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Materials design calls for an optimal exploration and exploitation of the process-structure-property (PSP)
relationships to produce materials with targeted properties. Recently, we developed and deployed a
closed-loop multi-information source fusion (multi-fidelity) Bayesian Optimization (BO) framework to
optimize the mechanical performance of a dual-phase material by adjusting the material composition
and processing parameters. While promising, BO frameworks tend to underperform as the dimensional-
ity of the problem increases. Herein, we employ an adaptive active subspace method to efficiently handle
the large dimensionality of the design space of a typical PSP-based material design problem within our
multi-fidelity BO framework. Our adaptive active subspace method significantly accelerates the design
process by prioritizing searches in the important regions of the high-dimensional design space. A detailed
discussion of the various components and demonstration of three approaches to implementing the adap-

tive active subspace method within the multi-fidelity BO framework is presented.
© 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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process-structure-property (PSP) relationships [2,3], which are in
turn established through physics- or machine learning-based mod-

1. Introduction

Integrated Computational Materials Engineering (ICME) - based
material design [1] relies on solving the inverse problem connect-
ing target properties/performance metrics to material chemistry
and processing. This connection is established through (forward)
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els [4-6] and/or experimental data. The solution to this inverse
problem entails the exploration and exploitation of PSP relation-
ships to identify the required chemistry-processing combinations
that yield desired properties [7]. Practical implementation of ICME
frameworks requires addressing three major challenges: the need to
explicitly connect the different models along the PSP chain; the
considerable cost associated with the evaluation of each of the
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models/linkages; and the potentially large dimensionality of the
design space.

A significant amount of work has been done to address the first
challenge, at least in the context of microstructure sensitive mate-
rials design, which aims to uncover optimal microstructures that
meet specific performance objectives by focusing exclusively on
the microstructure-property space [8-13]. While promising, this
approach assumes that the design space consists of a universe of
microstructures that are all feasible, potentially, through suitable
chemistry-processing combinations. This is an unwarranted
assumption as there is no guarantee that an optimal microstruc-
ture is feasible, in the sense that it can be attained through an ade-
quate processing protocol. To date, there has been some measure
of success in the deployment of fully integrated PSP model chains
for materials design|[14,15]. However, this is not a trivial task lar-
gely due to the complex, highly coupled, multi-scale nature of
the linkages along the PSP chain [16].

To address the second challenge associated with the consider-
able cost of querying the PSP relationships, the materials design
community has focused on the development and deployment of
closed-loop Bayesian Optimization (BO) frameworks to efficiently
explore and exploit the material design space [15,17-21]. These
frameworks seek a balance between exploration and exploitation
in order to efficiently arrive at optimal materials solutions. These
approaches are suitable and have been used successfully in both
simulation-driven and experiment-centered materials design
problems.

The third challenge, however, has largely remained unaddressed.
This is despite the fact that, more often than not, the design space
is large, [12,15] and BO frameworks tend to underperform as the
dimensionality of the problem increases [22]. There are some
works done toward scaling BO frameworks to higher dimensions
to address the issue of employing a BO approach in high-
dimensional design spaces. For example, a technique is to consider
additive models [23,24] and treating a function as an additive func-
tion of mutually exclusive lower dimensional subspaces [25]. Also,
in Ref. [26], a random embedding idea is used to lower the dimen-
sionality of the design space. By embedding different dimensions
and optimizing an acquisition function, they search for dimensions
in the design space that are more important in optimizing an
objective function. However, the results of an study comparing
similar approaches in Ref. [27] have shown that none of these
methods can outperform the other ones in all situations and there
are trade-offs in employing each technique compromising the
obtained results. It is certainly possible to carry out statistical tests
to determine the most influential design variables in any optimiza-
tion task and then to focus exclusively on those degrees of freedom
during the design process. However, this requires sufficient data
connecting design inputs to design outputs. Thus, there is a need
for techniques that can effectively locate the most important
(and/or informative) design regions to increase the efficiency of
the materials design process. These efficiency gains can be more
pronounced if these potentially productive design regions can be
identified with limited data in an adaptive manner, while more
information about the design space is gained in the course of
exploring/exploiting it [28,29].

