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Multiobjective optimization is often a difficult task owing to the need to balance competing objectives. A typical

approach to handling this is to estimate a Pareto frontier in objective space by identifying nondominated points. This

task is typically computationally demanding owing to the need to incorporate information of high enough fidelity to be

trusted in design and decision-making processes. In this work, we present a multi-information source framework for

enabling efficientmultiobjective optimization. The framework allows for the exploitation of all available information

and considers both potential improvement and cost. The framework includes ingredients of model fusion, expected

hypervolume improvement, and intermediate Gaussian process surrogates. The approach is demonstrated on a test

problem and an aerostructural wing design problem.

Nomenclature

d = number of input space dimensions
e = column vector of ones
fi = function model of information source i
H = hypervolume
HI = hypervolume improvement
k = kernel function
lh = length scale for dimension h
Ni = number of evaluations from information source i
S = set of known nondominated solutions
X = set of randomly sampled points from input space
x = set of evaluated design points from input space
y = objective vector
~Σ = covariance matrix

μi = mean function of Gaussian process for information
source i

ρij = correlation coefficient between information sources i
and j

σs = signal noise

σ2f;i = variance related to the fidelity of information source i

σ2GP;i = variance related to the Gaussian process of information
source i

σ2i = total variance of Gaussian process for information
source i

X = feasible input space

Subscript

GP = Gaussian process

I. Introduction

W HEN estimating a ground truth quantity of interest (for exam-
ple, fuel burn for an aircraft or a particular material property),

we can often consider different mathematical formulations of the
analysis or prediction. This, in addition to experimental data and
expert opinion, can give rise to the ability to use multiple different
sources of information for the estimation task at hand. The different
assumptions made lead to differing levels of fidelity among the
sources, aswell as different costs, in termsof both time andmonetarily.
In the presence of multiple sources of information, we seek analysis
and design processes that exploit the extra information that would not
be present if only a single sourcewere available. The opportunity is the
efficient selection of which information source to query and where
to query it on the bases of cost and potential for improvement in the
estimation of a quantity of interest. To do so, we employ a Bayesian
optimization framework well suited to the optimization of black-box
functions. These approaches generally use an acquisition function to
search the design space effectively and efficiently through the tradeoff
of exploration and exploitation. The challenge is ensuring proper
fusion of information as it becomes available and a need for a rapid
capability for moving from prior predictive information to posterior
predictive information without necessarily executing a true informa-
tion source. The standard practice of using Gaussian processes (GPs)
within Bayesian optimization frameworks as updatable surrogates
provides an avenue for efficiently incorporating information source
fusion within the search process. We exploit this here. We also note
here that our goal is to estimate and optimize properties or other
performance metrics of real systems. There is, therefore, a notion of
ground truth, which is the true quantity being estimated, which is
likely only observable with noise. Often, this ground truth is repre-
sented as the information that canbe acquired from the highest-fidelity
information source. This assumption may be reasonable in some
circumstances, particularly if the information source is an experiment
with the realized system.Here,wekeep the termground truth to ensure
that the overall goal is clear; and we use our highest-fidelity informa-
tion source as a proxy for that ground truth. In priorwork byGhoreishi
et al. (see, e.g., Ref. [1]), the case where ground truth is measured
with noise is handled. Here, we do not include the noise in the ground
truth for clarity, but the framework we present can incorporate this
if known.
Whereas a multi-information source capability can be applicable to

a wide variety of contexts, our focus here is on multiobjective opti-
mization. Previous work in this area, particularly with emphasis on
multifidelity methods, includes (for example) an efficient global opti-
mization (EGO) approach based on the use of a hypervolume indicator
technique and surrogate model creation for every objective [2].
In Ref. [3], a point-by-point approach is employed that considers
the ends of the estimated Pareto front in an effort to obtain better
solutions via single objective optimizations. Reference [4] encour-
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ages the use of standard multiobjective evolutionary algorithm intro-
duced in Refs. [5,6] to apply on the lower-fidelity information
source to build a surrogate model to search and obtain a Pareto
front. Then, the high-fidelity information source is evaluated at those
nondominated designs to correct the surrogate model associated
to the lower-fidelity information source. A similar approach is sug-
gested in Ref. [7] using a surrogate model built with samples from a
low-fidelity information source to search the design space for poten-
tial nondominated designs. A high-fidelity information source is then
evaluated at those design points, and the approximation of the Pareto
front is obtained by optimizing a cokriging model constructed with
these new evaluations.
In this work, we present a novel framework for exploiting available

