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Variable Binding for Sparse Distributed
Representations: Theory and Applications
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Abstract— Variable binding is a cornerstone of symbolic rea-
soning and cognition. But how binding can be implemented
in connectionist models has puzzled neuroscientists, cognitive
psychologists, and neural network researchers for many decades.
One type of connectionist model that naturally includes a binding
operation is vector symbolic architectures (VSAs). In contrast to
other proposals for variable binding, the binding operation in
VSAs is dimensionality-preserving, which enables representing
complex hierarchical data structures, such as trees, while avoid-
ing a combinatoric expansion of dimensionality. Classical VSAs
encode symbols by dense randomized vectors, in which infor-
mation is distributed throughout the entire neuron population.
By contrast, in the brain, features are encoded more locally,
by the activity of single neurons or small groups of neurons,
often forming sparse vectors of neural activation. Following Laiho
et al. (2015), we explore symbolic reasoning with a special case of
sparse distributed representations. Using techniques from com-
pressed sensing, we first show that variable binding in classical
VSAs is mathematically equivalent to tensor product binding
between sparse feature vectors, another well-known binding
operation which increases dimensionality. This theoretical result
motivates us to study two dimensionality-preserving binding
methods that include a reduction of the tensor matrix into a
single sparse vector. One binding method for general sparse
vectors uses random projections, the other, block-local circular
convolution, is defined for sparse vectors with block structure,
sparse block-codes. Our experiments reveal that block-local cir-
cular convolution binding has ideal properties, whereas random
projection based binding also works, but is lossy. We demonstrate
in example applications that a VSA with block-local circular
convolution and sparse block-codes reaches similar performance
as classical VSAs. Finally, we discuss our results in the context
of neuroscience and neural networks.

Index Terms— Classification, cognitive reasoning, compressed
sensing (CS), sparse block-codes, sparse distributed repre-
sentations, tensor product variable binding, vector symbolic
architectures (VSAs).
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I. INTRODUCTION

IN A traditional computer, the internal representation of
data is organized by data structures. A data structure is a

collection of data values with their relationships. For example,
a simple data structure is a key-value pair, relating a variable
name to its assigned value. Particular variables within data
structures can be individually accessed for computations. Data
structures are the backbones for computation, and needed for
organizing, storing, managing, and manipulating information
in computers.

For many tasks that brains have to solve, for instance,
analogical inference in cognitive reasoning tasks and invariant
pattern recognition, it is essential to represent knowledge in
data structures and to query the components of data structures
on the fly. It has been a long-standing debate if, and if so
how, brains can represent data structures with neural activity
and implement algorithms for their manipulation [1]–[4].

Here, we revisit classical connectionist models [5]–[7] that
propose encodings of data structures [8]–[11] with distributed
representations. Following [12], we will refer to these mod-
els as vector symbolic architectures (VSAs), synonymously
they are also referred to as hyperdimensional computing [8].
Typically, VSA models use dense random vectors to represent
atomic symbols, such as variable names and feature values.
Through two elementary dyadic operations, bundling (or sum-
mation), and binding, atomic symbols can be combined into
compound symbols that are represented by vectors that have
the same dimension. The encoding of symbols with pseudo-
random vectors is a fully distributed code, whose performance
rests on the concentration of measure phenomenon [13]—
the fact that random vectors become almost orthogonal in
high-dimensional vector spaces. For example, the more orthog-
onal individual elements are in a sum vector, the higher the
precision by which a simple projection can detect an individual
element [14].

By contrast in conventional neural networks, features are
often encoded locally by the activity of a single or of
a few neurons and the resulting activity patterns can be
sparse, i.e., activation vectors with only a few nonzero
elements [15], [16]. Connectionists attempted to use such
local feature representations in models describing computa-
tions in the brain. However, a critical issue emerged with
these representations, known as the binding problem in neuro-
science. This problem occurs when a representation requires
the encoding of sets of feature conjunctions, for example,
when representing a red triangle and a blue square [17].
Just representing the color and shape features would lose the
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binding information that the triangle is red, not the square.
One solution proposed for the binding problem is the tensor
product representation (TPR) [3], where a neuron is assigned
to each combination of feature conjunctions. However, when
expressing hierarchical data structures, the dimensionality of
TPRs grows exponentially with hierarchical depth. One pro-
posal to remedy this issue is to form reduced representations
of TPRs, whose dimension is the same dimension as for
the atomic vectors [18], [19]. Such reduced representations
have been the inspiration of VSAs, in which binding is a
dyadic operation between dense vectors, an operation which
preserves dimensionality. Building on earlier work on sparse
VSA [2], [20], we investigate the possibility to build binding
operations for sparse patterns that preserve dimensionality and
sparsity.

II. DEFINITIONS AND FOUNDATIONS

A. Models for Symbolic Reasoning

Many connectionist models for symbolic reasoning with
vectors use vector addition (or a thresholded form of it) to
express sets of symbols. But there are characteristic differences
in how these models encode information and in the operation
they provide for variable binding. TPRs [3] use real-valued
localist feature vectors x, y ∈ RN and the outer product x y� ∈
RN×N as the binding operation. This form of tensor product
binding encodes compound data structures by representations
that have higher dimensions than those of atomic symbols,
i.e., the binding operation is not dimensionality-preserving.
The deeper a hierarchical data structure, the higher the order
of the tensor.

Building on Hinton’s concept of reduced representa-
tions [21], several VSA models were proposed [5]–[7] in
which the vector operations for set formation and binding are
dimensionality-preserving and therefore atomic and composed
data structures have the same dimension. These models encode
atomic symbols by pseudorandom vectors and the vector
operations are designed so that representations of compound
symbols still resemble random vectors. Specifically, the VSA
vector operations are the two dyadic operations addition (+)
and binding (◦) that, together with the vector space, form
a ring-like algebraic structure. The desired properties for a
binding operation are as follows:

1) Associative, i.e., (a ◦ b) ◦ c = a ◦ (b ◦ c) = (a ◦ c) ◦ b.
2) Distributes over addition, i.e.,

∑D1
i ai ◦ ∑D2

j b j =∑D1,D2
i, j ci j with ci j = ai ◦ b j .

3) Has an inverse operation to perform unbinding.

Holographic reduced representation (HRR) [22], [23] was
probably the earliest formalized VSA which uses real-valued
Gaussian random vectors and circular convolution as the bind-
ing operation. Circular convolution is the standard convolution
operation used in the discrete finite Fourier transform which
can be used to produce a vector from two input vectors
x and y

HRR : (x ◦ y)k := (x ∗ y)k =
N∑

i=1

x(i−k)modN yi . (1)

Note that (1) is a projection of the TPR matrix. Other VSA
models use binding operations based on another projection
of the TPR matrix that only samples the matrix diagonal. For
example, the binary spatter code (BSC) [6] uses binary random
vectors and binding is the XOR operation between components
with the same index.