There are techniques to deal with the curse of dimensionality
that stems from large design spaces, usually by defining a repre-
sentative response surface in a lower-dimensional space while
maintaining the relationship between the design variables as much
as possible. For instance, global sensitivity analysis is used to mea-
sure the importance of different design variables in the variation of
a quantity of interest [30-34]. This approach assigns a nominal
value to the design variables that have little effect on the objective
and perform the optimization over the remaining design variables.
Approximating a subspace of the original large design space is also
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among the most common approaches to dimensionality reduction
and can be used to represent data in a lower-dimensional space to
ease machine learning objectives, increase the efficiency of opti-
mization tasks [35,36], aid in model reduction [37], or facilitate
optimal control of dynamic systems [38]. Another technique in
dimensionality reduction is the Principal Component Analysis
(PCA) [39], which linearly projects a large dimensional dataset onto
a lower-dimensional space [40-42] while trying to keep as much
information as possible by determining the principal components
that capture a majority of the variance in the data. PCA has been
employed for microstructure sensitive design to build models to
predict (mechanical) properties using a lower-dimensional repre-
sentation of the complex material microstructure [43-50]. Note
that PCA simply decreases the dimensionality of the design space
by considering the correlations among design variables, without
accounting for the connection between the design variables and
the quantities of interest amenable to optimization. In a PSP-
based materials design problem, where the focus is on optimizing
the performance metrics by exploring material chemistry and pro-
cessing options, directly decreasing the dimensionality of the
design space without accounting for the design objectives may
not be feasible.

Herein, we employ an adaptive active subspace method [51-53]
to efficiently handle the large dimensionality of the design space of
a typical PSP-based materials design problem within our recently
developed closed-loop multi-information source fusion (multi-
fidelity) BO framework [15]. Specifically, we demonstrate the effi-
cacy of this framework by optimizing the stress, 7, normalized
strain hardening rate, dt/de,, at an arbitrary equivalent plastic
strain, €, =0.9%, of a dual-phase material (ferrite-martensite
steel) by adjusting the content of the alloying elements C, Mn
and Si in the Fe-based alloy, and the processing condition, i.e.,
the intercritical annealing temperature, T. The normalized strain
hardening rate, (1/7)(dt/dey), is a useful mechanical performance
metric, and a higher value of this parameter indicates better ductil-
ity and formability of the material. In the design framework, we
utilize the thermodynamic results to predict the chemistry and
composition of the constituent phases after the single-stage heat-
treatment (intercritical annealing followed by quenching)
[15,21]. This information is then used to predict the mechanical
performance of the dual-phase material using a variety of
(reduced-order) micromechanical models referred to as Isotress,
Isostrain, Isowork, Secant method and Elastic constraint, and a
high-throughput microstructure-based finite element model that
utilizes a three-dimensional representative volume element
(RVE) of the material microstructure [15,20]. All these models,
low fidelity micromechanical models, as well as high fidelity
microstructure-based finite element models (referred to as RVE
and assumed to be the ‘ground truth’) are treated as information
sources. We represent the response of each information source as
Gaussian process surrogates and fuse them using standard
approaches for the fusion of normally distributed data.

Our approach to implementing the adaptive active subspace
method within the multi-fidelity BO framework is schematically
shown in Fig. 1. The active subspace method is a technique to look
for the directions in the design space for which a function has the
largest variability. By forming a subspace using those directions, an
approximation of the function is obtained on a lower-dimensional
space referred to as the active subspace [52]. Thus, increasing the
efficiency of the design process by more effectively searching for
the optimal solution within the high-dimensional design space
[51,53]. In the context of materials design, the function is the PSP
relationship that is being evaluated, and the basic idea is to find
the directions in the design space (T, C, Mn, and Si) that give the
largest variation in the objective value (normalized strain harden-
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Fig. 1. Implementation of adaptive active subspace method within a multifidelity Bayesian Optimization (BO) framework. The basic idea is to find the active subspace, i.e., the
directions in the material design space - intercritical annealing temperature (T), and alloying elements C, Mn, and Si - that give the largest variation in the mechanical
property (normalized strain hardening rate) by using the available data at every stage of the optimization task. Next, the process - structure-property (PSP) relationship is
mapped to the active subspace, and the first step of the BO framework is applied to find the ‘next best point’ to evaluate within the active subspace. The ‘next best point’ is
then mapped back to the original design space by implementing a second BO step. Finally, the PSP relationship is evaluated at this best point using the thermodynamic-based
model and the selected micromechanical model to estimate the objective value. This new data is added to the framework for the next iteration.

ing rate) by using the available data at every stage of the optimiza-
tion task. The directions suggesting larger variation than a user-
specified value then form the active subspace. Following this, we
employ a knowledge gradient acquisition function to determine
the ‘next best point’ to evaluate within the active subspace. In
order to obtain the true input values for the ‘next best point,’ the
chosen point in the active subspace must be inversely mapped to
the true design space. Since there is no unique solution for this
inverse mapping problem, a second BO step is performed to deter-
mine the ‘next best point’ in the true design space. At this stage, a
decision about which information source (low fidelity microme-
chanical model) to query is also made by temporarily updating
each information source and comparing their results. Finally, the
PSP relationship is evaluated at this ‘best point’ using the
thermodynamic-based model and the selected micromechanical
model to estimate the objective value.

