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CALPHAD-based thermodynamic modeling is an integral component of any ICME framework applied to the
accelerated development of alloys. The utility of this type of analysis is that it provides knowledge about the
impact of chemistry and (to some degree) processing on the phase stability of alloys. This information can later
be passed on to other computational tools which can be used to narrow the experimental space that needs to be
explored to arrive at optimal alloy designs. Two major challenges arise with these techniques: (1) it is difficult to
interface the outputs of such models with other computational tools without significant overhead; (2) CALPHAD-
based predictions tend to be agnostic with regards to uncertainty. The latter challenge is because in commercial
thermodynamic packages, it is often not possible to access the model parameters as they tend to be encrypted,
making the associated thermodynamic databases essentially ‘black boxes’ and so methods that consider only the
inputs to the models must be considered. In the current work, we develop surrogate models of CALPHAD-based
phase stability predictions that fulfill two objectives: (1) they enable the offline evaluation of a component of the
ICME model chain that can then be incorporated into a more complete alloy design scheme without the need to
directly interface with a thermodynamic engine; (2) they allow for the consideration of uncertainty. We apply the
framework to the investigation of the impact of chemistry and heat treatment on the phase constitution of
commercial steel grades and evaluate the performance of this framework relative to direct thermodynamic

calculations.

1. Introduction

There are many ways to approach materials design within the Inte-
grated Computational Materials Engineering (ICME) framework. In
these ICME frameworks, one of the approaches is to formulate process-
structure-property (PSP) relationships that can then be inverted to
discover regions in the alloy-processing space with optimal perfor-
mance. One of the key components of these PSP relationships is the
process-to-structure relationships. Formulation of the process-structure
relations in any alloy system is usually achieved in one of two ways.

Experimental methods can determine the phase fraction and
composition of an alloy. Various metallography techniques can deter-
mine the phase fractions [1-4]. And by using spectrometry methods it is
also possible to measure phase compositions. This approach provides the
most accurate measure of a material’s microstructure. But, it is costly, in
both material and time costs. Thermodynamic models can predict the
equilibrium state of the material [5]. However, thermodynamic models
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are significantly less accurate unless they have been properly assessed
and validated against experiments. The advantage of using thermody-
namic models is that they come with a significant cost benefit compared
to experimental methods.

Due to the inherent heterogeneity of materials, it is helpful to be able
to account for uncertainty in the thermodynamic models. There is a
fairly large body of work in the literature that considers parametric
uncertainty in Thermodynamic modeling with work by Olbricht [6],
Otis [7], Honarmandi [8] and Duong [9] being good examples of a fully
Bayesian approach to quantifying parametric uncertainty in CALPHAD
models.

All these approaches utilize Markov-chain Monte-Carlo (MCMC)
sampling of the model parameters of the CALPHAD models used in
thermodynamic simulations [8,6,7,10,11,9]. However, these methods
rely on access to the thermodynamic models and good quality thermo-
dynamic databases. In contrast, it is far more common to have access to
commercially available thermodynamic software such as Thermo-
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Calc™ [12]. Utilizing such software tools comes with the drawback that
access to the models and parameters is restricted, and so it is not possible
to use the MCMC methods mentioned above to calculate the uncertainty
in the model outputs. Therefore the current work proposes a more
conventional surrogate modeling approach that is still capable of ac-
counting for some sources of uncertainty.

The current work aims to develop a framework to transform a
thermodynamic-based simulation framework connecting chemistry and
phase constitution into a surrogate modeling scheme that can predict the
volume fraction and phase compositions of a two-phase material. The
inputs to this model are the composition of the material as well as the
temperature of a single-stage intercritical annealing treatment.

A key aspect of the proposed work is the development of a process-
structure model capable of offline evaluation (i.e. without the need to
explicitly call a thermodynamic engine) that predicts the mean response
accurately and also provides a measure of quantified uncertainty. This
kind of model and the approach used in the current work will be
generally applicable to any ICME approach requiring thermodynamic
models. A further aspect of the current work is to insure that the models
are computationally cheap to evaluate. The motivation for this is that
design optimization frameworks typically require many function eval-
uations, and a computationally cheap model will add less overhead to
the optimization framework.

Steel alloys are the focus of the current work since these materials are
still of significant interest in many industries [3,13]. Steel production
entails significant variability, weighing differences between batches,
spillage, evaporation, and inaccurate temperature measurements are a
selection of the many process parameters that can introduce variability.
In most experimental or production processes it is very difficult if not
impossible to account for these parameters fully and so we would clas-
sify this uncertainty as residual variability. While the authors
acknowledge that this variability does involve some uncertainty that
could be reduced by better processing methods, we assumed that sig-
nificant process optimization has already been accomplished and any
further reduction in uncertainty would be minimal.

