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ABSTRACT

Android platform provisions a number of sophisticated concur-
rency mechanisms for the development of apps. The concurrency
mechanisms, while powerful, are quite difficult to properly master
by mobile developers. In fact, prior studies have shown concur-
rency issues, such as event-race defects, to be prevalent among
real-world Android apps. In this paper, we propose a flow-, context-,
and thread-sensitive static analysis framework, called ER Catcher,
for detection of event-race defects in Android apps. ER Catcher
introduces a new type of summary function aimed at modeling the
concurrent behavior of methods in both Android apps and libraries.
In addition, it leverages a novel, statically constructed Vector Clock
for rapid analysis of happens-before relations. Altogether, these
design choices enable ER Catcher to not only detect event-race
defects with a substantially higher degree of accuracy, but also in a
fraction of time compared to the existing state-of-the-art technique.

CCS CONCEPTS
« Software and its engineering — Software testing and de-
bugging.
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1 INTRODUCTION

Modern mobile frameworks promote the development of highly
concurrent software applications, or “apps” for short. In the case
of Android, concurrency is ingrained in all facets of app behavior:
(1) an app’s components run within their own threads, (2) com-
ponents can simultaneously interact with components within and
outside of the app by exchanging Intent messages, (3) the compo-
nents at any point in time may receive lifecycle (e.g., onStart ()
and onPause () ) and system (e.g., location change, battery low)
callbacks without any guarantees as to the order in which they may
occur. To aid the developers with development of concurrent soft-
ware, Android provisions several new concurrency constructs in the
form of libraries, such as AsyncTask and Looper. Nevertheless,
concurrency is a major source of confusion for developers [26] and
remains among the top 5 reasons for defects in Android apps [51].
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The conventional techniques for detection of concurrency issues
in Java, such as data-race defects [15, 30, 34, 46], are not readily
applicable for Android [10, 38]. They neither explicitly consider
the event-driven model of app behavior, nor support the new con-
currency constructs in Android. More recently, researchers have
investigated both dynamic [10, 20, 29] and static [17, 22, 45] analysis
techniques for detection of concurrency issues in Android. Dynamic
analysis techniques proposed so far are limited in their capability, as
they miss true event races due to their limited coverage of the app
behavior [22]. Existing static analysis techniques [17, 22, 45] fail to
accurately identify many event races due to (1) imprecise modeling
of concurrency behavior in Android, and (2) adoption of analy-
ses that are innately flow-, context-, thread-insensitive. Moreover,
the existing static analysis techniques are slow, e.g., nAdroid [17]
takes about 50 minutes on average to analyze an app. Besides that,
these works support only a small and fixed set of concurrency li-
braries, e.g., SARD [45] only considers asynchronous invocations
by Handler,Activity,and Thread APIs, and cannot be easily
extended to support other libraries. Furthermore, the tools realizing
these techniques are either unavailable ([22, 45]), or closed-source
(7).

In this paper, we introduce ER Catcher, a static analysis frame-
work for effective detection of event-race defects in Android apps
that aims to overcome the shortcomings of prior works. Three novel
concepts set our work apart from the prior techniques and allow
us to succeed where others have failed.

First, ER Catcher relies on a new type of summary function,
called Concurrency-aware Summary Function (CSF), for modeling
the concurrent behavior of methods in both Android apps and li-
braries. The CSF for each app method is automatically extracted,
while the set of CSFs representing concurrent behavior of methods
comprising a library are manually constructed as a one-time effort.
ER Catcher processes methods in an app’s call graph in a reverse
topological order, thereby improving the performance of analysis,
i.e., eliminating the need to reanalyze the same method multiple
times. Furthermore, by modeling each library (e.g., AsyncTask,
Handler) as a set of CSF specifications, the implementation of
ER Catcher is completely separated from its support of Android
libraries. This, in turn, allows one to add support for new or mod-
ified Android libraries by simply providing ER Catcher with the
proper CSF specifications, and without requiring changes to the
ER Catcher’s implementation.

Second, ER Catcher builds its analysis on an abstraction repre-
sentation of app, called Context and Concurrency-aware Call Graph
(C3G). In C3G, each method call is represented in terms of its three
execution states: invocation, start, and end. The states are connected
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through edges that distinguish between synchronous and asynchro- 1 class TrackTimeActivity extends Activity {
nous interactions. Unlike a conventional call graph, C3G is aware =~ ° 1ong startlime, elapsedlime;
. A 3 TextView timeView;
of the running thread of each method. The fine-grained representa- ,  Button recordButton;
tion of app behavior in C3G enables ER Catcher to perform flow-, 5 void onCreate () {

. . .. i . recordButton = findViewById(...
context-, and thread-sensitive analysis. This increased sensitivity of ] ) ; . X yid( )
7 timeView = findViewById(...)

analysis addresses the limitations imposed by imprecise modeling 8 new Handler (getMainLooper ()) .post (new InitTime());
in prior techniques that aﬁect their accuracy. 9 new RecordTimeTask () .executeOnExecutor (SERIAL_EXECUTOR,
. . System.currentTimeMillis());
Thlrd’ ER Catcher employs a novel’ statlcally computed data 10 recordButton.setOnClickListener (new OnClickListener () {

structure, called Static Vector Clock (SVC), to efficiently analyze the public void onClick (View view) ({
h: ns-before relations in an . is inspir: h n 2 Executor executor = THREAD_POOL_EXECUTOR

appens-before relations in an app SYC s inspi ed by the concept i /7 executor = SERIAL EXECUTOR;
of Vector Clock [24] from the domain of distributed systems for new RecordTimeTask () .executeOnExecutor (executor,
determining the order of events in such systems. SVC enables ER System.currentTimeMillis ());

Catcher to quickly query happens-before relations for a subset of ) i .

events suspected to be involved in an event race, thereby making 1 )

its analysis substantially faster than prior techniques. s o
. . . . 19 class InitTime implements Runnable({
Besides the above, ER Catcher is the first of its kind, completely »  public void run() {
open-source static analysis tool for event-race detection in An- startTime = -1;
droid [2]. Based on our extensive empirical evaluations, ER Catcher ~ * elapsedTime = 0; .
. ) 23 timeView.setText ("Initializing");
outperforms the state-of-the-art static event-race detector, nAdroid  ,,
[17], in terms of accuracy (13% more precise) and performance (12 5}

times faster). Moreover, our experiments show ER Catcher is both , class RecordTimeTask extends AsyncTask |
practical and scalable—capable of analyzing 90% of 500 randomly 2  Long doInBackground(Long currentTime) {

selected real-world apps from F-Droid repository [3] in under 5 send (currenttime);

. 30 return currentTime;
minutes per app. 3 }

The remainder of this paper is organized as follows. Section 2 2 void onPostExecute (Long currentTime) {
provides an example of event-race defect in Android that is used if (startTime < 0) .