information sources to identify nondominated points in objective
space to estimate the true Pareto front of a given problem. To handle
fusion of information sources, we incorporate model reification intro-
duced in Ref. [8], which builds off Refs. [9,10]. Model reification is a
fusion technique that learns correlations among information sources
and guards against overconfidence that can occur when nearly iden-
tical sources are used. This fusion process is also nonhierarchical and
allows fidelity to vary over a design space. To enable rapid assessment
of posterior predictive information, we use GPs as intermediate surro-
gate models that may be temporarily updated with candidate query
points [8,11–13]. To drive candidate query points toward the Pareto
front, we use the expected hypervolume improvement metric pre-
sented in Ref. [14]. The approach presented in Ref. [14] provides an
exact means of calculating the expected hypervolume improvement.
This leads to an efficient computational process since a closed-form
expression can be used to find the expected hypervolume improve-
ment (EHVI). Overall, our novel Bayesian multi-information source
multiobjective optimization framework can exploit multiple nonhier-
archical information sources in an efficient manner that produces
higher-quality Pareto fronts at less computational expense than current
available methods. This is achieved via combined use of model
reification-based information fusion within a Bayesian optimization
paradigm over a set of available information sources where querying
is directed by an easily computable closed-form acquisition fun-
ction based on the EHVI. We have chosen a Bayesian optimization
paradigm here because the problems we seek to address involve
data-driven optimization. That is, our objective function estimates,
as computed by available information sources, are analytically un-
known and must be learned during search. Although there are other
optimization strategies, such as the model management approaches of
Refs. [15,16] and model fusion approaches of Refs. [17,18], Bayesian
optimization is viewed as a superior computational strategy when
tasks of exploration and exploitation must be traded off as discussed
in Ref. [19]. Our approach is demonstrated on a test problem with
a two-dimensional input space.We then demonstrate our approach on
an aerostructural wing design problem involving a 17-dimensional
input space. These input space dimensions stress the limits of typical
Gaussian process regressionmodeling, and our approach is still shown
to perform well. In each demonstration, we consider two objectives;
however, this is not a limitation of the work.
The rest of the paper is organized as follows. In Sec. II, a back-

ground on surrogate modeling, fusion, and multiobjective problems
is provided. Then, in Sec. III, the approach to build the optimization
algorithm is addressed, supported by pseudocode and a flowchart.
Section IV then presents the results on the test function and the
aerostructural design optimization problem. Conclusions are then
drawn in Sec. V.

II. Background

Our multi-information source optimization approach for multiple
objectives employs GPs as intermediate surrogate models and fuses
information using the process of model reification. We describe each
of these ingredients in turn in this section. We then conclude this
section with background on a general multiobjective optimization
formulation based on the Pareto frontier, which is how we approach
such problems here. Once we have established the necessary ingre-
dients of our approach, we move to a description of our formal

hypervolume indicator-based framework for multi-information
source multiobjective optimization in Sec. III.

A. Gaussian Process Regression Surrogates

For the estimation of a quantity of interest (e.g., an objective or
constraint), there are often available several information sources that
may be employed. These encompass computational models, experi-
ments, expert opinions, etc., and havevarying fidelity (that also varies
over the input space) and varying costs. Our approach here seeks to
optimally exploit all available information sources by balancing the
cost and fidelity of each information sourcewhen determining which
source and where in the input space to query. Following Refs. [1,20],
we assume we have some set of information sources fi�x� available,
where i ∈ f1; 2; : : : ; Sg, that can be used to estimate the quantity of
interest f�x� at design point x.We note here that in themultiobjective
contextwe address in this work, the output of the information sources
can bevector valued. To predict the output of each information source
at input configurations that have not yet been executed, a surrogate
model is constructed for each information source using Gaussian
process regression [11]. Easy manipulation and implementation of
Gaussian process models make them a powerful tool in the Bayesian
context for probabilistic modeling purposes. A Gaussian process
model provides a normal distribution in the objective space defined
by mean and covariance functions for any sample in the design
space. Additionally, Gaussian process surrogates can be con-
structed using different kernel functions defining the correlations
between the data points. This leads to more flexibility in fitting a
distribution to the training data. The use of GPs with Bayesian
optimization is standard practice, and we follow that practice here.
These surrogates are denoted by fGP;i�x�. Assuming we have avail-

able Ni evaluations of information source i denoted by fXNi
; yNi

g,
where XNi

� �x1;i; : : : ; xNi;i� represents the Ni input samples to

information source i and yNi
� �fi�x1;i�; : : : ; fi�xNi;i�� represents

the corresponding outputs from information source i, the posterior
distribution of information source i at design point x is given as

fGP;i�x�jXNi
; yNi

∼N
�
μi�x�; σ2GP;i�x�

�
(1)

where

μi�x� � Ki�XNi
; x�T �Ki�XNi

;XNi
� � σ2n;iI�−1yNi

σ2GP;i�x� � ki�x; x� − Ki�XNi
; x�T

�Ki�XNi
;XNi

� � σ2n;iI�−1Ki�XNi
; x� (2)

where ki is a real-valued kernel function over the input space,
Ki�XNi

;XNi
� is the Ni×Ni matrix whose m, n entry is ki�xm;i;xn;i�,

andKi�XNi
; x� is theNi × 1 vector whosemth entry is ki�xm;i; x� for

information source i. Here we have included the term σ2n;i, which can
be used to model the observation error for information sources based
on experiments. For the kernel function,without loss of generality, we
employ the squared exponential covariance function. This is specified
as

ki�x; x 0� � σ2s exp

 
−
Xd
h�1

�xh − x 0
h�2

2l2h

!
(3)

where d is the dimension of the input space, σ2s is the signal variance,
and lh (where h � 1; 2; : : : ; d) is the characteristic length scale that
indicates the correlation between the points within dimension h. The
parameters σ2s and lh associated with each information source can be
estimated by maximizing the log marginal likelihood.
For each information source surrogate, we further quantify the

uncertainty, or discrepancy, with respect to the ground truth quantity
of interest by adding a term associated with the fidelity of the infor-
mation source at a given location in the input space. Specifically, we
quantify the total variance, which captures both the variance associ-
ated with the Gaussian process representation and the quantified
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variance associatedwith the fidelity of the information source over the
input space as