To reiterate, the current work aims to achieve two goals. The first
goal is to generate a surrogate for the thermodynamic model that en-
sures the models are cheap to query and accurately reproduce the
thermodynamic model. In this way, the surrogate model becomes an off-
line model that allows the thermodynamic response to be used in an
ICME approach without explicit calls to the thermodynamic engine. The
second goal is to propose a method of propagating uncertainty through
the surrogate using parametric variability of the input parameters. The
distributions from which to sample the input parameters are defined by
the controllable composition of elements in production-grade steel.

2. Methods

In the current work, we utilize the Thermo-Calc™ [12] model as a
simulator model of a real heat-treatment process. This simulator model
provides information on the volume fraction and phase compositions of
steel materials using a CALPHAD based approach. The current work
aims to build a statistically based emulator, or surrogate, model using
Gaussian Processes (GPs) that can accurately replicate the Thermo-
Calc™ and be used to probe the parametric variability of the model.

As a result, the current work is divided into two stages. The first stage
is the generation of a surrogate model based on data obtained from
Thermo-Calc™ [12]. As already indicated, the current work uses GP
models for the surrogate models. The second stage is the propagation of
parametric variability through the surrogate model. In this second part,
the composition of production-grade steel alloys informs the distribution
shape for the parametric variability.

2.1. Thermodynamic assessment with Thermo-Calc™

Thermo-Calc™ [12] utilizes the CALPHAD method to determine
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Table 1
DP980 and DF140T Nominal Composition and the Composition of the design
space in the current work.

C Mn Si Fe Temperature
(wt.%) (wt.%) (wt.%) (wt.%) Q)
DP980 0.09 2.15 0.60 bal. -
DF140T 0.15 1.45 0.30 bal. -
Model Input Bounds 0.0-1.0 0.0-3.0 0.0-2.0 bal. 650-850

equilibrium phase fractions and compositions in multi-component sys-
tems. The current work uses the TCFE7 iron database for the thermo-
dynamic data, and the Matlab interface for Thermo-Calc™ was used to
complete the computations.

The focus of the current work is dual-phase (martensite-ferrite) steel
alloys containing C, Si, and Mn (Fe in balance). We assumene that these
alloys to have been subjected to a single-stage intercritical annealing
heat treatment followed by quenching. As such, the input space for the
models in the current work is the composition (wt%) of the C, Si, and Mn
and the temperature for the intercritical annealing heat treatment (T74).

For the composition, we selected two common dual-phase steels to
guide the limits of the region of interest. These alloys are DP-980 and
DF-140T and Table 1 shows the composition of both alloys. It is neces-
sary to define upper and lower bounds to the composition of the ele-
ments in the alloy to avoid the computational space from becoming too
large. Therefore, we chose bounds that encompassed both alloys and
ensured that the results would also apply to a larger range of alloys to
allow for possible comparison with results in the literature. For the
intercritical annealing temperature, we chose a range such that it was
possible to produce material with 100% ferrite and 100% austenite
within the input space. Table 1 shows the chosen bounds for the
composition and intercritical annealing temperature.

Thermo-Calc™ calculates equilibrium phases, and so it is not
possible to obtain the martensite fraction from Thermo-Calc™' There-
fore, we used the Koistinen-Marburger relation shown in Eq. (1) [14] to
determine the fraction of austenite converted to martensite under
different quenching temperature conditions. The Koistinen-Marburger
relation requires the martensite start temperature (T,s) and the quench
temperature (Ty). The martensite start temperature was calculated using
the formula presented by Andrews [15] shown in Eq. (2). The quench
temperature was assumed to be 25 °C.

‘/}nan — [ — (-0011(Ts~Tg)) 1)

T,s(K) = 812 — 423X — 30.4Xy;, — 0.075X;. (2)

One of the key assumptions at this point is that due to the fast cooling
during quenching there is insufficient time for diffusion to occur and so
the composition of the martensite phase is the same as the high-
temperature austenite phase.

To get the data for the construction of the emulator model, several
different samplings of the design space were used. Firstly, uniform
sampling with either 6, 7, 8, or 9 samples per dimension was used. This
produced four data-sets of 1296, 2401, 4096, and 6561 samples. Sec-
ondly, Latin hypercube sampling of the space was used to generate the
sampling points. Latin hypercube sampling is typically used when the
sampling region is very large or has many dimensions. The approach
subdivides each input dimension into the number of points required and
then randomly combines these input values ensuring that each value on
each dimension is used exactly once [16]. In this case, the number of
samples obtained matched the data-set sizes of the uniform sampling.