In the following, we focus on the multiply-add-permute
(MAP) model [7], which uses bipolar atomic vectors whose
components are −1 and 1. Atomic features or symbols are
represented by random vectors of a matrix � (“Phi”), called
the codebook. The columns of � are normalized i.i.d. random
code vectors, �i ∈ {±1}N . The binding operation is the
Hadamard product � between the two vectors

MAP : x ◦ y := x � y = (x1 y1, x2 y2, . . . , xN yN )�. (2)

Note that the MAP model is a special case of VSA
models in the complex domain, in which atomic symbols are
represented by phasor vectors, i.e., dense complex vectors of
unit-magnitude components [1].

When the binding involves just a scalar value, the multipli-
cation operation (2) relaxes to ordinary vector-scalar multipli-
cation. A feature with a particular value is simply represented
by the vector representing the feature, �i (which acts like a
“key”), multiplied with the scalar representing the “value” ai :
x = �i ai .

For representing a set of features, the generic vector addition
is used, and the vector representing a set of features with
specific values is then given by

x = �a. (3)

Here, the nonzero components of a represent the values of
features contained in the set, the zero-components label the
features that are absent in the set.

Although the representation x of this set is lossy, a particular
feature value can be approximately decoded by forming the
inner product with the corresponding “key” vector

ai ≈ ��
i x/N (4)

where N is the dimension of vectors. The crosstalk noise in the
decoding (4) decreases with the square root of the dimension
of the vectors or by increasing the sparseness in a, for analysis
of this decoding procedure, see [14].

To represent a set of sets, one cannot simply form a sum
of the compound vectors. This is because the set information
on the first level is lost, which is exactly the binding problem
described in the introduction. VSAs can solve this issue by
combining addition and binding to form a representation of a
set of compound objects in which the integrity of individual
objects is preserved. This is sometimes called the protected
sum of L objects

s =
L∑
j

� j � x( j) (5)

where � j (“Psi”) are dense bipolar random vectors that
label the different compound objects. Another method for
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representing protected sums uses powers of a single random
permutation matrix P [2], [14]

s =
L∑
j

P j−1x( j). (6)

In general, algebraic manipulation in VSAs yields a noisy
representation of the result of a symbolic reasoning proce-
dure. To filter out the result, so-called cleanup memory is
required, which is typically nearest-neighbor search through a
content-addressable memory or associative memory [15], [24],
[25] storing the codebook(s).

B. Sparse Distributed Representations

Classical VSAs described in Section II-A use dense rep-
resentations, that is, vectors in which most components are
nonzero. In the context of neuroscience and neural net-
works for unsupervised learning and synaptic memory, another
type of representation has been suggested: sparse represen-
tations. In sparse representations, a large fraction of com-
ponents are zero, e.g., most neurons are silent. There is
evidence that the brain uses sparse representations. The frac-
tion of active neurons at any point in time is only a few
percent [26], [27]. Furthermore, learning sparse representa-
tions for natural images or natural sounds leads to response
properties that capture essential aspects of real sensory neurons
in the brain [16], [28], [29].

Here, we will investigate how sparse representations can be
used in VSAs. For the cleanup required in VSAs, sparse repre-
sentations have the advantage that they can be stored more effi-
ciently than dense representations in Hebbian synapses [15],
[24], [30]–[32]. A few previous studies [2], [20] have proposed
VSA operations on sparse vectors, however, the properties of
these operations have not been studied systematically.

A subclass of sparse representations with additional struc-
ture has been proposed for symbolic reasoning before that we
call sparse block-codes [2]. In a K -sparse block-code, the ratio
between active components and total number of components is
K/N , as usual. But the index set is partitioned into K blocks,
each block is of size L = N/K and has only a single active
element.1

The constraint of a sparse block-code reduces the entropy
in a code vector significantly, from log

((N
K

))
to K log(N/K )

bits [34]. At the same time, the block constraint can also be
exploited to improve the retrieval in Hebbian associative mem-
ory. As a result, the information capacity of associative mem-
ories with Hebbian synapses for block-coded sparse vectors is
almost the same as for unconstrained sparse vectors [35], [36].
Sparse block-codes can be regarded as an extreme version
of competitive coding principles observed in the brain, for
example, through competition between sensory neurons [37],
as seen in orientation hypercolumns in the visual system of
certain species [38].

1Note that sparse block-codes differ from sparse block signals [33], in the
latter the activity within blocks can be nonsparse but the nonzero blocks is
K ′-sparse, with K ′ 	 K . The resulting N -dimensional vectors have a ratio
between active components and total number of components of K ′ L/N =
K ′/K .

Here, we also consider a variation of the sparse block-code
where active entries are phasors. Recent work has shown that
sparse phasor vectors can be efficiently stored in associative
memories and that this coding scheme can be implemented in
spiking neural networks [32].

C. Compressed Sensing

Under certain conditions, there is unique equivalence
between sparse and dense vectors, which has been exploited
for signal processing under the name compressed sensing
(CS) [39], [40]. Many types of signals, such as images or
sounds, have a sparse underlying structure and CS can be
used as a signal compression method in applications, and even
for modeling communication in biological brains [41]. For
example, if one assumes that the data vectors are K -sparse,
that is

a ∈ AK := {a ∈ IRM : ||a||0 ≤ K } (7)

with ||.||0 the L0-norm, then in CS, the following linear trans-
formation creates a dimensionality-compressed dense vector
from the sparse data vector:

x = �a (8)

where � (“Xi”) is a N × M random sampling matrix, with
N < M .

Due to the distribution of sparse random vectors a, the sta-
tistics of the dimensionality-compressed dense vectors x
becomes somewhat non-Gaussian. The data vector can be
recovered from the compressed vector x by solving the fol-
lowing sparse inference problem:

â = argmaxa(x − �a)2 + λ|a|1. (9)

The condition for K , N , M , and �, under which
the recovery (9) is possible, forms the cornerstones of
CS [39], [40].

For CS to work, a necessary condition is that the sam-
pling matrix is injective for the sparse data vectors, i.e., that
the intersection between the kernel of the sampling matrix,
Ker(�) = {a : �a = 0}, and the set of sparse data
vectors, AK , is empty: Ker(�) ∩ AK = ∅. But, this condi-
tion does not guarantee that each data vector has a unique
dense representation. In other words, the mapping between
data vectors and dense representations must also be bijec-
tive. To guarantee uniqueness of the dense representation of
K -sparse vectors, the kernel of the sampling matrix must not
contain any (2K + 1)-sparse vector

Ker(�) ∩ A2K+1 = ∅ (10)

with A2K+1 being the set of (2K + 1)-sparse vectors. Intu-
itively, the condition (10) excludes that any two K -sparse
data vectors can have the same dense representation: a1 = a2:
�a1 − �a2 = 0.