. . A . 34 startTime = currentTime;

to describe the approach. Sections 3 describes the details of our 4, elapsedTime = currentTime — startTime;
approach, while Section 4 presents our experimental evaluation. Sec- % timeView.setText (Long.toString (elapsedTime));
tion 5 summarizes the related work and finally Section 6 concludes |, '
and discusses the future work. The tool, research artifacts, and 5}

proofs of soundness can be found on the companion website [2]. o

(a) The code of the app

2 ILLUSTRATIVE EXAMPLE Serial  UlThread  ThreadPool

Figure 1a shows the code snippet of a “screen time” tracking app
that logs the time a user has spent on an app on an external server
and displays it on the screen. TrackTimeActivity is created
when the app starts. It immediately sends a request to the server to
record the initial activation time. From then on, whenever the user
clicks on recordButton, the app requests the server to record
the time and displays the elapsed time on screen.

According to the code in Figure 1a, onCreate method asyn-
chronously invokes InitTime.run (initTime in short) and
RecordTimeTask.doInBackground (dIB in short) meth-
ods (lines 8-9). initTime method runs on the Ul (main) thread,
since it is initiated by a Handler of main Looper. Looper is
a FIFO queue wrapper for a thread in Android, enabling tasks to
be queued for execution by the thread. Handler is responsible
for enqueueing tasks in the associated Looper using the post
method. Here, the task is initTime method, which simply ini-
tializes startTime, elapsedTime, and t imeView variables
(lines 20-24). The executeOnExecutor method called on line 9
is an AsyncTask library API that eventually results in the invoca-
tion of dIB method in SERIAL_EXECUTOR, i.e., a construct that
enqueues tasks and executes them sequentially in a single thread.
dIB sends currentTime to the server through a blocking send
method (line 29). Once dIB is finished (the data has been sent

onCreate
=D

initTime

diB-0 onClick ™

diB-1

onPost-1

onPost-0

(b) The timeline of the event race

Figure 1: An event race example in Android
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to the server), RecordTimeTask invokes onPostExecute
(onPost in short) on the Ul thread and passes the currentTime
to it. This method sets startTime (if has not been set so far), up-
dates elapsedTime, and displays it on t imeView widget (lines
32-37).

The Ul event handler for recordButton is onClick, which
executes RecordTimeTask. Point to note, dIB invoked through
onClick (lines 11-15) runs on THREAD_POOL_EXECUTOR, i.e.,
a construct that collects tasks and executes them in parallel without
any order.

To distinguish between the invocations of RecordTimeTask
through onCreate and onClick, we add an index to them:
dIB-0 and onPost—-0 when invoked by onCreate, and dIB-1
and onPost -1 when invoked by onClick.

The logically correct behavior for this app should follow a spe-
cific execution order. Namely, initTime should happen before
onPost-0, and onPost—-0 must happen before onPost-1 in
order to show the correct elapsed time on the screen. This assump-
tion, however, can be violated, since there is no happens-before
relation between onPost-0 and onPost-1, as depicted in Fig-
ure 1b. Due to network communication latency, the execution time
of send method (line 29) is non-deterministic. It is thus possible
that dIB-0 finishes after dIB-1, resulting in onPost -1 method
to execute prior to onPost—0. Consequently, start Time is set
to the time that recordButton is clicked rather than the time
onCreate is invoked, which means a negative value for time is
shown on screen. This issue can be resolved by uncommenting
line 13 to execute all RecordTimeTasks in a serial mode. That
would enforce onPost -1 to be executed after onPost-0.

A static analysis approach for effectively detecting event-race
defects in Android needs to be flow-, context-, and thread-sensitive:

o Flow-Sensitive: a flow-insensitive approach would ignore
the statement ordering, thereby reporting false positives.
For example, the only reason initTime happens before
onPost—0 is that initTime is invoked before dIB-0 in
the body of onCreate (lines 8 and 9).

e Context-Sensitive: A context-insensitive approach does
not distinguish between the invocation of two methods un-
der different execution contexts, thereby misses true event
races. In the above example, there is one onPostExecute
method, but it can be executed under different contexts
(through onCreate or onClick). Without considering
the context of execution, the occurrence of such an event
race could not be detected.

o Thread-Sensitive: A thread-insensitive approach either
falsely assumes all tasks are executing in one thread, or
conservatively assumes no tasks share threads. A thread-
insensitive approach that assumes all tasks are running in
the same thread would miss true event races shown in the
example of Figure 1a. On the other hand, if both dIB-0
and dIB-1 are actually running in the same thread (in the
fixed version of Figure la), a thread-insensitive approach
that assumes no tasks share threads cannot detect the actual
happens-before relation and reports a false positive.

Furthermore, a practical solution needs to be (1) Scalable, to
make it suitable for execution during the development process, (2)
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Figure 2: An overview of ER Catcher

Extensible, to accommodate the evolution of concurrency con-
structs in modern mobile platforms, and (3) Available, to allow
practitioners to make use of it, and to enable researchers to build
on top of it.

The aforementioned criteria constitute the requirements for ER
Catcher, described next.

3 APPROACH

Figure 2 shows the components of ER Catcher. We explain the
details of each component in this section. For brevity, we elide the
details of call-graph generation and points-to analysis, since we
employ existing off-the-shelf solutions [7, 25].

