depends solely on their pair-
wise statistics over some data set—in this case, the codevectors.

Prior to thresholding in equation 4.1, the matrix-vector product
X" (6V[t] © c) produces coefficients af[t] that, when premultiplied by Xy,
generate a vector in the linear subspace spanned by the codevectors (the
columns of Xy). This projection does not minimize the squared distance be-

tween (61)[t] © c) and the resultant vector. Instead, the matrix (X}X f)‘lx}
produces such a projection, the so-called ordinary least squares (OLS)
projection onto R(X¢). This motivates the second variant of our model,

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2338 S. Kent, E. Frady, F. Sommer, and B. Olshausen

resonator networks with OLS weights:
5 -1 N
K1 +11 = sgn(Xp(X}Xy) X} (61t @ ¢))
= sgn(X X6 0 ¢)), (4.2)

where we have used the notation X} to indicate the Moore-Penrose pseu-
doinverse of the matrix X;. Hopfield networks with this type of synapse
were first proposed by Personnaz, Guyon, and Dreyfus (1986), who called
this the “projection” rule.

If, contrary to what we have defined in equations 4.1 and 4.2, the input to
each subpopulation of neurons was x/)[t], its own previous state, then one
would in fact have a (“bipolar”) Hopfield network. In our case, however,
rather than being autoassociative, in which K[t + 1] is a direct function of
%N)[t], our dynamics are heteroassociative, basing updates on the states of
the other factors. This change has a dramatic effect on the network’s conver-
gence properties and is also in some sense what makes resonator networks
useful in solving the factorization problem, a fact that we elaborate on in
the following sections. We imagine F separate subpopulations of neurons
that evolve together in time, each one responsible for estimating a differ-
ent factor of c¢. For now, we have just specified this as a discrete-time net-
work in which updates are made one at a time, but it can be extended as
a continuous-valued, continuous-time dynamical system along the same
lines as was done for Hopfield networks (Hopfield, 1984). In that case, we
can think about these F subpopulations of neurons evolving in a truly par-
allel way. In discrete time, one has the choice of making asynchronous or
synchronous updates to the factors, in a sense analogous to Hopfield net-
works. Our formulation of 6/[¢] in equation 3.5 follows the asynchronous
convention, which we find to converge faster. The formulation given in the
companion article in this issue employed the synchronous convention for
pedagogical reasons, but the distinction between the two vanishes in con-
tinuous time, where updates are instantaneous.

In practice, we have to choose an initial state X/)[0] using no knowledge
of the correct codevector xif) other than the fact it is one of the elements
of the codebook X . Therefore, we set x/[0] = sgn(pO¥ ng)>, which, as we
have said, has approximately equal cosine similarity to each term in the
sum.

4.1 Difference between OP Weights and OLS Weights. The differ-
ence between outer product weights and OLS weights is via (XJIX f)_l, the

inverse of the so-called Gram matrix for X, which contains inner prod-
ucts between each codevector. If the codevectors are orthogonal, the Gram

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2339

matrix is NI, with I the identity matrix. When N is large (roughly speak-
ing above 5000) and the codevectors are chosen randomly independent and
identicaly distributed (i.i.d.) from {—1, 1}V, then they will be very nearly or-
thogonal, making N I a close approximation. Clearly, in this setting, the two
variants of resonator networks produce nearly the same dynamics. In sec-
tion 6.2, we define and measure a performance metric called operational
capacity in such a way that does not particularly highlight the difference
between the dynamics, that is, it is the setting where codevectors are nearly
orthogonal. In general, however, the dynamics are clearly different. In our
experience, applications that contain correlations between codevectors may
enjoy higher operational capacity under OLS weights, but it is hard to say
whether this applies in every setting.

One application-relevant consideration is that because X consists of en-
tries that are +1 and —1, the outer product variant of a resonator network
has an integer-valued weight matrix and can be implemented without any
floating-point computation; hardware with large binary and integer arith-
metic circuits can simulate this model very quickly. Coupled with noise tol-
erance properties we establish in section 6.5, this makes resonator networks
(and, more generally, VSAs) a good fit for emerging device nanotechnolo-
gies (Rahimi et al., 2017).

5 The Optimization Approach

An alternative strategy for solving the factorization problem is to define a
loss function that compares the current estimate ¢ := xM 0 x? o --- @ x®
with the composite that is to be factored, ¢, choosing the loss function and
a corresponding constraint set so that the global minimizer of this loss over
the constraints yields the correct solution to 2.1. One can then design an al-
gorithm that finds the solution by minimizing this loss. This is the approach
taken by optimization theory. Here we consider algorithms that search in
superposition, setting X) = ¢(Xyay) just like resonator networks, but that
instead take the optimization approach.

Let the loss function be L(c, ¢) and the feasible set for each ay be C¢. We
write this as a fairly generic optimization problem:

minimize £(c, g(Xia1) © g(Xza2) © - - - © g(Xrar))

ai,az,...,ar

subjectto a; € Ci,ay € Gy, ..., ar € Cr. (5.1)

What makes a particular instance of this problem remarkable depends on
our choices for L(-,), g(-), C1,C,, ..., Cr and the structure of the vectors
in each codebook. Different algorithms may be appropriate for this prob-
lem, depending on these details, and we propose six candidate algorithms
in this article, which we refer to as the benchmarks. It is in contrast to the

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2340 S. Kent, E. Frady, F. Sommer, and B. Olshausen

benchmark algorithms that we can more fully understand the performance
of resonator networks. Our argument, which we develop in section 6, is
that resonator networks strike a more natural balance between exploring
the high-dimensional state space and using local information to move to-
ward the solution. We briefly introduce the benchmark algorithms in sec-
tion 5.1, but discuss each at some length in the appendixes, including Table
2, which compiles the dynamics specified by each. We provide implementa-
tions of each algorithm in the small software library that accompanies this
article.!

5.1 Benchmark Algorithms. A common thread among the benchmark
algorithms is that they take the activation function g(-) to be the identity
g :x+— x, making ¢ a multilinear function of the coefficients, as we dis-
cussed in section 3. We experimented with other activation functions, but
found none for which the optimization approach performed better. We con-
sider two straightforward loss functions for comparing ¢ and ¢. The first
is one-half the squared Euclidean norm of the error, £ : x, y %Hx — y||§,
which we call the squared error for short, and the second is the negative
inner product £ : x, y = —(x, y). The squared error is minimized by ¢ = c,
which is also true for the negative inner product when ¢ is constrained to
[—1, 1]V. Both of these loss functions are convex, meaning that £(c, ¢) is a
convex function of each as separately.? Some of the benchmark algorithms
constrain af directly, and when that is the case, our focus is on three differ-
ent convex sets: the simplex Ap, = {x € RPs | > ixi=1,x; > 0 Vi}, the unit
¢1 ball By, [1] := {x € RP | |x|l; < 1}, and the closed zero-one hypercube
[0, 1]P7. Therefore, solving problem 5.1 with respect to each ay separately is
a convex optimization problem. In the case of the negative inner product
loss £ :x,y = —(x,y) and simplex constraints Cy = Ap » it is a bonafide
linear program. The correct factorization is given by aj, a3, .. ., aj. such that
£ =X = X v f, which we know to be vectors with a single entry 1
and the rest 0; these are the standard basis vectors e; (where (e;); =1 if
j =1iand 0 otherwise). The initial states a;[0], az[0], ..., ar[0] must be set
with no prior knowledge of the correct factorization so, similar to how we
do for resonator networks, we set each element of af[0] to the same value
(which in general depends on the constraint set).

5.1.1 Alternating Least Squares. Alternating Least Squares (ALS) locally
minimizes the squared error loss in a fairly straightforward way: for each
factor, one at a time, it solves a least squares problem for ar and updates the
current state of the estimate ¢ to reflect this new value, then moves onto the

;https: / / github.com/spencerkent/resonator-networks.
This is through the composition of an affine function with a convex function.

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2341

next factor and repeats. Formally, the updates given by ALS are

ag[t +1] = argmin 1|l c — 6[t] © Xsa[t] ”i
ar

= (£78) 'gc | &:=diag(6[t]) X;. (52)

Alternating Least Squares is an algorithm that features prominently in the
tensor decomposition literature (Kolda & Bader, 2009), but while ALS has
been successful for a particular type of tensor decomposition, a few de-
tails make our problem different from what is normally studied (see ap-
pendix D). The updates in ALS are quite greedy: they exactly solve each
least squares subproblem. It may make sense to more gradually modify the
coefficients, a strategy that we turn to next.

5.1.2 Gradient-Following Algorithms. Another natural strategy for solv-
ing problem 5.1 is to make updates that incorporate the gradient of £ with
respect to the coefficients; each of the next five algorithms does this in a par-
ticular way (we write out the gradients for both loss functions in appendix
E). The squared error loss is globally minimized by ¢ = ¢, so one might be
tempted to start from some initial values for the coefficients and make gra-
dient updates as[t + 1] = af[t] — n V,,L. In section E.1 we discuss why this
does not work well. The difficulty is in being able to guarantee that the loss
function is smooth enough that gradient descent iterates with a fixed step
size will converge. Instead, the algorithms we apply to the squared error
loss utilize a dynamic step size:

Iterative Soft Thresholding: The global minimizers of equation 5.1 are
maximally sparse, ||a}||0 = 1. If one aims to minimize the squared er-
ror loss while loosely constrained to sparse solutions, it may make
sense to solve the problem with Iterative Soft Thresholding (ISTA).
The dynamics for ISTA are given by equation C.1 in Table 2.

Fast Iterative Soft Thresholding: We also considered fast iterative soft
thesholding (FISTA), an enhancement due to Beck and Teboulle
(2009), which utilizes Nesterov’s momentum for accelerating first-
order methods in order to alleviate the sometimes slow convergence
of ISTA (Bredies & Lorenz, 2008). Dynamics for FISTA are given in
equation C.2.

Projected Gradient Descent: Another benchmark algorithm we consid-
ered was Projected Gradient Descent on the negative inner product
loss, where updates were projected onto either the simplex or unit ¢;
ball (see equation C.3). A detailed discussion of this approach can be
found in appendix G.

Multiplicative Weights: This is an algorithm that can be applied to either
loss function, although we found it worked best on the negative inner

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2342 S. Kent, E. Frady, F. Sommer, and B. Olshausen

product. It elegantly enforces a simplex constraint on ay by maintain-
ing a set of auxilliary variables, the weights, which are used to set ay
at each iteration. See equation C.5 for the dynamics of Multiplicative
Weights, as well as appendix H.

Map-seeking Circuits: The final algorithm that we considered is map-
seeking circuits, neural networks designed to solve invariant pattern
recognition problems using the principle of superposition. Their dy-
namics are based on the gradient, but are different from what we have
introduced so far (see equation C.5 and appendix I).

5.2 Contrasting Resonator Networks with the Benchmarks.

5.2.1 Convergence of the Benchmarks. A remarkable fact about the bench-
mark algorithms is that each one converges for all initial conditions, which we
directly prove, or refer to results proving, in appendixes D through I. That
is, given any starting coefficients as[0], their dynamics reach fixed points
that are local minimizers of the loss function. In some sense, this property
is an immediate consequence of treating factorization as an optimization
problem: the algorithms we chose as the benchmarks were designed this
way. Convergence to a local minimizer is a desirable property, but unfor-
tunately the fundamental nonconvexity of the optimization problem im-
plies that this may not guarantee good local minima in practice. In section
6, we establish a standardized setting where we measure how likely it is
that these local minima are actually global minima. We find that as long as
M, the size of the search space, is small enough, each of these algorithms
can find the global minimizers reliably. The point at which the problem
becomes too large to reliably solve is what we call the operational capac-
ity of the algorithm, and it is a main point of comparison with resonator
networks.

5.2.2 An Algorithmic Interpretation of Resonator Networks. The benchmark
algorithms generate estimates for the factors, %D[t], that move through the
interior of the [—1, 1] hypercube. Resonator networks, on the other hand,
do not. The sgn(-) function “bipolarizes” inputs to the nearest vertex of the
hypercube, and this highly nonlinear function, which not only changes the
length but also the angle of an input vector, is key. We know the solutions

x) exist at vertices of the hypercube, and these points are very special geo-
metrically in the sense that in high dimensions, most of the mass of [-1, 1N
is concentrated relatively far from the vertices, a fact we will not prove here
but that is based on standard results from the study of concentration in-
equalities (Boucheron, Lugosi, & Massart, 2013). Our motivation for using
the sgn(-) activation function is that moving through the interior of the hy-
percube while searching for a factorization is unwise, a conjecture for which
we will provide some empirical support in section 6.

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2343

One useful interpretation of OLS resonator network dynamics is that the
network is computing a bipolarized version of Alternating Least Squares.
Suppose we were to take the dynamics specified in equation 5.2 for making
ALS updates to af[t + 1], but we also bipolarize the vector KO[t + 1] at the
end of each step. When each /)t + 1] is bipolar, the vector 6\/[¢] is bipolar

and we can simplify (&T.S)_l‘g'T:

oV e (-1, 1) = (678) "¢ = (X]diag(6[t])’X;) X[diag(6[t])
= (X[X;) "X} diag(6[1])
= X diag(6"[t]). (5.3)

Now af[t + 1] = X} (0[] ® c), which one can see from equation 4.2 is pre-
cisely the update used by resonator networks with OLS weights. An im-
portant word of caution on this observation: it is somewhat of a misnomer
to call this algorithm bipolarized ALS, because at each iteration, it is not
solving a least squares problem, and this conceals a profound difference.
To set af[t +1] = X}(é(f)[t] ©c) is to take the term g(Xsay[t]) present in
the loss function and treat the activation function g(-) as if it were linear,
which it clearly is not. These updates are not computing a least squares solu-
tion at each step. We actually lose the guarantee of global convergence that
comes with ALS, but this is an exchange well worth making, as we will show in
section 6.