σ2i �x� � σ2GP;i�x� � σ2f;i�x� (4)

where σ2f;i�x� is the variance related to the fidelity of information
source i that has been estimated from, for example, expert opinion or
available real-world data. Here, we estimate this variance by comput-
ing the absolute difference between the available data from the true
quantity of interest and the information source. A GP is then per-
formed using the square of these error values as training points to
estimate the discrepancy variance over the input space as the mean of
the GP. This is described in more detail in Ref. [21].

B. Fusion of Information from Multiple Sources

Following Refs. [1,8,21,22], we assume that every information
source contains potentially useful information regarding a given quan-
tity of interest. Given that this information may be correlated across
information sources, we aim to accurately fuse available new infor-
mation from each source query so as to ensurewe use our resources as
efficiently as possible. Our approach, unlike most traditional multi-
fidelity approaches [12,15,23–28], does not assume a hierarchy of
information sources; and our goal is not optimizationwith the highest-
fidelity source but optimization with respect to ground truth.
Several approaches exist for fusingmultiple sources of information.

Among these are approaches such as Bayesian modeling averaging
[29–34], the use of adjustment factors [35–38], covariance intersec-
tion methods [39], and fusion under known correlation [9,40,41].
As noted previously, we assume that every information source con-
tains useful information regarding the ground truth quantity of inter-
est. Thus, as more information sources are incorporated into a fusion
process, we expect the variance of the quantity of interest estimates to
decrease. This is not necessarily the case for all of the aforementioned
fusion techniques, with the exception of fusion under known correla-
tion. Thus, there is significant value in determining correlations before
fusion.
Following the work of Refs. [1,8,21,22], we note that since our

information sources are represented by intermediate Gaussian proc-
esses, their fusion follows that of normally distributed information.
Under the case of known correlations between the discrepancies of
information sources, the fused mean and variance are shown to be [9]

E�f̂�x�� � eT ~Σ�x�−1μ�x�
eT ~Σ�x�−1e (5)

Var�f̂�x�� � 1

eT ~Σ�x�−1e (6)

where e � �1; : : : ; 1�T, μ�x� � �μ1�x�; : : : ; μS�x��T given S models,

and ~Σ�x�−1 is the inverse of the covariance matrix between the
information sources.
To estimate the correlation coefficients between information

sources over the domain, we use the reification process defined in
Refs. [8,22]. In this process, to estimate the correlation coefficients
between the deviations of information sources i and j, each of
the information sources i and j, one at a time, is reified or treated
as ground truth. Assuming that information source i is reified, the
correlation coefficients between the information sources i and j, for
j � 1; : : : ; i − 1; i� 1; : : : ; S, are given as

ρij�x� �
σ2i �x�

σi�x�σj�x�
� σi�x����������������������������������������������������

�μi�x� − μj�x��2 � σ2i �x�
q (7)

where μi�x� and μj�x� are the mean values of the GPs of information

sources i and j, respectively; and σ2i �x� and σ2j �x� are the total

variances at x. Next, information source j is reified to estimate
ρji�x�. The variance weighted average of the two estimated correla-

tion coefficients can then be used as the estimate of the correlation
between the errors as

�ρij�x� �
σ2j �x�

σ2i �x� � σ2j �x�
ρij�x� �

σ2i �x�
σ2i �x� � σ2j �x�

ρji�x� (8)

These average correlations are then used to calculate the covariance
matrix to estimate the fused mean and variance in Eqs. (5) and (6).

C. Multiobjective Optimization

A multiobjective optimization problem can be defined as

minimizeff1�x�; : : : ; fn�x�g; x ∈ X (9)

where f1�x�; : : : ; fn�x� are the objectives, and X is the feasible
design space. Throughout this work, we develop unconstrained
approaches; however, the inclusion of penalty terms could be con-
sidered for constraint handling. Another possibility for constraint
handling could involve the construction of a Lagrangian, where the
objective is the EHVI and constraints are incorporated in the usual
fashion. This could provide a means for evaluating the Karush–
Kuhn–Tucker conditions within the Bayesian optimization frame-
work and an open avenue for exciting future work in algorithmic
development aimed at pursuing the satisfaction of these conditions.
For problems such as Eq. (9), it is usually the case that no single point
optimizes each individual objective simultaneously. To deal with this,
approaches based on the creation of a scalar objective using utility
theory are common, as well as approaches based on finding non-
dominated solutions approaching the Pareto frontier.We focus on the
latter here. For this case, optimal solutions y to a multiobjective
problemwith n objectives are denoted as y ≺ y 0, and they are defined
as

fy:y � �y1; y2; : : : ; yn�; yi ≤ y 0
i ∀i ∈ f1; 2; : : : ; ng;

∃j ∈ f1; 2; : : : ; ng:yj < y 0
jg (10)

where y 0 � �y 0
1; y

0
2; : : : ; y

0
n� denotes any possible objective output.