2. Methods

In this work, our objective is to maximize the stress, T, normal-
ized strain hardening rate, dt/dey, i.e. (1/7)(dt/dey) at an arbi-
trary equivalent plastic strain, €, =0.9%, of a dual-phase
material. The dual-phase material system considered is a ferritic-
martensitic steel which is produced by subjecting the material sys-
tem composed of Fe, C, Mn and Si to a single-stage intercritical
annealing heat treatment followed by rapid quenching. Therefore,
our optimization problem aims to find the values of the intercriti-
cal annealing temperature, T, and C, Mn and Si content of the Fe-
based alloy that correspond to the maximum value of the
(1/7)(dt/dey).

In previous work, we addressed the optimization problem dis-
cussed above with a multifidelity BO framework [15] to incorpo-
rate the response of different mechanical models, which enabled
the collection of information about the optimum design in a less

costly manner in comparison to employing a finite element model
alone. The multifidelity aspect of the approach was used to exploit
the fact that in most materials design problems we have available
several different models that can potentially be used to estimate a
quantity of interest. These models are usually based on different
physics-based and numerical assumptions, which leads to models
with varying expense in terms of computational resources required
for a query to the model and varying fidelity. The exploitation of
each possible model, or information source, was achieved via an
information fusion process described in Refs. [54,55]. While the
overall multifidelity BO approach of our prior work was shown
to be more efficient than traditional BO approaches, the process
can still be computationally impractical when applied over large
design spaces. Here, to address this challenge, we consider the
application of adaptive dimensionality reduction in the context
of our multifidelity BO framework using the active subspace
method, which is described in detail below in Section 2.4.

Fig. 2 illustrates the steps in our proposed adaptive active
subspace-based multifidelity BO framework. The framework starts
by reducing the dimensionality of the design space and projecting
all evaluated designs to a lower dimensional design space (the cur-
rent active subspace), and then two steps of Bayesian optimization
are executed. The first step of BO is applied over the active sub-
space to find a best design candidate to query in the lower dimen-
sional space. Next, the obtained design is inverse mapped to the
full dimensional design space, which results in a subspace of
potential solutions of the inverse problem. The second step of BO
is applied over this subspace to obtain the next design and infor-
mation source to query.

In every step of the Bayesian optimization process, we use sur-
rogate models to estimate the expected objective values of design
points that have yet to be evaluated. In a multifidelity setting, we
therefore have multiple surrogate models to construct (one for
each information source) and for use in predicting design points
not yet queried. Since every information source contains useful
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Fig. 2. Flowchart of the proposed approach. At the start of every iteration, the active
subspace is found and all data are projected onto it. Then, the first step of BO is
applied over this active subspace. The best design candidate is mapped back to the
full dimensional design space, resulting in a solution subspace. The second step of
BO then is applied over this subspace to select the best design and information
source to query.

data regarding the expensive objective function to be optimized,
we also employ a fusion technique, known as model reification
[54-56] to fuse data from all information sources to obtain a fused
predictive model to estimate the expensive objective function. This
fused model encompasses our current state of knowledge during
the design process. An update to any of the information sources
results in a fused model update representing the system’s new
state of knowledge. During every iteration, we generate a set of
potential design points using a space filling technique, for example,
Latin hypercube sampling, evaluate them from each information
source’s surrogate model and temporarily update the fused model.
We then use an acquisition function to quantify the expected
change in the system’s knowledge about the maximum objective
value when evaluating that design point from the information
source. The next design point to be evaluated is then selected by
choosing the information source and design point that resulted
in the largest expected change in the system’s knowledge of the
maximum objective value.
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In the following two subsections, we describe the methods used
in the dual-phase steel application for thermodynamic phase pre-
diction and mechanical response prediction. The subsections that
follow then detail the different ingredients of our design frame-
work, including a discussion of Gaussian process regression, the
active subspace for dimensionality reduction, information fusion
via model reification, and acquisition via the knowledge gradient.
We end this section with a discussion of different strategies and
implementation options of the framework, which are then used
in the presentation of results in Section 3.

2.1. Microstructure space prediction

One of the conventional methods for estimating a material’s
microstructure is to use thermodynamic predictions of the phases.
This approach typically relies on CALPHAD based models such as
those implemented in the Thermo-Calc™software. Thermody-
namic models are capable of predicting the equilibrium phase frac-
tion and phase composition of a material. As such, they provide
critical information on the microstructure of a material. In order
to avoid needing to call the thermodynamic software explicitly
and also to ensure that the calculations for the microstructure of
the material can be achieved quickly, a Gaussian process surrogate
model was built from the Thermo-Calc™predictions. To achieve
this, a uniform sampling of the design space was conducted and
at each point, the volume fraction and composition of the austenite
phase was predicted. The volume fraction of martensite was esti-
mated using the Koistinen-Marburger relation and it was assumed
that the martensite had the same composition as the austenite. A
Gaussian process model was then fit to each of the volume frac-
tions, and the Si, Mn, and C weight fractions of the martensite
phase [57]. Since the material only consists of two phases, the vol-
ume fraction and composition of the ferrite phase is achieved by
completing a mass balance. These predictions from the thermody-
namic model are connected to the mechanical models (described
in the following section) to establish a (chemistry) processing-
structure-property linkage.