3.1 Concurrency Augmentation

Consider the implementation of the illustrative app (Figure 1a),
which overrides doInBackground and onPostExecute
methods of AsyncTask library. Here, most of the semantics of
concurrent behavior does not exist in the source code of the app
itself. First of all, there is no explicit invocation of these meth-
ods. Moreover, the code itself does not reveal a particular order
of execution. Besides that, these methods may run in different
threads. However, from our understanding of the AsyncTask
library, we know that by invoking executeOnExecutor
method, doInBackground will be implicitly invoked on the
thread which can be determined by the first parameter (e.g.,
SERIAL_EXECUTOR), followed by onPostExecute that runs
on the UT thread. Although this information is embedded in the
implementation of libraries, including the libraries in the analysis
would make the approach slow and inefficient. More importantly,
this information may not be extracted precisely due to the limita-
tions of static analysis. To overcome this challenge, we introduce
the notion of Concurrency-aware Summary Function (CSF).
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Figure 3: A subset of the C?G of app in Figure 1a

The concept of CSF is inspired by summary-based static anal-
ysis [18, 40], where for each method a model representing the
method’s behavior is constructed and subsequently reused to ex-
pedite the analysis. We adapted this technique to model only
concurrency-relevant information, e.g., the synchronous versus
asynchronous nature of invocation calls, or the type of thread that
an outgoing method call will execute on.

As shown in Figure 3, a CSF models a method call in terms of
its three execution states: invocation, start, and end. We formally
define CSF of a method m to be a Directed Acyclic Graph (DAG)
represented as (N, E). Here, N consists of a start node and an end
node indicating the initiation and termination of m respectively,
and zero or more invocation nodes indicating the methods that are
called as a result of execution of m. E is the set of directed edges
such as (n1, n2), where n; dominates ny, i.e., all paths starting from
the entry of a method reaching ny has to pass through n;. The
edges of a CSF capture the intra-procedural flow that is missing in
a conventional call graph.

An invocation node has five attributes (Name, Type, RT, Task,
TT), where Name is the name of the callee’s method, Type indicates
the type of invocation (synchronous or asynchronous), RT is the
running thread identifier that the callee method will run on, and
Task is the callback method that will eventually run on the task
thread (TT) at some point in future.

We augment the call graph of an app, obtained using Flow-
Droid [7], with the concurrency behavior of its methods modeled in
CSFs to arrive at a Concurrency-aware Call Graph, called C?G. Fig-
ure 3 depicts a subset of the C2G for the illustrative example (recall
Figure 1a). Each large white box corresponds to a node in the call
graph, while the internals of each box represent the CSF. The top
row in Figure 3 shows the ent ryPoint method, which similar
to prior work (FlowDroid [7]) is artificially created to emulate the
lifecycle of an Activity.

The second row consists of the defined/overridden methods in
the app. For instance, the CSF of onCreate consists of start, two
invocation, and end nodes (due to limited space, some invocations,
suchas £indViewById, are not shown). The first invocation node
in onCreate represents line 8 in Figure 1a that invokes post
(Name) method synchronously (Type) on onCreate’s thread (RT)
and eventually initTime (Task) will be executed on UI thread
(TT). Note that, certain contextual information, such as specific
threads executing some of the methods, are unknown at this point,
denoted in bold as UNK, e.g., UNKRr in post invocation node is
the running thread of onCreate that is not yet resolved.

The bottom row depicts the CSFs of library methods called
by the app. The CSF of executeOnExecutor in AsyncTask
library shows that this method first synchronously invokes
onPreExecute on its own running thread, UNKRr, then asyn-
chronously invokes intermDoInBG method on another thread,
UNKr7r. Moreover, the last invocation node passes UNKgr as the
task thread (TT), to model the fact that the result of computations
performed in the background should eventually be returned to the
main caller’s thread. The other CSF, intermDoInBG, first syn-
chronously invokes doInBackground, and next asynchronously
invokes onPostExecute on UNKpr. Note that, the actual im-
plementation logic of AsyncTask library is much more complex
than its corresponding summaries, e.g., it consists of several ex-
ception handlers and various classes, such as WorkerRunnable.
However, the summaries are sufficiently modeling the concurrent
behavior of the library for our analysis with a few CSF nodes.

To construct the C2G, we expand each method in the call graph
of an app with its corresponding CSF representation. The CSFs of
concurrency library methods are provided as an external artifact,
while the CSFs of app methods are automatically extracted. Each
concurrency library method is associated with a CSF specification
and a helper function that determines the attributes of its invocation
nodes.
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For each app method, the CSF nodes and edges are extracted
using the control-flow graph of its body. Next, for each invocation
node of a concurrency library method encountered in the app logic,
the corresponding helper function determines the attributes such
as RT and TT. Finally, to capture the order of calls more accurately,
we change the source of call-graph edges to invocation nodes.

We model the concurrent behavior of Android components (i.e.,
Activity, Service, and BroadcastReceiver) using CSFs
as well. An artificially created entryPoint method emulates
the invocation of a component’s callback methods according to
the lifecycle of the corresponding component type. We automat-
ically generate the CSF of entryPoint methods similar to app
methods, except the callbacks are invoked asynchronously in main
thread.

Currently, ER Catcher supports the following concurrency-
related constructs in Android: Thread, Looper, Handler,
AsyncTask, IntentService, ServiceConnection,
and lifecycle methods of Activity, Service, and
BroadcastReceiver. Note that ER Catcher analyzes both app
code (written by the app developers) and app libraries, e.g., an
advertisement library. However, if a library introduces its own
concurrency mechanism, ER Catcher requires its corresponding
CSF for precise analysis. For more details on the implementation
of Library CSF, please visit the ER Catcher’s website [2].