The set of y ∈ Y, where Y is the objective space, is the Pareto front
of the problem. This is shown conceptually for a biobjective problem
in Fig. 1. All points on the Pareto front are nondominated. Our
approach, which is common in the literature, is thus to find the Pareto
front as efficiently as possible for a givenmultiobjective optimization
problem.
There are many techniques in use for approximating Pareto fron-

tiers for multiobjective optimization problems. Among these are the
weighted sum approach [42], the adaptive weighted sum approach
[43], normal boundary intersection methods [44], hypervolume indi-
cator methods [45–51], and others. The hypervolume indicator app-
roach is well suited to expected improvement-based algorithms,
which have been shown toworkwell in amultiple information source
setting (see, e.g., Refs. [1,13,17,20]). Thus, our approach proposes
the incorporation of hypervolume indicator improvement within a
multi-information source querying framework. Hypervolume indi-
cator approaches are based on the concept of a hypervolume in
objective space. These hypervolumes are measured relative to a fixed

Fig. 1 All points on the red line are nondominated and constitute the
solution set.
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reference point, and the enclosed volume between the approximated
set of Pareto points and the reference point is computed. The concept
is shown notionally in Fig. 2. Here, the shaded area is the hyper-
volume to be computed. In general, if a given set of points has a higher
hypervolume than another set, then the given set is a better estimator
of the Pareto front. Hypervolume indicator algorithms seek to maxi-
mize the hypervolume in objective space so as to best approximate
the Pareto front. Thus, the value of new query points can be estimated
(using prior predictive distributions if using GPs) by measuring the
expected improvement in the hypervolume that would occur, given
that the query takes place. In Fig. 2, the shaded area in blue shows the
amount of increase in hypervolumewhen a new nondominated point
is found and added to the solution set.

III. Approach

Bayesian optimization is an optimization technique aimed at
learning what is needed about an underlying black-box function to
efficiently optimize it (see, e.g., Refs. [52–55]). As such, Bayesian
optimization methods seek to trade off the tasks of exploration and
exploitation. These methods traditionally employ Gaussian process
surrogatemodels that can be temporarily updated to assess the quality
of a candidate query point. This quality is measured by an acquisition
function, such as expected improvement, probability of improve-
ment, the knowledge gradient, and others. Our multiobjective opti-
mization approach here treats information sources as black boxes
and uses the EHVI acquisition function. Thus, our proposed method
is one of Bayesian optimization.
Generally, our approach is based on determining, with available

prior information, where to query and what source to query to maxi-
mize the hypervolume indicatorwhile being budget aware. To achieve
this, we make use of the updatable Gaussian process surrogates
described previously for each information source. These surrogates
can be used as prior predictive distributions that can be temporarily
updated with potential query locations that result in potential changes
to the hypervolume indicator. By searching over the space of potential
query locations and potential information sources with these prior
predictive surrogates, we are able to efficiently identify the next best
query to execute.Once this query is executed, all surrogates (including
correlation information) may be updated; and then they can serve
as prior predictive distributions for the next iteration. In this section,
we describe in detail our approach to achieving this.We beginwith the
necessary preliminaries regarding the fast calculation of the expected
hypervolume improvement [56] within a multi-information source
framework. This discussion follows largely from Ref. [14], where
more details can be found if desired. We then describe our algorithm
for multi-information source multiobjective optimization. In Sec. IV,
we demonstrate the use of this framework on a test problem and an
aircraft wing design problem.

A. Preliminaries

Following Ref. [14] for the development of the fast computation of
EHVI, we present here our implementation within a multi-informa-
tion source setting. We begin by considering a current solution set S

of nondominated points in objective space at some point during a
multiobjective optimization process. The dominated hypervolume,
denoted as H�S�, can then be computed given S and a reference
point. Improvement to the hypervolume due to adding a new solution
vector y is then defined as

HI �y;S� � H�S ∪ y� −H�S� (11)

IfHI �y;S� > 0, then y is in the nondominated region ofS and can
be used to update the solution set.Otherwise, there is no improvement
overH�S� by adding y and the query adds no value. In the context of
Bayesian optimization, y is a random output of a probabilistic model
related to a potential solution in the design space. Hence, HI �y;S�
is also a random variable. Therefore, it is possible to calculate its
expected value, which is the EHVI. Comparing EHVI values for
different potential solutions in the design space and finding the
maximum EHVI leads to an information-economic querying policy
that ensuresmaximumgains are achieved in each successive query. In
a multi-information source context, however, the different costs of
querying each source should also be taken into account.
The formula for calculating EHVI as outlined in Ref. [57] is given

as

E�HI �y�� �
Z
U
P�y ≺ y 0� dy 0 (12)

where P�y ≺ y 0� is the probability that y 0 is dominating y, and U
is the dominated hypervolume. In our context, this can be computed
in closed form, as will be shown in the following. Given that we have
independent Gaussian process models for every objective for each
information source, the posterior predictive output of each model

given the data is a random variable identified as yi ∼N �μi; σ2i �,
where i ≤ m and μi, and σ2i are the mean and variance of the ith
objective, accordingly (note that we have not included information
source specific indices here for notational clarity). For a newpotential
solution in the design space, we have the following equation:

P�y ≺ y 0� �
Ym
i�1

Φ
�
y 0
i − μi
σi

�
(13)

whereΦ is the cumulative distribution functionof the standard normal
random variable. Details regarding the closed-form expression of
Eq. (12) along with a fast approach to compute the hypervolume
associated with a solution set can be found in Refs. [14,57–60].