Unlike Hopfield networks, which have a Lyapunov function certifying
their global asymptotic stability, no such function (that we know of) ex-
ists for a resonator network. While ¢ = ¢ is always a fixed point of the
OLS dynamics, a network initialized to a random state is not guaranteed
to converge. We have observed trajectories that collapse to limit cycles and
seemingly chaotic trajectories that do not converge in any reasonable time.
One a priori indication that this is the case comes from a simple rewriting
of two-factor resonator network dynamics that concatenates the states for
each factor into a single state space. To make the transformation exact, we
appeal to the continuous-time version of resonator networks, which, just
like Hopfield networks, define dynamics in terms of time derivatives of the
preactivation state u/)(t) = XfX} (6 (t) © c), with) (t) = g(uH(t)). We
write down the continuous-time dynamics a la autoassociative Hopfield
networks:

ad () 0 ‘X1X{ diag(c)\ /%M (t)
(ﬁ@(t)) - (xzx; ding©) 0) <f<<2><t>) |

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2344 S. Kent, E. Frady, F. Sommer, and B. Olshausen

One can see that the weight matrix is nonsymmetric, which has a simple
but important consequence: autoassociative networks with nonsymmetric
weights cannot be guaranteed to converge in general. This result, first es-
tablished by Cohen and Grossberg (1983) and then studied throughout the
Hopfield network literature, is not quite as strong as it may sound, in the
sense that symmetry is a sufficient, but not necessary, condition for con-
vergence. One can design a globally convergent autoassociative network
with asymmetric weights (Xu, Hu, & Kwong, 1996), and, moreover, adding
a degree of asymmetry has been advocated as a technique to reduce the
influence of spurious fixed points (Hertz, Grinstein, & Solla, 1986; Singh,
Chengxiang, & Dasgupta, 1995; Chengxiang, Dasgupta, & Singh, 2000).

Resonator networks have a large and practical regime of operation,
where M (the problem size) is small enough, in which nonconverging trajec-
tories are extremely rare. It is simple to deal with these events, making the
model still useful in practice despite the lack of a convergence guarantee. It
has also been argued in several places (see Van Vreeswijk & Sompolinsky,
1996, for example) that cyclic or chaotic trajectories may be useful to a neu-
ral system, including in cases where there are multiple plausible states to
entertain. This is just to say that we feel the lack of a convergence guarantee
is not a critical weakness of our model, but rather an interesting and poten-
tially useful characteristic. We attempted many different modifications to
the model’s dynamics that would provably cause it to converge, but these
changes always hindered its ability to solve the factorization problem. We
emphasize that unlike all of the models in section 5.1, a resonator network
is not descending a loss function. Rather, it makes use of the fact that:

 Eachiteration is a bipolarized ALS update. It approximately moves the
state toward the least squares solution for each factor.

 The correct solution is a fixed point (guaranteed for OLS weights,
highly likely for OP weights).

» There may be a sizable basin of attraction around this fixed point,
which the iterates help us descend.

+ The number of spurious fixed points (which do not give the correct
factorization) is relatively small.

This last point is really what distinguishes resonator networks from the
benchmarks, which we establish in section 6.6.

6 Results

We present a characterization of resonator networks along three main di-

rections. The first direction is the stability of the solutions fo), which we

relate to the stability of classical Hopfield networks. The second is a funda-
mental measure of factorization capability we call the “operational capac-
ity.” The third is the speed with which factorizations are found. We argue

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2345

that the marked difference in factorization performance between our model
and the benchmark algorithms lies in the relative scarcity of spurious fixed
points enjoyed by resonator network dynamics. We summarize the main
results in bold throughout this section.

In each of the simulations, we choose codevectors randomly i.i.d. from
the discrete uniform distribution over the vertices of the hypercube; each
element of each codevector is a Rademacher random variable (assuming
the value —1 with probability 0.5 and +1 with probability 0.5). We gener-
ate ¢ by choosing one vector at random from each of the F codebooks and
then computing the Hadamard product among these vectors. We choose
vectors randomly because it makes the analysis of performance somewhat
easier and more standardized, and it is the setting in which most of the
well-known results on Hopfield network capacity apply; we will make a
few connections to these results. It is also the setting in which we typically
use the Multiply, Add, Permute VSA architecture (Gayler, 2004) and there-
fore these results on random vectors are immediately applicable to a variety
of existing works.

6.1 Stable-Solution Capacity with Outer Product Weights. Suppose

£0[0] = xif) for all f (we initialize it to the correct factorization; this will

also apply to any ¢ at which the algorithm comes upon X on its own).

What is the probability that the state stays there—that is, that the correct

factorization is a fixed point of the dynamics? This is the basis of what re-

searchers have called the “capacity” of Hopfield networks, where x) are

patterns that the network has been trained to store. We choose to call it the
“stable-solution capacity” in order to distinguish it from operational capac-
ity, which we define in section 6.2.

We first note that this analysis is necessary only for resonator networks

with outer product weights; OLS weights guarantee that the solutions are

stable, and this is one of the variant’s desirable properties. If X)[0] = x\’

for all f, then factor 1 in a resonator network “sees” an input xil) at time
t = 1. For OLS weights, the vector X; X{xﬁl) is exactly xM by the definition
of orthogonal projection. True for all subsequent factors, this means that for
OLS weights, xif) is always a fixed point.

For a resonator network with outer product weights, we must examine
the vector I := X;X} (6/7[0] © ¢) at each f, and changing from the psue-
doinverse X} to the transpose XJT makes the situation significantly more
complicated. At issue is the probability that I'; has a sign different from
(fo))i, that is, that there is a bit flip in any particular component of the up-
dated state. In general, one may not care whether the state is completely
stable; it may be tolerable that the dynamics flip some small fraction of

the bits of x\”) as long as it does not move the state too far away from

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2346 S. Kent, E. Frady, F. Sommer, and B. Olshausen

x,(,f), Amit, Gutfreund, and Sompolinsky (1985, 1987) established that in
Hopfield networks, an avalanche phenomenon occurs where bit flips ac-
cumulate and the network becomes essentially useless for values of Dy >
0.138N, at which point the approximate bit flip probability is 0.0036. While
we don’t attempt any of this complicated analysis on resonator networks,
we do derive an expression for the bit flip probability of any particular fac-
tor that accounts for bit flips that “percolate” from factor to factor through
the vector 6\9[0] © c.

We start by noting that for factor 1, this bit flip probability is the same
as a Hopfield network. Readers familiar with the literature on Hopfield
networks will know that with N and Dy reasonably large (approximately
N > 1,000 and Df > 50) I'; can be well-approximated by a gaussian with
mean ((f)) (N + Dy — 1) and variance (N — 1)(Dy — 1). (See appendix] for
asimple derivation.) This is summarized as the Hopfield bit flip probability h :

hy = Pr[(’A‘(f)[ll)i # (x‘('f))i]

e —N—-Df+1 ’ ©6.1)
N-DD; -1

where & is the cumulative density function of the Normal distribution.
Hopfield networks are often specified with the diagonal of X fXJTr set to

all zeros (having “no self-connections”), in which case the bit flip prob-

ability is @(W) For large N and Dy, this is often simplified to

®(—,/N/Dy), which may be the expression most familiar to readers. Keep-
ing the diagonal of X fX; makes the codevectors more stable (see appendix
J), and while there are some arguments in favor of eliminating it, we have
found resonator networks to exhibit better performance by keeping these
terms.

In appendix J, we derive the bit flip probability for an arbitrary factor in
a resonator network with outer product weights. This probability depends
on whether a component of the state has already been flipped by the previ-
ous f — 1 factors, which is what we call percolated noise passed between the
factors and which increases the bit flip probability. There are four relevant
probabilities:

rp =P (1), # ()] (6.2)
np =P (@ M0l 0 ¢), # (), . (63)
rp= PN, # (), | (0P101 0 ¢), = ()], (6.4)
rp=PrL(O1), # (), | (@010 ¢), # (),] (6.5)

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2347

Equation 6.2 is the probability of a bit flip compared to the correct value,
the resonator bit flip probability. Equation 6.3 gives the probability that the
next factor will see a net bit flip, a bit flip that has percolated through the
previous factors. Equations 6.4 and 6.5 give the probability of a bit flip con-
ditioned on whether this factor sees a net bit flip, and they are different. It
should be obvious that

Ty = T’f/(l - nf,l) +rpngg (6.6)
and also that
nf:rfr(l—nf,l)—l—(l—rfu)nf,l. (6.7)

We show via straightforward algebra in appendix] that the conditional
probabilities 7 and 7 can be written recursively in terms of 7

o=@ —N(l—an_l)—(Df—l) (68)
f= JN-D(D, -1 ’ '
o — @ —N(l—an,1)+(Df—1) 69)
= N-1DD,-1) ’ '

The resonator bit flip probability 7 has to be computed recursively us-
ing these expressions. The base case is 19 =0, and this is sufficient to
compute all the other probabilities; in particular, it implies that 1 =y =
QD(%), which we have previously indicated. We can verify these
equations in simulation, and the agreement is very good (see Figure 14 in
the appendix, which measures 7).

The main analytical result in this section is the sequence of equations
6.6 to 6.9, which allow one to compute the bit flip probabilities for each
factor in an outer product resonator network. The fact that r; in general
must be split between the two conditional probabilities and that there is a
dependence on 751 is what makes it different, for all but the first factor,
from the bit flip probability for a Hopfield network (compare equations 6.8
and 6.9 against equation 6.1). But how much different? We are interested in
the quantity r¢ — hy.

Here is a simple intuition for what this is capturing. Suppose there are
F Hopfield networks all evolving under their own dynamics; they are run-
ning simultaneously but not interacting in any way. At time ¢ = 0, the bit
flip probabilities h1, hy, ..., hp for the networks are all the same; there is
nothing special about any particular one. A resonator network, however,
is like a set of F Hopfield networks that have been wired up to receive in-
put 89[t] © ¢, which reflects the state of the other factors. The networks are
no longer independent. In particular, a bit flip in factor f gets passed onto

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2348 S. Kent, E. Frady, F. Sommer, and B. Olshausen

Factor 1
== Factor 50
= Factor 100

Factor 1
Factor 2

_E —— Factor 3 _E
1 1
Ny <

= Factor 10000 :

0.02 = Factor 4

= Factor 5

‘
0.056,
;

0.00 0.00
16-2 10 10° 10-2 101
D¢/N D¢/N
(a) 1 to 5 factors (b) 1 to 100 factors (c) 10,000 factors

Figure 1: Extra bit flip probability r¢ — /s due to percolated noise. In the limit of
large F, there appears to be a phase change at D/N = 0.056. Below this value,
resonator networks are just as stable as Hopfield networks, but above this value,
they are strictly less stable (by the amount 7 — k).

factors f +1, f 4+ 2, and so on. This affects the bit flip probability of these
other factors, and the magnitude of this effect, which we call percolated
noise, is measured by r; — hy.

Let us first note that for a Hopfield network with self-connections the max-
imum bit flip probability is 0.02275, which occursat Dy = N. Theratio D¢/N
is what determines the bit flip probability (see appendix | for an explana-
tion). Percolated noise is measured by the difference r; — ¢, which we plot
in Figure 1. Panel (a) shows just five factors, illustrating that r; = hy, but that
s > hy in general. To see if there is some limiting behavior, we simulated
100 and 10,000 factors; the differences ry — k¢ are also shown in Figure 1. In
the limit of large F, there appears to be a phase change in residual bit flip
probability that occurs at D /N = 0.056. In the Hopfield network literature,
this is a very important number. It gives the point at which the codevec-
tors transition away from being global minimizers of the Hopfield network
energy function. When D¢/N falls in between 0.056 and 0.138, the codevec-
tors are only local minimizers, and there exist spin-glass states that have
lower energy. We do not further explore this phase-change phenomenon,
and leave the (in all likelihood, highly technical) analysis to future work.

In conclusion, the second major result of the section is that we have
shown, via simulation, that for D¢/N < 0.056, the stability of a resonator
network with outer product weights is the same as the stability of a Hop-
field network. For D¢/N > 0.056, percolated noise between the factors
causes the resonator network to be strictly less stable than a Hopfield
network.

6.2 Operational Capacity. We now define a new notion of capacity that
is more appropriate to the factorization problem. This performance mea-
sure, called the operational capacity, gives an expression for the maximum
size of factorization problem that can be solved with high probability. This
maximum problem size, which we denote by Mmax, varies as a function
of the number of elements in each vector N and the number of factors F.

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2349

It gives a very practical characterization of performance and will form the
basis of our comparison between resonator networks and the benchmark
algorithms we introduced in section 5.1. When the problem size M is be-
low the operational capacity of the algorithm, one can be quite sure that the
correct factorization will be efficiently found.

Definition 1. The {p, k} operational capacity of a factorization algorithm that
solves 2.1 is the largest search space size Mmax such that the algorithm, when lim-
ited to a maximum number of iterations k, gives a total accuracy > p.

We now define what we mean by total accuracy. Each algorithm we have
introduced attempts to solve the factorization problem 2.1 by initializing the
state)[0] and letting the dynamics evolve until some termination crite-

rion is met. It is possible that the final state X/)[co] may not equal the correct

factors xif) at every component, but we can “decode” each N [o0] by look-

ing for its nearest neighbor (with respect to Hamming distance or cosine
similarity) among the vectors in its respective codebook X. This distance
computation involves only D vectors, rather than M, which was what we
encountered in one of the brute-force strategies of section 2. Compared to
the other computations involved in finding the correct factorization out of
M total possibilities, this last step of decoding has a very small cost, and
we always “clean up” the final state X/)[co] using its nearest neighbor in
the codebook. We define the total accuracy to be the sum of accuracies for

inferring each factor, which is 1/F if the nearest neighbor to) is xif) and
0 otherwise. For instance, correctly inferring one of three total factors gives
a total accuracy of 1/3, two of three is 2/3, and three of three is 1.
Analytically deriving the expected total accuracy appears to be quite
challenging, especially for a resonator network, because it requires that we

essentially predict how the nonlinear dynamics will evolve over time. There

may be a region around each x) such that states in this region rapidly

converge to xif), the so-called basin of attraction, but our initial estimate
X(5)[0] is likely not in the basin of attraction, and it is hard to predict when,
if ever, the dynamics will enter this region. Even for Hopfield networks,
which obey much simpler dynamics than a resonator network, it is known
that so-called “frozen noise” is built up in the network state, making the
shapes of the basins highly anisotropic and difficult to analyze (Amari &
Maginu, 1988). Essentially all of the analytical results on Hopfield networks
consider only the stability of x asa (very poor) proxy for how the model
behaves when it is initialized to other states. This less useful notion of ca-
pacity, the stable-solution capacity, was what we examined in the previous
section.

