
ER Catcher: A Static Analysis Framework for Accurate and
Scalable Event-Race Detection in Android

Navid Salehnamadi, Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek
School of Information and Computer Sciences

University of California, Irvine, USA
{nsalehna,aalshayb,iftekha,malek}@uci.edu

ABSTRACT

Android platform provisions a number of sophisticated concur-

rency mechanisms for the development of apps. The concurrency

mechanisms, while powerful, are quite difficult to properly master

by mobile developers. In fact, prior studies have shown concur-

rency issues, such as event-race defects, to be prevalent among

real-world Android apps. In this paper, we propose a flow-, context-,

and thread-sensitive static analysis framework, called ER Catcher,

for detection of event-race defects in Android apps. ER Catcher

introduces a new type of summary function aimed at modeling the

concurrent behavior of methods in both Android apps and libraries.

In addition, it leverages a novel, statically constructed Vector Clock

for rapid analysis of happens-before relations. Altogether, these

design choices enable ER Catcher to not only detect event-race

defects with a substantially higher degree of accuracy, but also in a

fraction of time compared to the existing state-of-the-art technique.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.

KEYWORDS

Program Analysis, Android, Concurrency, Event-Race Detection

1 INTRODUCTION

Modern mobile frameworks promote the development of highly

concurrent software applications, or “apps” for short. In the case

of Android, concurrency is ingrained in all facets of app behavior:

(1) an app’s components run within their own threads, (2) com-

ponents can simultaneously interact with components within and

outside of the app by exchanging Intent messages, (3) the compo-

nents at any point in time may receive lifecycle (e.g., onStart()

and onPause()) and system (e.g., location change, battery low)

callbacks without any guarantees as to the order in which they may

occur. To aid the developers with development of concurrent soft-

ware, Android provisions several new concurrency constructs in the

form of libraries, such as AsyncTask and Looper. Nevertheless,

concurrency is a major source of confusion for developers [26] and

remains among the top 5 reasons for defects in Android apps [51].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASE ’20, September 21–25, 2020, Virtual Event, Australia

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416639

The conventional techniques for detection of concurrency issues

in Java, such as data-race defects [15, 30, 34, 46], are not readily

applicable for Android [10, 38]. They neither explicitly consider

the event-driven model of app behavior, nor support the new con-

currency constructs in Android. More recently, researchers have

investigated both dynamic [10, 20, 29] and static [17, 22, 45] analysis

techniques for detection of concurrency issues in Android. Dynamic

analysis techniques proposed so far are limited in their capability, as

they miss true event races due to their limited coverage of the app

behavior [22]. Existing static analysis techniques [17, 22, 45] fail to

accurately identify many event races due to (1) imprecise modeling

of concurrency behavior in Android, and (2) adoption of analy-

ses that are innately flow-, context-, thread-insensitive. Moreover,

the existing static analysis techniques are slow, e.g., nAdroid [17]

takes about 50 minutes on average to analyze an app. Besides that,

these works support only a small and fixed set of concurrency li-

braries, e.g., SARD [45] only considers asynchronous invocations

by Handler, Activity, and ThreadAPIs, and cannot be easily

extended to support other libraries. Furthermore, the tools realizing

these techniques are either unavailable ([22, 45]), or closed-source

([17]).

In this paper, we introduce ER Catcher, a static analysis frame-

work for effective detection of event-race defects in Android apps

that aims to overcome the shortcomings of prior works. Three novel

concepts set our work apart from the prior techniques and allow

us to succeed where others have failed.

First, ER Catcher relies on a new type of summary function,

called Concurrency-aware Summary Function (�퐶�푆�퐹), for modeling

the concurrent behavior of methods in both Android apps and li-

braries. The �퐶�푆�퐹 for each app method is automatically extracted,

while the set of�퐶�푆�퐹 s representing concurrent behavior of methods

comprising a library are manually constructed as a one-time effort.

ER Catcher processes methods in an app’s call graph in a reverse

topological order, thereby improving the performance of analysis,

i.e., eliminating the need to reanalyze the same method multiple

times. Furthermore, by modeling each library (e.g., AsyncTask,

Handler) as a set of �퐶�푆�퐹 specifications, the implementation of

ER Catcher is completely separated from its support of Android

libraries. This, in turn, allows one to add support for new or mod-

ified Android libraries by simply providing ER Catcher with the

proper �퐶�푆�퐹 specifications, and without requiring changes to the

ER Catcher’s implementation.

Second, ER Catcher builds its analysis on an abstraction repre-

sentation of app, called Context and Concurrency-aware Call Graph

(�퐶3�퐺). In �퐶3�퐺 , each method call is represented in terms of its three

execution states: invocation, start, and end. The states are connected

ER Catcher: A Static Analysis Framework for Accurate and Scalable Event-Race Detection in Android ASE ’20, September 21–25, 2020, Virtual Event, Australia

For each app method, the �퐶�푆�퐹 nodes and edges are extracted

using the control-flow graph of its body. Next, for each invocation

node of a concurrency library method encountered in the app logic,

the corresponding helper function determines the attributes such

as �푅�푇 and �푇�푇 . Finally, to capture the order of calls more accurately,

we change the source of call-graph edges to invocation nodes.

We model the concurrent behavior of Android components (i.e.,

Activity, Service, and BroadcastReceiver) using�퐶�푆�퐹 s

as well. An artificially created entryPoint method emulates

the invocation of a component’s callback methods according to

the lifecycle of the corresponding component type. We automat-

ically generate the �퐶�푆�퐹 of entryPoint methods similar to app

methods, except the callbacks are invoked asynchronously in main

thread.