B. Multi-Information Source Multiobjective Optimization
Framework

Using theGPas the surrogatemodel for each objective andEHVI as
the acquisition function, we can perform Bayesian optimization to
approximate a solution set for a multiobjective optimization problem.
It is necessary to notice that the model discrepancies are changing
whenever new information is found about the ground truth by query-
ing the information sources. The model discrepancy is defined as the
difference between the predicted value of the model built with data
from an information source and themodel built with the available data
from ground truth for a specific design space point. Therefore, model
discrepancies should be updated regularly. However, querying the
ground truth to update its surrogate model is costly. Thus, we need
to define a condition for when to query the ground truth. Such a
condition can be, for example, when a certain number of updates have
been made to available information sources, or also when a specific
amount of the total allotted budget is spent. This method allows the
decision maker to query a cheap information source more between
ground truth queries if it finds the cheap information source is still
providing useful knowledge about theground truth. This is in linewith
expected intuition regarding the exploitation of cheap information
sources, given their nearly negligible cost in comparison to expensive
sources and ground truth itself.
Algorithm 1 presents our overall framework. Our procedure

to optimize a multiobjective function is established by assuming
Fig. 2 The blue shaded region corresponds to the hypervolume
improvement due to adding point A to the solution set.
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the function hasm objectives, and there are n information sources of

differing fidelity available to provide information about the ground
truth. Here, the ground truth is the highest-fidelity information source

for estimating a quantity of interest. This could, for example, be a real-

world experiment on a realized system or a validated high-fidelity
simulation model (often with associated uncertainty, which does

not incorporate here without loss of generality). We assume that the
querying of ground truth is the most expensive means of acquiring

information about it. Expense here could mean runtime, cost, or other

resources. Although it is possible that ground truth may not be
the most expensive information source to query, we do not consider

that scenario here. The first step involves the construction ofGaussian

processes and creation of the initial Pareto front. This can be estab-
lished by finding nondominated design points of initial data available

from the ground truth. Next, the fusion step takes place, which in-

volves the previously described model reification process. This is
followed by thegeneration of candidate query points,which are tested

for EHVI potential given the current set of GPs. The best candidate
(query point and information source) is selected and executed. This is

followed by another fusion step, given the new information. The

budget condition is then checked, which would lead to a ground truth
query or a check onwhether the budget is exhausted. The term budget

refers to the resources available to run a new experiment and limits the

total number of evaluations. The budget can be defined, for example,
as the computational time in simulations or the total money granted

to design experiments in a laboratory. If the budget is exhausted, the
process terminates with a final analysis of the estimated Pareto

front from the fused GP, which leads to subsequent evaluations

of best points from the ground truth. If the budget is not exhausted,

the process resamples candidate points and repeats. A ground truth

evaluation is triggered after spending a specified amount of budget
on evaluating lower-fidelity information sources. When this occurs,

the ground truth is queried, its GP is updated, and then all other

GPs are updated (owing to a change in the discrepancies and corre-

lations given new ground truth information). The budget exhaustion
condition is then checked, and the process proceeds as previously

described from this point. A complete flowchart of this process is

provided in Fig. 3.
When the decision to query the ground truth is made based on

the budget condition set by expert opinion, a certain number of points

N are considered as potential queries. Although choosing larger

values of N results in more information gain and higher accuracy to
estimate the model discrepancies, it is not necessarily desirable since

the ground truth is an expensive-to-evaluate function or experiment.

Hence, a tradeoff should be considered in assigning a value toN. For

the purposes of the demonstration cases that follow in Sec. IV, we
have setN � 10 for the test function andN � 4 for the OpenAeroS-
truct demonstration; however, the study of this parameter is a topic of

futurework. Algorithm 2 presents our ground truth querying strategy.

Algorithm 1: Multiobjective Bayesian optimization

1: construct GP1 to GPm given available data from the ground truth

2: for i from 1 to n, do
3: for j from 1 to m, do
4: construct GPj;i for objective (j) of the information source (i) given the data

5: end for
6: end for
7: fuse models and construct the initial Pareto front
8: while available budget > 0, do

9: X-sample set← Latin hypercube sampling

10: for k from 1 to n, do
11: for s from 1 to size (X-sample set), do
12: Y sample← query X samples from GP1k to GPmk

13: construct temporary GPs by updating GP1k to GPmk using sample s

14: updated_fused_values← fuse other models with the updated one

15: generate test_samples using fused_means and fused_variances
16: improvement(s,k)← EHVI(test_samples,updated_fused_values,Pareto front)

17: end for
18: end for

19: X = sample to be queried, V = information source (IS) to query from←Max(improvement)

20: Y � �y1; : : : ym� � IS�V��X�
21: update GP1;V to GPm;V using X and Y

22: fuse models
23: U← query a randomly generated set of design points from fused model