3.2 Event-Race Candidate Detection

In parallel to the construction of fine-grained models representing
the concurrent behavior of an app, ER Catcher analyzes the app to
identify a list of all candidate event races (recall Figure 2). The crude
event races identified at this stage are then filtered in the subsequent
steps. An event race is defined as a triplet (Stmt, Stmty, F), where
Stmt; and Stmt; are executing in methods M; and My, and F is
a field (representing a memory location statically). These triplets
have to satisfy the following properties: (1) Stmt; and Stmt, have
access to memory location F, and at least one of the accesses is a
write; and (2) there is no happens-before relation between Stmt;
and Stmty

For example, the illustrative app of Figure 1a has two potential
event races involving the memory location elapsedTime:
(initTime:22, onPostExecute:35, elapsedTime)
(onPostExecute:35, onPostExecute:35, elapsedTime)

In this component, we do not have any information about the
context of methods; therefore, we use a conservative approach and
presume no happens-before relation exists between the statements.
We use an off-the-shelf points-to analysis technique (SPARK [25])
to determine the statements in two methods are accessing the same
memory location.

3.3 Context Augmentation

For precise event-race detection, we need to account for the exe-
cution context (recall Section 2). To that end, we need to augment
C%G with contextual information to resolve the unknown entries
such as UNKgr and UNK7t in CSFs. One naive approach for de-
termining the contexts of all methods is to traverse the call graph
along the edges, starting from the entry point. However, such an
approach does not scale, because the number of potential paths is
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O(2™), where n is the number of methods. To address this challenge,
we use dynamic programming together with two filters (Race In-
volvement and Synchronous Substitution), which substantially prune
the analysis and memory space. Once the contexts are determined,
the remaining parts (running and task threads) can be determined
by simply propagating threading information through the invo-
cation caller sites. The result of this component is Context- and
Concurrency-aware Call Graph, called C3G.

Figure 4 depicts the process of determining the contexts for a
subset of the illustrative example. For brevity, only the CSF nodes
involved in the context augmentation are shown here. The edges
annotated with S are synchronous call-graph edges.

We process the methods of C2G, shown in Figure 4a, in a reverse
topological order.! During this process, a method can be in the
visited, visiting, or non-visited stages. For each visiting method m,
we first apply Race Involvement filter: if neither m nor any of m’s
descendants are involved in an event race, we do not process m,
e.g., method findviewById in Figure 4b is pruned. This filter
reduces the analysis space drastically. The Event-Race Candidate
Detection component, discussed earlier, provides us with a list of
methods that may be involved in an event race.

If m passes this filter, for each incoming edge to its start node, we
make a copy of m and all of its descendants to make its incoming
edges unique. We then connect each edge to the start node of
its corresponding copy (making the incoming edge of m’s start
node unique). For example, in Figure 4b, the start node of method
onPost has only one incoming edge; therefore, there is only one
copy of onPost in Figure 4c.

If the invocation of a method is synchronous, e.g,
onCreate — executeOnExecutor, it does not impact
the concurrent behavior of the app. In this situation, we apply
Synchronous Substitution filter by (1) removing the callee method,
(2) connecting the outgoing edges of caller method to the callee
method’s children, (3) annotating these edges with the caller to
maintain the sequence of invocations. For example, Figure 4c shows
Synchronous Substitution of executeOnExecutor. The method
executeOnExecutor is eliminated and replaced with two
annotated edges, representing alternative execution contexts. This
filter substantially improves the utilized memory and processing
time of subsequent steps. Note that since we are processing the
methods in the app call graph in a reverse topological order, all
descendants of m are already visited.

Figure 4d shows the final stage of context augmentation. As
mentioned earlier, for each incoming edge of intermDoInBG’s
start node (the edges from onCreate and onClick), a copy of
intermDoInBG and its descendants (onPost) is created, making
the incoming edge of each node unique.

Once the contexts of all methods are determined, the remain-
ing two parts (running and task threads) can be determined by
propagating the thread information starting from the entry point.
The thread of the entry point is already known, since it runs on
the Ul thread and there is no task thread (as depicted in Figure 3).
Using the C3G edges we propagate these information. For exam-
ple, in Figure 3, once the caller sites of executeOnExecutor
are resolved to be onCreate and onClick, the specific thread

LIf C2G is cyclic, we apply 1-unrolling [19] procedure and eliminate cycles.
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used to execute tasks in the background, as modeled by UNKRgt
in intermDoInBG, can be determined. In the case of reach-
ing executeOnExecutor through onCreate, UNKgr of
intermDoInBG is determined to be the SERIAL_EXECUTOR,
while in the alternative case of reaching executeOnExecutor
through onClick, UNKgr of intermDoInBG is determined to
be THREAD_POOL_EXECUTOR.

At this stage, all contextual information are determined. The
final C3G of the example in Figure 1a can be seen in Figure 5.

3.4 Happens-Before Analysis

For precisely determining event races, we need to determine the
happens-before relation, denoted as <, among the execution states
of methods (i.e., start, invocation, and end). To that end, we de-
veloped an efficient approach for statically reasoning about the
happens-before relations in an event-driven program, called Static
Vector Clock (SVC). Our solution is inspired by the notion of Vec-
tor Clock [24]—a well-known algorithm for determining partial
ordering of events in a distributed system, whereby timestamps
associated with messages exchanged among the distributed nodes
are used to establish a logical clock. The conventional Vector Clock
relies on the following basic principle to adjust the logical clock of
a distributed system: the transmission of a message must precede
its receipt in time. Similarly, in our work, we leverage the execution
states of methods (nodes) represented in C3G to construct a logical
clock. We rely on three principles: (principle 1) for a given thread
of execution, a method’s invocation state must precede its start state,
and a method’s start state must precede its end state; (principle 2)
a method’s invocation state precedes another method’s invocation
state if the call statement of the former dominates that of the latter
in the control-flow graph; and (principle 3) in a FIFO thread, a
method’s end state precedes the start state of another method, if
the former invocation state precedes the latter invocation state.
The proof of correctness for these principles can be found on the
companion website [1].

Figure 5 illustrates how we compute the value of SVC for each
node using the C3G of the illustrative app. Each method call is
represented in terms of three nodes with suffixes . i (invocation
state), . s (start state), and .e (end state). Moreover, each node
has a numerical identifier, e.g., onCreate.1 is the invocation
state of onCreate identified as node 1. The nodes are divided
into three zones representing the threads that they are running on.
For the sake of clarity, the main entry point method that invokes
onCreate and onC1lick methods is not shown here.