Even with condition (10), it still might not be possible to
infer the sparse data vectors from the dense representations (9)
in the presence of noise. Another common criterion for CS to
work is the s-restricted isometry property (RIP)

(1 − δs)||a(s)||22 ≤ ||�a(s)||22 ≤ (1 + δs)||a(s)||22 (11)
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with the vector a(s) s-sparse, and the RIP constant δs ∈ (0, 1).
The choice δ2K+1 = 1 is equivalent to condition (10). With
a choice δ2K+1 = δ∗ < 1, one can impose a more stringent
condition that enables the inference, even in the presence of
noise. The minimal dimension of the compression vector that
guarantees (11) is typically linear in K but increases only
logarithmically with M:

N ≥ C K log

(
M

K

)
(12)

where C is a constant of order O(1) that depends on δ2K+1.
Here, we will use the uniqueness conditions (10) and (11) to
assess the equivalence between different models of symbolic
reasoning.

D. Connection Between Symbolic Reasoning, Sparse
Representations, and CS

The various topics described in this section are not
commonly perceived as closely associated. The connection
between these topics is one of the original contributions of this
article. Specifically, Section III uses CS as an analysis frame-
work to identify the operations between sparse vectors that
are mathematically equivalent to the dimensionality-preserving
operations for variable binding and protected sum in tra-
ditional dense VSAs. Interestingly, it turns out that the
equivalent operations in sparse symbolic reasoning mod-
els are tensor product binding and vector concatenation,
both of which are not dimensionality-preserving. Section IV
focuses on dyadic functions as binding operations for sym-
bolic reasoning with sparse representations that are both,
sparsity- and dimensionality-preserving. Most existing binding
methods, such as Hadamard product, circular convolution [5]
and vector-derived transformation binding (VDTB) [42] are
dimensionality—but not sparsity-preserving. The sparsity-
preserving methods we propose, are either lossy or defined on
the subset of block-sparse vectors. In spite of the restriction
to a subspace of sparse patterns, our experiments show that
VSAs with block-sparse vectors have interesting properties in
applications.

III. EQUIVALENT REPRESENTATIONS WITH SPARSE

VERSUS DENSE VECTORS

Here, we consider a setting where sparse and dense sym-
bolic representations can be directly compared. Specifically,
we ask what operations between K -sparse vectors are induced
by the operations in the MAP VSA. To address this question,
we map K -sparse feature vectors to corresponding dense
vectors via (3). The column vectors of the codebook in (3)
correspond to the atomic dense vectors in the VSA. We choose
the dimension N and properties of the codebook(s) and sparse
random vectors so that the CS condition (10) is fulfilled.2

Thus, each sparse vector has a unique dense representation
and vice versa.

2In CS, the choice of sampling matrices with binary or bipolar random
entries is common, e.g., [43].

A. Improved VSA Decoding Based on CS

In our setting, the coefficient vector a is sparse. The standard
decoding method in VSA (4) provides a noisy estimate of the
sparse vector (Fig. 1) from the dense representation. However,
if the sparse vector and the codebook � in (3) satisfy the CS
conditions, one can do better: decoding à la CS (9) achieves
near-perfect accuracy (Fig. 1). Note that sparse inference
requires that the entire coefficient vector a is decoded at once,
similar to [44], while with (4) individual values ai can be
decoded separately. If the CS condition is violated, sparse
inference (9) abruptly ceases to work, while the VSA decoding
with (4) degrades gradually [14], [45], [46].

B. Variable Binding Operation

The Hadamard product between dense vectors turns out
to be a function of the tensor product, i.e., the TPR, of the
corresponding sparse vectors

(x � y)i = (�a)i(�b)i =
∑

l

�il al

∑
k

�ikbk

=
∑

lk

�il�ikalbk = ((� � �)vec(ab�))i . (13)

This linear relationship between the Hadamard product of
two vectors and the TPR can be seen as a generalization
of the Fourier convolution theorem (see Section I in the
Supplementary Materials). The reshaping of the structure on
the RHS of (13) shows that there is a relationship to the matrix
vector multiplication in CS sampling (8): the raveled tensor
product matrix of the sparse vectors, vec(a b�), becomes a
M2-dimensional vector with K 2 nonzero elements. Further-
more, (� � �) is a N × M2 sampling matrix, formed by
pair-wise Hadamard products of vectors in the individual
dictionaries � and �

(� � �) := (�1 � �1,�1 � �2, . . . ,�M � �M ). (14)

One can now ask under what conditions Hadamard product
and tensor product become mathematically equivalent, that is,
can any sparse tensor product in (13) be uniquely inferred from
the Hadamard product using a CS inference procedure (9).
The following two lemmas consider a worst case scenario
in which there is equivalence between the atomic sparse and
dense vectors, which requires that the sparks of the individual
codebooks are at least 2K + 1.

Lemma 1: Let Spark(�) = Spark(�) = 2K + 1. Then the
spark of the sampling matrix in (13) is Spark((� � �)) ≤
2K + 1.

Proof: Choose a (2K + 1)-sparse vector c in the
kernel of �, and choose any cardinal vector b( j) :=
(0, . . . , 0, 1, 0, . . . , 0) with the nonzero component at index j .
Then we have: 0 = �α = �c�� j = ∑

i∈α ci�i �� j = (��
�)vec(c⊗b( j)). Thus, the (2K +1)-sparse vector vec(c⊗b( j))
lies in the kernel of the sampling matrix in (13). There is also
a small probability that the construction of (� � �) produces
a set of columns with less than 2K + 1 components that are
linearly dependent. �

Lemma 1 reveals that the sampling matrix (14) does cer-
tainly not allow the recovery of K 2-sparse patterns in general.
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Fig. 1. Readout of sparse coefficients from dense distributed representation. (a) Sparse coefficients (left) are stored as a dense representation using a random
codebook. The coefficients are recovered with standard VSA readout (middle) and with sparse inference (right), which reduces the crosstalk noise. (b) Two
sparse coefficients are stored as a protected set (left). Readout with sparse inference reduces crosstalk noise, but some noise can remain depending on sparsity
penalty (far right panel has increased sparsity penalty).

However, this is not required since the reshaped outer products
of K -sparse vectors form a subset of K 2-sparse patterns. The
following lemma shows that for this subset recovery can still
be possible.

Lemma 2: The difference between the outer-products of
pairs of K -sparse vectors cannot fully coincide in support with
the (2K + 1)-sparse vectors in the kernel of the sampling
matrix of (13) as identified by Lemma 1. Thus, although
Spark((� � �)) ≤ 2K + 1, the recovery of reshaped tensor
products from the Hadamard product can still be possible.