24: find nondominated vectors in U to update Pareto front
25: if requirements to query ground truth is met, then
26: G← a set of design points with arbitrary size distributed along the Pareto front

27: YG ← query set G from the ground truth

28: update GP1 to GPm

29: update model discrepancies
30: fuse models and update the Pareto front
31: end if
32: end while
33: fuse models to construct fusedGP1 to fusedGPm

34: U ← query a randomly generated set of design points from fused models

35: S ← find nondominated vectors in U to update the Pareto front

36: X ← the design space corresponding to nondominated set S

Algorithm 2: Querying the ground truth

1: divide the most updated Pareto front into N slices

2: construct a smooth GP for each slice, given data points in
the slice

3: P ← choose the closest point to the GP mean in each slice

4: PY ← query the design points corresponding to P from the ground truth
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IV. Application and Results

To evaluate the performance of our proposed algorithm, we

have applied it on a test function from Ref. [61]. This is referred

to as Poloni’s two-objective test function, which maps points from

a two-dimensional design space to a two-dimensional objective

space. A comparison between the optimal Pareto front associated

with the problem and the approximated Pareto front is made to show

the effectiveness of the algorithm. To apply the concept of a multi-

fidelity approach in optimizing the test function, we have constructed

two other functions close to the test function by changing the coef-

ficients and constants. The test function itself is considered ground

truth. We follow the demonstration of our framework on the test

function with its application to an aircraft wing design problem using

OpenAeroStruct [62]. We describe the software and the problem for

this application in Sec. IV.B.

We note here that our proposed optimization approach is stochas-

tic in nature, and thus involves uncertainty from a few different

sources. The result is that the results are also stochastic in nature.

The sources of uncertainty include the use of different training sets

to build the initial GPs, the random nature of how we generate

candidate design points to be tested, and the sample-based nature

of the fusion process employed. To account for these uncertainties,

we present the results for several different simulations using different

initializations and candidate point locations. We show this uncer-

tainty in the form of 95% empirical confidence intervals in the

relevant figures.

A. Poloni’s Test Function

Poloni’s two-objective function is a two-dimensional input test
function defined as

minimize:f1�x1; x2� � 1��A1 −B1�x1; x2��2 ��A2 −B2�x1; x2��2
minimize:f2�x1; x2� � �x1 � 3�2 ��x2 � 1�2

where

− π ≤ x1; x2 ≤ π

A1 � 0.5 sin�1� − 2 cos�1� � sin�2� − 1.5 cos�2�
A2 � 1.5 sin�1� − cos�1� � 2 sin�2� − 0.5 cos�2�
B1�x1; x2� � 0.5 sin�x1� − 2 cos�x1� � sin�x2� − 1.5 cos�x2�
B2�x1; x2� � 1.5 sin�x1� − cos�x1� � 2 sin�x2� − 0.5 cos�x2�
Figure 4 shows the optimal versus final estimation of the Pareto

front and the hypervolume. Since there is no closed-form solution for
Poloni’s test problem, the optimal Pareto front and its hypervolume
are found by exhaustive search. Theoptimal Pareto front herematches
those reported in Refs. [63,64]. The estimated Pareto front is found
using the knowledge of lower-fidelity models about the ground truth.
Looking at the hypervolume values, it is showing the hypervolume
is increasing as a result of improved estimation of the Pareto front,
admitting that the budget is spent effectively. The budget here is set

Fig. 3 Procedure flow of the proposed framework. The ground truth query requirement can meet a certain number of iterations or spent budget.

Fig. 4 The optimal and estimated Pareto fronts and hypervolumes averaged over 30 replicationswith 95%CI (Confidence Interval). The reference point
is (70, 70).
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to 100 to limit the total number of information source evaluations
and is used to inform the system of when to trigger the ground
truth evaluation if needed. The costs of querying the low-fidelity
and medium-fidelity models are set to one and two units of cost,
respectively. These values were chosen to ensure adequate use of
the information sources. In a practical setting, these values would be
computed via resource usage (such as actual runtime). The hyper-
volume is initially computed using randomly generated data points
with a training set size of 20 for every simulation.
A significant improvement is achieved before spending the first

10% of the budget. This was achieved largely through the exploita-
tion of the cheaper lower-fidelity model. Note that the ground truth is
queried each time 10 units of cost is spent to update model discrep-
ancy and hypervolume on a regular basis. We present a similar result
and the information source query history for the OpenAeroStruct
demonstration in Sec. IV.B. The diminishing returns in hypervolume
are expected, given that finding new nondominated points becomes
more difficult as more points are found.
Many previous works have used Poloni’s test function to measure

the performance of their proposed approaches. For example, Ref. [64]
proposes a method using differential evolution. The results show they
have found the optimal Pareto front after 600 function evaluations.
Also, in Ref. [63], it is reported that 2500 function evaluations
are used to cover the estimated Pareto front close to the optimal
Pareto front found using an exhaustive search. In Ref. [65], a genetic
algorithm approach is taken using populations of more than 500
for 250 generations to obtain the optimal Pareto front. Our proposed
method is generally outperforming each of these prior approaches.
Here, our method uses a total of 100 function evaluations with an
additional set of less than 100 evaluations from lower-fidelity infor-
mation sources (which are considered much cheaper than the ground
truth; although, in general, this would be problem specific). This
difference in the necessary number of evaluations emphasizes the
efficiency gains achieved by our method while maintaining high-
quality Pareto front estimates.