We can, however, estimate the total accuracy by simulating many fac-
torization problems, recording the fraction of factors that were correctly
inferred over many, many trials. We remind readers that our results in
this article pertain to factorization of randomly drawn vectors that bear

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2350 S. Kent, E. Frady, F. Sommer, and B. Olshausen

1.00

>

v

© 0.75-

-

v

2 0.50 N =200

c we N =300

© 0.25- === N=400

= = N =500

0.00- —

10* 10° 10°

M (search space size)

Figure 2: Accuracy as a function of M for resonator network with outer product
weights. Three factors (F = 3); average over 5000 random trials.

no particular correlational structure, but that notions of total accuracy and
operational capacity would be relevant, and specific, to factorization of
nonrandom vectors. We first note that for fixed vector dimensionality N,
the empirical mean of the total accuracy depends strongly on M, the search
space size. We can see this clearly in Figure 2. We show this phenomenon for
a resonator network with outer product weights, but this general behavior
is true for all of the algorithms under consideration. One can always make
the search space large enough that expected total accuracy goes to zero.

Our notion of operational capacity is concerned with the M that causes
expected total accuracy to drop below some value p. We see here a range
of values M for which the expected total accuracy is 1.0, beyond which this
ceases to be the case. For all values of M within this range, the algorithm
essentially always solves the factorization problem.

In this article, we estimate operational capacity when p = 0.99 (99% or
more of factors were inferred correctly) and k = 0.001M (the model can
search over at most 1/1000 of the entire search space). These choices are
largely practical: 99% or higher accuracy makes the model very reliable in
practice, and this operating point can be estimated from a reasonable num-
ber (3000 to 5000) of random trials. Setting k = 0.001M allows the number
of iterations to scale with the size of the problem but restricts the algo-
rithm to consider only a small fraction of the possible factorizations. While
aresonator network has no guarantee of convergence, it almost always con-
verges in far fewer than 0.001M iterations, so long as we stay in this high-
accuracy regime. Operational capacity is in general a function of N and F,
which we will discuss shortly.

6.2.1 Resonator Networks Have Superior Operational Capacity. We esti-
mated the operational capacity of the benchmark algorithms in addition
to the two variants of resonator networks. Figure 3 shows the operational
capacity estimated on several thousand random trials, where we display
Max as a function of N for problems with three factors. One can see that

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2351

107_
- Resonator Networks, OP weights
6 == Resonator Networks, OLS weights
Elo E —— Alternating Least Squares
E == Iterative Soft Thresholding
E 105 - Fast Iterative Soft Thresholding
== Projected Gradient D t
Multiplicative Weights
104 —Qé —— Map-seeking Circuits

1500 1750 2000 2250

Figure 3: Operational capacity is dramatically higher for resonator networks
(blue and red above) than for any of the benchmark algorithms. These points
represent the size of factorization problem that can be solved reliably. Shown is
operational capacity for F = 3 factors. The gap is similarly large for other F (see
plot for F = 4 in appendix B).

the operational capacity of resonator networks is roughly two orders of
magnitude greater than the operational capacity of the other algorithms.
Each of the benchmark algorithms has a slightly different operational ca-
pacity (due to the fact that they each have different dynamics and will, in
general, find different solutions), but they are all similarly poor compared
to the two variants of resonator networks. (See a similar plot for F = 4 in
appendix B.)

As N increases, the performance difference between the two variants
of resonator networks starts to disappear, ostensibly due to the fact that
X fX} ~ X fX;. The two variants are different in general, but the simulations
in this article do not particularly highlight the difference between them.
Except for ALS, each of the benchmark algorithms has at least one hyper-
perparameter that must be chosen. We simulated many thousand random
trials with a variety of hyperparameter settings for each algorithm and
chose the hyperparameter values that performed best on average. (We list
these values for each of the algorithms in the appendix.) All of the bench-
mark algorithms converge on their own, and the tunable step sizes make
a comparison of the number of iterations nonstandardized, so we did not
impose a maximum number of iterations on these algorithms. The points
shown represent the best the benchmark algorithms can do, even when not
restricted to a maximum number of iterations.

6.2.2 Operational Capacity Scales Quadratically in N. We carefully mea-
sured the operational capacity of resonator networks in search of a rela-
tionship between Mmax and N. We focused on resonator networks with
outer product weights. For N ~ 5000 and larger, randomly chosen codevec-
tors are nearly orthogonal and capacity is approximately the same for OLS
weights. We reiterate that operational capacity is specific to parameters p

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2352 S. Kent, E. Frady, F. Sommer, and B. Olshausen

and k: p is the threshold for total accuracy, and k is the maximum number
of iterations the algorithm is allowed to take (refer to definition 1). Here
we report operational capacity for p = 0.99 and k = 0.001M on randomly
sampled codevectors. The operational capacity is specific to these choices,
which are practical for Vector Symbolic Architectures.

Our simulations revealed that, empirically, resonator network oper-
ational capacity M. scales as a quadratic function of N, which w
e illustrate in Figure 4. The points in this figure are estimated from many
thousands of random trials, over a range of values for F and N. In panel
(a), we show operational capacity separately for each F from 2 to 7, with
the drawn curves indicating the least-squares quadratic fit to the measured
points. In panel (b), we put these points on the same plot, following a log-
arithmic transformation to each axis in order to illustrate that capacity also
varies as a function of F. Appendix B provides some additional commentary
on this topic, including some speculation on a scaling law that combines F
and N. The parameters of this particular combined scaling are estimated
from simulation and not derived analytically; therefore, they may deserve
additional scrutiny, and we do not focus on them here. The main message
of this section is that capacity scales quadratically in N, regardless of how
many factors are used.

The curves in Figure 4 are constructive in the following sense: given a
fixed N, they indicate the largest factorization problem that can be solved
reliably. Conversely, and this is often the case in VSAs, the problem size
M is predetermined, while N is variable. In this case, we know how large
one must make N. We include in the official software implementation that
accompanies this article’ a text file with all of the measured operational
capacities.

Quadratic scaling means that one can aspire to solve very large factor-
ization problems, so long as he or she can build a resonator network with
big enough N. We attempted to estimate capacity for even larger values of N
than we report in Figure 4, but this was beyond the capability of our current
computational resources. A useful contribution of follow-on work would be
to leverage high-performance computing to measure some of these values.
Applications of Vector Symbolic Architectures typically use N < 10,000, but
there are other reasons one might attempt to push resonator networks fur-
ther. Early work on Hopfield networks proposed a technique for storing
solutions to the traveling salesman problem as fixed points of the model’s
dynamics (Hopfield & Tank, 1985), and this became part of a larger ap-
proach using nonlinear dynamical systems to solve hard search problems.
We do not claim that any particular search problem, other than the fac-
torization we have defined (see problem 2.1), can be solved by resonator

’ https:/ /github.com/spencerkent/resonator-networks.

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2353

3.x10° F=2 g-x107 F=3 1.5X10° F=4
Mpax=a+bN+cN? 6
x2 x x 1.0
g £4 £
=1 x 5 S o5
1000 2000 3000 2000 4000 6000 2000 6000 10000
N N N
x107 F=5 x107 F=6 x107 F=7
8 5 3.5
x x x
85 5 §2.5
S g3 £
g, b3 = .5
1
T L L T T T = T T
4000 7000 10000 6000 8000 10000 8000 10000
N N N

(a)

N N
L))
f f
mmmm,m
LU [I 1 Iy |}
NoOwusWw

Iogz(Mmax)
N
n

N
e

11 12 13
logz(N)
(b)

Figure 4: Operational capacity of resonator networks with OP weights. (a) Mmax
scales quadratically in N. Red points are measured from simulation; black
curves are the least-squares quadratic fits. Parameters of these fits included in
appendix B. (b) My varies as a function of both F and N. Over the measured
range for N, capacity is highest for F = 3 and F = 4. Data for F = 2 were omitted
to better convey the trend for F = 3 and higher, but see appendix B for the full
picture.

networks. Supposing, however, that some other hard problem can be cast
in the form of equation 2.1, the quadratic scaling of operational capacity
makes this a potentially power tool.

Capacity is highest when the codebooks X each have the same number
of codevectors (D1 =Dy =--- =Dp = f/]VI), and this was the case for the
operational capacity results we have shown so far. We chose this in order

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

©009U/66G5981/ZEET/TLITENP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2354 S. Kent, E. Frady, F. Sommer, and B. Olshausen

to have a simple standard for comparison among the different algorithms,
but in general, it is possible that the codebooks are unbalanced, so that we
have the same M =]_[f Dy but Dy # Dy # -+ # Dy. In this case, capacity
is lower than for balanced codebooks. We found that the most meaningful
way to measure the degree of balance between codebooks was by the ratio
of the smallest codebook to the largest codebook:

&= (mfian)/(m?x Df). (6.10)

For ¢ > 0.2 we found that the effect on M.« was simply an additive factor
that can be absorbed into a (slightly smaller) y-intercept a for the quadratic
fit. For extreme values of &£, where there is one codebook that is, for instance,
10 or 20 times larger than another, then all three parameters 4, b, and ¢ are
affected, sometimes significantly. Scaling is still quadratic, but the actual
capacity values may be significantly reduced.

Our result—measured operational capacity that indicates an approxi-
mately quadratic relationship between Mp.x and N—is an important char-
acterization of resonator networks. It suggests that our framework scales
to very large factorization problems and serves as a guideline for imple-
mentation. Our attempts to analytically derive this result were stymied by
the toolbox of nonlinear dynamical systems theory. Operational capacity
involves the probability that this system, when initialized to an effectively
random state, converges to a particular set of fixed points. No results from
the study of nonlinear dynamical systems that we are aware of allow us to
derive such a strong statement about resonator networks. Still, the scaling
of Figure 4 is fairly suggestive of some underlying law, and we are hopeful
that a theoretical explanation exists, waiting to be discovered.

6.3 Search Speed. If a resonator network is not consistently descending
an energy function, is it just aimlessly wandering around the space, trying
every possible factorization until it finds the correct one? Figure 5 shows
thatitis not. We plot the mean number of iterations over 5000 random trials,
as a fraction of M, the search space size. This particular plot is based on
a resonator network with outer product weights and F = 3. In the high-
performance regime where M is below operation capacity, the number of
iterations is far fewer than the 0.001M cutoff we used in the simulations
of section 6.2; the algorithm is only ever considering a tiny fraction of the
possible factorizations before it finds the solution.

Section 6.2.1 compared the operational capacity of different algorithms
and showed that compared to the benchmarks, resonator networks can
solve much larger factorization problems. This is in the sense that the dy-
namics eventually converge (with high probability) on the correct factor-
ization, while the dynamics of the other algorithms converge on spurious

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2355

507 N =1500
04 == N=2000
= N = 2500

=== N =3000

Mean iterations
= N w B
g5

o
1

0 100000 200000 300000
M (search space size)

Figure 5: Iterations until convergence; resonator network with outer product
weights and F = 3. The number of iterations is a very small compared to the
size of the search space.

factorizations. This result, however, does not directly demonstrate the
relative speed with which factorizations are found in terms of either the
number of iterations or the amount of time to convergence. We set up a
benchmark to determine the relative speed of resonator networks, and our
main finding is depicted in Figure 6.

Measured in number of iterations, resonator networks are compara-
ble to the benchmark algorithms. We noted that ALS is the greediest of
the benchmarks, and one can see from Figure 6 that it is the fastest in this
sense. We are considering only trials that ultimately found the correct fac-
torization, which in this simulation was roughly 70% for each of the bench-
marks. In contrast, resonator networks always eventually found the correct
factorization. Measured in terms of wall-clock time, resonator networks
are significantly faster than the benchmarks. This can be attributed to their
nearly 5x lower per iteration cost. Resonator networks with outer product
weights utilize very simple arithmetic operations, and this explains the dif-
ference between Figures 6b and 6c.

6.4 Dynamics That Do Not Converge. One must be prepared for the
possibility that the dynamics of a resonator network will not converge. For-
tunately, for M below the p = 0.99 operational capacity, these will be exceed-
ingly rare. From simulation, we identified three major regimes of different
convergence behavior, which are depicted in Figure 7:

+ For M small enough, almost all trajectories converge. Moreover, they
converge to a state that yields the correct factorization. Limit cycles
are possible but rare, and often still yield the correct factorization.
There appear to be few if any spurious fixed points (those yielding
an incorrect factorization). If the trajectory converges to a point attrac-
tor or limit cycle, one can be confident this state indicates the correct
factorization.

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

©009U/66G5981/ZEET/TLITENP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2356 S. Kent, E. Frady, F. Sommer, and B. Olshausen

ALS ISTA FISTA R. Net
5 1.0 1.0 — 1.0 1.04gr
% 0.5 0.5 0.5 o5/l
5 N
05 so 100 >% so 100 >% 50 100 >% 50 100

Iterations

E 0.50 s Alternating Least Squares E 0.50 s Alternating Least Squares
— e |terative Soft Thresholding — e |terative Soft Thresholding
w 0.25 s Fast Iterative Soft Thresholding w 0.25 s Fast Iterative Soft Thresholding
== Resonator Network === Resonator Network
0.00- T T T T 1 0.00 T T T
V] 20 40 60 80 100 0.1 0.3 0.5
Iterations Time (seconds)

(b) ()

Figure 6: Our benchmark of factorization speed. Implementation in Python
with NumPy. Run on machine with Intel Core i7-6850k processor and 32 GB
RAM. We generated 5000 random instantiations of the factorization problem
with N = 1500, F = 3, and Dy = 40, running each of the four algorithms in turn.
(a) Convergence traces for 100 randomly drawn factorization problems (out of
total 5000); each line is the cosine similarity between ¢ and ¢ over iterations of
the algorithm. Each of the four algorithms is run on the same 100 factorization
problems. All of the instances are solved by the resonator network, whereas a
sizable fraction (around 30%) of the instances are not solved by the benchmark
algorithms, at least within 100 iterations. (b) Average cosine similarity versus
iteration number (only trials with accuracy 1.0). (c) Average cosine similarity
versus wall-clock time (only trials with accuracy 1.0).

* As M increases, nonconverging trajectories appear in greater propor-
tion and yield incorrect factorizations. Any trajectories that converge
on their own continue to yield the correct factorization, but these be-
come less common.