Proof: The (2K + 1)-sparse vectors in the kernel of the
sampling matrix (���) identified in Lemma 1 correspond to
an outer product of a (2K + 1)-sparse vector with a 1-sparse
vector. The resulting matrix has 2K + 1 nonzero components
in one single column.

The difference of two outer products of K -sparse vectors
yields a matrix that can have maximally 2K nonzero compo-
nents in one column. Thus, the sampling matrix should enable
the unique inference of the tensor product from the Hadamard
product of the dense vectors. �

Lemmas 1 and 2 investigate the equivalence of Hadamard
and tensor product binding in the worst case, that is, when
the codebooks have the minimum spark that still guarantees
the unique equivalence between the sparse and dense atomic
vectors. To explore the equivalence in the case of random
codebooks, we performed simulation experiments with a large
ensemble of randomly generated codebook pairs (�,�).
Fig. 2 shows the averaged worst (i.e., highest) RIP constant
amongst the ensembles for inferring the tensor product from
the Hadamard product (solid red line).

Compared to the RIP constant for inferring the sparse
representations of atomic vectors (black line), the RIP constant
for inferring the tensor product (red line) is significantly
higher. Thus, tensor product and Hadamard product are not
always equivalent even if the atomic sparse and dense vectors
are equivalent—in the example, when the dimension of dense

Fig. 2. Worst case RIP constant for inferring sparse tensor products in
ensemble of random codebooks. The largest empirical RIP constant (δs) in
an ensemble of ten pairs of pseudorandom dictionaries �, �. For each pair,
the maximum RIP was determined by compressing 10 000 sparse vectors. For
successful inference of the sparse representations, the RIP constant has to be
below the δs = 1 level (yellow line). The black solid line represents the RIP
for inferring atomic sparse vectors from dense vectors formed according to (8).
The red solid line represents the RIP for inferring tensor products from dense
vectors formed according to (13). Other lines in the diagram are controls.
The blue solid line represents the RIP for a (N × M2) random dictionary
in which all elements are independently sampled rather than constructed by
��� from the smaller dictionaries. Dashed and dotted red lines represent the
RIP using the � �� sampling matrix with sparse vectors with independent
random components, rather than formed by a tensor product vec(a b�) of
two random vectors. The blue dashed line describes real-valued vectors with
elements sampled from a Chi-squared distribution and the blue dotted line
for binary random vectors. These dashed and dotted blue lines represent the
RIP for the same type of independent random vectors with the independent
random sampling matrix.

vectors is between N = 40 to N = 140. However, with
the dimension of dense vectors large enough (N > 140),
the equivalence holds. Furthermore, the controls in Fig. 2 help
to explain the reasons for the gap in equivalence for small
dense vectors. The RIP constants are significantly reduced
if the tensor product is subsampled with a fully randomized
matrix (blue solid line), rather than with the sampling matrix

Authorized licensed use limited to: Lulea University of Technology. Downloaded on September 05,2021 at 01:12:58 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

resulting from (13). In contrast, the requirement to infer
outer products of continuous-valued random vectors (solid
red line) does not much increase the RIP values over the
RIP requirement for the inference of outer products of binary
vectors (dotted red line). Thus, we conclude that sampling
with matrix ��� (14), which is not i.i.d. random but formed
by a deterministic function from the smaller atomic random
sampling matrices, requires a somewhat bigger dimension of
the dense vectors to be invertible.

Here, we have shown that under certain circumstances the
binding operation between dense vectors in the MAP VSA
is mathematically equivalent to the tensor product between
the corresponding sparse vectors. This equivalence reveals a
natural link between two prominent proposals for symbolic
binding in the literature, the dimensionality preserving binding
operations in VSA models, with the tensor product in the
TPR model [3], [47]. In other VSA models, such as HRR [1],
atomic symbols are represented by dense Gaussian vectors and
the binding operation is circular convolution. Our treatment
can be extended to these models by simply noting that by
the Fourier convolution theorem (see (4) in Section I.B in the
Supplementary Materials) circular convolution is equivalent
to the Hadamard product in the Fourier domain, i.e., x ∗ y =
F−1(F(x) � F(y)).

C. Set Operations

Summing dense vectors corresponds to summing the sparse
vectors

x + y = �(a + b). (15)

Thus, the sum operation represents a bag of features from
all objects, but the grouping information on how these features
were configured in the individual objects is lost. The inability
to recover the individual compound objects from the sum
representation has been referred to as the binding problem
in neuroscience [17].

The protected sum of set vectors (5) can resolve the binding
problem. This relies on binding the dense representations of
the individual objects to a set of random vectors that act as
keys, stored in the codebook � (5)

L∑
j

� j � x j =
L∑
j

� j �
M∑
i

�i a
j
i = (� � �)(a1, a2, . . . , aL ).

(16)

This shows that the protected sum can be computed from the
concatenation of sparse vectors. The concatenation of sparse
vectors is a representation that fully contains the binding
information, but again leads to an increase in dimensionality.
Similar to (13), (16) describes linear sampling of a sparse
vector like in CS. The sampling matrix (� � �) is a N ×
M L sampling matrix formed by each pair of vectors in � and
�, as in (14), and the sparse vector is the M L-dimensional
concatenation vector.

We again ask under what conditions the sparse concate-
nation vector can be uniquely inferred given the dense rep-
resentation of the protected sum, which makes the dense

Fig. 3. Worst case RIP constant for inferring sparse representations of
protected sums in ensemble of random codebooks. The largest empirical
RIP constant (δs) in ensemble of ten pairs of pseudorandom dictionaries
�,� . For each pair the maximum RIP was determined by compressing
10 000 sparse vectors. For successful inference of the sparse representations,
the RIP constant has to be below the δs = 1 level (yellow line). Red solid
line represents RIP values for inferring atomic sparse vectors from dense
vectors formed according to (8). Blue dashed line represents RIP values for
inferring protected sum from dense vectors formed according to (16). For
comparison, black dotted line represents RIP values for inferring protected
sum when instead of � �� the dictionary is random.

and sparse representations equivalent. Like in Section III-B,
we first look at the worst case scenario, and then perform an
experiment with codebooks composed of random vectors. The
worst case scenario assumes the spark of � to be 2K + 1,
just big enough that atomic vectors can be inferred uniquely.
By Lemma 1, the spark of the sampling matrix is smaller or
equal to 2K + 1, smaller than the sparsity K L of vectors to
be inferred. Again, the vectors to be inferred are a subset of
K L-sparse vectors, the vectors that have K nonzero compo-
nents in each of the L M-sized compartments. Thus, as in
Lemma 2 for the Hadamard product, the difference formed
by two of these vectors can maximally produce 2K nonzero
components in each compartment, and therefore never coin-
cide with a kernel vector of the sampling matrix.