2.2. Mechanical response prediction

In the current work, the prediction of homogenized mechanical
response is carried out using five reduced order mechanical models
(which we refer to as information sources in the optimization
framework) with varying degrees of complexity (computational
cost) and fidelity and finally, a high fidelity microstructure-based
finite element model (considered as the ‘ground truth’). Here, the
finite element model utilizes a three-dimensional representative
volume element (RVE) to predict the overall stress-strain response
of the microstructure [58,59]. The first three reduced order models,
‘isostrain’ [60], ‘isostress’ [61] and ‘isowork’ [62] are mechanical
models and are based on simple assumptions of how the strain,
stress and work is partitioned respectively among the constituent
phases, (martensite and ferrite phases). The other two reduced
order models ‘secant method’ and ‘elastic constraint method’ are
two slightly more sophisticated micromechanical models based
on the homogenization schemes proposed in Ref. [63]. The secant
method model is based on Hill's weakening constraint power in a
plastically-deforming matrix and the elastic constraint model is
based on Kroner's treatment of the matrix-inclusion system under
elastic constraints.

Here, in all the mechanical models, the constituent ferrite and
martensite phases are discretely modeled as an isotropic elastic-
plastic material. The Young’'s modulus and Poisson’s ratio are
assumed to be the same for both phases. Finally, we relied on sev-
eral simplifying assumptions when linking the composition of the
phases to the mechanical properties. For the ferrite phase there are
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typically three strengthening mechanisms that are commonly con-
sidered, solid solution strengthening, grain size strengthening, and
Precipitation strengthening [64]. In the current work we consid-
ered only a single grain size, and we assumed that we were not
producing a precipitate phase and so the grain size strengthening
effect is constant and the precipitate strengthening effect is
ignored. Therefore, the only effect that varies with the composition
is the solid solution strengthening. Following a further assumption
that the heat treatment is long enough for the austenite and ferrite
to reach equilibrium, we know that the concentration of carbon in
ferrite will have a negligible effect on the solution strengthening
and so we ignore that contribution to simplify the calculations.
As a result, the only two components that contribute to the ferrite
strength are the Mn and Si concentrations.

While martensite does have some effect from solid solution
strengthening, most research has shown that it is predominantly
the carbon concentration that controls the mechanical properties of
the martensite phase [65]. Therefore, we made a simplifying assump-
tion that only the carbon concentration of the martensite would
determine the mechanical properties of the martensite phase. Addi-
tional descriptions and details of all the equations and parameters
used for these mechanical models can be found in Ref. [15].

2.3. Gaussian process regression

In the context of Bayesian optimization, surrogate models are
constructed to estimate the objective values before making a query
directly from functions, so that the potential information gain
toward the optimum design can be predicted beforehand. Gaussian
process models are easy to update and cheap to evaluate, thus we
use them to build the surrogates for the Bayesian framework using
squared exponential kernel as in Eq. (1).

d

s\ 2
ki(x,X') = g exp <_ZM>, 1)

=2

Here, d is the dimensionality of the design space, ¢2 is the signal
variance, and [, is a d-dimensional vector with the characteristic
length-scales defining the correlations between the points within
each dimension. Signal variance and length-scales are estimated
using maximum likelihood optimization or set based on the expert
opinion about the objective functions. More information regarding
Gaussian processes and kernels are provided in Ref. [66].

2.4. Active subspace

The active subspace method is a technique to look for the direc-
tions in the design space for which a function has the largest vari-
ability. By forming a subspace using those directions, an
approximation of a function is obtained on a lower dimensional
space called the active subspace. The advantage of constructing a
subspace to approximate a function is that learning a subspace of
the original high-dimensional design space is easier [51,53]. This
advantage leads to significant efficiency gains, speeding up the
optimization in design applications and reducing resource usage
[67]. Briefly, the idea is to find the directions in the design space
which contain the largest variation in the objective value. In other
words, a new coordinate system is built based on eigen vectors of
the space with eigenvalues defining how strong the variation of the
objective value is when moving toward that direction. The matrix
U has n eigen vectors corresponding to the first n largest eigen vec-
tors and is called the transformation matrix. Other eigen vectors
are stored in matrix V which defines an orthogonal space to the
active subspace. Although n can be a fixed value for the entire pro-
cess, a more flexible approach would be to normalize the eigenval-
ues with respect to the largest one and select the eigen vectors
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with eigenvalues larger than a user-defined threshold. This
approach helps to form active subspaces different in dimensional-
ity in every iteration if considerable information is available
toward any eigen vectors. Any design point in the original design
space can be transformed to the active subspace using the transfor-
mation matrix:

z=Ux )

The function g represents the original function f in the active sub-
space as

8(2) = g(U'x) ~ f(x) 3)

Now, we seek to learn the objective function g in the active sub-
space instead of the original objective function f on the design
space 4. A detailed discussion on how to compute the active sub-
space associated with an objective function is presented in Ref.
[53]

After performing the Bayesian optimization over the active sub-
space and once a candidate point, z* which is the projection of x* in
the high-dimensional space, is selected, it needs to be mapped
back to the original design space. This allows the second step of
the optimization to identify the best point and information source
to query. The challenge here is that there are an infinite number of
high dimensional vectors that have the same projection to the
point in the lower dimensional space. Therefore, we propose a
method to overcome this problem.