Currently, ER Catcher supports the following concurrency-

related constructs in Android: Thread, Looper, Handler,

AsyncTask, IntentService, ServiceConnection,

and lifecycle methods of Activity, Service, and

BroadcastReceiver. Note that ER Catcher analyzes both app

code (written by the app developers) and app libraries, e.g., an

advertisement library. However, if a library introduces its own

concurrency mechanism, ER Catcher requires its corresponding

�퐶�푆�퐹 for precise analysis. For more details on the implementation

of Library �퐶�푆�퐹 , please visit the ER Catcher’s website [2].

3.2 Event-Race Candidate Detection

In parallel to the construction of fine-grained models representing

the concurrent behavior of an app, ER Catcher analyzes the app to

identify a list of all candidate event races (recall Figure 2). The crude

event races identified at this stage are then filtered in the subsequent

steps. An event race is defined as a triplet (�푆�푡�푚�푡1, �푆�푡�푚�푡2, �퐹), where

�푆�푡�푚�푡1 and �푆�푡�푚�푡2 are executing in methods �푀1 and �푀2, and �퐹 is

a field (representing a memory location statically). These triplets

have to satisfy the following properties: (1) �푆�푡�푚�푡1 and �푆�푡�푚�푡2 have

access to memory location �퐹 , and at least one of the accesses is a

write; and (2) there is no happens-before relation between �푆�푡�푚�푡1

and �푆�푡�푚�푡2

For example, the illustrative app of Figure 1a has two potential

event races involving the memory location elapsedTime:

(initTime:22, onPostExecute:35, elapsedTime)

(onPostExecute:35, onPostExecute:35, elapsedTime)

In this component, we do not have any information about the

context of methods; therefore, we use a conservative approach and

presume no happens-before relation exists between the statements.

We use an off-the-shelf points-to analysis technique (SPARK [25])

to determine the statements in two methods are accessing the same

memory location.

3.3 Context Augmentation

For precise event-race detection, we need to account for the exe-

cution context (recall Section 2). To that end, we need to augment

�퐶2�퐺 with contextual information to resolve the unknown entries

such as�푈�푁�퐾') and�푈�푁�퐾)) in �퐶�푆�퐹 s. One naive approach for de-

termining the contexts of all methods is to traverse the call graph

along the edges, starting from the entry point. However, such an

approach does not scale, because the number of potential paths is

O(2=), where �푛 is the number of methods. To address this challenge,

we use dynamic programming together with two filters (Race In-

volvement and Synchronous Substitution), which substantially prune

the analysis and memory space. Once the contexts are determined,

the remaining parts (running and task threads) can be determined

by simply propagating threading information through the invo-

cation caller sites. The result of this component is Context- and

Concurrency-aware Call Graph, called �퐶3�퐺 .

Figure 4 depicts the process of determining the contexts for a

subset of the illustrative example. For brevity, only the �퐶�푆�퐹 nodes

involved in the context augmentation are shown here. The edges

annotated with S are synchronous call-graph edges.

We process the methods of�퐶2�퐺 , shown in Figure 4a, in a reverse

topological order.1 During this process, a method can be in the

visited, visiting, or non-visited stages. For each visiting method�푚,

we first apply Race Involvement filter: if neither�푚 nor any of�푚’s

descendants are involved in an event race, we do not process�푚,

e.g., method findViewById in Figure 4b is pruned. This filter

reduces the analysis space drastically. The Event-Race Candidate

Detection component, discussed earlier, provides us with a list of

methods that may be involved in an event race.

If�푚 passes this filter, for each incoming edge to its start node, we

make a copy of�푚 and all of its descendants to make its incoming

edges unique. We then connect each edge to the start node of

its corresponding copy (making the incoming edge of �푚’s start

node unique). For example, in Figure 4b, the start node of method

onPost has only one incoming edge; therefore, there is only one

copy of onPost in Figure 4c.

If the invocation of a method is synchronous, e.g.,

onCreate → executeOnExecutor, it does not impact

the concurrent behavior of the app. In this situation, we apply

Synchronous Substitution filter by (1) removing the callee method,

(2) connecting the outgoing edges of caller method to the callee

method’s children, (3) annotating these edges with the caller to

maintain the sequence of invocations. For example, Figure 4c shows

Synchronous Substitution of executeOnExecutor. The method

executeOnExecutor is eliminated and replaced with two

annotated edges, representing alternative execution contexts. This

filter substantially improves the utilized memory and processing

time of subsequent steps. Note that since we are processing the

methods in the app call graph in a reverse topological order, all

descendants of�푚 are already visited.

Figure 4d shows the final stage of context augmentation. As

mentioned earlier, for each incoming edge of intermDoInBG’s

start node (the edges from onCreate and onClick), a copy of

intermDoInBG and its descendants (onPost) is created, making

the incoming edge of each node unique.

Once the contexts of all methods are determined, the remain-

ing two parts (running and task threads) can be determined by

propagating the thread information starting from the entry point.

The thread of the entry point is already known, since it runs on

the UI thread and there is no task thread (as depicted in Figure 3).