Fig. 3 shows the results of simulation experiments with
an ensemble of random codebooks. For the protected sum,
the worst RIP values of the inference of individual sparse vec-
tors versus the list of sparse vectors composing the protected
sum do coincide. Thus, the dense protected sum vector and
the list of sparse feature vectors are equivalent.

The alternative method of forming a protected sum (6) using
powers of a permutation matrix P, corresponds equally to a
sampling of the concatenation of the sparse vectors. As long
as the sampling matrices (�, P�, P2�, . . . , P(L−1)�) and
(���) have similar properties, the conditions for equivalence
between protected sum and concatenated sparse vectors hold.

IV. DIMENSIONALITY- AND SPARSITY-PRESERVING

VSA OPERATIONS

The results from Section III reveal that variable bind-
ing and the protected set representation in classical VSA
models induce equivalent operations between sparse vectors
that are not dimensionality preserving. Thus, dimensionality-
preserving operations for binding and protected sum involve
potentially lossy transformations of the higher dimensional
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Fig. 4. Circuits for sparsity-preserving binding: three pools of neurons (blue: two inputs, red: output) represent the sparse neural activity patterns a, b and
c. The dendritic tree of the output neurons contains coincidence detectors that detect pairs of co-active axons (red circles), and the soma (red triangles) sums
up several coincidence detectors based on the required fan-in. Each neuron samples only a subset of the outer product depending on the desired sparsity
and threshold settings. The subsampling pattern of neurons is described by a binary tensor Wl

i j ∈ {0, 1}, where i, j indexes the coincidence point and l the
postsynaptic neuron. We examine three different sampling strategies random sampling, structured sampling, and block code.

data structure into a single vector. In the following, we investi-
gate binding operations on sparse VSA representations that are
both dimensionality- and sparsity-preserving, one for general
sparse vectors and one for sparse vectors with block structure.

A. Sparsity-Preserving Binding for General K -Sparse Vectors

Binding operations in classical VSAs can all be described
as a projection of the tensor product to a vector, includ-
ing Hadamard product, circular convolution binding [1] and
VDTB [42] (see (2) in Section I.A in the Supplementary
Materials). However, when applied to sparse atomic vectors,
these operations do not preserve sparsity—circular convolution
produces a vector with reduced sparsity, while the Hadamard
product increases sparsity.

Ideally, a sparsity-preserving VSA binding operation oper-
ates on two atomic vectors that are K -sparse and produces
a K -sparse vector that has the correct algebraic properties.
To preserve sparsity, we developed a binding operation that
uses a random projection to subsample the tensor product.
We refer to this operation as sparsity-preserving tensor pro-
jection (SPTP). Given two K -sparse binary vectors a and b,
SPTP variable binding is given by

(a ◦ b)l = H

⎛
⎝∑

i j

W l
i j ai b j − θ

⎞
⎠. (17)

Here, H (x) is the Heaviside function, θ is a threshold. For
a pair of K -sparse complex phasor vectors, SPTP binding is
defined as

(a ◦ b)l = zl

|zl | H (|zl| − θ)

zl =
∑

i j

W l
i j ai b j . (18)

The computation of (17) resembles a circuit of threshold
neurons with coincidence detectors in their dendritic trees, see
Fig. 4. The synaptic tensor W ∈ {0, 1}M×M×M is a binary
third-order tensor that indicates how each output neuron sam-
ples from the outer-product. We examined two types of random
sampling tensors, one with the 1-entries chosen i.i.d. (without
repetition), and one with 1-entries aligned along truncated
diagonals of the tensor (left and middle panel in Fig. 4).

The sparsity of the output in (17) is controlled by the thresh-
old and by the density of this sampling tensor. To achieve
a target sparsity of K/N for a threshold θ = 1, the fan-in
to each neuron has to be N/K (see analysis in Section II.A
in the Supplementary Materials). Thus, the minimal fan-in of
the sampling tensor W increases with sparsity. If the pattern
activity is linear in the dimension, K = β N with β 	 1,
the minimal fan-in is α∗ = 1/β. In this case, the computational
cost of SPTP binding is order N . If the pattern activity goes
with the square root of the dimension, K = β

√
N , the minimal

fan-in is α∗ = √
N/β. If the pattern activity goes with the

logarithm of the dimension, K = β ln(N), the minimal fan-
in is α∗ = N/(β ln(N)). Furthermore, for optimizing the
unbinding performance, the sampling tensor should fulfill the
symmetry condition W i

jl = W l
i j (see analysis in Section II.B

in the Supplementary Materials).

B. Sparsity-Preserving Binding for Sparse Block-Codes

We next consider sparse vector representations that are
constrained to be block codes [35]. Here, we extend a previous
VSA model with sparse binary block-code [2] to a VSA
model with complex phasor block-codes. In a sparse block-
code, a vector of length N is divided into K equally-sized
blocks, each with a one-hot component. In the complex
domain, the hot component is a phasor with unit amplitude
and arbitrary phase.

The binding operation [2] proposed operates on each block
individually. For each block, the indices of the two active
elements of the input are summed modulo block size to
produce the index for the active element of the output.
In essence, this is circular convolution [5] performed locally
between individual pairs of blocks. This binding operation,
local circular convolution (LCC), denoted by ∗b, produces a
sparse block-code when the input vectors are sparse block-
codes (Fig. 4). LCC variable binding can be implemented by
forming the outer product and sampling as in Fig. 4, with
circuitry in which each neuron has a fan-in of α = N/K and
samples along truncated diagonals of the tensor product. LCC
has a computational complexity of αN , which is order N if
K is proportional to N . An alternative implementation (that is
more efficient on a CPU) uses the Fourier convolution theorem
(see (4) in Section I.B in the Supplementary Materials) to

Authorized licensed use limited to: Lulea University of Technology. Downloaded on September 05,2021 at 01:12:58 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 5. Methods for variable binding in terms of dimensionality and sparsity
preservation. The red dashed line marks the three binding methods that are
dimensionality- and sparsity-preserving.

replace convolution by the Hadamard product

(a ∗b b)blocki = ablocki ∗ bblocki

= F−1(F(ablocki ) � F(bblocki )) (19)

where F is the Fourier transform.
The LCC unbinding of a block can be performed by

computing the inverse of the input vector to unbind. This is the
inverse with respect to circular convolution, which is computed
for each block

a−1
blocki

= F−1(F(ablocki )
∗) (20)

where ∗ is the complex conjugate. The inverse is used when
unbinding, for instance, if c = a ∗b b, then a = b−1 ∗b c.

Experiments With Sparsity-Preserving Binding: We have
discussed and introduced different proposals for variable bind-
ing. Their properties regarding the preservation of dimension
and sparsity are summarized in Fig. 5.