Using the definition of orthogonality of eigen vectors of a sym-
metric matrix, which is the covariance matrix calculated to obtain
the eigen vectors, any eigenvector in matrix V is orthogonal to any
eigenvector in the transformation matrix U or in general, the active
subspace. Consequently, any linear combination of eigen vectors in
matrix V is orthogonal to the active subspace. Thus, by writing the
equation of vectors created by the linear combination of orthogo-
nal eigen vectors to the active subspace which pass from the design
point selected in the first step of optimization, x*, we are able to
generate an infinite number of design points in the higher dimen-
sional space with the same projection to the active subspace.

Assuming the original design space has m dimensions and the
active subspace has n dimensions, the matrix V will have m —n
eigen vectors. An orthogonal vector to the active subspace is given
as

— m-n -
=Y e @
k=1

where @, is a random number that for simplicity, is generated from
0 to 1 and €, is an eigenvector in V. Then using the orthogonal vec-
tor P and x’, the corresponding design point in the high-

dimensional space to z*, the equation of the linear subspace passing
through x* and orthogonal to the active subspace is given by

1) =x (1) _X2)=x'2)_ _x(m)—x(m)_, )
P P2 Pm
where a design vector in m-dimensional design space,

X = [x(1),x(2),...,x(m)]", is found by solving m sub-equations for
a given t. All design vectors obtained in this step satisfy the relation
z' = Ux. Although all generated design vectors satisfy the relations
mathematically, the constraint here is to have all m design variables
in the bounds defined by the designer. Therefore, before generating
random t values, its range of variability should be specified. First, by
replacing the lower bound for every design variable in sub-
equations in Eq. (5), m different values are obtained for t

1b(i) — x*(i)

kL

tlowj = P(l) ) g 1 < m (6)
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and the same calculations are done for the design variable upper
bounds

ub(i) — x*(i)

= 7 <ig
tup.i 0 ., 1<i<m (7)

Next, to have all design variables within the bounds, the lower
bound for t from 2m values found is the closest value to zero
between all negative t values and the upper bound is the closest
value to zero between all positive t values. This way, it is guaran-
teed that all the design variables will remain in their bounds when
being mapped back to the m-dimensional design space for any ran-
dom t generated. Note that since a linear subspace can be
expanded in any direction starting from x*, it is ensured that t
can take both negative and positive values. Finally, a set of samples
in the original design space is generated, ', by mapping back the
design point z*. The acquisition function is then employed for the
second time to find the best design to be evaluated next.

2.5. Information fusion

When approximating a quantity of interest in a multi-
information source setting, it is assumed that every information
source provides some useful information about the ground truth.
Therefore, we aim to gather as much information as can be sup-
plied by these information sources to make the most reliable esti-
mations regarding the ground truth quantity of interest. Several
approaches exist for fusing multiple sources of information such
as Bayesian modeling averaging [68-73], the use of adjustment
factors [74-77], covariance intersection methods [78], and fusion
under known correlation [79-81]. Some other approaches devel-
oped recently in Refs. [82-84] perform joint updates to share infor-
mation between different fidelity levels considering a continuous
fidelity space. Here, we follow Refs. [81,85] for fusion of informa-
tion sources. In the presence of multiple information sources, the
fused mean and variance at a particular design point X are defined
as in Eqgs. 8 and 9.

" Ty (x) !
Var(f(x)) = ﬁy )

.o, Ms(x)]" and E(x) are
the mean values predicted by each information source and the
covariance matrix defining the correlation between the information
sources respectively. More detail on this fusion technique and
examples of its applications are presented in Refs.
[15,20,53,55,56,85-89].

where, e =[1,...,1]". Also, p(x) = [i;(x),...

2.6. Knowledge gradient

In the Bayesian optimization framework, an acquisition func-
tion is employed to determine the value of a potential query from
an objective function looking for the best experiment to run next.
We define a two-step look-ahead policy employing knowledge gra-
dient (KG) as in Egs. 10 and 11.