The value of SVC for each node is shown above it as a vector.
Formally, in an event-based system with |T| threads, the SVC value
of a node n is a vector SVC(n) =< Sy, -+ .S|1| >, where S; is the
minimized set of nodes occurring in thread T; before node n. S; is
minimized when there does not exist any happens-before relation
between any of its members. For example, the SVC value of node 20,
meaning the last nodes occurring before node 20 in Serial, UI Thread,
and ThreadPool are 5, 19, and 13, respectively. Here, since SVC is
minimized, node 14 is not in SVC(20), even though it happens
before node 20, i.e., the invocation state of onPost occurs before
its end state. Because 14 < 19 < 20, the inclusion of 19 in the SVC is
sufficient. On the other hand, SVC(9), contains two nodes ({3, 6}),
since there is no happens-before relation between the invocation
state of onC1lick and the end state of onCreate.

Given the SVC of an app, we can quickly determine the existence
of happens-before relation among its nodes:

THEOREM 1. Node a; happens before node an, a1 < ap,
if there exists a sequence of nodes (ai,---,an) such that
V1 <i<naj€SVC(aj+1).

THEOREM 2. Two nodes a and b may happen without any order
if there exists two threads, t1 and t2, such that SVC(a);, < SVC(b)y,
and SVC(b)tZ < SVC(a)tZ
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Figure 5: The C3G of the illustrative app in Figure 1a anno-
tated with Static Vector Clock values.

The proof of correctness for these theorems can be found on the
companion website [1]. We can determine if there is a happens-
before relation between two nodes using Theorem 1. For exam-
ple, 7 < 21 because there exists a sequence of nodes, (7, 8, 18, 21),
where each element belongs to the SVC of its next element, or
7 € SVC(8), 8 € SVC(18) and 18 € SVC(21). Using Theorem 2 we
can determine if there is no happens-before relation between two
nodes. For example, there is no happens-before relation between
nodes 20 and 21, since we have SVC(20); =5 < SVC(21); = 10 and
SVC(21)3 = 0 < SVC(20)3 = 13.

Algorithm 1 shows how SVC is computed. We first initialize the
SVC using C3G edges as shown on lines 1 — 5 (n.t indicates the
thread that node n is running on). This initialization satisfies the
first two principles: call-graph edges enforce a method’s invocation
state happens before its start state (principle 1), while CSF edges
enforce the happens-before relations implied by the control-flow
graph (principle 2). The rest of algorithm satisfies the third principle
using a fixed-point iteration method, i.e., update SVCs according
to Same Task-Queue Order until the values of SVCs do not change.

Same Task-Queue Order ensures if two methods, m; and my, run
on the same FIFO thread and mj.i happens before my.i then my
finishes before my (or mj.e < ma.s). For example, because the invo-
cation states of methods onClick and initTime (nodes 3 and
4) happen before the invocation of onPost—-1 (node 14), we have
{8,12} C SVC(19); (the end states of onClick and initTime
happen before the start state of onPost—1). Note that even though
initTime and onClick happen before onPost—1, there is no
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Algorithm 1 SVC calculation

Require: N (C3G nodes), E (C*G edges), T (set of threads)
1: for eachn € N do
2: SVCO(n) —< 0y, -+, 0|T| >

3: for each ny — ny € E do

4 te—ny.t

5. SVC(np)r « SVC(ny); Umy

6: 10

7: repeat

8 ie—i+1

9. SVCi(n) « SVC'~1(n)

10: O « the topological order of graph (N, Ino(SVC?))
11: HBM « an empty dictionary from nodes to methods
12: for eachn € O do

13: if n = m.i A n.t is FIFO then

14: for each m’ € HBM|[n]; do

15: SVCi(m.s); « SVCi(m.s); Um'.e
16: Minimize SV C(m.s),

17: HBM[n]; « m

18: for each n’ € Ino(SVC?)(n); do

19: HBM[n'] —« HBM[n'|UHBM|[n]

20: until SVC! = SV Ci-!
21: SVC « SVC?

happens-before relation between their end states and onPost-1
invocation state.

A naive approach to apply Same Task-Queue Order is to query
happens-before relation between all pairs of method invocation
states and update SV Cs accordingly. However, we can avoid the
query cost by traversing an ordered DAG (N, Ino(SVC)), where
the nodes are N and the directed edges are the set of (n, ny) such
that ny € SVC(ny). One property of this ordered DAG, denoted by
O for short, is that if n; < ny then n; precedes ny in O. For example,
the node identifiers in Figure 5 show the position of nodes in O and
there is no ny < ny where the id of n; is greater than the id of ns.
We store the set of methods where their invocations occur before
node n in HBM|[n] while iterating over O, since all the nodes that
happen before n are already visited; as a result, there is no need to
query happens-before for each pair of the invocation nodes.

Algorithm 1 initializes O and H 8 M on lines 10—11, then iterates
over Q. For each n running in a FIFO thread that is the invocation
state of method m, the algorithm appends the end node of methods
in HBM|n]; to the SVC of m’s start node (lines 13 — 15). Since
SVCi(m.s); may be updated, it should be minimized (line 16). To
increase the performance of the algorithm, HBM|[n]; is set to m,
since n is the latest invoked node in thread ¢ for the remaining
nodes (line 17). Finally, the algorithm propagates HBM|[n] to
the nodes in Ino(SVC)(n); which is the set of nodes like n’ that
n € SVCi(n’); (lines 18 — 19). This process repeats until SVC’ does
not change.

3.5 Thread-Sensitive Filter

In this component, we use C3G and SVC to prune the false
event races produced by Event-Race Candidate Detection
component (recall Figure 2). Given an event race, we check if
there is a happens-before relation between the corresponding
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methods. Method m; happens before method my if all end
states of m; happen before start states of my. We remove all
event races in which there is a happens-before relation be-
tween their method calls. For example, we filter out the event
race (initTime:22, onPostExecute:35, elapsedTime),
because as depicted in Figure 5, there is a happens-before
relation between all end states of initTime and start
states  of
initTime.e < onPost-1.s. However, for the event race
(onPostExecute:35, onPostExecute:35, elapsedTime),
there is neither a happens-before relation between onPost-0.s
and onPost-1l.e, nor between onPost-0.e and
onPost—1.s. We thus report it as a possible event race.