* Beyond some saturation value M, (roughly depicted as the transi-
tion from red to blue in the figure), both limit cycles and point attrac-
tors reemerge, and they yield the incorrect factorization.

In theory, limit cycles of any length may appear, although in practice, they
tend to be skewed toward small cycle lengths. Networks with two fac-
tors are the most likely to find limit cycles, and this likelihood appears
to decrease with increasing numbers of factors. Our intuition about what
happens in the middle section of Figure 7 is that the basins of attraction
become very narrow and hard to find for the resonator network dynamics.

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

©009U/66G5981/ZEET/TLITENP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2357

1.0 1000
Operational capacity Mmax /
for p=0.99 (99% accuracy)
0.8+ 800
0y g
g 0.6 Almost all trajectories Increasing proportion Trajectories again -600 (]
5 converge to of trajectories converge, buttoa)
[+ point attractor fail to converge spurious fixed point E
U 0.4 400 ¢
g =
0.2 200
0.0 -0
T T T T T
103 10 10° 10° 10’ 108 10°

M (search space size)

Figure 7: Regimes of different convergence behavior. Curves show measure-
ment from simulation of an outer product resonator network with three factors
and N = 400. This is also meant as a diagram of convergence behavior for res-
onator networks in general. Shown in black is the average decoding accuracy,
and shown in gray is the median number of iterations taken by the network. For
low enough M, the network always finds a fixed point yielding 100% accuracy.
The network will not converge to spurious fixed points in this regime (green). As
M is increased, more trajectories wander, not converging in any reasonable time
(red). Those that are forcibly terminated yield incorrect factorizations. For large
enough M, the network is completely saturated, and most states are fixed points,
regardless of whether they yield the correct factorization (blue). Resonator net-
works with OLS weights are always stable when D = N, but OP weights give
a bit flip probability that is zero only asymptotically in M (see section 6.1 and
appendix J).

The algorithm will wander, since it has so few spurious fixed points (see
section 6.6), but not be able to find any basin of attraction.

6.5 Factoring a “Noisy” Composite Vector. Our assumption has been
that one combination of codevectors from our codebooks X generates ¢
exactly. What if this is not the case? Perhaps the vector we are given for
factorization has had some proportion ¢ of its components flipped, that is,
we are given ¢ where ¢ differs from ¢ in exactly [¢N| places. The vector
¢ has a factorization based on our codebooks, but ¢ does not. We should
hope that a resonator network will return the factors of ¢ so long as the cor-
ruption is not too severe. This is an especially important capability in the
context of Vector Symbolic Architectures, where & will often be the result
of some algebraic manipulations that generate noise and corrupt the origi-
nal ¢ to some degree. We show in Figure 8 that a resonator network can still

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

©009U/66G5981/ZEET/TLITENP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2358 S. Kent, E. Frady, F. Sommer, and B. Olshausen

1.0-
Zo.8
©
-
3 0.6
(V)
[}
e 0.4 M/Mpax = 0.015625
8 M/Mpax =0.125
S 0.2 === M/Mp, =0.421875
s M /M pax = 1.0
0.0

0.0 0.1 0.2 0.3 0.4
Corruption (fraction of c bits flipped)

Figure 8: Factoring a corrupted c¢. For M well below capacity (lighter curves

above), one can sustain heavy corruption to ¢ and still find the correct
factorization.

produce the correct factorization even after a significant number of bits have
been flipped. This robustness is more pronounced when the number of fac-
torizations is well below operational capacity, at which point the model can
often still recover the correct factorization even when 30% of the bits have
been flipped.

6.6 A Theory for Differences in Operational Capacity. The failure
mode of each benchmark algorithm is getting stuck at a spurious fixed point
of the dynamics. This section develops a simple comparison between the
spurious fixed points of resonator networks and the benchmarks as an ex-
planation for why resonator networks enjoy relatively higher operational
capacity. From among the benchmarks we focus on Projected Gradient De-
scent (PGD; applied to the negative inner product with the simplex con-
straint) to illustrate this point. We will show that the correct factorization
is always stable under PGD (as it is with the OLS variant of resonator net-
works), but that incorrect factorizations are much more likely to be fixed
points under PGD. The definition of PGD can be found in Table 2, with
some comments in appendix G.

6.6.1 Stability of the Correct Factorization. The vector of coefficients as is a
fixed point of PGD dynamics when the gradient at this point is exactly 0 or
when it is in the null space of the projection operator. We write

N(Pc,Ix]) == {z | Pc,[x+ 2] = Pc,[x]} (6.11)

to denote this set of points. The null space of the projection operator is rela-
tively small on the faces and edges of the simplex, but it becomes somewhat
large at the vertices. We denote a vertex by e; (where (e;) j=1 ifj=iand 0

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2359

otherwise). The null space of the projection operator at a vertex of the sim-
plex is an intersection of half-spaces (each half-space given by an edge of
the simplex). We can compactly represent it with the following expression:

N (Pa,lei]) = {z | [(ei—ep'z =1}, (6.12)
J#i

An equivalent way to express the null space is
N(PADf[ei]) ={z|zj<z—-1Vj#i}. (6.13)

In other words, for a vector to be in the null space at e;, the ith element
of the vector must be the largest by a margin of 1 or more. This condi-
tion is met for the vector —V, f£ at the correct factorization since —V, fﬁ =

XJTC (00l c) = X}xif). This vector has a value N for the component cor-

responding to x\) and values that are < N — 1 for all the other components.

Thus, the correct factorization (the solution to 2.1 and global minimizer of
5.1) is always a fixed point under the dynamics of PGD.

This matches the stability of OLS resonator networks, which are, by
construction, always stable at the correct factorization. We showed in sec-
tion 6.1 that OP weights induce instability and that percolated noise makes
the model marginally less stable than Hopfield networks, but there is still
a large range of factorization problem sizes where the network is sta-
ble with overwhelming probability. What distinguishes the benchmarks
from resonator networks is what we cover next, the stability of incorrect
factorizations.

6.6.2 Stability of Incorrect Factorizations. Suppose initialization is done
with a random combination of codevectors that do not produce c. The
vector 6(7[0] © ¢ will be a completely random bipolar vector. So long as
Dy is significantly smaller than N, which it always is in our applications,
0[0] © c will be nearly orthogonal to every vector in X and its projection
onto R(Xy) will be small, with each component equally likely to be positive
or negative. Therefore, under the dynamics of a resonator network with
OLS weights, each component will flip its sign compared to the initial state
with probability 1/2, and the state for this factor will remain unchanged
with the minuscule probability 1/2V. The total probability of this incorrect
factorization being stable, accounting for each factor, is therefore (1/2V)F.
Suboptimal factorizations are very unlikely to be fixed points. The same
is true for a resonator network with OP weights because each element of
the vector XX} (6/”[0] ©) is approximately gaussian with mean zero (see
section 6.1 and appendix J).

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2360 S. Kent, E. Frady, F. Sommer, and B. Olshausen

Contrast this against PGD. We recall from equation 6.13 that the require-
ment for e; to be a fixed point is that the ith component of the gradient at
this point be largest by a margin of 1 or more. This is a much looser stability
condition than we had for resonator networks. Such a scenario will actu-
ally occur with probability 1/D for each factor, and the total probability is
1/M. While still a relatively small probability, in typical VSA settings 1/M is

much larger than (1/2N)F, meaning that compared to resonator networks,
PGD is much more stable at incorrect factorizations. Empirically, the failure
mode of PGD involves it settling on one of these spurious fixed points.

6.6.3 Stability in General. The cases of correct and incorrect factorizations
drawn from the codebooks are two extremes along a continuum of possi-
ble states the algorithm can be in. For PGD, any state will be stable with
probability in the interval [%, 1], while for resonator networks (with OLS
weights), the interval is [Z%N, 1]. In practical settings for VSAs, the interval
[2%1\,, 1] is, in a relative sense, much larger than [%, 1]. Vectors drawn uni-
formly from either {—1, —1}N or[-1, —1]" concentrate near the lower end of
these intervals, suggesting that on average, PGD has many more spurious
fixed points.

This statement is not fully complete in the sense that dynamics steer the
state along specific trajectories, visiting states in a potentially nonuniform
way, but it does suggest that PGD is much more susceptible to spurious
fixed points. The next section shows that these trajectories do in fact con-
verge on spurious fixed points as the factorization problem size grows.

6.6.4 Basins of Attraction for Benchmark Algorithms. It may be that while
there are sizable basins of attraction around the correct factorization, mov-
ing through the interior of the hypercube causes state trajectories to fall into
the basin corresponding to a spurious fixed point. In a normal setting for
several of the optimization-based approaches, we initialize af to be at the
center of the simplex, indicating that each of the factorizations is equally
likely. Suppose we were to initialize as so that it is just slightly nudged to-
ward one of the simplex vertices. We might nudge it toward the correct
vertex (the one given by a}), or we might nudge it toward any of the other
vertices, away from a}. We can parameterize this with a single scalar # and
e; chosen uniformly among the possible vertices:

af[0] =9€z‘+(1—9)le1 | 6el[0,1], i~U{1, Dy} (6.14)

We ran a simulation with N = 1500 and D; = D, = D3 = 50, at which
PGD and Multiplicative Weights have a total accuracy of 0.625 and 0.525,
respectively. We created 5000 random factorization problems, initializing
the state according to equation 6.14 and allowing the dynamics to run until

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2361

B
2

= PGD, init. toward a;
® MW, init. toward a;
A
A

Accuracy
e
i

PGD, init. away from a;
MW, init. away from a;

0.00 0.01 0.02 0.03 0.04 0.05
(2]

Figure 9: States in hypercube interior get pulled into spurious basins of attrac-
tion. PGD is in green and Multiplicative Weights in orange. Network is ini-
tialized at a distance 6 from the center of the simplex (see equation 6.14), and
allowed to converge. The y-axis is the accuracy of the factorization implied by
the converged state. Triangles indicate initialization slightly away from a} to-
ward any of the other simplex vertices, which is most directions in the space.
These initial states get quickly pulled into a spurious basin of attraction.

convergence. We did this first with a nudge toward the correct factorization
a’ (squares in Figure 9) and then with a nudge away from a}, toward a
randomly chosen spurious factorization (triangles in Figure 9).

What Figure 9 shows is that by moving just a small distance toward the
correct vertex, we very quickly fall into its basin of attraction. However,
moving toward any of the other vertices is actually somewhat likely to take
us into a spurious basin of attraction (where the converged state is decoded
into an incorrect factorization). The space is full of these bad directions. It
would be very lucky indeed to start from the center of the simplex and move
immediately toward the solution. It is far more likely that initial updates
take us somewhere else in the space, toward one of the other vertices, and
this plot shows that these trajectories often get pulled toward a spurious
fixed point. What we are demonstrating here is that empirically, the inte-
rior of the hypercube is somewhat treacherous from an optimization per-
spective, and this lies at the heart of why the benchmark algorithms fail.

From among the benchmarks, we restricted our analysis of spurious
fixed points to PGD and, in Figure 9, Multiplicative Weights. This choice
was made for clarity, and similar arguments apply for all of the benchmarks.
While the details may differ slightly (e.g., spurious fixed points of ALS ap-
pear near the simplex center, not at a vertex), the failure mode of the bench-
marks is strikingly consistent. They all become overwhelmed by spurious
fixed points, long before this affect is felt by resonator networks. We have
shown that in expectation, PGD has many more spurious fixed points than
resonator networks. We have also shown that trajectories moving through

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2362 S. Kent, E. Frady, F. Sommer, and B. Olshausen

the interior of the hypercube are easily pulled into these spurious basins
of attraction.

7 Discussion

We studied a vector factorization problem that arises in the use of Vector
Symbolic Architectures (as introduced in the companion article in this is-
sue) showing that resonator networks solve this problem remarkably well.
Their performance comes from a particular form of nonlinear dynamics,
coupled with the idea of searching in superposition. Solutions to the fac-
torization problem lie in a small sliver of RN (the corners of the bipolar
hypercube {—1,1}"), and the highly nonlinear activation function of res-
onator networks serves to constrain the search to this subspace. We drew
connections between resonator networks and a number of benchmark algo-
rithms that cast factorization as a problem of optimization. This intuitively
satisfying formulation appears to come at a steep cost. None of the bench-
marks were competitive with resonator networks in terms of key metrics
that characterize factorization performance. One explanation for this is that
the benchmarks have comparatively many more spurious fixed points of
their dynamics and that the loss function landscape in the interior of the
hypercube induces trajectories that approach these spurious fixed points.

Unlike the benchmarks, resonator networks do not have a global conver-
gence guarantee, and in some respects we see this as a beneficial character-
istic of the model. Requiring global convergence appears to unnecessarily
constrain the search for factorizations, leading to lower capacity. Besides,
operational capacity (defined in this article) specifies a regime where the
lack of a convergence guarantee can be practically ignored. Resonator net-
works almost always converge in this setting, and the fixed points yield
the correct solution. The benchmarks are, by steadfastly descending a loss
function, in some sense greedier than resonator networks. It appears that
resonator networks strike a more natural balance between making updates
based on the best-available local information and still exploring the solution
space while not getting stuck. Our approach follows a kind of “Goldilocks
principle” on this trade-off: not too much, not too little, but just right.

We are not the first to consider eschewing convergence guarantees to
better solve hard search problems. For instance, randomized search algo-
rithms utilize some explicit form of randomness to find better solutions,
typically converging only if this randomness is reduced over time (Spall,
2005). In contrast, our model is completely deterministic, and the search-
ing behavior comes from nonlinear heteroassociative dynamics. Another
example is the proposal to add small amounts of random asymmetry to the
(symmetric) weight matrix of Hopfield networks (Hertz et al., 1986). This
modification removes the guaranteed absence of cyclic and chaotic trajec-
tories that holds for the traditional Hopfield model. But at the same time,
and without significantly harming the attraction of memory states, adding

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

©009U/66G5981/ZEET/TLITENP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2363

asymmetry to the weights can improve associative memory recall by
shrinking the basins of attraction associated with spurious fixed points
(Singh et al., 1995; Chengxiang et al., 2000).

We emphasize that while resonator networks appear to be better than
alternatives for the particular vector factorization problem 2.1, this is not a
claim they are appropriate for other hard search problems. Rather, resonator
networks are specifically designed for the vector factorization problem at
hand. There exist several prior works involving some aspect of factorization
that we mention here, but we emphasize that each one of them deals with a
problem or approach that is distinct from what we have introduced in this
article.