VKG(X) _ [E[VNH (HN+1 (x)) _yN (HN) |HN] (10)

Q = iysed + Wxea V< (X), a1

In a two-step look-ahead strategy, the immediate improvement
of a query and the expected improvement in the next iteration are
taken into account. The term v¥¢(x) is the expected improvement
estimated using knowledge gradient, while the term u; ., repre-
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sents the immediate improvement that, in the multi-information
source setting, is the maximum mean function value of the fused
Gaussian process. By computing Eq. (11) for a set of potential
queries from information sources, the best pair of information
source and design point maximizing this equation will be selected
for the next experiment to run. More details are presented in Ref.
[90].

2.7. Strategies and implementation

There are different strategies available for combining the con-
cept of Bayesian optimization of multifidelity systems and the
active subspace method. We consider three such strategies here.

The first approach is to build the active subspace upon the
ground truth response surface (GT active subspace). The intention
behind this decision is to focus on searching the subspace directly
related to the design space of the highest fidelity model. At the
beginning of every iteration, the ground truth active subspace is
formed and all data from other information sources are projected
to this subspace. This results in new models defined on a lower
dimensional design space. The Bayesian optimization framework
is then exploited to search this lower dimensional design space
looking for the best potential design to be evaluated to provide
the most information about the optimum design.

The point that maximizes the acquisition function value is then
selected as the next-best point to evaluate. This point is then
mapped back to the original high-dimensional space. Since there
are an infinite number of possible solutions when mapping from
a low-dimensional to high-dimensional design space, the Bayesian
optimization approach is repeated for this solution set. From this
optimization approach, the next-best design point and an informa-
tion source are chosen to be queried.

The second approach is to transform all information sources to
the active subspace of the temporary updated information source
(TUIS active subspace). In this context, instead of transforming to
the active subspace at the beginning of every iteration, transforma-
tions are done every time an information source is temporarily
updated. Therefore, different active subspaces corresponding to
each information source are taken into account and the system
might find an information source suggesting larger variation in
the objective value and by extension the fused model. Thus, it is
likely that a more informative point may be identified. By trans-
forming all active subspaces associated with each information
source together in turn, the performance of other information
sources in different active subspaces is investigated as well. This
results in investigating all information sources and fused models
in different active subspaces, resulting in a more informative deci-
sion making process.

The last approach is to let every information source operate in
its own active subspace independently (Independent active sub-
spaces). In this case, when a design point is to be evaluated, it
should be transformed to the corresponding active subspace first.
Again, all the processes explained earlier remain the same. This
approach offers a cheaper framework in comparison to the second
approach since the number of transformations and modeling time
will be decreased.

3. Results and discussions

We implement an adaptive active subspace method to effi-
ciently handle the large dimensionality of the design space of a
typical PSP-based material design problem within our recently
developed closed-loop multifidelity BO framework [15]. Here, we
demonstrate the obtained results from utilizing three approaches
discussed earlier to implement the adaptive active subspace
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method within the multifidelity BO framework. For comparison
purposes, the multifidelity BO framework developed in our recent
work [15] that does not take advantage of the active subspace
method (referred here as the standard approach or Std) is also con-
sidered. To show how implementing each of these strategies
improves the performance of the optimization, which is crucial
in higher dimensional design spaces, the results of Random sam-
pling (Rand) is included as well. In random sampling, an informa-
tion source and a design are randomly chosen to query at every
iteration and no heuristic is employed to search for valuable
queries from the information sources.

Fig. 3 shows how quickly each method attained progressively
higher objective values as a function of the number of iterations.
All models are initialized with 10 random points in the design
space. The results are the average of 5 replicas with different ini-
tializations, and the filled region shows the 95% confidence inter-
vals. The same 5 sets of 10 random points were used for each of
the 5 replications of each method to enable valid comparison of
the results. At the end of every iteration, the system chooses a
point and an information source to query. Then, after every 10 iter-
ations, the best estimation of the optimal solution suggested by the
fused model is evaluated from the ground truth model.

There are some important conclusions that can be drawn from
these results. First, the active subspace approach improves the per-
formance of the optimization significantly as each of these methods
leads to faster improvement in the objective and reaches the optimal
design region more quickly than traditional multi-information
source BO. This is because the active subspace approaches search
more effectively over lower dimensional regions in the design space
by adaptively locating the regions of largest variation (i.e., the most
activeregions)in the objective value. Therefore, greater jumps in the
objective value are observed when the active subspace method is
implemented. Next, using the TUIS active subspace method results
in slower improvement rates as compared with the GT and Ind
approaches. This is related to the need to construct more active sub-
spaces in this approach and force possible deleterious connections
between information sources in these temporary subspaces.
Employing the independent active subspaces, or Ind approach for
each information source has similar performance to using the
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Ground Truth active subspace, or GT approach. In both approaches
we see superior improvement in the objective as compared with
the traditional approach and the TUIS approach. Finally, at iteration
200, all methods have arrived at the optimum design region and
there is no advantage of using a particular strategy beyond this
point. This is to be expected as each method has acquired enough
information at this point in its respective approach to accurately
approximate the ground truth objective. Overall, superior improve-
ment rates of the active subspace approaches are associated with the
ability of these methods to avoid costly exploration in less important
regions of the high-dimensional design space in the early stages of
the optimization process.