To further prune the false event races, two filters (If-Guard and
Null-At-End) are designed for Use-after-Free (UF) defects. A UF
defect is a harmful event race where one memory access makes
a memory location free (writes null) and another access uses
(reads) it, resulting inaNullPointerException to be thrown.
If-Guard removes the UF defects where the read access is guarded by
a null-checking condition, e.g.,in if (f!= null) f.use();
the field £ will not be accessed if it is nul1l. In addition, Null-At-End
filters UF defects where the memory location is not reassigned with
a value other than null after becoming free e,g,.in £ = null;
f = new F (); thefield f is not null.

In addition to the above-mentioned filters that are sound, we
also provide several heuristics that are unsound, but in practice can
significantly reduce the false warnings, as described next.

onPost: initTime.e <onPost-0.s and

3.6 Prioritization

The reported event races by the previous component include all
possible event races that need to be reviewed by developers. To
facilitate this manual process, we prioritize the detected event races
by our confidence in their existence. Our confidence is inversely
related to the degree of over-approximation in the static analysis,
i.e., less over-approximation in detecting an event race leads to more
confidence about its existence. Due to the over-approximation of
static analysis and our conservative approach, we do not filter event
races for which we have incomplete information.

We prioritize event races according to the number of satisfied
over-approximation properties. (Reachability) We prioritize event
races that are reachable, i.e., there are paths in the call graph from
the entry-point to both methods of a reachable event race. The
thread-sensitive filters are not applied on unreachable event races
because their thread information is unknown. (Must-Alias) Event
races that involve statements accessing must-alias fields have pri-
ority over may-alias fields. Two fields are must-alias if they always
point to the same memory location. (Known-Thread) Event races
where the threads of their methods are known have more priority
than others. For example, when we are not certain about the corre-
sponding Looper of a Handler (which can be the main thread
Looper or a custom thread Looper), we assume its messages
are handled in an unknown thread that dispatches messages in
parallel.
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4 EVALUATION

This section discusses our experimental evaluation to answer the
following research questions:

e RQ1 How accurate is ER Catcher in detecting true event
races?

e RQ2 How fast does ER Catcher analyze real-world apps?

e RQ3 How effective is ER Catcher in filtering false event
races?

e RQ4 What is the impact of modeling concurrency in improv-
ing the overall accuracy of static analysis?

We evaluate ER Catcher using three different datasets. First, we
use a set of benchmark apps containing event-race defects, called
BenchERoid [39]. For these apps the ground truth is known, allow-
ing us to report the precision, recall, and F1 score of ER Catcher.
Second, we use a “Curated” dataset of 31 real-world apps with
event-race defects that have been confirmed, through either dy-
namic analysis, or code commit messages. We collected these apps
by reviewing the prior literature [17, 21, 29] and crawling the open-
source repositories. Finally, we evaluate the scalability and effec-
tiveness of ER Catcher using 500 randomly selected apps from
F-Droid [3]. Table 1 summarizes the datasets used for evaluation.

We compare ER Catcher with nAdroid [17], the state-of-the-art
static Use-after-Free (UF) event-race detector that is available pub-
licly, but not entirely open-source. Since nAdroid detects only UF
event races, to make the comparison fair between ER Catcher and
nAdroid, we configure ER Catcher to report only UF event races.
We also tried to empirically compare ER Catcher to several other
tools, namely SIERRA [22], SARD [45], ASYNCCLOCK [20], and
EventRacer [10]. Since none of these tools are available, we con-
tacted the corresponding authors. Unfortunately, despite multiple
attempts, the authors either did not respond to us or confirmed their
inability to release their tool. We provide a qualitative discussion
of the differences between ER Catcher and these other techniques
in Section 5.

Table 1: Properties of datasets used in our experiments.

Dataset # Apps | Criteria Average | Median | Min Max
#Methods 27 255 18 51
BenchERoid 34 #Components 1 1 1 3
dataset Size (KB) 1123 1042 931 1646
#Methods 1563 1066 78 5155
Curated 31 #Components 19 12 1 138
dataset Size (KB) 3850 2069 29 26445
#Methods 1041 499 10 6432
F-Droid 500 #Components 9 5 1 544
dataset Size (KB) 4171 2000 10 97676

4.1 RQ1: Accuracy

We ran ER Catcher and nAdroid on the 34 apps provided by
BenchERoid to measure their respective accuracy. The results are
shown in Table 2. The actual number of event races in the bench-
mark apps are shown in column 2. nAdroid uses two different filters
(sound and unsound) for reducing false event races; we report both
of them in columns 3 and 4, respectively. We report the event races
identified by ER Catcher in column 5 and the prioritized event races
(recall Section 3.6) in column 6. We categorize the apps provided by
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BenchERoid into four groups. The first group is non-UF event races.
We do not consider them in comparing the accuracy of ER Catcher
with nAdroid, since nAdroid does not report non-UF event races.
The second and third groups consist of apps containing UF event
races related to flow- and thread-sensitivity, respectively. The rest
of the apps are placed in the “Other UF” category.

Table 2: Benchmark Result. The general event races (high-
lighted rows) were not considered for the accuracy metrics.
(®True Positive ()False Negative «False Positive.