Using the �퐶3�퐺 edges we propagate these information. For exam-

ple, in Figure 3, once the caller sites of executeOnExecutor

are resolved to be onCreate and onClick, the specific thread

1If�2
� is cyclic, we apply 1-unrolling [19] procedure and eliminate cycles.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Navid Salehnamadi, Abdulaziz Alshayban, I�ekhar Ahmed, and Sam Malek

methods. Method �푚1 happens before method �푚2 if all end

states of �푚1 happen before start states of �푚2. We remove all

event races in which there is a happens-before relation be-

tween their method calls. For example, we filter out the event

race (initTime:22, onPostExecute:35, elapsedTime),

because as depicted in Figure 5, there is a happens-before

relation between all end states of initTime and start

states of onPost: initTime.e ≺ onPost-0.s and

initTime.e ≺ onPost-1.s. However, for the event race

(onPostExecute:35, onPostExecute:35, elapsedTime),

there is neither a happens-before relation between onPost-0.s

and onPost-1.e, nor between onPost-0.e and

onPost-1.s. We thus report it as a possible event race.

To further prune the false event races, two filters (If-Guard and

Null-At-End) are designed for Use-after-Free (UF) defects. A UF

defect is a harmful event race where one memory access makes

a memory location free (writes null) and another access uses

(reads) it, resulting in a NullPointerException to be thrown.

If-Guard removes the UF defects where the read access is guarded by

a null-checking condition, e.g., in if (f!= null) f.use();

the field fwill not be accessed if it is null. In addition,Null-At-End

filters UF defects where the memory location is not reassigned with

a value other than null after becoming free e,g,. in f = null;

f = new F(); the field f is not null.

In addition to the above-mentioned filters that are sound, we

also provide several heuristics that are unsound, but in practice can

significantly reduce the false warnings, as described next.

3.6 Prioritization

The reported event races by the previous component include all

possible event races that need to be reviewed by developers. To

facilitate this manual process, we prioritize the detected event races

by our confidence in their existence. Our confidence is inversely

related to the degree of over-approximation in the static analysis,

i.e., less over-approximation in detecting an event race leads tomore

confidence about its existence. Due to the over-approximation of

static analysis and our conservative approach, we do not filter event

races for which we have incomplete information.

We prioritize event races according to the number of satisfied

over-approximation properties. (Reachability)We prioritize event

races that are reachable, i.e., there are paths in the call graph from

the entry-point to both methods of a reachable event race. The

thread-sensitive filters are not applied on unreachable event races

because their thread information is unknown. (Must-Alias) Event

races that involve statements accessing must-alias fields have pri-

ority over may-alias fields. Two fields are must-alias if they always

point to the same memory location. (Known-Thread) Event races

where the threads of their methods are known have more priority

than others. For example, when we are not certain about the corre-

sponding Looper of a Handler (which can be the main thread

Looper or a custom thread Looper), we assume its messages

are handled in an unknown thread that dispatches messages in

parallel.

4 EVALUATION

This section discusses our experimental evaluation to answer the

following research questions:

• RQ1 How accurate is ER Catcher in detecting true event

races?

• RQ2 How fast does ER Catcher analyze real-world apps?

• RQ3 How effective is ER Catcher in filtering false event

races?

• RQ4What is the impact of modeling concurrency in improv-

ing the overall accuracy of static analysis?

We evaluate ER Catcher using three different datasets. First, we

use a set of benchmark apps containing event-race defects, called

BenchERoid [39]. For these apps the ground truth is known, allow-

ing us to report the precision, recall, and F1 score of ER Catcher.

Second, we use a “Curated” dataset of 31 real-world apps with

event-race defects that have been confirmed, through either dy-

namic analysis, or code commit messages. We collected these apps

by reviewing the prior literature [17, 21, 29] and crawling the open-

source repositories. Finally, we evaluate the scalability and effec-

tiveness of ER Catcher using 500 randomly selected apps from

F-Droid [3]. Table 1 summarizes the datasets used for evaluation.

We compare ER Catcher with nAdroid [17], the state-of-the-art

static Use-after-Free (UF) event-race detector that is available pub-

licly, but not entirely open-source. Since nAdroid detects only UF

event races, to make the comparison fair between ER Catcher and

nAdroid, we configure ER Catcher to report only UF event races.

We also tried to empirically compare ER Catcher to several other

tools, namely SIERRA [22], SARD [45], ASYNCCLOCK [20], and

EventRacer [10]. Since none of these tools are available, we con-

tacted the corresponding authors. Unfortunately, despite multiple

attempts, the authors either did not respond to us or confirmed their

inability to release their tool. We provide a qualitative discussion

of the differences between ER Catcher and these other techniques

in Section 5.

Table 1: Properties of datasets used in our experiments.

Dataset # Apps Criteria Average Median Min Max

BenchERoid
dataset

34
#Methods 27 25.5 18 51
#Components 1 1 1 3
Size (KB) 1123 1042 931 1646

Curated
dataset

31
#Methods 1563 1066 78 5155
#Components 19 12 1 138
Size (KB) 3850 2069 29 26445

F-Droid
dataset

500
#Methods 1041 499 10 6432
#Components 9 5 1 544
Size (KB) 4171 2000 10 97676

4.1 RQ1: Accuracy

We ran ER Catcher and nAdroid on the 34 apps provided by

BenchERoid to measure their respective accuracy. The results are

shown in Table 2. The actual number of event races in the bench-

mark apps are shown in column 2. nAdroid uses two different filters

(sound and unsound) for reducing false event races; we report both

of them in columns 3 and 4, respectively. We report the event races

identified by ER Catcher in column 5 and the prioritized event races

(recall Section 3.6) in column 6. We categorize the apps provided by

ER Catcher: A Static Analysis Framework for Accurate and Scalable Event-Race Detection in Android ASE ’20, September 21–25, 2020, Virtual Event, Australia

BenchERoid into four groups. The first group is non-UF event races.