Although comparing the progression toward the optimum
design region based on the number of function evaluations gives
a sense of the effectiveness of queries made by employing the
active subspace method, a more thoughtful comparison is to com-
pare the time required for each approach to reach a target value. In
this case, we consider the cost of modeling, including updating and
evaluating the Gaussian processes, calculation of the active sub-
spaces and knowledge gradient in addition to the function evalua-
tions done during the optimization process. In Fig. 3(b), we have
illustrated the objective value attained and time required for each
approach. These results suggests that using the active subspace
method, in particular the GT active subspace or Ind active subspace
approaches, results in higher objective values in less computa-
tional time in comparison to the standard multifidelity or multi-
information source optimization. On the other hand, using the TUIS
active subspace approach shows little to no improvement, which is
related to the number of active subspace computations and trans-
formations made in a single iteration. While these results show
that the conventional multifidelity approach performs as well as
the active subspace approach after a certain amount of time, the
active subspace approaches provide significant improvement in
the results at early stages of the process. In addition to this, the
active subspace approach also shows lower variability in the
results—this last aspect is very important as low uncertainty is a
desired attribute of any design framework.

We note here that the uncertainty (or variance) in the results
stems from several sources. First of all, we have used different

b

0 50 100 150 200 0 2 4 6 8 10
Iteration Time (seconds) «10°
95% CI (GT) " 95% CI (TUIS)  95% CI (Ind) . 95% CI (Std)  95% CI (Rand)

==Mean (GT) ==Mean (TUIS)

Mean (Ind) =—Mean (Std)

—Mean (Rand)

Fig. 3. Estimated optimum objective value as a function of (a) iteration and (b) time. (a) The active subspace methods using Ground Truth (GT), Temporary Updated
Information Source (TUIS), and Independent (Ind) active subspaces have been shown to outperform the Standard (Std) approach without applying the active subspace
method. Additionally, the result of using Random sampling (Rand) is included to show the superiority of other approaches. (b) In terms of computational cost, the active
subspace approaches are again superior. The computational cost accounts for modeling, active subspace and knowledge gradient calculations in addition to the function
evaluations. Using the TUIS active subspace is slightly more expensive due to the larger number of active subspace calculations and transformations required. The results are
obtained from 5 different initializations and the mean and 95% confidence intervals are shown.
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training sets for the initialization of the models, so each iteration
starts from different initial conditions. Second, we have modeled
the information sources using a stochastic process, namely Gaus-
sian process models. These probabilistic models predict the objec-
tive value with normally distributed uncertainty in the prediction.
In addition, at every stage of the optimization, we generate random
samples using Latin hypercube sampling. Therefore, for each differ-
ent run, there will be different samples to evaluate as candidate
design points. Finally, the ground truth function in this particular
design application, RVE, is noisy and can provide different objec-
tive values for the same design input [15]. The confidence intervals
in Fig. 3 show the total uncertainty since differentiating between
each source of uncertainty was not practical.

We are also interested in knowing which are the active sub-
spaces that are preferred at every stage of the design process and
what design variables are contributing most to the active subspace
formation. The different algorithms used in the current work lead
to diverse active subspace configurations and subsequently selec-
tions of information sources. In Fig. 4, the cumulative sum of the
times every active subspace is chosen has been plotted. The labels
show the primary design variables that the active subspace is com-
posed of. As such, the labels indicate the dimensionality of an
active subspace and which design variables will be searched pref-
erentially. In other words, all design variables participate and are
searched in a particular active subspace, but to different degrees.
In Fig. 4 only the main participants of each active subspace are
shown and are included in the labels. Note that, the ground truth
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is queried every 10™ iteration and the corresponding active sub-
space will be updated accordingly. Fig. 4(a) shows that when using
the GT active subspace, the system initially starts searching the
carbon space, then it searches the manganese space, and finally,
the temperature space.

The same results when using the TUIS and Independent active
subspace approaches are shown in Fig. 4(b) and (c). The point here
is that the one-dimensional active subspaces are preferred over the
higher dimensional active subspaces. This shows that the system
finds more value in searching active subspaces mainly composed
of one important design variable at a time, and, once the informa-
tion from the single design variables is exhausted, the system
starts searching subspaces with main contributions from a combi-
nation of design variables. However, these active subspaces are still
smaller than the original design space.