Here we perform experiments to evaluate for the
dimensionality-preserving methods how well sparsity is pre-
served, and how much information of a bound object can be
retrieved by unbinding. We investigated how precisely sparsity
is preserved with LCC and SPTP binding (Fig. 6). Circular
convolution and Hadamard product were excluded from this
test because they systematically alter sparsity, the Hadamard
product by increasing, and circular convolution by decreasing
it (Fig. 5). We find that LCC binding preserves sparsity
perfectly, and SPTP binding preserves sparsity on average
(statistically), but with some variance.

We next measure how much information is retained when
first binding and then unbinding a vector using the proposed
binding operations (Fig. 7). The Hadamard product binding
achieves the highest correlation values for dense vectors but
performs very poorly for sparse vectors. The other three bind-
ing methods perform equally across sparsity levels. Circular
convolution and SPTP binding are somewhat lossy for all
sparsity levels. The LCC variable binding between block-codes
achieves the highest correlation values, outperforming circular
convolution, and SPTP binding. Each diagram in Fig. 7 con-
tains six curves, corresponding to different levels of additive
superposition in the bound vectors.

Fig. 6. Preservation of sparsity with a binding operation. (a) Output sparsity
Kbind is compared to the sparsity of the base vectors K . Binding with SPTP
results in an output vector that has the correct expected sparsity, but there is
some random variance. This variance reduces with more active components
(K = [20, 50, 100, 200] black to orange lines). This result is similar for both
random and structured SPTP. (b) Output sparsity of binding sparse block-codes
with LCC deterministically results in a vector that maintains the sparsity of
the inputs.

SPTP binding works for general K -sparse vectors. It has
decent properties but is somewhat lossy. The information
loss is due to the fact that not all active input components
contribute to the generation of active outputs, which means
that some active input components cannot be inferred during
unbinding and information is lost. The loss can be kept at
a minimum by using a synaptic weight tensor that fulfills
the symmetry condition W i

jl = W l
i j . This information loss

persisted regardless of SPTP being structured or random, or the
threshold and fan-in settings.

These experiments identify LCC binding as an ideal
sparsity-preserving binding operation. With sparse block-codes
and LCC applied separately to each block, the unbinding
is loss-less. The block structure guarantees that each active
input component participates in the formation of an active
output component, which cannot be guaranteed for general
K -sparse vectors. Of course, there is a price to pay, LCC
binding requires the atomic vectors to be sparse block-codes.
The coding entropy of block-codes is significantly smaller than
general K -sparse patterns.

V. APPLICATION AND PERFORMANCE OF VSAs
WITH SPARSE BLOCK-CODES

A. Solving Symbolic Reasoning Problems

As a basic illustration of symbolic reasoning with sparse
block-codes, we implement the solution to the cognitive rea-
soning problem [48]: “What’s the dollar of Mexico?” in the
supplemental Jupyter notebook. We show how reasoning in
VSA can answer such queries, given a set of VSA vectors that
represent data records with trivia information about individual
countries. Note that this is a toy problem, meant for illustrating
how such reasoning problems can be implemented with the
sparse VSA. While we do not compare the VSA solution with
any other baseline solution, we assess quantitatively how the
accuracy of the VSA solution depends on the vector dimension
and the number of items in a data record, and how this
compares to the theoretical prediction.

A data record of a country is a table of key-value pairs.
For example, to answer the specific query, the relevant
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Fig. 7. Comparison of binding operations. The unbinding performance was measured as the correlation between ground truth and output of unbinding.
Different levels of sparsity (x-axis) and superposition were examined (colored lines: [0, 1, 2, 4, 8 16] items in superposition).

records are

ustates = nam ∗b usa + cap ∗b wdc + cur ∗b dol

mexico = nam ∗b mex + cap ∗b mxc + cur ∗b pes.

The keys of the fields country name, capital and currency
are represented by random sparse block-code vectors nam, cap
and cur. The corresponding values USA, Washington D.C.,
Dollar, Mexico, Mexico City, and Peso are also represented by
sparse block-code vectors usa, wdc, dol, mex, mxc, pes. All
the vectors are stored in the codebook �. The vectors ustates
and mexico represent the complete data records—they are a
representation of key-value pairs that can be manipulated to
answer queries. These record vectors have several terms added
together, which reduces the sparsity.

To perform the reasoning operations required to answer the
query, first the two relevant records have to be retrieved in
the database. While mexico can be found by simple pattern
matching between terms in the query and stored data record
vectors, the retrieval of ustates is not trivial. The original
work [48] does not deal with the challenge of inferring that
the ustates record is needed. Rather, the problem is formally
expressed as analogical reasoning, where the query is given
as: Dollar:USA::?:Mexico. Thus, the pair of records needed
for reasoning are given by the query.

Once the pair of records is identified, the following trans-
formation vector is created:

tUM = mexico ∗b ustates−1.

Note that unbinding with LCC is to bind with the inverse
vector (20), whereas in the MAP VSA used in the original
work [48] the binding and unbinding operations are the same.
The transformation vector will also contain many summed
terms, leading to less sparsity. The transformation vector then
contains the relationships between the different concepts

tUM = mex ∗b usa−1 + mxc ∗b wdc−1 + pes ∗b dol−1 + noise

where all of the cross-terms can be ignored and act as small
amounts of crosstalk noise.

The correspondence to dollar can be computed by binding
dol to the transformation vector

ans = dol ∗b tUM = pes + noise.

The vector ans is then compared to each vector in the
codebook �. The codebook entry with the highest similarity
represents the answer to the query. This will be Peso with a

high probability for large N . The probability of the correct
answer can be understood through the capacity theory of
distributed representations described in [14], which we next
apply to this context.

In general, a vector like tUM can be considered as a mapping
between the fields in the two tables. The number of entries will
determine the amount of crosstalk noise, but all of the entries
that are nonsensible also are considered crosstalk noise.

Specifically, we consider general data records of key-value
pairs, similar in form to ustates and mexico. These data
records will contain R “role” vectors that act as keys. Each
one has corresponding Mr potential “filler” values. The role
vectors are stored in a codebook � ∈ CN×R . For simplicity,
we assume that all R roles are present in a data record, each
with one of the Mr fillers attached. The fillers for each role are
stored in the codebook �(r) ∈ CN×Mr . This yields a generic
key-value data record

rec =
R∑
r

�r ∗b �
(r)
i∗ (21)

where the index i∗ indicates one filler vector from the code-
book for a particular role.

Next, we form the transformation vector, which is used to
map one data record to another. This is done generically by
binding two record vectors: ti j = rec j ∗b rec−1

i .
As discussed, the terms in each record will distribute,

and the values that share the same roles will be associated
with each other. But, there are many cross-terms that are
also present in the transformation vector that is not useful
for any analogical reasoning query. The crosstalk noise is
dependent on how many terms are present in the sum, and
this includes the cross-terms. Thus, the total number of terms
in the transformation vector ti j will be R2.