Tensor decomposition is a family of problems that bear some resem-
blance to the factorization problem we have introduced, problem 2.1. Key
differences include the object to be factored, which is a higher-order tensor,
not a vector, and constraints on the allowable factors. We explain in ap-
pendix D how our factorization problem is different from traditional tensor
decompositions. Our benchmarks actually included the standard tensor de-
composition algorithm, Alternating Least Squares, reexpressed for 2.1, and
we found that it is not well matched for this factorization problem. Bidi-
rectional Associative Memory, proposed by Kosko (1988), is an extension
of Hopfield networks that stores pairs of factors in a matrix using the outer
product learning rule. The composite object is a matrix, rather than a vec-
tor, and is much closer to a particular type of tensor decomposition called
the CP decomposition, which we elaborate on in appendix D. Besides the
fact that this model applies only to two factor problems, its dynamics are
different from ours and its capacity is relatively low (Kobayashi, Hattori, &
Yamazaki, 2002). Subsequent efforts to extend this model to factorizations
with three or more factors (Huang & Hagiwara, 1999; Kobayashi, Hattori,
& Yamazaki, 2002) have had very limited success and still rely on matrices
that connect pairs of factors rather than a single multilinear product, which
we have in our model. Bilinear models of style and content (Tenenbaum &
Freeman, 2000) was an inspiration for us in deciding to work on factoriza-
tion problems. This article applies a different type of tensor decomposition,
a Tucker decomposition (again see appendix D), to a variety of different
real-valued data sets using what appears to be in one case a closed-form
solution based on the singular value decomposition, and in the other case a
variant of ALS. In that sense, their method is different from ours, the factor-
ization problem is itself different, and they consider only pairs of factors.
Memisevic and Hinton (2010) revisit the Tucker decomposition problem,
but factor the core tensor representing interactions between factors in or-
der to make estimation more tractable. They propose a Boltzmann machine
that computes the factorization and show some results on modeling image
transformations. Finally, there is a large body of work on matrix factoriza-
tion of the form V ~ WH, the best known of which is probably nonnegative
matrix factorization (Lee & Seung, 2001). The matrix V can be thought of a

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2364 S. Kent, E. Frady, F. Sommer, and B. Olshausen

sum of outer products, so this is really a type of CP decomposition with an
additional constraint on the sign of the factors. Different still is the fact that
W is often interpreted as a basis for the columns of V, with H containing
the coefficients of each column with respect to this basis. In this sense, vec-
tors are being added to explain V rather than combined multiplicatively;
nonnegative matrix factorization is much closer to sparse coding (Hoyer,
2004).

The companion article in this issue illustrates how distributed represen-
tations of data structures can be built with the algebra of Vector Symbolic
Architectures, as well as how resonator networks can decompose these data
structures. VSAs are a powerful way to think about structured connectionist
representations, and resonator networks make the framework much more
scalable. Extending the examples found in our companion article to more
realistic data (e.g., complex three-dimensional visual scenes) could be a use-
ful application of resonator networks. This will likely require learning a
transform from pixels into the space of high-dimensional symbolic vectors,
and this learning should ideally occur in the context of the factorization dy-
namics, an exciting avenue for future study. Here we have not shown res-
onator circuits for anything other than bipolar vectors. However, a version
of the model wherein vector elements are unit-magnitude complex phasors
is a natural next extension and relevant to holographic reduced represen-
tations, a VSA developed by Plate (2003). A recent theory of sparse phasor
associative memories (Frady & Sommer, 2019) may allow one to perform
this factorization with a network of spiking neurons.

Resonator networks are an abstract neural model of factorization, intro-
duced for the first time in this two-part series. We believe that as the theory
and applications of resonator networks are further developed, they may
help us understand factorization in the brain, which remains an important
mystery.

Appendix A: Implementation Details

This appendix includes a few comments relevant to the implementation
of resonator networks. Algorithm 1 gives pseudocode for ordinary least
squares weights—the only change for outer product weights is to use X'
instead of X". So long as Dy < N/2, computing X;X}(6 © c) has lower com-
putational complexity than actually forming a single synaptic matrix T :=
X fX} and then computing T £(6 © c) in each iteration—it is faster to keep the
matrices Xy and X} separate. This of course assumes that implementation is
on a conventional computer. If one can use specialized analog computation,
such as large mesh circuits that directly implement matrix-vector multipli-
cation in linear time (Cannon, 1969), then it would be preferable to store the
synaptic matrix directly.

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

©009U/66G5981/ZEET/TLITENP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2365

Algorithm 1: Resonator Network with Ordinary Least Squares Weights.

Require: ¢ > Composite vector to be factored
Require: X, X,,..., Xp > Codebook matrices (ng> =Xs[:,j])
Require: k > Maximum allowed iterations

1 xU) sgn(zjx;f)) Vfi=1,...,F

2: X} —pinv(Xy) Vi=1,...,F

3140

4: while not converged and i < k do

5: for f =1to F do

6: o+ xWo. oxVeoxe ox®

7 xU) < sgn <XfX} (6 O] c))

8: end for

9: 141+ 1

10: end while

11: for f =1 to F' do > Nearest Neighbor decoding
12: u + argmax; [sim(x/), x;f))\ > Un-signed NN w.r.t cos-similarity
13 % %

14: end for

15: return X Vf=1,... F

Lines 11 to 13 in algorithm 1 clean up %) using the nearest neighbor in
the codebook and also resolve a sign ambiguity inherent to the factorization
problem. The sign ambiguity is simply this: while ¢ = XM ox? o ox?
is the factorization we are searching for, we also have ¢ = XV o -x? e
O) xiF), and, more generally, any even number of factors can have their
signs flipped but still generate the correct c¢. Resonator networks will some-
times find these solutions. We clean up using the codevector with the largest
unsigned similarity to the converged %), which remedies this issue. Note
that we have written algorithm 1 to update factors in order from 1 to F. This
is completely arbitrary, and any ordering is fine. We have experimented
with choosing a random update order during each iteration, but this did
not seem to significantly affect performance.

Computing 6 with the most recently updated values for factors 1 to f — 1
(see equation 3.5) is a convention we call asynchronous updates, in rough
analogy to the same term used in the context of Hopfield networks. An
alternative convention is to, when computing 6, not use freshly updated
values for factors 1 to f — 1, but rather their values before the update. This
treats each factor as if it is being updated simultaneously, a convention we
call synchronous updates. This distinction is an idiosyncrasy of modeling
resonator networks in discrete time, and the difference between the two
disappears in continuous time, where things happen instantaneously.

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

©009U/66G5981/ZEET/TLITENP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2366 S. Kent, E. Frady, F. Sommer, and B. Olshausen

107
105 === Alternating Least Squares
= |terative Soft Thresholding
X == Fast Iterative Soft Thresholding
© === Projected Gradient Descent
5 Multiplicative Weights
E 10 == Map Seeking Circuits

== Resonator Circuit with OLS weights (ours)
=== Resonator Circuit with OP weights (ours)

1

104 —
V"

1600 1800 2000 2200 2400 2600 2800 3000
N

Figure 10: Comparing operational capacity against the benchmarks for F = 4
(four factors).

Throughout this article, our analysis and simulations have been with asyn-
chronous updates, which we find to converge significantly faster.

Not shown in algorithm 1 is the fact that, in practice, we record a buffer
of past states, allowing us to detect when the dynamics fall into a limit cycle
and to terminate early.

Appendix B: Operational Capacity

The main text introduced our definition of operational capacity and high-
lighted our two main results: that resonator networks have superior opera-
tional capacity compared to the benchmark algorithms, and that resonator
network capacity scales as a quadratic function of N. This appendix pro-
vides some additional support and commentary on these findings.

Figure 10 compares operational capacity among all of the considered al-
gorithms when F, the number of factors, is four. We previously showed this
type of plot for F = 3, which was Figure 3 in the main text. Resonator net-
works have an advantage of between two and three orders of magnitude
compared to all of our benchmarks; the general size of this gap was consis-
tent in all of our simulations.

We concluded in section 6.2 that the operational capacity of resonator
networks scales quadratically in N, which was shown in Figure 4. In Table
1 we provide parameters of the least-squares quadratic fits shown in that
plot. One can see from Figure 4b that capacity is different depending on the
number of factors involved, and in the limit of large N, this difference is de-
termined by the parameter c. c first rises from two to three factors and then

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

©009U/66G5981/ZEET/TLITENP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2367

Table 1: M. = a + bN + cN?.

Parameters of Quadratic Fit

F a b c
2 1.677 x 10° —3.253 x 102 0.293
3 1.230 x 10° —3.549 x 10° 2.002
4 —5.663 x 10° 9.961 x 102 1.404
5 1.140 x 10° —2.404 x 10° 1.024
6 5789 x 106 —4.351 x 10° 0.874
7 —1503x107 —1.551x10° 0.669
2 []
. -
0, .. 3
o °
® y ;
2 4 6 1

2
F log>(F)

Figure 11: Parameter c of the quadratic scaling depends on F. We find that it
may follow an inverse power law for F > 3.

falls with increasing F. This implies that factorization is easiest for resonator
networks when the decomposition is into three factors, an interesting phe-
nomenon for which we do not have an explanation at this time.

Figure 11 visualizes c as a function of F. The data indicate that for F >
3, ¢ may follow an inverse power law: ¢ = a1 F~*2. The indicated linear fit,
following a logarithmic transformation to each axis, suggests the following
values for parameters of this power law: a; &~ 23014 = 8.078, o, ~ 1.268. It is
with some reservation that we give these specific values for oy and «,. Our
estimates of operational capacity, while well fit by quadratics, undoubtedly
have small amounts of noise. This noise can have a big enough impact on
fitted values for c that fitting the fit may not be fully justified. However, we
do note for the sake of completeness that this scaling, if it holds for larger
values of F, would allow us to write operational capacity in terms of both
parameters N and F in the limit of large N:

__8.078N?

Muax ~ ~progs— VF 23, (B.1)

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

©009U/66G5981/ZEET/TLITENP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2368 S. Kent, E. Frady, F. Sommer, and B. Olshausen

Appendix C: Table of Benchmark Algorithms

Table 2: Dynamics for as, Benchmark Algorithms.

Algorithm Dynamics for Updating a¢[t] Equation

—1
Alternating Least Squares a f[t +1] = (ng) £ 6.2
= diag(é(f)[t]) X;
Iterative Soft Thresholding ag[t +1] = Slaf[t] —n Va fll ;A C.1

(SIx: 1) = sgn) max(ixi| - . 0)

i

14 /1+40?

Fast Iterative Soft Thresholding o = — C2

p=u!

o
prlt + 1] = ag[t] + Br(aglt] — af[t —1])
aglt +11 = Slpslt + 11— 0 Vp, £ 12

(SEx:71), = sgn(x) max(ixi| - y. 0)

Projected Gradient Descent ag[t+1] = PCf [af[t] — nVafE] C3
Pcf[x] = argmin 1 ‘)x — z‘ ‘2
zeCf 2 2
Multiplicative Weights wet +1] =ws[t]© <1 - EVa y ZI) C4
o
wlt +1]
afft+1]l= =———
f > walt +1]
p = max ‘(Vafﬂ),'
1
1
Map Seeking Circuits ag[t +1] = T(af[t] - n(l + fVafL) ;€ > C5
o

x; ifx;>e€
T(x; €e) =
()f i 0 otherwise

p = [min(vs, L)

Note: See appendixes D to I for discussion of each algorithm, including hyperparameters
n, A, and ¢, as well as initial conditions.

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

©009U/66G5981/ZEET/TLITENP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2369

Appendix D: Tensor Decompositions and Alternating Least Squares ___

Tensors are multidimensional arrays that generalize vectors and matrices.
An Fth-order tensor has elements that can be indexed by F separate indexes;
a vector is a tensor of order 1 and a matrix is a tensor of order 2. As devices
for measuring multivariate time series have become more prevalent, the fact
that these data can be expressed as a tensor has made the study of tensor de-
composition a popular subfield of applied mathematics. Hitchcock (1927) is
often credited with originally formulating tensor decompositions, but mod-
ern tensor decomposition was popularized in the field of psychometrics by
the work of Tucker (1966), Carroll and Chang (1970), and Harshman (1970).
This section highlights the substantial difference between tensor decompo-
sition and the factorization problem solved by resonator networks.

The type of tensor decomposition most closely related to our factoriza-
tion problem (given in 2.1) decomposes an fth-order tensor C into a sum of
tensors, each generated by the outer product o:

R
C= Zxﬁl) o x£2) 0...0 Xip). (D.1)

r=1

The outer product contains all pairs of components from its two arguments,
so (Woxoyo z)iﬂd = w;x;yxz1. The interpretation is that each term in the

sum is a rank-one tensor of order F and that C can be generated from the
sum of R of these rank-one tensors. We say that C is rank-R. This particular
decomposition has at least three different names in the literature: Canoni-
cal Polyadic Decomposition, coined by Hitchcock; CANonical DECOMPo-
sition (CANDECOMP), coined by Carroll and Chang (1970); and PARAllel
FACtor analysis (PARAFAC), coined by Harshman (1970). We will simply
call this the CP decomposition, in accordance with the convention used by
Kolda and Bader (2009) and many others.

CP decomposition makes no mention of a codebook of vectors, such as
we have in equation 2.1. In CP decomposition, the search is apparently over
all of the vectors in a real-valued vector space. One very useful fact about CP
decomposition is that under relatively mild conditions, if the decomposition
exists, it is unique up to a scaling and permutation indeterminacy. Without
going into the details, a result in Kruskal (1977) and extended by Sidiropou-
los and Bro (2000) gives a sufficient condition for uniqueness of the CP de-
composition based on what is known as the Kruskal rank kx, of the matrix

Xy = [ng), xéf), . .xg)]:

F
> kx, = 2R+ (F —1). (D.2)
f=1

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2370 S. Kent, E. Frady, F. Sommer, and B. Olshausen

This fact of decomposition uniqueness illustrates one way that basic re-
sults from matrices fail to generalize to higher-order tensors (by higher-
order, we simply mean where the order is 3 or more). Low-rank CP
decomposition for matrices (tensors of order 2) may be computed with the
truncated singular value decomposition (SVD). However, if C is a matrix
and its truncated SVD is UEZVT := X;X;, then any non-singular matrix M
generates an equally good CP decomposition (UEM)(VM). The decom-
position is highly nonunique. All matrices have an SVD, whereas generic
higher-order tensors are not guaranteed to have a CP decomposition. And
yet, if a CP decomposition exists, under the mild condition of equation D.2,
it is unique. This is a somewhat miraculous fact, suggesting that in this
sense, CP decompostion of higher-order tensors is easier than matrices. The
higher order of the composite object imposes many more constraints that
make the decomposition unique.