1 Thermo-Calc™ versions from 2019a do include the possibility for calcu-
lating the martensite volume fractions, however, this method can only be used
with the TCFE9, or later, database and also does not provide the phase
composition and so was not utilized in the current work.
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The motivation for using both approaches was to compare which
approach is capable of producing the most accurate surrogate model
with the smallest number of training points. Since reducing the number
of training points will greatly reduce the amount of time that it takes to
invert the GP kernel matrix a smaller training sample size will speed up
queries to the surrogate model.

There are 7 outputs of the Thermo-Calc™ model. The first is the
volume fraction of the martensite phase (calculated from the Koisti-
nen-Marburger relation). The next six outputs are the elemental weight
fractions of Si, Mn, and C in both the martensite and ferrite phase. Since
there is an assumption of no losses during heat treatment, the elemental
composition of the two phases must obey a mass balance. As such, it
won’t be necessary to model the full composition of both phases.
However, the composition of both phases was considered to determine
which would create a better surrogate model.

2.2. Source of uncertainty

Uncertainty in both modeling and experimental work has multiple
sources. For the current work, the sources of uncertainty in computer
models will be discussed in detail. Some of the sources of uncertainty in
experimental work have already been mentioned. The following is a
summary of the sources of computational uncertainty identified in the
work by Kennedy and O’Hagan [17], the interested reader is referred to
their work for a more complete discussion.

Parameter Uncertainty. This is the uncertainty associated with not
knowing the true value of the parameters of the model. The assumption
behind this uncertainty is that there is a single true value for the
parameter.

Parametric Variability. Parametric variability, in contrast to para-
metric uncertainty, is when the parameter in question does not have a
unique value, but rather has a distribution of possible values.

Model Inadequacy. Model inadequacy is the discrepancy between the
output of the model and typically the mean of a real-world result. This
assumes that the model is being utilized with the correct values for all
parameters.

Residual Variability. Residual variability encompasses two sources of
uncertainty that are difficult if not possible to differentiate between. The
first is that there could be missing inputs that if fully specified would
reduce this variability, and the second is that the real world process itself
might be stochastic.

Observation Error. Observation error applies to a real-world process
where there is often an error associated with the measurement of the
output.

Code Uncertainty. Despite it being theoretically possible to predict the
outcome of a mathematical model, the complexity of many models and
the requirements of running the model for hours or even days means that
it is not possible to know the exact outcome from the model. This is
classified as code or interpolation uncertainty.

The approach described by Kennedy and O’Hagan [17] is the basis
for the approach used in the current work, however, for the current work
the model is not calibrated against experimental results. The approach
can be expanded to include experimental results for future work. Since
experimental results are not considered in the current work, the sources
of uncertainty that will be considered are observation error and code
uncertainty. The uncertainty in the output of the surrogate model will be
introduced by considering parametric variability in the inputs to the
surrogate model.

The authors acknowledge that residual variability in the production
of steels is very distinct from the parametric uncertainty or variability in
the emulator, or surrogate, model. However, the current work proposes
that the residual variability can provide information to inform the
parametric variability of the surrogate model. How this is to be achieved
is to use the compositional variation of production-grade steels to define
the distributions for the input parameters to the surrogate model.
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2.3. Gaussian process fitting of thermodynamic results

The current work aims to define a surrogate model or emulator of the
Thermo-Calc™ model. This can be defined as the determination of a
function f such that f : y— 7. In this case, Y(x) € Z’CR is the univar-
iate output of the Thermo-Calc™ model at a given input x € yCRY,
where y is the g-dimensional domain of interest or design space. The
measurement, or observation, error (eqps(x)) is defined as the uncer-
tainty in the measurement of Y(x), however, since the Thermo-Calc™
model is a deterministic model there is no error associated with the
result. As a result, this term will be replaced by a uniform noise variance
in the current work to ensure computational stability. This is discussed
in further detail later.

Y(x) = f(x) + €ops (%) 3

The current work uses a GP for the emulator model. GPs have
become one of the most widely used statistical models [18] since they
provide the ability to analyze and quantify uncertainty in functions,
provide excellent flexibility through the different covariance functions
that can be employed as well as having attractive statistical properties.