In the next step, a particular filler is queried and the result
is decoded by comparison to the codebook �, which contains
the sparse block-code of each possible filler

ar = �(r)
(
ti j ∗b �

(r)
j∗

)
(22)

where j∗ indicates the index of the filler in the query (e.g.,
the index of Dollar). The entry with the largest amplitude in
the vector ar is considered the output.

The probability that this inference finds the correct rela-
tionship can be predicted by the VSA capacity analysis [14]
(Fig. 8). The probability is a function of the signal-to-noise
ratio, given in this case by s2 = N/R2. Fig. 8 shows that
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Fig. 8. Performance of analogic reasoning tasks with sparse block-
codes. We empirically simulated analogic reasoning tasks with data records
containing R key-value pairs, and measured the performance (dashed lines,
N = [1000, 2000, 4000, 8000] dark to light). This performance can be
predicted based on the VSA capacity theory reported in [14] (solid lines).

the performance of the sparse block-code VSA matches the
predictions of the general VSA capacity theory, meaning that
sparse block-codes are equivalent to standard VSA represen-
tations in representation capacity.

B. Solving Classification Problems

Although VSAs originated as models for symbolic reason-
ing, recent applications of VSA in machine learning solve
classification problems, for example, in language identifica-
tion [49], [50], gesture recognition [51], [52], prediction of
mobile phone use patterns [53], and fault identification [54].
Furthermore, it was pointed out in [55], that VSAs can
describe classifiers using randomly connected feed-forward
neural networks [56], referred to as random vector functional
link (RVFL) [57] or extreme learning machines (ELM) [58].
Specifically, RVFL/ELM can be expressed by VSA operations
in the MAP VSA model [55]. Leveraging these insights,
we implemented a classification model using a VSA with
sparse block-codes.

The model proposed in [55] forms a dense distributed
representation x of a set of features a. Each feature is assigned
a random “key” vector �i ∈ {±1}N . The collection of “key”
vectors constitutes the codebook �. However, in contrast to (3)
the set of features is represented differently. The proposed
approach requires the mapping of a feature value ai to distrib-
uted representation Fi (“value”) which preserve the similarity
between nearby scalars. [55] used thermometric encoding [59]
to create such similarity preserving distributed representations.
The feature set is represented as the sum of “key”-“value” pairs
using the binding operation

x = fκ

(
M∑
i

�i � Fi

)
(23)

where fκ denotes the clipping function which is used as a
nonlinear activation function

fκ (xi) =

⎧⎪⎨
⎪⎩

−κ xi ≤ −κ

xi −κ < xi < κ

κ xi ≥ κ.

(24)

Fig. 9. Solving classification problems with sparse block-codes. (a) Similarity
preserving representation of scalars with sparse block-codes: K = 16, N =
128. Shown are similarity (overlap) between the representations of the levels
1, 57, and 113 and the vectors representing other signal levels. (b) Cross-
validation accuracy of the VSA with dense distributed representations against
the VSA with sparse distributed representations. A point corresponds to a
dataset.

The clipping function is characterized by the configurable
threshold parameter κ regulating nonlinear behavior of the
neurons and limiting the range of activation values.

The predicted class ŷ is read out from x using the trainable
readout matrix as

ŷ = argmaxWoutx (25)

where Wout is obtained via the ridge regression applied to a
training dataset.

Thermometric codes are nonsparse and their mean activity
is variable across different values. Building on earlier efforts
in the design of similarity-preserving sparse coding [60], [61],
we design a similarity-preserving encoding scheme with sparse
block-codes. In this scheme, the lowest signal level has all hot
components in the first positions of each block. The second
signal level is encoded by the same pattern except that the hot
component of the first block is shifted to the second position.
The third signal level is encoded by the code of the second
level with the hot component of the second block shifted to
the second position, and so on. This feature encoding scheme
can represent N − K +1 signal levels uniquely. The similarity
between vectors drops of gradually as a function of distance
[Fig. 9(a)]. Each pattern has the highest similarity with itself
(overlap = K ). For the range of distances between 1 and K ,
the overlap decreases linearly until it reaches 0 and then stays
at this level for larger distances.

The data vectors in a classification problem are essentially
encoded as protected sums (5). First, labels of the different fea-
tures (data dimensions) are encoded by random sparse block-
code vectors. Key-value pairs are then formed by binding
feature labels with corresponding values, using the similarity
preserving sparse block-code scheme described above. A data
vector is then represented by the sum of all the key-value pairs.
In addition, we apply a clipping function to the resulting input.

The described representation of the data can be computed
in a sparse block-code VSA, the last step can be repre-
sented by the activation of a hidden layer with nonlinear
neurons. To perform classification, the hidden representation is
pattern-matched to prototypes of the different classes. To opti-
mize this pattern matching, in cases where the prototypes
are correlated, we train a perceptron network with ridge
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regression, similar as previously proposed for in a sequence
memory with VSAs [14].

The 121 datasets from the UCI Machine Learning Reposi-
tory [62] used in the experiments have been initially analyzed
in a large-scale comparison study of different classifiers [63].
The only preprocessing step we introduced was to normalize
features in the range [0, 1] and quantize the values into
N − K + 1 levels. The hyperparameters for both dense and
sparse models were optimized through grid search over N
(for dense representations N varied in the range [50, 1500]
with step 50), λ (ridge regression regularization parameter;
varied in the range 2[−10,5] with step 1), and κ (varied between
{1, 3, 7, 15}). The search additionally considered K for sparse
block-codes (K/N varied in the range 2[2,5] with step 1 while
K varied in the range 2[4,7] with step 1).

Interestingly, the cross-validated accuracies for the VSA
with sparse block-codes and the VSA with dense representa-
tions [55] on the UCI collection are quite similar [Fig. 9(b)],
with a correlation coefficient of 0.88 and both reaching average
accuracy of 0.80.3 Importantly, the number of neurons used
by both approaches was also of the same order of magnitude:
about 500 for sparse block-codes and about 750 for dense
representations. Thus, we conclude that sparse block-codes can
be used as substitutes for dense representations for practical
problems such as classifications tasks.

VI. DISCUSSION

In this article, we investigated methods for variable binding
for symbolic reasoning with sparse distributed representations.
The motivation for this study was twofold. First, we believe
that such methods of variable binding could be key for
combining the universal reasoning properties of VSAs [12]
with advantages of neural networks. Second, these methods
will enable implementations of symbolic reasoning that can
leverage efficient sparse Hebbian associative memories [15],
[24], [36] and low-power neuromorphic hardware [64].

A. Theoretical Results

Using the framework of CS, we investigated a setting in
which there is a unique equivalence between sparse feature
vectors and dense random vectors. We find the following.