We do not consider them in comparing the accuracy of ER Catcher

with nAdroid, since nAdroid does not report non-UF event races.

The second and third groups consist of apps containing UF event

races related to flow- and thread-sensitivity, respectively. The rest

of the apps are placed in the “Other UF” category.

Table 2: Benchmark Result. The general event races (high-

lighted rows) were not considered for the accuracy metrics.
∗©True Positive ©False Negative ∗False Positive.

App Name

#
G
ro
u
n
d
T
ru
th

E
v
en
t
R
ac
es

n
A
d
ro
id

So
u
n
d

n
A
d
ro
id

U
n
so
u
n
d

E
R
C
at
ch
er

E
R
C
at
ch
er

P
ri
o
ri
ti
ze
d

Non-UF Event Races
SingleActivity7 1 © © ∗©∗ ∗©
SingleActivity8 2 ©© ©© ∗© ∗©∗∗ ∗© ∗©∗
Service5 1 © © ∗©∗ ∗©
AsyncTask5 1 © © ∗©∗ ∗©
AsyncTask6 0 ∗

Flow-Sensitive UF
SingleActivity2 0 ∗ ∗
SingleActivity5 2 ∗© ∗©∗∗ ∗© ∗©∗∗ ∗© ∗© ∗© ∗©
SingleActivity6 2 ∗© ∗©∗ ∗© ∗©∗ ∗© ∗© ∗© ∗©
AsyncTask2 0 ∗
Looper1 0

Thread-Sensitive UF
SingleActivity3 1 © © ∗© ∗©
AsyncTask1 1 ∗© © ∗© ∗©
AsyncTask3 1 ∗© © ∗© ∗©
Thread1 1 ∗©∗ © ∗©∗ ∗©∗
Thread2 1 ∗©∗ © ∗©∗ ∗©∗
Looper2 1 ∗© ∗© ∗© ∗©
Service3 1 © © ∗© ∗©
Service4 0 ∗ ∗

Other UF
MultiComp1 2 ∗© ∗© ∗© ∗© ∗© ∗© ∗© ∗©
Receiver 1 ∗© ∗© ∗© ∗©
Service1 0 ∗ ∗ ∗ ∗
Service2 1 ∗©©© ∗©©© ∗© ∗©© ∗© ∗©©
LifeCycle1 3 ∗© ∗© ∗© ∗© ∗© ∗© ∗© ∗© ∗© ∗© ∗© ∗©
LifeCycle2 0
LifeCycle3 2 ∗© ∗© ∗© ∗© ∗© ∗© ∗© ∗©
LifeCycle4 2 ∗© ∗© ∗© ∗© ∗© ∗© ∗© ∗©
SingleActivity1 1 ∗© ∗© ∗©∗ ∗©
SingleActivity4 0 ∗∗∗ ∗∗∗ ∗∗ ∗∗
AsyncTask4 1 ∗© © ∗© ∗©
Executor1 1 ∗© ∗© ∗© ∗©
Executor2 1 ∗©∗ © © ©
TimerTask1 1 ∗© ∗© ∗© ∗©
TimerTask2 1 ∗© ∗© ∗© ∗©
Looper3 1 ∗© ∗© ∗© ∗©

Total ∗© (higher is better) 27 21 29 29
Total © (lower is better) 4 10 2 2
Total ∗ (lower is better) 13 9 7 6
Precision %67 %70 %80 %82
Recall %87 %67 %93 %93
F1 %75 %68 %86 %88

Overall, ER Catcher is significantly more accurate than nAdroid.

ER Catcher achieves 80% precision and 93% recall, compared to

nAdroid’s 67% precision and 87% recall. Due to its flow-sensitivity,

ER Catcher is able to filter all of the false positives reported by

nAdroid under the Flow-Sensitive UF category. Due to its thread-

sensitivity, ER Catcher is able to identify additional true event races

compared to nAdroid under the Thread-Sensitive UF category.

Although ER Catcher is more accurate than nAdroid, it has its

own limitations. ER Catcher is path-insensitive, therefore it reports

false positive UF event races that reside on execution paths that will

not execute, e.g., Service1. Due to time-insensitivity, ER Catcher

reports false positives in cases where the statements execute at

specific times, e.g., SingleActivity4. ER Catcher fails to fil-

ter one false-positive event race in SingleActivity1 due to

incomplete reachability information; however, it is removed in “ER

Catcher Prioritized”. The imprecision in the off-the-shelf points-to

analysis used by ER Catcher leads to a false negative in Service2.

We also ran ER Catcher and nAdroid on the Curated dataset,

consisting of 31 real-world apps with confirmed event races. ER

Catcher was able to analyze all of the 31 apps, while nAdroid could

only analyze 27 of them. ER Catcher achieved 100% recall, detecting

all of the event races in these apps, while nAdroid achieved 88%

recall. Since not all of the event races in these apps are known, we

are unable to report the recall using this dataset.