]

R . L

£ilze |3T |2 23
App Name T 3 5 g 3 3 =T

28| <8 <2 © o

S 9 = g5 ~ o B

(GR=] = M A

3

Non-UF Event Races
SingleActivity7 1 O O ®* ®
SingleActivity8 2 OO OO @ | HE*
Service5 1 O O ®=* ®
AsyncTask5 1 O O ®* ®
AsyncTask6 0 *
Flow-Sensitive UF
SingleActivity2 0 * *
SingleActivity5 2 E®*x | ®®*x | ®® ®®
SingleActivity6 2 OIOH [OIOE ®® ®®
AsyncTask2 0 *
Looperl 0
Thread-Sensitive UF
SingleActivity3 1 O O ® ®
AsyncTask1 1 ® O ® ®
AsyncTask3 1 ® O ® ®
Thread1l 1 ®* O ®#* ®x*
Thread2 1 ®* O @ ®*
Looper2 1 ® ® ® ®
Service3 1 O O ® ®
Service4 0 * *
Other UF

MultiComp1 2 ®® ®® ®® ®®
Receiver 1 ® ® ® ®
Servicel 0 * ® * *
Service2 1 ®0O0 | ®O0O | ®EO | ®B®O
LifeCyclel 3 GO | EO® | ®EG® | GO
LifeCycle2 0
LifeCycle3 2 ®® ®® ®® ®®
LifeCycle4 2 ®® ®® ®® ®®
SingleActivity1 1 ® ® ®* ®
SingleActivity4 0 Hokok ok ok
AsyncTask4 1 ® O ® ®
Executorl 1 ® ® ® ®
Executor2 1 ®* O O O
TimerTask1 1 ® ® ® ®
TimerTask2 1 ® ® ® ®
Looper3 1 ® ® ® ®
Total () (higher is better) | 27 21 29 29
Total O (lower is better) 4 10 2 2
Total * (lower is better) 13 9 7 6
Precision %67 %70 %80 %82
Recall %87 %67 %93 %93
F1 %75 %68 %86 %88

Overall, ER Catcher is significantly more accurate than nAdroid.
ER Catcher achieves 80% precision and 93% recall, compared to
nAdroid’s 67% precision and 87% recall. Due to its flow-sensitivity,
ER Catcher is able to filter all of the false positives reported by
nAdroid under the Flow-Sensitive UF category. Due to its thread-
sensitivity, ER Catcher is able to identify additional true event races
compared to nAdroid under the Thread-Sensitive UF category.
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Although ER Catcher is more accurate than nAdroid, it has its
own limitations. ER Catcher is path-insensitive, therefore it reports
false positive UF event races that reside on execution paths that will
not execute, e.g., Servicel. Due to time-insensitivity, ER Catcher
reports false positives in cases where the statements execute at
specific times, e.g., SingleActivity4. ER Catcher fails to fil-
ter one false-positive event race in SingleActivityl due to
incomplete reachability information; however, it is removed in “ER
Catcher Prioritized”. The imprecision in the off-the-shelf points-to
analysis used by ER Catcher leads to a false negative in Service?2.

We also ran ER Catcher and nAdroid on the Curated dataset,
consisting of 31 real-world apps with confirmed event races. ER
Catcher was able to analyze all of the 31 apps, while nAdroid could
only analyze 27 of them. ER Catcher achieved 100% recall, detecting
all of the event races in these apps, while nAdroid achieved 88%
recall. Since not all of the event races in these apps are known, we
are unable to report the recall using this dataset.

4.2 RQ2: Scalability

We analyzed all three datasets using ER Catcher and nAdroid to
compare the scalability of these techniques. Table 3 summarizes
the results. For the first two datasets (i.e., BenchERoid and Curated
datasets), we did not set a timeout. However, due to the large num-
ber of apps in the third dataset (F-Droid), we set a timeout of 5
minutes. On average, ER Catcher analyzed each app in the Curated
dataset within 231 seconds, while nAdroid required 3, 134 seconds
(~ 52 minutes). Overall, ER Catcher finished the analysis between
12 to 13 times faster than nAdroid for the first two datasets.

For the F-Droid dataset, ER Catcher analyzed 459 out of 500 apps
(more than 90%) within the designated time of 5 minutes (two apps
could not be analyzed because FlowDroid could not generate the
call graph for them). However, nAdroid could only analyze 30 apps
(6%) within the allotted time. Furthermore, nAdroid crashed during
analysis of 316 apps (more than 60%) indicating nAdroid is unable
to complete the analysis irrespective of time.

Table 3: Analysis time summary

a=i
.l e 2] .1 .
> K|
iF| 8 |2 |2 |2
g < =
jE <
. nAdroid 29 217s 145s | 131s 372s
BenchERoid ER Catcher 29 18s 20s 7s 35s
dataset nAdroid
ER Catcher 1x 12x 7x 18x 10x
Curated nAdroid 27 3134s | 786s | 83s 22690s
ER Catcher 31 231s 29s 4s 5548s
dataset nAdroid
ER Catoher 0.87x 13x 27x 21x 4x
F-Droid nAdroid 30 153s 152s | 108s | 285%s
ER Catcher 459 53s 29s 4s 2967s
dataset nAdroid
ERC 0.06x 3x 5x 27x 0.96x
atcher

4.3 RQ3: Effectiveness of Filters

To evaluate the degree to which ER Catcher filters out false event
races in real-world apps, the number of UF event races in three
stages of analysis are reported in Table 4. The first row shows
the number of event-race candidates identified by the “Event-Race
Candidate Analysis” component (recall Section 3.2). The second
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row shows the number of filtered UF event races reported by the
“Thread-Sensitive Filter” component (recall Section 3.5). The fourth
row reports the number of prioritized UF event races (recall Sec-
tion 3.6). The reduction rates achieved for the Curated and F-Droid
datasets are %77 and %86, respectively. This results in prioritizing
37 and 23 UF event races that require manual investigation by de-
velopers. In practice, many of the detected event races are caused
by the same defect in code, i.e., one defect in code causes event race
conditions under multiple execution contexts. As a result, develop-
ers can often confirm the presence of a defect without having to
review the complete list of reported event races.

Table 4: Effectiveness of filters and prioritization

Criteria Average | Median | Min | Max
#UF Candidates 317 341 0 1238
g #Filtered UFs 150 114 0 540
< .
= Filtered
3 o 50% 54% 0% | 92%
= Candidates
E #Prioritized UFs 37 15 0 147
3 Prioritized
© o ornzed 23% 129 | 0% | 100%
Candidates
- #UF Candidates 308 57 0 9249
[
E #Filtered UFs 129 5 0 | 1806
S Filtered
= f————— 45% 48% 0% | 100%
) Candidates
/] #Prioritized UFs 23 0 0 1011
Prioritized
p —————— 14% 2% 0% 100%
Candidates

4.4 RQ4: Impact of Modeling Concurrency

A byproduct of modeling the concurrent behavior of Android apps
and libraries in the form of C2G is that ER Catcher can discover
a number of additional methods that are invoked indirectly, i.e.,
through the library callbacks. This enables ER Catcher to compute
reachability of methods in ways that are more accurate than other
state-of-the-art techniques, such as FlowDroid [7]. To evaluate this
facet of our work, we ran both ER Catcher and FlowDroid on the
F-Droid dataset. We identified additional reachable methods in 169
of these apps. Compared to FlowDroid, ER Catcher was able to
detect on average 8 more reachable methods per app, and up to 78
more reachable methods in one app.