1) With this setting, CS inference outperforms the classical
VSA readout of set representations.

2) Classical vector symbolic binding between dense vectors
with the Hadamard product [1], [7], [8] is under certain
conditions mathematically equivalent to tensor product
binding [3] of the corresponding sparse vectors.

3) For representing sets of objects, vector addition of
dense vectors (15) is equivalent to the addition of the
corresponding sparse vectors.

4) The protected sum of dense vectors (16) is equivalent to
the concatenation of the sparse vectors.

5) The dimensionality preserving operations between dense
vectors for variable binding and protected set representa-
tions mathematically correspond to operations between

3In the Supplementary Materials (Section III), we additionally compare the
results for the VSA with sparse block-codes to the results of another model
with sparse representations—binarized random projections.

sparse vectors, tensor product, and vector concatenation,
which are not dimensionality preserving.

B. Experimental Results

Our theory result 5) implies that in order to construct dimen-
sionality and sparsity-preserving variable binding between
sparse vectors, an additional reduction step is required for
mapping the outer product to a sparse vector. Existing
reduction schemes of the outer product proposed in the
literature, circular convolution [1] and VDTB [42], are not
sparsity-preserving when applied to sparse vectors.

For binding pairs of general K -sparse vectors, we designed
a strategy of subsampling from the outer-product with addi-
tional thresholding to maintain sparsity. Such a computation
can be implemented in neural circuitry where dendrites of
neurons detect firing coincidences between pairs of input
neurons. The necessary connection density increases with spar-
sity of the code vectors. Still, the computational complexity
is order N when K = β N , which favorably compares to
other binding operations which can have an order of N2 or
N log N . However, the sampling in the circuit always misses
components of the tensor product, making the unbinding
operation lossy.

Another direction we investigated extends previous work [2]
developing VSAs for sparse representations of restricted type,
sparse block-codes. We propose block-LCC as a variable
binding method that is sparsity and dimensionality preserving.
Interestingly, for sparse block-codes, the unbinding given the
reduced tensor and one of the factors is lossless. As our exper-
iments show, it has the desired properties required for VSA
manipulations, outperforming the other methods. Independent
other work has proposed efficient Hebbian associative memory
models [35], [36], [65] that could be applied for cleanup steps
required in VSAs with block-codes.

VSAs with block-codes are demonstrated in two applica-
tions. In a symbolic reasoning application, we show that the
accuracy as a function of the dimension of sparse block-codes
reaches the full performance of dense VSAs and can be
described by the same theory [14]. On 121 classification
datasets from the UCI Machine Learning Repository we show
that the block-code VSA reaches the same performance as
dense VSAs [55]. Moreover, the average accuracy of 0.80
of VSAs models is comparable to the state-of-the-art perfor-
mance of 0.82 achieved by Random Forest [63].

C. Relationship to Earlier Work

The papers [20], [66] were to our knowledge the first to pro-
pose dimensionality- and sparsity-preserving variable binding.
For binary representations they proposed methods that involve
componentwise Boolean operations and deletion (thinning)
based on random permutations. These methods of variable
binding are also lossy, similar to our method of SPTP.

The variable binding with block-codes, which our experi-
ments identify as the best, can be done with real-valued binary
or complex-valued phasor block-codes. For binary block-codes
our binding method is the same as in [2], who demonstrated
it in a task processing symbolic sequences. For protecting

Authorized licensed use limited to: Lulea University of Technology. Downloaded on September 05,2021 at 01:12:58 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

individual elements in a sum representation, they use random
permutations between blocks, rather than variable binding as
we do in Section III-C.

D. Implications for Neural Networks and Machine Learning

In the deep network literature, concatenation is often used
in neural network models as a variable binding operation [67].
However, our result 4) suggests that concatenation is funda-
mentally different from a binding operation. This might be a
reason why deep learning methods have limited capabilities to
represent and manipulate data structures [68].

Several recent studies have applied VSAs to classification
problems [69], [70]. Here, we demonstrated classification in
a block-code VSA. The block-code VSA exhibited the same
average classification accuracy as earlier VSA solutions with
dense codes. This result suggests that sparse block-code VSAs
can be a promising basis for developing classification algo-
rithms for low-power neuromorphic hardware platforms [64].
Finally, it is worth mentioning that unrestricted sparse dis-
tributed representations in particular and sparsity in general
have been applied in many contexts within neural networks
and machine learning such as associative memories [15],
[24], [31], [34], [71], [72], phasor networks [32], CS [39],
[40], approximate nearest neighbor search [73]–[76], training
of sparse models [77]–[79] to name a few. Studying the
potential use of sparse block-code VSA in these scenarios is
an interesting future direction.

E. Implications for Neuroscience

We have investigated variable binding operations between
sparse patterns regarding their computational properties in
symbolic reasoning. It is interesting that this form of vari-
able binding requires multiplication or coincidence detection,
computations which can be implemented by active dendritic
mechanisms of biological neurons [80]. Although this compu-
tation is beyond the capabilities of standard neural networks,
it can be implemented with formal models of neurons, such
as sigma-pi neurons [81].

We found that the most efficient form of variable binding
with sparse vectors relies on block-code structure. Although
block-codes were engineered independent of neurobiology,
they compatible with some experimental observations, such as
divisive normalization [37], and functional modularity. Specif-
ically, in sensory cortices of carnivores neurons within small
cortical columns [82] respond to the same stimulus features,
such as the orientation of local edges in the image [38], [83].
Furthermore, groups of nearby orientation columns form
so-called macro columns, tiling all possible edge orientations
at a specific image location [84], [85]. A macro column may
correspond to a block in a block-code.

While binary block-codes are not biologically plausible,
complex-valued block-codes in which active elements are
complex phasors with unit magnitude, can be represented as
timing patterns in networks of spiking neurons [32]. Further-
more, it seems possible to extend LCC binding to soft block-
codes, in which localized bumps with graded neural activities
represented by spike rate, e.g., [86].

F. Future Directions

One important future direction is to investigate how to
combine the advantages of VSA and traditional neural net-
works to build more powerful tools for artificial intelligence.
The challenge is how to design neural networks for learning
sparse representations that can be processed in sparse VSAs.
Such combined systems could potentially overcome some of
the severe limitations of current neural networks, such as
the demand for large amounts of data, limited abilities to
generalize learned knowledge, etc.

Another interesting research direction is to design VSAs
operating with spatio-temporal spike patterns that can be
implemented in neuromorphic hardware, potentially also mak-
ing use spike timing and efficient associative memory for spike
timing patterns [32].

Furthermore, it will be interesting to study how binding
in sparse VSAs can be used to form similarity-preserving
sparse codes [60], [61] for continuous manifolds. For example,
binding can be used to create index patterns for representing
locations in space, which could be useful for navigation in
normative modeling of hippocampus [87].
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