B. OpenAeroStruct Demonstration

OpenAeroStruct is an open-source software developed in NASA’s
OpenMDAO framework [66], which can be used for fast tightly
coupled aerostructural design optimization. The framework imple-
ments the coupled adjoint method to compute the aerostructural
derivatives used for efficient gradient-based optimization. As noted
in Ref. [62], OpenAeroStruct combines a vortex lattice method
(VLM) and a one-dimensional finite element analysis using six-
degree-of-freedom three-dimensional spatial beamelements tomodel
lifting surfaces [62,67]. A common aerostructural single objective
optimization problem is the fuel burnminimization problemusing the
Breguet range equation. Structural mass minimization of the wing is
also frequently considered, and thus is used as a second objective in
demonstrating our proposedmulti-information sourcemultiobjective
optimization framework.
The OpenAeroStruct application, as described in Ref. [62], uses

the Breguet range equation to compute the fuel burn as a function
of structural weight and aerodynamic performance. Design variables
consist of twist distributions, spar thickness distributions, and plan-
form variables such as skin thickness, thickness over cord ratio, and
angle of attack. The first four variables are four-dimensional because
four control surfaces were considered for the wing. Hence, the prob-
lem has a 17-dimensional design space. Constraints in the standard
problem ensure lift equals weight, and that structural failure does
not occur.
The mesh in OpenAeroStruct is defined by the number of the

spanwise and chordwise points as shown in Fig. 5 [68]. The fidelity of
eachmodel depends on the number of points used to define the lifting
surface. A model with a finer mesh is considered to have higher
fidelity compared to a model with a coarser mesh. We use three
different mesh resolutions in this demonstration to serve as three
different multifidelity information sources.
The different mesh sizes and costs are shown in Table 1, where

Numy is the number of spanwise points and Numx is the number of

chordwise points. The low-fidelity mesh was chosen to ensure mean-
ingful results, and the high-fidelity mesh was chosen through a mesh
refinement analysis that ensured adequate convergence. In Fig. 6, the
three different meshes are shown. The cost of evaluating each model
is based on the computational runtime of a single query.
We applied our approach of multi-information source multiobjec-

tive optimization on this two-objectiveOpenAeroStruct problemwith
three information sources taking the highest-fidelity one as theground
truth. Asmentioned earlier, our objective here is tominimize both fuel
burn andwingmass by controlling 17 designvariables.We assumed a
budget of 2000 s of computational time on lower-fidelity information
sources for this demonstration. The results are shown in Fig. 7, where
random points are shown in blue to show the objective space (these
are not part of the algorithm and are for visualization only), the green
points are those points selected by our approach with the fused
GP, and the red points are the nondominated green points that have
been evaluated with the ground truth (that is, the final step of our
algorithm). The figure reveals that our approach has done well
in identifying the nondominated region in the objective space for this
17-dimensional problem.Note that the Pareto front for this problem is
not spread along a large region of the objective space. This is expected
based on the shape of the objective space as shown by the randomly
queried point.
In Fig. 8, the hypervolume is updated during the optimization

process each time 100 s of computational time are spent on evaluating
the lower-fidelity information sources. This choice results in regular
updating of the discrepancy terms. A careful study of the optimal
allocation to lower-fidelity information sources and ground truth
estimates is a topic of futurework.We note here that this is not always
a clear resource tradeoff since, often, computation is measured in
runtime and physical experiments may need to be measured in mon-
etary units as well as time. The objectives are normalized using the
upper limit known for each objective. Since both objectives have large
values, differences in hypervolumes might not be sensible and nor-
malization helps to see the changes clearly. The reference point should
be dominated by all points in the objective space, and here it is fixed as
(1.1, 1.1). The most significant changes in the hypervolume quantity
aremadewhen spending the first 10%of the budget (aswas seen in the
previous test case aswell). Beyond that, there are improvements in the
hypervolume, but the returns are diminishing as expected.
Figure 9 reveals the cumulative sum of queries from any informa-

tion source plotted against the overall iteration, where the iteration
is defined as it was previously. As depicted in the figure, initially,
the low-fidelity information source has been queried much more than
the medium-fidelity information source. After some number of iter-
ations (about 120 in this case), the value of the low-fidelity source has

Table 1 Mesh sizes and costs for different fidelity models

Fidelity level Numy Numx Cost, s

Low 15 3 1.9
Medium 35 11 45.1
High (ground truth) 55 19 283.9

Fig. 5 A wing with the aerodynamic and structural Meshes [68].
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diminished enough that some queries to the higher-fidelity source are

nownecessary. This continues until the budget is exhausted.We see in

this case that the low-fidelity source continues to be queried as well.