4.2 RQ2: Scalability

We analyzed all three datasets using ER Catcher and nAdroid to

compare the scalability of these techniques. Table 3 summarizes

the results. For the first two datasets (i.e., BenchERoid and Curated

datasets), we did not set a timeout. However, due to the large num-

ber of apps in the third dataset (F-Droid), we set a timeout of 5

minutes. On average, ER Catcher analyzed each app in the Curated

dataset within 231 seconds, while nAdroid required 3, 134 seconds

(∼ 52 minutes). Overall, ER Catcher finished the analysis between

12 to 13 times faster than nAdroid for the first two datasets.

For the F-Droid dataset, ER Catcher analyzed 459 out of 500 apps

(more than 90%) within the designated time of 5 minutes (two apps

could not be analyzed because FlowDroid could not generate the

call graph for them). However, nAdroid could only analyze 30 apps

(6%) within the allotted time. Furthermore, nAdroid crashed during

analysis of 316 apps (more than 60%) indicating nAdroid is unable

to complete the analysis irrespective of time.

Table 3: Analysis time summary

#A
n
al
y
ze
d

A
p
p
s

A
v
er
ag
e

M
ed
ia
n

M
in

M
ax

BenchERoid
dataset

nAdroid 29 217s 145s 131s 372s
ER Catcher 29 18s 20s 7s 35s

nAdroid
ER Catcher

1x 12x 7x 18x 10x

Curated
dataset

nAdroid 27 3134s 786s 83s 22690s
ER Catcher 31 231s 29s 4s 5548s

nAdroid
ER Catcher

0.87x 13x 27x 21x 4x

F-Droid
dataset

nAdroid 30 153s 152s 108s 285∗s
ER Catcher 459 53s 29s 4s 296∗s

nAdroid
ER Catcher

0.06x 3x 5x 27x 0.96x

4.3 RQ3: Effectiveness of Filters

To evaluate the degree to which ER Catcher filters out false event

races in real-world apps, the number of UF event races in three

stages of analysis are reported in Table 4. The first row shows

the number of event-race candidates identified by the “Event-Race

Candidate Analysis” component (recall Section 3.2). The second

ASE ’20, September 21–25, 2020, Virtual Event, Australia Navid Salehnamadi, Abdulaziz Alshayban, I�ekhar Ahmed, and Sam Malek

row shows the number of filtered UF event races reported by the

“Thread-Sensitive Filter” component (recall Section 3.5). The fourth

row reports the number of prioritized UF event races (recall Sec-

tion 3.6). The reduction rates achieved for the Curated and F-Droid

datasets are %77 and %86, respectively. This results in prioritizing

37 and 23 UF event races that require manual investigation by de-

velopers. In practice, many of the detected event races are caused

by the same defect in code, i.e., one defect in code causes event race

conditions under multiple execution contexts. As a result, develop-

ers can often confirm the presence of a defect without having to

review the complete list of reported event races.

Table 4: Effectiveness of filters and prioritization

Criteria Average Median Min Max

C
u
ra
te
d
d
at
as
et

#UF Candidates 317 341 0 1238

#Filtered UFs 150 114 0 540

%
Filtered

Candidates
50% 54% 0% 92%

#Prioritized UFs 37 15 0 147

%
Prioritized

Candidates
23% 12% 0% 100%

F-
D
ro
id

d
at
as
et

#UF Candidates 308 57 0 9249

#Filtered UFs 129 5 0 1806

%
Filtered

Candidates
45% 48% 0% 100%

#Prioritized UFs 23 0 0 1011

%
Prioritized

Candidates
14% 2% 0% 100%

4.4 RQ4: Impact of Modeling Concurrency

A byproduct of modeling the concurrent behavior of Android apps

and libraries in the form of �퐶2�퐺 is that ER Catcher can discover

a number of additional methods that are invoked indirectly, i.e.,

through the library callbacks. This enables ER Catcher to compute

reachability of methods in ways that are more accurate than other

state-of-the-art techniques, such as FlowDroid [7]. To evaluate this

facet of our work, we ran both ER Catcher and FlowDroid on the

F-Droid dataset. We identified additional reachable methods in 169

of these apps. Compared to FlowDroid, ER Catcher was able to

detect on average 8 more reachable methods per app, and up to 78

more reachable methods in one app.

This is notable given the extensive number of tools (e.g., [8, 9, 23,

48]) that rely on FlowDroid for analysis of Android apps, particu-

larly for security assessment. Consider, for instance, an information

leakage vulnerability caused by flow of data from a private source,

e.g., camera, to a sink, e.g., network. If the sink is located in a

method that is determined to be unreachable by the analysis, the

vulnerability cannot be discovered. According to our results, nu-

merous Android security analysis tools [8, 9, 48] built on top of

FlowDroid [7] would fail to discover vulnerabilities or malicious

behaviors that reside in such locations in code.

5 RELATED WORK

Our work builds upon three major threads of research: concurrency

analysis, event-race detection, and summary-based static analysis

in Android. We provide a brief overview of the relevant research

for each of these threads in this section.

Analysis of Concurrent Behaviors: Researchers have investigated

concurrent behaviour of traditional programming languages such

as C or Java, primarily focusing on data races [27, 33, 36], dead-

locks [11, 14, 31], happens-before relation [52], sequential or non-

sequential concurrency errors [35, 49, 50] and testing [42]. None of

these, however, has investigated the concurrent behavior of Android

apps. The most relevant work is that of Zhou et al. [52] that intro-

duces the concept of Static Vector Clock to analyze may-happen-

in-parallel relation between instructions in C/C++; however, their

realization of this concept is not applicable to event-based systems

like Android. ER Catcher addresses this limitation by introducing

event-based properties, e.g., Same Task-Queue Order.