While Fig. 4 provides useful information about important
design variables at every iteration in different case studies, it is
beneficial to look at how much other variables are participating
in the active subspace formation. As mentioned earlier, active sub-
spaces are built upon the most effective directions in the design
space that considers the change in all design variables but in differ-
ent degrees. These directions are the eigen vectors of the covari-
ance matrix defined as

€~ T )Vl )] (12

TUIS

10

Number of Main Contributions

0 . ‘ ‘
£ 0 50 100 150 200
Iteration
T & C 4&Mn ¢Si >T,C v T,Mn
T,Si C.,Mn *C,S1 4 Mn,Si1

Fig. 4. Number of times a design variable has contributed to form the active subspace. (a) using Ground Truth (GT) active subspace (b) using Temporary Updated Information
Source (TUIS) active subspace (c) using Independent (Ind) active subspaces. While Si is not showing any contribution in forming the ground truth active subspace, in the other
cases, a variety of design variable combinations are participating to build the active subspace.
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assuming M samples are evaluated from the function f previously
and the gradient is calculated numerically using a finite difference
method. This is done since the function is a ‘black-box’ and there
is no closed-form expression for the gradient. Once the eigen vec-
tors and the associated eigenvalues are found, a single vector is
formed using the linear combination of all eigen vectors, each mul-
tiplied by their eigenvalue to emphasize the strength of each vari-
able toward a particular direction. At every iteration, we will have
a 4-dimensional vector showing the effective participation of every
variable based on a scalar value. Since we are not able to show a 4-
dimensional space, a simple mathematical projection of the 4-
dimensional space to 2-dimensional space was used. This projection
allows us to graphically show the distribution of active subspaces
within the design space. These results are shown in Fig. 5.

Every point on these projection plots corresponds to a point in
the 4-dimensional space. The projections allow us to show the loca-
tions of each of the pure 1D, 2D and 3D subspaces (labeled on the
figure). The actual subspaces that are used in the calculations for
the three approaches are plotted in relation to these. The labels of
each of these subspaces is determined by the magnitude of the
eigenvalues, where an eigenvalue greater than 0.5 assigns that
input dimension to the label. As illustrated in Fig. 5, this approach
to labeling allows the points to deviate quite significantly from
the pure subspaces, however, the clusters are still visible. We can
also quite easily observe that all approaches mostly use 1D and
2D subspaces in the calculations. This is a promising result since
it shows that the active subspace approach is operating as expected.
We also observe that very few unique subspaces are used in the GT-
subspace approach which is likely a result of only using the active
subspace of the ground truth model. Both the Individual and TUIS
active subspace approaches show a much broader selection of
active-subspaces, with many 2D subspaces also being utilized. As
a final note, these differences in the active-subspaces used in the
optimization do not appear to significantly affect the optimization
process, as shown in the results above. The importance of this result
is that the use of an active subspace approach is not dependent on
the active-subspaces that are used in the optimization.

The contribution of the information sources in the optimization
process and the number of queries made from each information
source can show which lower fidelity models are providing more
valuable knowledge about the optimum design in different case
studies. Additionally, since every information source can have a
different active subspace, that changes over time as more data is
added to the model, the selection of the information source to
query is directly affecting results in Fig. 5. It is thus interesting to
know about the participation of the information sources as well.
Fig. 6 shows the cumulative number of times an information
source is queried based on the iterations. At every iteration, only
a single information source is queried.

Fig. 6 suggests that for all cases, the isostress and elastic con-
straint information sources have been selected more than any
other information source. It shows that these two models have a
smaller discrepancy with the ground truth model around the opti-
mum design point in comparison to the other information sources.
In the present work, the focus is on how using active subspace
approach results in a more efficient and faster search for the opti-
mal designs in the initial iterations. Therefore, at every iteration,
we let the system query the best information source providing
the highest information value to the system about the optimal
design regardless of how much such queries costs.

4. Conclusions

In this work, we suggested strategies to equip a multifidelity BO
framework with a gradient-based active subspace approach to
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address the issue of underperfoming BO frameworks when the
dimensionality of the design space increases. We have demon-
strated this framework on a microstructure-sensitive design prob-
lem. Although employing a multifidelity BO approach alone results
in less costly design procedures, exploring a high-dimensional
design space could still be costly and thus, efficiency gains are
desired in this regard. The results suggest that by taking advantage
of incorporating the active subspace method in the multifidelity BO
frameworks, with fewer function evaluations, it is possible to
obtain better estimation of the optimal design faster. This is due
to the active subspace method prioritizing searches in the impor-
tant regions in the high-dimensional design space and represent-
ing the data on the lower dimensional active subspace that ease
the curse of dimensionality problem. By investigating different
strategies to use the active subspace method in a multifidelity
BO framework, it has been shown that the Ground Truth and Indi-
vidual Active Subspace approaches performed better than the con-
ventional multifidelity BO approach. Therefore, these two methods
can be beneficial to reach a target objective value faster with larger
initial steps toward the optimum design. Finally, while we have
applied this approach to a very specific class of materials design
problems, the framework has wider applicability, as it is often
the case that in materials design problems only a small fraction
of the degrees of freedom are active at any one time.
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