Another interesting way that higher-order tensors differ from matrices is
that computing matrix rank is easy, whereas in general, computing tensor
rank is NP-hard, along with many other important tensor problems (Hillar
& Lim, 2013). Our intuition about matrices largely fails us when dealing
with higher-order tensors. In some ways the problems are easier and in
some ways they are harder. See Sidiropoulos et al. (2017) for a more com-
prehensive comparison.

The vector factorization problem defined by equation 2.1 differs from CP
decomposition in three key ways:

1. The composite object to be factored is a vector, not a higher-order ten-
sor. This is an even more extreme difference than between matrices
and higher-order tensors. In CP decomposition, the arrangement and
numerosity of tensor elements constitute many constraints on what
the factorization can be, so much so that it resolves the uniqueness
issue we outlined above. In this sense, tensors contain much more in-
formation about the valid factorization, making the problem signifi-
cantly easier. The size and form of these tensors may make finding CP
decompositions a computational challenge, but CP decomposition is
analytically easier than our vector factorization problem.

2. Searchis conducted over a discrete set of possible factors. This differs
from the standard formulation of CP decomposition, which makes no
restriction to a discrete set of factors. It is however worth noting that
a specialization of CP decomposition, called CANonical DEcompo-
sition with LINear Constraints (CANDELINC) (Carroll, Pruzansky,
& Kruskal, 1980), does in fact impose the additional requirement that
factors are formed from a linear combination of some basis factors.
In our setup the solutions are “one-hot” linear combinations.

3. The factors are constrained to {—1, 1}V, a small sliver of RN. This dif-
ference should not be underestimated. We showed in section 6.6 that
the interior of this hypercube is treacherous from an optimization

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2371

perspective and resonator networks avoid it by using a highly non-
linear activation function. This would not make sense in the context
of standard CP decomposition.

Perhaps the most convincing demonstration that equation 2.1 is not
CP decomposition comes from the fact that we applied Alternating Least
Squares to it and found that its performance was relatively poor. ALS is in
fact the workhorse algorithm of CP decomposition (Kolda & Bader, 2009),
but it cannot compete with resonator networks on our different factoriza-
tion problem (2.1). The excellent review of Kolda and Bader (2009) covers
CP decomposition and ALS in significant depth, including the fact that ALS
always converges to a local minimum of the squared error reconstruction
loss. See, in particular, section 3.4 of their paper for more detail.

One special case of CP decomposition involves rank-1 components that
are symmetric and orthogonal. For this problem, a special case of ALS called
the tensor power method can be used to iteratively find the best low-rank
CP decomposition through what is known as deflation, which is identical to
the explaining away we introduced in the companion article in this issue.
The tensor power method directly generalizes the matrix power method,
and in this special case of symmetric, orthogonal tensors is effective at find-
ing the CP decomposition. A good initial reference for the tensor power
method is De Lathauwer, De Moor, and Vandewalle (2000b). A discussion of
applying tensor decompositions to statistical learning problems is covered
by Anandkumar, Ge, Hsu, Kakade, and Telgarsky (2014), which develops a
robust version of the tensor power method and contains several important
probabilistic results for applying tensor decompositions to noisy data. The
tensor power method differs from resonator networks in the same key ways
as ALS: composite objects are higher-order tensors, not vectors, search is not
necessarily over a discrete set, the vectors are not constrained to {—1, 1}V,
and the dynamics make linear least squares updates in each factor.

Another popular tensor decomposition is known as the Tucker decom-
position (Tucker, 1963, 1966). It adds to CP decomposition an order-F “core
tensor” G that modifies the interaction between each of the factors:

P Q R

C:ZZ'”ZgW"" X;})OXEIZ)O-"OXE,F). (D.3)

p=1g=1 r=1

This adds many more parameters compared to CP decomposition, a spe-
cial case of Tucker decomposition when G is the identity. For the purpose
of illustration, we reprint in Figure 12 (with a slight relabeling) a figure
from Kolda and Bader (2009) that depicts an order-3 Tucker decomposition.
This decomposition goes by many other names, most popularly the higher-
order SVD, coined in De Lathauwer, De Moor, and Vandewalle (2000a). The
Tucker decomposition can also be found via ALS (see Kolda & Bader, 2009,

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2372 S. Kent, E. Frady, F. Sommer, and B. Olshausen

LE7

Figure 12: Tucker decomposition with three factors.

section 4.2, for a tutorial), although the problem is somewhat harder than
CP decomposition, both by being computationally more expensive and by
being nonunique. Despite this fact, the applications of Tucker decomposi-
tion are wide-ranging; it has been used in psychometrics, signal processing,
and computer vision. One well-known application of Tucker decomposi-
tion in computer vision was TensorFaces (Vasilescu & Terzopoulos, 2002).
This model was able to factorize identity, illumination, viewpoint, and fa-
cial expression in a data set consisting of face images.

The summary of this section is that vector factorization problem 2.1 is
not tensor decomposition. In some sense it is more challenging. Perhaps
not surprisingly, the standard algorithm for tensor decompositions, ALS, is
not particularly competitive on this problem when compared to resonator
networks. It is interesting to consider whether tensor decomposition might
be cast into a form amenable to solution by resonator networks. Given the
importance of tensor decomposition as a tool of data analysis, we believe
this warrants a closer look.

Appendix E: General Notes on Gradient-Based Algorithms

When L is the negative inner product, the gradient with respect to ay is

Vo, £ =—Xj(cotM o0 Moso...0x)

= —Xj(cod'h). (E.1)

The term ¢ © 6) can be interpreted as an estimate for what /) should be
based on the current estimates for the other factors. Multiplying by X} com-

pares the similarity of this vector to each of the candidate codevectors we
are entertaining, with the smallest element of V, fE (its value is likely to be
negative with large absolute value) indicating the codevector that matches
best. Following the negative gradient will cause this coefficient to increase

more than the coefficients corresponding to the other codevectors. When £

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2373
is the squared error, the gradient with respect to ay is
Vo, L = x}((c —50 ... 0xD)
o(-xVo---0xf Vo e...0 ,A<<F>))
=X} (féf) o (69 -co 6<f>). (E.2)

This looks somewhat similar to the gradient for the negative inner product:
they differ by an additive term given by X} (f((f) o (o))2). At the vertices

of the hypercube, all the elements of X/) are 1 or —1 and the term (6!/))2
disappears, making the difference between the two gradients just X]Tf((f),
Among other things, this makes the gradient of the squared error equal to
zero at the global minimizer xil), el XEF), which is not the case with the neg-
ative inner product. To be clear, equation E.1 is the gradient when the loss
function is the negative inner product, while equation E.2 is the gradient
when the loss function is the squared error.

E.1 Fixed-Step-Size Gradient Descent on the Squared Error. In fixed-
step-size gradient descent for unconstrained convex optimization prob-
lems, one must often add a restriction on the step size, related to the
smoothness of the loss function in order to ensure that the iterates converge
to a fixed point. We say that a function £ is L-smooth when its gradient is
Lipschitz continuous with constant L:

IVL(x) = VL(y)ll2 < LIIx = yll2 VX, y. (E.3)
For a function that is twice-differentiable, this is equivalent to the condition
0<V2L(x)< LI Vx, (E.4)

where 0 is the matrix of all zeros and and I is the identity. Absent some
procedure for adjusting the step size 5 at each iteration to account for the
degree of local smoothness, or some additional assumption we place on the
loss to make sure that it is sufficiently smooth, we should be wary that con-
vergence may not be guaranteed. On our factorization problem, we find
this to be an issue. Unconstrained gradient descent on the squared error
works for the simplest problems, where M is small and the factorization can
be easily found by any of the algorithms in this article. However, as M in-
creases, the exceedingly jagged landscape of the squared error loss makes
the iterates very sensitive to the step size 7, and the components of af[t]
can become very large. When this happens, the term 6/)[¢] amplifies this

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2374 S. Kent, E. Frady, F. Sommer, and B. Olshausen

problem (it multiplies all but one of the af[t]’s together) and causes numer-
ical instability issues. With the squared error loss, the smoothness is very
poor: we found that fixed-step-size gradient descent on the squared error
was so sensitive to 7 that it made the method practically useless for solving
the factorization problem. Iterative Soft Thresholding and Fast Iterative Soft
Thresholding use a dynamic step size to avoid this issue (see equation F.1).
In contrast, the negative inner product loss, with respect to each factor, is
in some sense perfectly smooth (it is linear), so the step size does not factor
into convergence proofs.

Appendix F: Iterative Soft Thresholding and Fast Iterative Soft
Thresholding

Iterative Soft Thresholding (ISTA) is a type of proximal gradient descent. The
proximal operator for any convex function k(-) is defined as

1
prox;(x) := arg min §||z —x[|3 + h(2).

When h(z) is A||z||1, the proximal operator is the so-called soft-thresholding
function, which we denote by S:

(SIx; 1), := sgn(x) max(jxi| — y. 0),

Consider taking the squared error loss and adding to it Allaf||:

. 1 .
L(e, &) +rlaglh = 3lle - ell3 + Allagls.

Applying soft thesholding clearly minimizes this augmented loss function.
The strategy is to take gradient steps with respect to the squared error loss
but then to pass those updates through the soft thresholding function S.
This flavor of proximal gradient descent, where ¢ is a linear function of as
and k(-) is the £ norm, is called ISTA (Daubechies, Defrise, & De Mol, 2004),
and is a somewhat old and popular approach for finding sparse solutions
to large-scale linear inverse problems.

The dynamics of ISTA are given in equation C.1 and there are a few pa-
rameters worth discussing. First, the dynamic step size 1 can be set via back-
tracking line search or, as we did, by computing the Lipschitz constant of
the loss function gradient:

1
n=7 | IVaL(x) = VaL(y)l2 < LIx = yl2 VX, y. (E1)

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2375

The scalar 1 is a hyperparameter that effectively sets the sparsity of the so-
lutions considered; its value should be tuned in order to get good perfor-
mance in practice. In the experiments we show in this article, A was 0.01.
The initial state a¢[0] is set to 1.

Convergence analysis of ISTA is beyond the scope of this article, but it
has been shown in various places (Bredies & Lorenz, 2008, for instance)
that ISTA will converge at a rate >~ O(1/t). ISTA works well in practice, al-
though for four or more factors, we find that it is not quite as effective as
the algorithms that do constrained descent on the negative inner product
loss. By virtue of not directly constraining the coefficients, ISTA allows them
to grow outside of [0, 1]N. This may make it easier to find the minimizers
aj, a3, ..., ay, but it may also lead the method to encounter more subopti-
mal local minimizers, which we found to be the case in practice.

One common criticism of ISTA is that it can get trapped in shallow
parts of the loss surface and thus suffers from slow convergence (Bredies
& Lorenz, 2008). A straightforward improvement, based on Nesterov’s mo-
mentum for accelerating first-order methods, was proposed by Beck and
Teboulle (2009), which they call Fast Iterative Soft Thresholding (FISTA).
The dynamics of FISTA are written in equation C.2, and converge at the
significantly better rate of ~ O(1/t?), a result proven in Beck and Teboulle
(2009). Despite this difference in worst-case convergence rate, we find that
the average-case convergence rate on our particular factorization problem
does not significantly differ. Initial coefficients a;[0] are set to 1, and auxil-
iary variable «; is initialized to 1. For all experiments, A was set the same as
for ISTA, to 0.01.

Appendix G: Projected Gradient Descent

Starting from the general optimization form of the factorization problem
5.1, what kind of constraint might it be reasonable to enforce on as? The
most obvious is that ay lie on the simplex Ap, ={x€ RPr | Yuxi=1,x>
0 Vi}. Enforcing this constraint means that Xf) stays within the —1, 1 hyper-
cube at all times, and, as we noted, the optimal values aj, a3, ..., a; happen
to lie at vertices of the simplex, the standard basis vectors e;. Another con-
straint set worth considering is the ¢; ball By.,[1] := {x € RPs | ||x||; < 1}.
This set contains the simplex, but it encompasses much more of RP/. One
reason to consider the ¢; ball is that it dramatically increases the number
of feasible global optimizers of 5.1, from which we can easily recover the
specific solution to 2.1. This is due to the fact that

c=Xja] 0Xoa; O -+ O Xray < ¢ =X;(—a]) ©Xz(—a)) ©--- O Xray,

and moreover any number of distinct pairs of factor coefficients can be
made negative; the sign change cancels out. The result is that while the

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2376 S. Kent, E. Frady, F. Sommer, and B. Olshausen

simplex constraint only allows solution aj, a3, ..., aj, the £; ball constraint
also allows solutions —aj, —aj, a3, ..., a};, and aj,a}, —aj, ..., —aj, and
—aj, —aj3, —aj, ..., —a}, and so on. These spurious global minimizers can
easily be detected by checking the sign of the largest-magnitude compo-
nent of a. If it is negative, we can then multiply by —1 to get a}. Choosing
the ¢; ball over the simplex is purely motivated from the perspective that
increasing the size of the constraint set may make finding the global opti-
mizers easier. However, we found that in practice, it did not significantly
matter whether Ap, or By, [1] was used to constrain ay.

There exist algorithms for efficiently computing projections onto both the
simplex and the ¢; ball (see Held, Wolfe, & Crowder, 1974; Duchi, Shalev-
Shwartz, Singer, & Chandra, 2008; Condat, 2016). We use a variant summa-
rized in Duchi et al. (2008) that has computational complexity O(Dslog Dy);
recall that ay has Dy components, so this is the dimensionality of the sim-
plex or the ¢; ball being projected onto. When constraining to the simplex,

we set the initial coefficients af[0] to D%l, the center of the simplex. When

constraining to the unit £; ball, we set af[0] to ﬁl, so that all coefficients

are equal but the vector is on the interior of the ball. The only hyperparam-
eter is 7, which in all experiments was set to 0.01. Recall that we defined the
null space of the projection operation with equation 6.11 in section 6.6, and
the special case for the simplex constraint in equations 6.12 and 6.13.