Researchers have also analyzed the concurrent behavior of An-

droid apps, mostly focusing on dynamic analyses such as test gener-

ation [41], manipulating the code execution [16, 44], and detecting

happens-before relations [28]. None of these techniques is able to

detect event races in Android.

Event Race Detection in Android: Although Android has tradi-

tional Java thread constructs, tools developed for Java cannot readily

detect event races in Android since existing tools are unaware of re-

lations between events. To meet this gap, researchers have devised

dynamic and static event-race detection approaches for Android.

Dynamic event race detection approaches gather execution traces

of Android apps either manually [21] or automatically [10, 20, 29]

using an app crawler such as Monkey [5]. Then the execution traces

are analyzed off-line to detect happens-before relations between

events either by graph analysis [10, 21, 29], or leveraging vector

clock [20]. These techniques fail to identify event races due to their

limited coverage of the behaviors of apps [22].

Static event-race detection techniques address the problem of

missing true defects by analyzing the whole program. DeVA [38]

detects "event anomalies" where two events access the same mem-

ory location, and one of the accesses is a write. Since DeVA does not

consider happens-before relations, it produces a large number of

false positives. SIERRA [22] considers happens-before relation and

has limited context-sensitivity (capturing only one asynchronous

action as the context), but it is not aware of other threads except

for the main thread which may result in failure to identify bugs;

we addressed this issue by our thread-sensitive analysis modeled

in �퐶3�퐺 . nAdroid [17] uses an existing traditional race detection

technique to identify Use-after-Free (UF) bugs. Due to the impre-

cise threadification model of nAdroid it reports a large number of

false positives; we extensively explained and empirically evaluated

the limitations of nAdroid in comparison to ER Catcher earlier.

SARD [45], similar to nAdroid, detects UF bugs, using a flow- and

context-sensitive model of Looper. SARD applies an exhaustive

context creation strategy making it unscalable. We address the scal-

ability issue by using summary-based analysis techniques to reduce

the space complexity.

In all of the mentioned techniques, the support for various An-

droid concurrency libraries is hardcoded in the implementation

of tools, making it difficult to revise the tools to support new or

modified Android libraries. ER Catcher addresses this limitation by

separating the implementation of tool from the library �퐶�푆�퐹 s repre-

senting the concurrent behavior of Android libraries. Provided with

ER Catcher: A Static Analysis Framework for Accurate and Scalable Event-Race Detection in Android ASE ’20, September 21–25, 2020, Virtual Event, Australia

new or modified library �퐶�푆�퐹 s, ER Catcher can be readily extended

to support new or modified Android libraries without requiring

changes to its implementation. Summary-Based Static Analysis in

Android: Another research thrust has investigated summary-based

approaches for precise and fast analysis [4, 6, 7, 12, 13, 47]. These

techniques mostly use Inter-procedural Distributed Environment

(IDE) framework [37] for modelling the inter-procedural data-flow

of the code; however, to the best of our knowledge, no prior work

has leveraged IDE frameworks to model concurrent behavior of

code like happens-before relations. Moreover, none of these tech-

niques capture inter-thread communication precisely. As a future

work, it would be interesting to see if IDE frameworks, or non-

distributive summary based analyses such as [32], can improve

the scalability of creating the �퐶3�퐺 model. ER Catcher takes a step

towards addressing this issue by introducing ways of summarizing

concurrency behavior in Android.

6 CONCLUSION

Concurrency-induced defects, such as event race, are one of the

most frequently encountered types of defect in Android apps [51].

We presented ER Catcher, a fast, novel and accurate static analysis

framework for event-race detection in Android. Experiments using

benchmark apps show that ER Catcher is accurate, capable of de-

tecting event races with 80% precision and 93% recall. Compared

to the only other publicly available tool for event-race detection in

Android, ER Catcher is substantially faster (by a factor of 12) and

more accurate (11% higher F1-measure). Results further corroborate

its effectiveness in detecting all of the event races confirmed to exist

in a set of 31 real-world apps.

In our future work, we plan to expand the applications of ER

Catcher to other concurrency-related analyses. We believe the effi-

cient happens-before analysis of ER Catcher can be used as a plugin

in Android Studio to provide real-time feedback to developers dur-

ing the development. Furthermore, since concurrency is the main

cause of flaky tests [43], we aim to study the application of ER

Catcher in the detection of such tests.

ER Catcher and research artifacts are publicly available for down-

load from the companion website [2].

ACKNOWLEDGMENT

This work was supported in part by award numbers 1618132 and

1823262 from the National Science Foundation. We would like to

thank the anonymous reviewers of this paper for their detailed

feedback, which helped us improve the work.

REFERENCES
[1] 2020. ER Catcher Formal Proofs. Retrieved August 31, 2020 from https://github.

com/seal-hub/ERCatcher/blob/master/ERCatcher_Appendix.pdf
[2] 2020. ER Catcher Tool. Retrieved August 31, 2020 from https://github.com/seal-

hub/ERCatcher
[3] 2020. F-Droid. Retrieved March 4 , 2020 from https://f-droid.org/en/
[4] Karim Ali and Ondřej Lhoták. 2013. Averroes: Whole-program analysis without

the whole program. In European Conference on Object-Oriented Programming.
Springer, 378–400.

[5] Android. 2020. UI/Application Exerciser Monkey. Retrieved February 2, 2020 from
https://developer.android.com/studio/test/monkey

[6] StevenArzt and Eric Bodden. 2016. StubDroid: automatic inference of precise data-
flow summaries for the android framework. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE). IEEE, 725–735.