This is due to the fact that as higher-fidelity information is obtained,

the correlations between the low- and higher-fidelity sources are

updated, which results in a possible renewed value in lower-fidelity

information. This was the case here.
For the aforementioned analysis, a possible question is whether

there was only one information source available to estimate the

quantities of interest in this design problem. To address this question,

another experiment is designed to compare the results between

the multifidelity approach and the single fidelity approach. We have

considered the single fidelity optimization task using the medium-

fidelity information source. TheGP built for the information source is

taken as the predictormodel, and there is no fusion of information and

a fused model in the single fidelity optimization case. Figure 10

shows the hypervolume averaged over 30 simulations for each case

in a normalized objective space with different starting points. The

multifidelity approach outperforms the single fidelity approach since

it has access to more information about the ground truth. This result

shows the low-fidelity information source contribution to provide

useful information about the quantity of interest in the multifidelity

configuration.
The next step is to compare the effectiveness of different

algorithms proposed to do multiobjective optimization task. Here,

we have compared the results of NSGA-II [69–71], ParEGO [72,73],

and EHVI methods in optimizing the OpenAeroStruct design prob-

lem. We will not present the whole algorithms here but interested

readers can find details regarding these approaches and implementa-

tions in the aforementioned references.
In general, the ParEGO algorithm is an extended version of

the efficient global optimization algorithm initially introduced in

Ref. [53] for global optimization of single objective expensive

black-box functions. TheEGOalgorithm is a surrogate-basedmethod

and searches for new solutions using the expected improvement

criterion. At each iteration, a set of random solutions is generated

Fig. 6 Illustration of the meshed wing with different fidelity models. The number of meshes in each model is presented in Table 1.

Fig. 7 Final estimation of the Pareto front from the fused model non-
dominated designs shown in red and green stars, respectively.

Fig. 8 Estimated hypervolumewith respect to the cost averaged over 30
independent simulations with different starting points.

Fig. 9 The cumulative sumof queries fromeach information source.We

query one information source at each iteration.

Fig. 10 Comparing the estimated hypervolume in single fidelity and
multifidelity approaches averaged over 30 independent replications of
simulations.
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in a Latin hypercube or any other space filling design, and the solution
that maximizes the expected improvement will be queried from
the expensive function to update the surrogate model. To extend the
method for optimizing multiobjective functions, one approach is to
combine all objectives into a single objective using parameterized
scalarizing weight vectors [73]. In NSGA-II, a nondominated sorting
is done over the available data or in terms of a genetic algorithm point
of view, population, and they are given a rank according to their
nondomination level. New populations (solutions) are generated
according to their given front rank trying to find new nondominated
solutions. Readers are referred to Refs. [69,70] for more details.
NSGA-II and ParEGO are not set up to take advantage of multiple

information sources, and they are employed to optimize one function.
However, as these algorithms might need to query a large number of
points from the function directly, optimizing the ground truth does not
make sense with respect to the cost of each query. The goal is to see
how they perform if the same number of resources is available for all
methods. Consequently, the optimization is done over the medium-
fidelity information source to allow a reasonable number of queries
from the function.
The hypervolume estimations in Fig. 11 show the improvement

achieved by our EHVI-based approach. Note that the starting point
for every simulation is different; thus, we have included the uncer-
tainty region even for the initial hypervolume. The EHVI approach
has the advantage of coming upwith a good estimation of the optimal
Pareto front, meaning a larger hypervolume much faster than the
other approaches. Therefore, in highly budget-constrained experi-
ments, it finds solutions closer to the optimal Pareto front. Although it
is seen that the estimated hypervolumes might converge when more
resources are available, since they have enough budget to search the
space, the EHVI is still suggesting better solutions to the problem.
Also, the NSGA-II approach is building up the Pareto front gradually
and will likely reach the EHVI and ParEGO estimations of the
hypervolume at higher costs.
In Fig. 12, we demonstrate the results of using our multi-informa-

tion source approach versus a single information source approach
using EHVI as the acquisition function, as well as the ParEGO and
NSGA-II methods. Here, a representative result from the 30 simu-
lations is used to show the results of the different algorithms. We see
from the figure that themulti-information source approach dominates
the other approaches. In some cases, it is possible that ParEGO and
NSGA-II provide a better solution (say, in a different choice among
the 30 simulations); however, as shown in Fig. 11, our method is
performing better on average.

V. Conclusions

In this paper, a methodology to optimize expensive multiobjective
functions is presented. Themethodology seeks to exploit all available
information sources for efficiently identifying nondominated points

in the objective space as a means of estimating the true Pareto front.
The approach was based on the fast evaluation of the expected
hypervolume improvement through the use of temporarily updated
Gaussian process surrogate models of each information source. The
process also incorporates model reification to fuse new information
rigorously as it becomes available through proper accounting
for correlation between the sources. The conclusion of this study
is that multi-information source Bayesian optimization approaches
to directing efficient querying when the budget is constrained can
be effective ways of estimating the Pareto front of a multiobjective
problem. In particular, the ability to rapidly query lower-fidelity
sources while accounting for their correlation with higher-fidelity
sources and ground truth has enabled efficient (less than 10%
of the budget for the problems studied here) identification of prom-
ising regions for nondominated point searching. Then, improvement
over the Pareto front estimation is shown when more information
sources are available. Any information source can provide useful
information about the quantity of interest that is not accessible from
other information sources. Finally, the performance of the proposed
approach is compared to two other well-known multiobjective
optimization approaches, called ParEGO and NSGA-II. The results
demonstrate the effectiveness of the current approach in budget-
constrained situations.
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