Taking projected gradient steps on the negative inner product loss works
well and is guaranteed to converge, whether we use the simplex or the ¢;
ball constraint. Convergence is guaranteed due to this intuitive fact: any
partof —n V, L notin N (PC ’ [x]), induces a change in ay, denoted by Aag[t],
which must make an acute angle with —V, L. This is by the definition of or-
thogonal projection, and it is a sufficient condition for showing that Aa[t]
decreases the value of the loss function. Projected gradient descent iterates
always reduce the value of the negative inner product loss or leave it un-
changed; the function is bounded below on the simplex and the ¢; ball, so
this algorithm is guaranteed to converge.

Applying Projected Gradient Descent on the squared error did not work,
which is related to the smoothness issue we discussed in section E.1, al-
though the behavior was not as dramatic as with unconstrained gradient
descent. We observed in practice that Projected Gradient Descent on the
squared error loss easily falls into limit cycles of the dynamics. It was for
this reason that we restricted our attention with Projected Gradient Descent
to the negative inner product loss.

Appendix H: Multiplicative Weights

When we have simplex constraints Cy = Ap,, the Multiplicative Weights al-
gorithm is an elegant way to perform the superposition search. It naturally
enforces the simplex constraint by maintaining a set of auxiliary variables,

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2377

the “weights,” which define the choice of a; at each iteration. (See equation
C.4 for the dynamics of Multiplicative Weights.) We choose a fixed step size
n < 0.5 and initial values for the weights all one: w[0] = 1. In experiments
in this article we set n = 0.3. The variable p exists to normalize the term
%Va fE so that each element lies in the interval [—1, 1].

Multiplicative weights is an algorithm primarily associated with game
theory and online optimization, although it has been independently discov-
ered in a wide variety of fields (Arora, Hazan, and Kale, 2012). See Arora’s
excellent review of Multiplicative Weights for a discussion of the fascinating
historical and analytical details of this algorithm. Multiplicative Weights
is often presented as a decision policy for discrete-time games. However,
through a straightforward generalization of the discrete actions into direc-
tions in a continuous vector space, one can apply Multiplicative Weights
to problems of online convex optimization, which is discussed at length in
Arora, Hazan, and Kale (2012) and Hazan (2016). We can think of solving
our problem 5.1 as if it were an online convex optimization problem where
we update each factor Xf) according to its own multiplicative weights up-
date, one at a time. The function £ is convex with respect to ay, but is chang-
ing at each iteration due to the updates for the other factors. It is in this sense
that we are treating problem 5.1 as an online convex optimization problem.

H.1 Multiplicative Weights Is a Descent Method. A descent method
on L is any algorithm that iterates af[t + 1] = af[t] + n[t]Aaf[t] where
the update Aay[t] makes an acute angle with —V, £: VafLTAaf[t] <0.In
the case of Multiplicative Weights, we can equivalently define a descent
method based on Vy,, LT Aw [t] < 0, where £(wy) is the loss as a function of
the weights and V£ is its gradient with respect to those weights. The loss

as a function of the weights comes via the substitutiona; = Zw:{)f- = g—;. We
now prove that Vi, LT Aw[t] < 0:

9
Vo L= 2 0E
f 8Wf Baf
[Qf—wp —wp W
2 2 2
o % %
—wpn o Pr-wp o —Wa
2 2 2
= % ©f i Va L.
—wp —wp Dr—wp
2 2 2
L % % 7]

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2378 S. Kent, E. Frady, F. Sommer, and B. Olshausen

1 1
= (—1 - jle)Vafﬁ
o @2
1 c
-V, L @), (H.1)
b b

This allows us to write down Aw [t] in terms of V,, fﬁz

Aw] = —%wf[t] O Vo L= —%wf[t] o) (qafvwfﬁ + c(af[t])1)

1) . L
= —deiag(wf[t])vwfﬁ -~ (a#[tl)wf[tl (H.2)

And then we can easily show the desired result:

® — ~ L@t 4
_vawfﬁdlag(wf[t])vwfc— ; Vo, LW [t]

Vi, LT Awy[t]

—&V LT diag(w ¢[t])Vw, L
o &\Wy wy

1 g, o7 Lt
Dy Dy

_ [,(af[t])< 1T>W [i’]
P f
= —%wa£~Tdiag(wf[f])wa£~

Lalt)
= (et - cGadi)

= —EV LT diag(w([t])Vw, L
IR &\Wy 4
<0. (H.3)

The last line follows directly from the fact that w are always positive by
construction in Multiplicative Weights. Therefore, the matrix diag(w [t]) is

positive definite, and the term % is strictly greater than 0. We’ve shown
that the iterates of Multiplicative Weights always make steps in descent di-
rections. When the loss £ is the negative inner product, it is guaranteed to
decrease at each iteration. Empirically, Multiplicative Weights applied to
the squared error loss also always decreases the loss function. We said in
section E.1 that descent on the squared error with a fixed step size is not in
general guaranteed to converge. However, the behavior we observe with
Multiplicative Weights descent on the squared error might be explained by
the fact that the step size is normalized by p at each iteration in this algo-
rithm. Both functions are bounded below over the constraint set Ap /s SO

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2379

therefore Multiplicative Weights must converge to a fixed point. In prac-
tice, we pick a step size n between 0.1 and 0.5 and run the algorithm until
the normalized magnitude of the change in the coefficients is below some
small threshold:

af[t +1] — af[t]
n

< €.

The simulations we showed in the section 6 used 7 = 0.3 and € = 10~°.

Appendix I: Map-Seeking Circuits

Map-seeking circuits (MSCs) are neural networks designed to solve invari-
ant pattern recognition problems. Their theory and applications have been
gradually developed by Arathorn and colleagues over the past 18 years
(see, e.g., Arathorn, 2001, 2002; Gedeon & Arathorn, 2007; Harker et al.,
2007), but remain largely unknown outside of a small community of vision
researchers. In their original conception, they solve a “correspondence max-
imization” or “transformation discovery” problem in which the network is
given a visually transformed instance of some template object and has to
recover the identity of the object as well as a set of transformations that ex-
plain its current appearance. The approach taken in MSC is to superimpose
the possible transformations in the same spirit as we have outlined for solv-
ing the factorization problem. We cannot give the topic a full treatment here
but simply note that the original formulation of MSC can be directly trans-
lated to our factorization problem wherein each type of transformation (e.g.,
translation, rotation, scale) is one of the F factors, and the particular values
of the transformation are vectors in the codebooks X;, Xo, ..., Xr. The loss
function is £ : x, y = —(x, y), and the constraint set is [0, 1]°/ (both by con-
vention in MSC). The dynamics of MSC are given in equation C.5, with ini-
tial values af[0] = 1 for each factor. The small threshold ¢ is a hyperparam-
eter, which we set to 10 in experiments, along with the step size n = 0.1.
Gedeon and Arathorn (2007) and Harker et al. (2007) proved (with some
minor technicalities we will not detail here) that MSC always converge to
either a scalar multiple of a canonical basis vector or the zero vector. That
is, ag[oo] = Bre; or 0 (where (ei)]- =1if j =1iand 0 otherwise, and By is a
positive scalar).

Due to the normalizing term p, the updates to ay can never be positive.
Among the components of V, L that are negative, the one with the largest
magnitude corresponds to a component of as that sees an update of 0. All
other components are decreased by an amount proportional to the gradient.
We noted in comments on equation E.1 that the smallest element of V, £

corresponds to the codevector that best matches ¢ © 6!/, a “suggestion” for
%) based on the current states of the other factors. The dynamics of MSC

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2380 S. Kent, E. Frady, F. Sommer, and B. Olshausen

thus preserve the weight of the codevector that matches best and decrease
the weight of the other codevectors by an amount proportional to their own
match. Once the weight on a codevector drops below the threshold, it is set
to zero and no longer participates in the search. The phenomenon wherein
the correct coefficient a5 drops out of the search is called “sustained collu-
sion” by Arathorn (2002) and is a failure mode of MSC.

Appendix J: Percolated Noise in Outer Product Resonator Networks ___

A resonator network with outer product weights X fX; that is initialized to
the correct factorization is not guaranteed to remain there, just as a Hop-
field network with outer product weights initialized to one of the “memo-
ries” is not guaranteed to remain there. This is in contrast to a resonator
network (and a Hopfield network) with ordinary least squares weights
Xs (X;X f)’lx}, for which each of the codevectors is always a fixed points.
In this section, when we refer simply to a resonator network or a Hopfield
network, we are referring to the variants of these models that use outer
product weights.

The bit flip probability for the fth factor of a resonator network is de-
noted r ¥ and defined in equation 6.2. Section J.1 derives r1, which is equal
to the bit flip probability for a Hopfield network, introduced by equation
6.1 in the main text. Section J.2 derives r;,, and then section]J.3 collects all of
the ingredients to express the general 7.

J.1 First Factor. The stability of the first factor in a resonator network is
the same as the stability of the state of a Hopfield network. At issue is the
distribution of XV[1]:

£D[1] = sgn(X: X x) := sgn(T).

Assuming each codevector (each column of X, including the vector xil))
is a random bipolar vector, each component of I is a random variable. Its
distribution can be deduced from writing it out in terms of constant and
random components:

I = Z Z (xir”), (X:g))j (xil))j

= NG, 3030 (60, (60, (),

m#x j

=N(xY), + (D1 - D(xY), + Z Z (x), (an)]- (x*l))].. J.1)

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2381

=== With self-connections
=== Without self-connections

2z
% X
a === With self-connections
% i 0.0201 Without self-connections
2 %o.us
5 k-1
a [
2 0.010
2
£ 0.0051
o
0.000 0.138
0.0 0.5 1.0 1.5 2.0 0.00 0.05 0.10 0.15 0.20 0.25
D,;/N D;/N
(a) Bitflip prob. for D1 /N € (0, 2] (b) Bitflip prob. for Dy /N € (0,0.25]

Figure 13: Effect of self-connections on bit flip probability.

The third term is a sum of (N — 1)(D; — 1) i.i.d. Rademacher random vari-
ables, which in the limit of large ND; can be well approximated by a
gaussian random variable with mean zero and variance (N — 1)(D; — 1).
Therefore, I'; is approximately gaussian with mean (N + D; — 1)(x{"), and
variance (N — 1)(D; — 1). The probability that (XV[1]), # (xil))i is given by

the cumulative density function of the Normal distribution:

]’11 = PT[()A((l)[l])i 7& (x*l))i]

—-N-D;+1)
= . 2
(\/(N— 1)(D;—1) -2

We care about the ratio D; / N and how the bit flip probability /; scales
with this number. We've called this /; to denote the Hopfield bit flip proba-
bility, but it is also r1, the bit flip probability for the first factor of a resonator
network. We'll see that for the second, third, fourth, and other factors, /1f
will not equal ¢, which is what we mean by percolated noise, the focus of
section 6.1. If we eliminate all “self-connection” terms from X1X1T by set-
ting each element on the diagonal to zero, then the second term in equation
J.1is eliminated and the bit flip probability is ®(——=2—). This is actu-

+ (N=1)(D1 1)

ally significantly different from equation J.2, which we can see in Figure 13.
With self-connections, the bit flip probability is maximized when D; = N
(readers can verify this via simple algebra), and its maximum value is
approximately 0.023. Without self-connections, the bit flip probability

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2382 S. Kent, E. Frady, F. Sommer, and B. Olshausen

asymptotes at 0.5. The actual useful operating regime of both these
networks is where D; is significantly less than N, which we zoom in on
in Figure 13b. A mean-field analysis of Hopfield networks developed by
Amit et al. showed that when Dy /N > 0.138, a phase-change phenomenon
occurs in which a small number of initial bit flips (when the probability is
0.0036 according to the above approximation) build up over subsequent it-
erations and the network almost always moves far away from x{"), making it
essentially useless. We can see that the same bit flip probability is suffered
at a significantly higher value for D; /N when we have self-connections;
the vector xil) is significantly more stable in this sense. We also found that
a resonator network has higher operational capacity (see section 6.2) when

we leave in the self-connections. As a third point of interest, computing
X fXJTc xV is often much faster when we keep each codebook matrix sepa-
rate (instead of forming the synaptic matrix X fX]Tc directly), in which case
removing the self-connection terms involves extra computation in each it-

eration of the algorithm. For all of these reasons, we choose to keep self-
connection terms in the resonator network.

J.2 Second Factor. When we update the second factor, we have

211 = sgn(X:X] (6?[1] © ¢)) = sgn(T).

Here we're just repurposing the notation T to indicate the vector that gets
thresholded to —1 and +1 by the sign function to generate the new state
£@[1]. Some of the components of the vector 8®[1] ® ¢ will be the same as

x?) and some number of the components (a small number, we hope) will

have been flipped compared to x' o by the update to factor 1. Let us denote
the set of components that flipped as Q. The set of components that did not
flip is Q°. The number of bits that did or did not flip is the size of these
sets, denoted by |Q| and |Q°¢|, respectively. We have to keep track of these
two sets separately because it will affect the probability that a component of

@[1] is flipped relative to x{. We can write out the constant and random
parts of I'; along the same lines as what we did in equation J.1.

D, N
ri= 303 (), (), 6®0 © o),
moj

=33 (), (69, (), ZZ (), (<), ()

m jch m jeQ

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2383

= 1Q(x +ZZ), (x?); — 1QI(x

M *]EQL

_ ZZ (), (<), ()

Mzx]eQ

= (N—21Q)(x?), +ZZ (x2), (x2), (),
m#x jeQr

D, N
- Z Z (xg))i (Xg)),‘ (Xiz))j' (J.3)

m#*x jeQ

2))4
1

*

j

If i is in the set of bits that did not flip previously, then there is a constant
(Dy — 1)(x£2))l. that comes out of the second term above. If i is in the set of

bits that did flip previously, then there is a constant —(D; — 1)(x\”)), that
comes out of the third term above. The remaining contribution to IY is, in
either case, a sum of (N — 1)(D; — 1) i.i.d. Rademacher random variables,
analogous to what we had in equation J.1. Technically |Q| is a random vari-
able, but when N is of any moderate size, it will be close to r{N, the bit flip
probability for the first factor. Therefore, I'; is approximately gaussian with
mean either (N(1 — 2r1) + (D, — 1)) (xiz))i or (N(1—2r)— (D, —1)) (xiz))i,
depending on whether i € Q° or i € Q. We call the conditional bit flip prob-
abilities that result from these two cases r» and ro»:

= Pr{ (&211), # (7); [(6P ©¢), = (x7),]

- & N 1—27’1 (Dz—l)) (]4)
VIN-1)(D, - 1)
ra = P RPM1]), # (x?), | 6@[1] @), # (x?),]
_ ¢<—N(1—2r1)+(D2—1)>_ (.5)
(N=1)(D>—1)

The total bit flip probability for updating the second factor, r,, is then r» (1 —
hl) + Tz'/hl .