[7] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.

[8] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas Zeller, Steven
Arzt, Siegfried Rasthofer, and Eric Bodden. 2015. Mining apps for abnormal usage
of sensitive data. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, Vol. 1. IEEE, 426–436.

[9] Hamid Bagheri, Alireza Sadeghi, Joshua Garcia, and Sam Malek. 2015. Covert:
Compositional analysis of android inter-app permission leakage. IEEE transactions
on Software Engineering 41, 9 (2015), 866–886.

[10] Pavol Bielik, Veselin Raychev, and Martin Vechev. 2015. Scalable race detection
for Android applications. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
- OOPSLA 2015. ACM Press, Pittsburgh, PA, USA, 332–348. https://doi.org/10.
1145/2814270.2814303

[11] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. 2002. Ownership
types for safe programming: preventing data races and deadlocks. In Proceedings
of the 17th ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications (OOPSLA ’02). Association for Computing Machinery,
Seattle, Washington, USA, 211–230. https://doi.org/10.1145/582419.582440

[12] Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele, Christopher
Kruegel, Giovanni Vigna, and Yan Chen. 2015. EdgeMiner: Automatically De-
tecting Implicit Control Flow Transitions through the Android Framework.. In
NDSS.

[13] Tom Deering, Ganesh Ram Santhanam, and Suresh Kothari. 2015. Flowminer: Au-
tomatic summarization of library data-flow for malware analysis. In International
Conference on Information Systems Security. Springer, 171–191.

[14] Dawson Engler and Ken Ashcraft. 2003. RacerX: effective, static detection of
race conditions and deadlocks. ACM SIGOPS Operating Systems Review 37, 5 (Oct.
2003), 237–252. https://doi.org/10.1145/1165389.945468

[15] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk Olynyk.
[n.d.]. Effective Data-Race Detection for the Kernel. ([n. d.]), 12.

[16] Lingling Fan, Ting Su, Sen Chen, GuozhuMeng, Yang Liu, Lihua Xu, and Geguang
Pu. 2018. Efficiently manifesting asynchronous programming errors in android
apps. In Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. 486–497.

[17] Xinwei Fu, Dongyoon Lee, and Changhee Jung. 2018. nAdroid: statically de-
tecting ordering violations in Android applications. In Proceedings of the 2018
International Symposium on Code Generation and Optimization - CGO 2018. ACM
Press, Vienna, Austria, 62–74. https://doi.org/10.1145/3168829

[18] Sumit Gulwani and Ashish Tiwari. 2007. Computing procedure summaries for
interprocedural analysis. In European Symposium on Programming. Springer,
253–267.

[19] John L Hennessy and David A Patterson. 2011. Computer architecture: a quanti-
tative approach. Elsevier.

[20] Chun-Hung Hsiao, Satish Narayanasamy, Essam Muhammad Idris Khan, Cris-
tiano L Pereira, and Gilles A Pokam. 2017. Asyncclock: Scalable inference of
asynchronous event causality. ACM SIGPLAN Notices 52, 4 (2017), 193–205.

[21] Chun-Hung Hsiao, Cristiano L. Pereira, Jie Yu, Gilles A. Pokam, Satish
Narayanasamy, Peter M. Chen, Ziyun Kong, and Jason Flinn. 2013. Race de-
tection for event-driven mobile applications. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation -
PLDI ’14. ACM Press, Edinburgh, United Kingdom, 326–336. https://doi.org/10.
1145/2594291.2594330

[22] Yongjian Hu and Iulian Neamtiu. 2018. Static Detection of Event-based Races
in Android Apps. In Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
’18). ACM, New York, NY, USA, 257–270. https://doi.org/10.1145/3173162.3173173
event-place: Williamsburg, VA, USA.

[23] R. Jabbarvand, J. Lin, and S. Malek. 2019. Search-Based Energy Testing of Android.
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
1119–1130.

[24] Leslie Lamport. 2019. Time, clocks, and the ordering of events in a distributed
system. In Concurrency: the Works of Leslie Lamport. 179–196.

[25] Ondřej Lhoták and Laurie Hendren. 2003. Scaling Java points-to analysis using S
park. In International Conference on Compiler Construction. Springer, 153–169.

[26] Jun-Wei Lin, Navid Salehnamadi, and SamMalek. 2020. Test Automation in Open-
Source Android Apps: A Large-Scale Empirical Study. In 2020 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE.

[27] Magnus Madsen, Frank Tip, and Ondřej Lhoták. 2015. Static analysis of event-
driven Node. js JavaScript applications. ACM SIGPLAN Notices 50, 10 (2015),
505–519.

[28] Pallavi Maiya and Aditya Kanade. 2017. Efficient computation of happens-before
relation for event-driven programs. In Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis. 102–112.

[29] Pallavi Maiya, Aditya Kanade, and Rupak Majumdar. 2014. Race detection for
Android applications. ACM SIGPLAN Notices 49, 6 (June 2014), 316–325. https:

ASE ’20, September 21–25, 2020, Virtual Event, Australia Navid Salehnamadi, Abdulaziz Alshayban, I�ekhar Ahmed, and Sam Malek

//doi.org/10.1145/2666356.2594311
[30] Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective static race detection

for Java. In Proceedings of the 27th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 308–319.