This is notable given the extensive number of tools (e.g., [8, 9, 23,
48]) that rely on FlowDroid for analysis of Android apps, particu-
larly for security assessment. Consider, for instance, an information
leakage vulnerability caused by flow of data from a private source,
e.g., camera, to a sink, e.g., network. If the sink is located in a
method that is determined to be unreachable by the analysis, the
vulnerability cannot be discovered. According to our results, nu-
merous Android security analysis tools [8, 9, 48] built on top of
FlowDroid [7] would fail to discover vulnerabilities or malicious
behaviors that reside in such locations in code.

5 RELATED WORK

Our work builds upon three major threads of research: concurrency
analysis, event-race detection, and summary-based static analysis
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in Android. We provide a brief overview of the relevant research
for each of these threads in this section.

Analysis of Concurrent Behaviors: Researchers have investigated
concurrent behaviour of traditional programming languages such
as C or Java, primarily focusing on data races [27, 33, 36], dead-
locks [11, 14, 31], happens-before relation [52], sequential or non-
sequential concurrency errors [35, 49, 50] and testing [42]. None of
these, however, has investigated the concurrent behavior of Android
apps. The most relevant work is that of Zhou et al. [52] that intro-
duces the concept of Static Vector Clock to analyze may-happen-
in-parallel relation between instructions in C/C++; however, their
realization of this concept is not applicable to event-based systems
like Android. ER Catcher addresses this limitation by introducing
event-based properties, e.g., Same Task-Queue Order.

Researchers have also analyzed the concurrent behavior of An-
droid apps, mostly focusing on dynamic analyses such as test gener-
ation [41], manipulating the code execution [16, 44], and detecting
happens-before relations [28]. None of these techniques is able to
detect event races in Android.

Event Race Detection in Android: Although Android has tradi-
tional Java thread constructs, tools developed for Java cannot readily
detect event races in Android since existing tools are unaware of re-
lations between events. To meet this gap, researchers have devised
dynamic and static event-race detection approaches for Android.
Dynamic event race detection approaches gather execution traces
of Android apps either manually [21] or automatically [10, 20, 29]
using an app crawler such as Monkey [5]. Then the execution traces
are analyzed off-line to detect happens-before relations between
events either by graph analysis [10, 21, 29], or leveraging vector
clock [20]. These techniques fail to identify event races due to their
limited coverage of the behaviors of apps [22].

Static event-race detection techniques address the problem of
missing true defects by analyzing the whole program. DeVA [38]
detects "event anomalies” where two events access the same mem-
ory location, and one of the accesses is a write. Since DeVA does not
consider happens-before relations, it produces a large number of
false positives. SIERRA [22] considers happens-before relation and
has limited context-sensitivity (capturing only one asynchronous
action as the context), but it is not aware of other threads except
for the main thread which may result in failure to identify bugs;
we addressed this issue by our thread-sensitive analysis modeled
in C3G. nAdroid [17] uses an existing traditional race detection
technique to identify Use-after-Free (UF) bugs. Due to the impre-
cise threadification model of nAdroid it reports a large number of
false positives; we extensively explained and empirically evaluated
the limitations of nAdroid in comparison to ER Catcher earlier.
SARD [45], similar to nAdroid, detects UF bugs, using a flow- and
context-sensitive model of Looper. SARD applies an exhaustive
context creation strategy making it unscalable. We address the scal-
ability issue by using summary-based analysis techniques to reduce
the space complexity.

In all of the mentioned techniques, the support for various An-
droid concurrency libraries is hardcoded in the implementation
of tools, making it difficult to revise the tools to support new or
modified Android libraries. ER Catcher addresses this limitation by
separating the implementation of tool from the library CSFs repre-
senting the concurrent behavior of Android libraries. Provided with
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new or modified library CSFs, ER Catcher can be readily extended
to support new or modified Android libraries without requiring
changes to its implementation. Summary-Based Static Analysis in
Android: Another research thrust has investigated summary-based
approaches for precise and fast analysis [4, 6, 7, 12, 13, 47]. These
techniques mostly use Inter-procedural Distributed Environment
(IDE) framework [37] for modelling the inter-procedural data-flow
of the code; however, to the best of our knowledge, no prior work
has leveraged IDE frameworks to model concurrent behavior of
code like happens-before relations. Moreover, none of these tech-
niques capture inter-thread communication precisely. As a future
work, it would be interesting to see if IDE frameworks, or non-
distributive summary based analyses such as [32], can improve
the scalability of creating the C3G model. ER Catcher takes a step
towards addressing this issue by introducing ways of summarizing
concurrency behavior in Android.

6 CONCLUSION

Concurrency-induced defects, such as event race, are one of the
most frequently encountered types of defect in Android apps [51].
We presented ER Catcher, a fast, novel and accurate static analysis
framework for event-race detection in Android. Experiments using
benchmark apps show that ER Catcher is accurate, capable of de-
tecting event races with 80% precision and 93% recall. Compared
to the only other publicly available tool for event-race detection in
Android, ER Catcher is substantially faster (by a factor of 12) and
more accurate (11% higher F1-measure). Results further corroborate
its effectiveness in detecting all of the event races confirmed to exist
in a set of 31 real-world apps.

In our future work, we plan to expand the applications of ER
Catcher to other concurrency-related analyses. We believe the effi-
cient happens-before analysis of ER Catcher can be used as a plugin
in Android Studio to provide real-time feedback to developers dur-
ing the development. Furthermore, since concurrency is the main
cause of flaky tests [43], we aim to study the application of ER
Catcher in the detection of such tests.

ER Catcher and research artifacts are publicly available for down-
load from the companion website [2].
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