J.3 All Other Factors. It should be clear that the general development
above for the bit flip probability of the second factor will apply to all sub-
sequent factors; we just need to make one modification to notation. We saw
that bit flip probability was different depending on whether the component
had flipped in the previous factor (the difference between equations J.4 and
J.5). In the general case, what really matters is whether the factor sees a net

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2384 S. Kent, E. Frady, F. Sommer, and B. Olshausen

0.05+
—— Analytical

» Empirical
0.04 Standard Error

0.03
s

r

0.02

0.01+

0.00

1072 1071 10°
Ratio M¢/N

Figure 14: Agreement between simulation and theory for r. Shades indicate
factors 1 to 5 (light to dark).

bit flip from the other factors. It might be the case that the component had
initially flipped but was flipped back by subsequent factors; all that mat-
ters is whether an odd number of previous factors flipped the component.
To capture this indirectly, we define the quantity 7 to be the net bit flip
probability that is passed on to the next factor (this is equation 6.3):

ny = Pr[(6(f+1)[t] o C)i £ (x£f+1)),].

1

For the first factor, r; = n; but in the general case, it should be clear that
rf= Tfr(l - 1’lf_1) +rpngq,

which is equation 6.6 in the main text. This expression is just marginaliz-

ing over the probability that a net bit flip was not seen (first term) and the

probability that a net bit flip was seen (second term). The expression for the
general 7 is slightly different:

ng=rp(l—nsgq)+ A —rpns,

which is equation 6.7. The base of the recursion is 7y = 0, which makes in-
tuitive sense because factor 1 sees no percolated noise.

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2385

In equations J.4 and].5, we had r;, but what really belongs there in the
general case is 1¢_1. This brings us to our general statement for the condi-
tional bit flip probabilities 7z and 7, equations 6.8 and 6.9:

rp = CI)<_N(1 —21’lf_1) — (Df — 1)>,
JN=T)D; - 1)

<—N(1 —2n5 1)+ (Dyf — 1))
T =o .
(N-1)(Df—-1)

What we have derived here in appendix] are equations 6.1 to 6.9. This
result agrees very well with data generated in experiments where one ac-
tually counts the bit flips in a randomly instantiated resonator network. In
Figure 14 we show the sampling distribution of r; from these experiments
compared to the analytical expresssion for r ;. Dots indicate the mean value
for r, and the shaded region indicates 1 standard deviation about the mean,
the standard error of this sampling distribution. We generated this plot with
250 i.i.d. random trials for each point. Solid lines are simply the analytical
values for ¢, which one can see are in very close agreement with the sam-
pling distribution.

Acknowledgments

We thank members of the Redwood Center for Theoretical Neuroscience
for helpful discussions, in particular Pentti Kanerva, whose work on Vec-
tor Symbolic Architectures originally motivated this project. This work was
generously supported by the National Science Foundation under gradu-
ate research fellowship DGE1752814 and research grant 1151718991, the
National Institute of Health, grant 1IR01EB026955-01, the Semiconductor
Research Corporation under E2CDA-NRI, DARPA’s Virtual Intelligence
Processing program, and AFOSR FA9550-19-1-0241.

References

Amari, S.-1., & Maginu, K. (1988). Statistical neurodynamics of associative memory.
Neural Networks, 1(1), 63-73.

Amit, D. J., Gutfreund, H., & Sompolinsky, H. (1985). Storing infinite numbers of
patterns in a spin-glass model of neural networks. Physical Review Letters, 55(14),
1530.

Amit, D. J., Gutfreund, H., & Sompolinsky, H. (1987). Information storage in neural
networks with low levels of activity. Physical Review A, 35(5), 2293.

Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M., & Telgarsky, M. (2014). Tensor de-
compositions for learning latent variable models. Journal of Machine Learning Re-
search, 15, 2773-2832.

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/66G5981/2EET/CLITENAP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2386 S. Kent, E. Frady, F. Sommer, and B. Olshausen

Arathorn, D. W. (2001). Recognition under transformation using superposition or-
dering property. Electronics Letters, 37(3), 164-166.

Arathorn, D. W. (2002). Map-seeking circuits in visual cognition: A computational mech-
anism for biological and machine vision. Stanford, CA: Stanford University Press.
Arora, S., Hazan, E., & Kale, S. (2012). The multiplicative weights update method: A

meta-algorithm and applications. Theory of Computing, 8(1), 12-164.

Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1), 183—
202.

Boucheron, S., Lugosi, G., & Massart, P. (2013). Concentration inequalities. Oxford: Ox-
ford University Press.

Bredies, K., & Lorenz, D. A. (2008). Linear convergence of iterative soft-thresholding.
Journal of Fourier Analysis and Applications, 14(5-6), 813-837.

Cannon, L. E. (1969). A cellular computer to implement the Kalman filter algorithm. PhD
diss. Montana State University—Bozeman.

Carroll, J. D., & Chang, J.-J. (1970). Analysis of individual differences in multidi-
mensional scaling via an n-way generalization of “Eckart-Young” decomposition.
Psychometrika, 35(3), 283-319.

Carroll, J. D., Pruzansky, S., & Kruskal, J. B. (1980). CANDELINC: A general ap-
proach to multidimensional analysis of many-way arrays with linear constraints
on parameters. Psychometrika, 45(1), 3-24.

Chengxiang, Z., Dasgupta, C., & Singh, M. P. (2000). Retrieval properties of a Hop-
field model with random asymmetric interactions. Neural Computation, 12(4),
865-880.

Cohen, M. A,, & Grossberg, S. (1983). Absolute stability of global pattern formation
and parallel memory storage by competitive neural networks. IEEE Transactions
on Systems, Man, and Cybernetics, 5, 815-826.

Condat, L. (2016). Fast projection onto the simplex and the ¢; ball. Mathematical Pro-
gramming, 158(1-2), 575-585.

Daubechies, 1., Defrise, M., & De Mol, C. (2004). An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint. Communications on Pure and
Applied Mathematics, 57(11), 1413-1457.

De Lathauwer, L., De Moor, B., & Vandewalle, J. (2000a). A multilinear singular value
decomposition. SIAM Journal on Matrix Analysis and Applications, 21(4), 1253—
1278.

De Lathauwer, L., De Moor, B., & Vandewalle, J. (2000b). On the best rank-1 and
rank-(R; Ry, ... Ry) approximation of higher-order tensors. SIAM Journal on Ma-
trix Analysis and Applications, 21(4), 1324-1342.

Duchi,]., Shalev-Shwartz, S., Singer, Y., & Chandra, T. (2008). Efficient projections
onto the ¢;-ball for learning in high dimensions. In Proceedings of the 25th Interna-
tional Conference on Machine Learning (pp. 272-279). New York: ACM.

Frady, E. P, & Sommer, E. T. (2019). Robust computation with rhythmic spike
patterns. In Proceedings of the National Academy of Sciences, 116(36), 18050—
18059.

Frady, E. P, Kent, S. J., Olshausen, B. A., & Sommer, F. T. (2020). Resonator networks,
1: An efficient solution for factoring high-dimensional, distributed representa-
tions of data structures. Neural Computation, 32(12), 2311-2331.

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

©009U/66G5981/ZEET/TLITENP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

Resonator Networks, 2 2387

Gayler, R. W. (1998). Multiplicative binding, representation operators and analogy
[workshop poster]. In K. Holyoak, D. Gentner, & B. Kokinov (Eds.), Advances in
analogy research: Integration of theory and data from the cognitive, computational, and
neural sciences. Sofia, Bulgaria: NBU Press.

Gayler, R. W. (2004). Vector symbolic architectures answer Jackendoff’s challenges for cog-
nitive neuroscience. arXiv:0412059.

Gedeon, T., & Arathorn, D. (2007). Convergence of map seeking circuits. Journal of
Mathematical Imaging and Vision, 29(2-3), 235-248.

Harker, S., Vogel, C. R., & Gedeon, T. (2007). Analysis of constrained optimization
variants of the map-seeking circuit algorithm. Journal of Mathematical Imaging and
Vision, 29(1), 49-62.

Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and con-
ditions for an “explanatory” multimodal factor analysis. (UCLA Working Papers
in Phonetics, 16, 1-84.) University of California, Los Angeles.

Hazan, E. (2016). Introduction to online convex optimization. Foundations and Trends
in Optimization, 2(3—4), 157-325.

Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. New York:
Wiley.

Held, M., Wolfe, P., & Crowder, H. P. (1974). Validation of subgradient optimization.
Mathematical Programming, 6(1), 62-88.

Hertz, J., Grinstein, G., & Solla, S. (1986). Memory networks with asymmetric bonds.
In AIP Conference Proceedings, vol. 151 (pp. 212-218). College Park, MD: American
Institute of Physics.

Hillar, C. J., & Lim, L.-H. (2013). Most tensor problems are NP-hard. Journal of the
ACM, 60(6), 1-39.

Hitchcock, F. L. (1927). The expression of a tensor or a polyadic as a sum of products.
Journal of Mathematics and Physics, 6(1-4), 164-189.

Hopfield,].]. (1982). Neural networks and physical systems with emergent collective
computational abilities. In Proceedings of the National Academy of Sciences, 79(8),
2554-2558.

Hopfield, J. J. (1984). Neurons with graded response have collective computational
properties like those of two-state neurons. In Proceedings of the National Academy
of Sciences, 81(10), 3088-3092.

Hopfield, J.J., & Tank, D. W. (1985). “Neural” computation of decisions in optimiza-
tion problems. Biological Cybernetics, 52(3), 141-152.

Hoyer, P. O. (2004). Non-negative matrix factorization with sparseness constraints.
Journal of Machine Learning Research, 5, 1457-1469.

Huang, J., & Hagiwara, M. (1999). A new multidimensional associative memory
based on distributed representation and its applications. In Proceedings of the IEEE
International Conference on Systems, Man, and Cybernetics (vol. 1, pp. 194-199). Pis-
cataway, NJ: IEEE.

Kanerva, P. (1996). Binary spatter-coding of ordered k-tuples. In Proceedings of the In-
ternational Conference on Artificial Neural Networks (pp. 869-873). Berlin: Springer.

Kobayashi, M., Hattori, M., & Yamazaki, H. (2002). Multidirectional associative
memory with a hidden layer. Systems and Computers in Japan, 33(3), 1494-1502.

Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM
Review, 51(3), 455-500.

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

©009U/66G5981/ZEET/TLITENP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

2388 S. Kent, E. Frady, F. Sommer, and B. Olshausen

Kosko, B. (1988). Bidirectional associative memories. IEEE Transactions on Systems,
Man, and Cybernetics, 18(1), 49-60.

Kruskal, J. B. (1977). Three-way arrays: Rank and uniqueness of trilinear decomposi-
tions, with application to arithmetic complexity and statistics. Linear Algebra and
Its Applications, 18(2), 95-138.

Lee, D. D., & Seung, H. S. (2001). Algorithms for non-negative matrix factorization.
In T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in neural information
processing systems, 13 (pp. 556-562). Cambridge, MA: MIT Press.

Memisevic, R., & Hinton, G. E. (2010). Learning to represent spatial transformations
with factored higher-order Boltzmann machines. Neural Computation, 22(6), 1473
1492.

Personnaz, L., Guyon, L., & Dreyfus, G. (1986). Collective computational properties
of neural networks: New learning mechanisms. Physical Review A, 34(5), 4217.
Plate, T. A. (2003). Holographic reduced representation: Distributed representation of cog-

nitive structure. Stanford, CA: CSLI Publications.

Rahimi, A., Datta, S., Kleyko, D., Frady, E. P, Olshausen, B., Kanerva, P., & Rabaey, J.
M. (2017). High-dimensional computing as a nanoscalable paradigm. IEEE Trans-
actions on Circuits and Systems I: Regular Papers, 64(9), 2508-2521.

Sidiropoulos, N. D., & Bro, R. (2000). On the uniqueness of multilinear decomposi-
tion of n-way arrays. Journal of Chemometrics, 14(3), 229-239.

Sidiropoulos, N. D., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E. E., & Falout-
sos, C. (2017). Tensor decomposition for signal processing and machine learning.
IEEE Transactions on Signal Processing, 65(13), 3551-3582.

Singh, M. P, Chengxiang, Z., & Dasgupta, C. (1995). Fixed points in a Hopfield model
with random asymmetric interactions. Physical Review E, 52(5), 5261.

Spall, J. C. (2005). Introduction to stochastic search and optimization: Estimation, simula-
tion, and control. New York: Wiley.

Tenenbaum, J. B., & Freeman, W. T. (2000). Separating style and content with bilinear
models. Neural Computation, 12(6), 1247-1283.

Tucker, L. R. (1963). Implications of factor analysis of three-way matrices for mea-
surement of change. In C. W. Harris (Ed.) Problems in measuring change (pp. 122—
137). Madison: University of Wisconsin Press.

Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psy-
chometrika, 31(3), 279-311.

Van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with bal-
anced excitatory and inhibitory activity. Science, 274(5293), 1724-1726.

Vasilescu, M. A. O., & Terzopoulos, D. (2002). Multilinear analysis of image ensem-
bles: Tensorfaces. In Proceedings of the European Conference on Computer Vision (pp.
447-460). Berlin: Springer.

Xu, Z.-B., Hu, G.-Q., & Kwong, C.-P. (1996). Asymmetric Hopfield-type networks:
Theory and applications. Neural Networks, 9(3), 483-501.

Received July 30, 2019; accepted March 4, 2020.

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

©009U/66G5981/ZEET/TLITENP!

1202 Jequisydag ¢} uo 3senb Aq ypd 6Z€ 10