[31] Mayur Naik, Chang-Seo Park, Koushik Sen, and David Gay. 2009. Effective Static
Deadlock Detection. In Proceedings of the 31st International Conference on Software
Engineering (ICSE ’09). IEEE Computer Society, Washington, DC, USA, 386–396.
https://doi.org/10.1109/ICSE.2009.5070538

[32] Rohan Padhye and Uday P Khedker. 2013. Interprocedural data flow analysis in
soot using value contexts. In Proceedings of the 2nd ACM SIGPLAN International
Workshop on State Of the Art in Java Program analysis. 31–36.

[33] Boris Petrov, Martin Vechev, Manu Sridharan, and Julian Dolby. 2012. Race
detection for web applications. ACM SIGPLAN Notices 47, 6 (2012), 251–262.

[34] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. 2011. LOCKSMITH:
Practical static race detection for C. ACMTransactions on Programming Languages
and Systems (TOPLAS) 33, 1 (Jan. 2011), 3:1–3:55. https://doi.org/10.1145/1889997.
1890000

[35] Shaz Qadeer and Dinghao Wu. 2004. KISS: keep it simple and sequential. ACM
SIGPLAN Notices 39, 6 (June 2004), 14–24. https://doi.org/10.1145/996893.996845

[36] Veselin Raychev, Martin Vechev, and Manu Sridharan. 2013. Effective race de-
tection for event-driven programs. In Proceedings of the 2013 ACM SIGPLAN
international conference on Object oriented programming systems languages &
applications. 151–166.

[37] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural
dataflow analysis via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. 49–61.

[38] Gholamreza Safi, Arman Shahbazian, William G. J. Halfond, and Nenad Medvi-
dovic. 2015. Detecting event anomalies in event-based systems. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering - ESEC/FSE
2015. ACM Press, Bergamo, Italy, 25–37. https://doi.org/10.1145/2786805.2786836

[39] Navid Salehnamadi, Abdulaziz Alshayban, Iftekhar Ahmed, and SamMalek. [n.d.].
Poster: A Benchmark for Event-Race Analysis in Android Apps. In Proceedings
of the 18th Annual International Conference on Mobile Systems, Applications, and
Services.

[40] Micha Sharir, Amir Pnueli, et al. 1978. Two approaches to interprocedural data flow
analysis. New York University. Courant Institute of Mathematical Sciences

[41] Hongyin Tang, Guoquan Wu, Jun Wei, and Hua Zhong. 2016. Generating test
cases to expose concurrency bugs in android applications. In Proceedings of
the 31st IEEE/ACM international Conference on Automated software engineering.

648–653.
[42] Valerio Terragni and Mauro Pezzè. 2018. Effectiveness and challenges in generat-

ing concurrent tests for thread-safe classes. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 64–75.

[43] Swapna Thorve, Chandani Sreshtha, and Na Meng. 2018. An empirical study of
flaky tests in Android apps. In 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 534–538.

[44] Jue Wang, Yanyan Jiang, Chang Xu, Qiwei Li, Tianxiao Gu, Jun Ma, Xiaoxing
Ma, and Jian Lu. 2018. AATT+: Effectively manifesting concurrency bugs in
Android apps. Science of Computer Programming 163 (Oct. 2018), 1–18. https:
//doi.org/10.1016/j.scico.2018.03.008

[45] D. Wu, J. Liu, Y. Sui, S. Chen, and J. Xue. 2019. Precise Static Happens-Before
Analysis for Detecting UAF Order Violations in Android. In 2019 12th IEEE
Conference on Software Testing, Validation and Verification (ICST). 276–287. https:
//doi.org/10.1109/ICST.2019.00035

[46] Xinwei Xie, Jingling Xue, and Jie Zhang. 2013. Acculock: accurate and efficient
detection of data races. Software: Practice and Experience 43, 5 (2013), 543–576.
https://doi.org/10.1002/spe.2121

[47] Dacong Yan, Guoqing Xu, and Atanas Rountev. 2012. Rethinking soot for
summary-based whole-program analysis. In Proceedings of the ACM SIGPLAN
International Workshop on State of the Art in Java Program analysis. 9–14.

[48] Wei Yang, Xusheng Xiao, Benjamin Andow, Sihan Li, Tao Xie, and William Enck.
2015. Appcontext: Differentiating malicious and benign mobile app behaviors
using context. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, Vol. 1. IEEE, 303–313.

[49] Wei Zhang, Junghee Lim, Ramya Olichandran, Joel Scherpelz, Guoliang Jin, Shan
Lu, and Thomas Reps. [n.d.]. ConSeq: Detecting Concurrency Bugs through
Sequential Errors. ([n. d.]), 14.

[50] Wei Zhang, Chong Sun, and Shan Lu. [n.d.]. ConMem: Detecting Severe Concur-
rency Bugs through an Effect-Oriented Approach. ([n. d.]), 13.

[51] Bo Zhou, Iulian Neamtiu, and Rajiv Gupta. 2015. A cross-platform analysis of
bugs and bug-fixing in open source projects: Desktop vs. android vs. ios. In
Proceedings of the 19th International Conference on Evaluation and Assessment in
Software Engineering. 1–10.

[52] Qing Zhou, Lian Li, Lei Wang, Jingling Xue, and Xiaobing Feng. 2018. May-
happen-in-parallel Analysis with Static Vector Clocks. In Proceedings of the 2018
International Symposium on Code Generation and Optimization (CGO 2018). ACM,
New York, NY, USA, 228–240. https://doi.org/10.1145/3168813 event-place:
Vienna, Austria.