A GP is a non-parametric statistical model that defines a stochastic
process f(x) such that all the finite distributions of the model are
assumed to be multi-variate normal. As a result of this, the joint prob-
ability distribution of the outputs from the stochastic process for any
finite set of inputs X = {x1,...,x,} may be modeled as an n-dimensional
multivariate normal distribution:

P(f(xl)-, f(xn)) ~ “/Z/)n(”a C) (€)]

where p is the mean vector and C is the covariance function. These are
defined by a mean function y(-) and a covariance function C(-, -) with the
following properties:

w(xi) = p; = E[f(x:)]. 5

C(xi,x;) = Ci; = cov[f(x:),f(x))]. (6)

Considering this context, we will define a GP as f(-) ~ Z7(u,C). A
more detailed explanation of this kind of stochastic process is provided
in the work by Rasmussen and Williams [19].

The covariance function captures the spatial dependence between
two different input locations, and along with the mean function plays a
role in the final probability distribution of the outputs of the stochastic
process. The probability distribution of the surrogate model outputs
defines the interpolation uncertainty, or to use the terminology defined
by Kennedy and O’Hagan, code uncertainty [17].

This approach for defining the GP model allows for the development
of the model definition in Eq. (3) to include two sources of uncertainty.
This approach defines f(x) as the mean response of the GP, ,,(x) as the
observational error, and <.y4(x) as the interpolation error from the GP.
Where the distribution of the code error is defined by e 4. (x) ~.77(0,C).

Y(x) = (%) + €ops (%) + €cone (). 7)

The observational error (eq;(x)) can be handled in two ways. The
first is to measure the error of each observation explicitly, while the
second is to use the observational error as an additional parameter in the
building of the GP. This second approach is referred to as using a nugget
[20].

There are many different possible covariance functions available for
use with GPs. Rasmussen and Williams [19] provide definitions of many
of the more commonly used covariance functions. Two of these
covariance functions are utilized in the current work. The squared
exponential and Matérn(v = 5/2) covariance functions.

The squared exponential function calculates the covariance of the
input space as a weighted euclidean distance between the input vari-
ables and can be parameterized according to Eq. (8), where n is the

number of dimensions, af2 is the signal variance, and [ is the
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characteristic length scale or smoothness parameter.

n 2
C(xi, %)) = o}wcp( —% 3 {("frh ;x,-.,,)} ) : ®)
h=1

The squared exponential function was implemented in MATLAB
using code based on the approach developed by Ghoreishi et al. [21].

The Matérn class of covariance functions is defined in a single
dimension by Eq. (9), where K, is a modified Bessel function [19].
However, it is more common to define the function by specifying a
specific value for v. One of the more commonly used values is v = 5/2
[19]. This choice reduces the covariance function to that shown in Eq.
(10). This equation shows a generic multi-dimension representation of
the covariance function with v = 5/2, where n is the number of di-
mensions, and I, is the characteristic length scale of dimension h.

Clo) = 7 [z <ﬁ< - x,ﬂ>>”Kv<m<xl- - x») } . ©

r'(v) l l

C(x;,x;) —(szi<1 +\/§(3;;*xj)+5(x,-*xf) >exp(—M>-

36 Iy
(10

The implementation of the Matérn covariance function was done
within Python using the “George.py” module [22].

Since the input parameters have different units, all the inputs were
scaled to the interval [0, 1]. For mathematical convenience, the outputs
from Thermo-Calc™ were standardized to have a mean of zero and a
variance of 1. This approach allows us to specify the mean function as
u(x) = 0. The observation error term defined in Eq. (3) is added to the
covariance function when calculating the output of the GP model.
However, if the results do not contain a measurement error €(+), as in
the case of the output from a deterministic model, a small value, often
referred to as a nugget [20], can be added in place of observation error
to provide numerical stability in the calculation of the matrices and their
inverses. Doing this assumes that the errors are all identically and
independently distributed with a normal distribution of zero mean and
62 variance, €(x) ~./'(0, 62). The variance of the errors (¢2) is also
referred to as the noise variance [19].

There are two standard approaches to optimizing the values of the
hyper-parameter for GPs. The first is to use gradient-based approaches
[19]. The second is to use Bayesian approaches such as Markov-chain
Monte-Carlo methods [17]. It was chosen to use the gradient-based
approach in the current work since the gradient-based approach is
typically less computationally expensive.

While the gradient-based approach is usually less computationally
costly than the Bayesian approach it has been noted that there is a
possibility for there to be multiple local optima in the parameter space.
Rasmussen and Williams [19] discuss this briefly and indicate that this is
more likely to occur when there is less data available since there will be
more combinations of the parameters that can provide a sufficient fit to
the data.

Due to the chance of local optima in the hyper-parameter space, the
optimization used a multi-start approach in an attempt to avoid having
the optimization process get stuck in local optima. Since all the input
values were scaled to the interval [0, 1] the initial guesses for the length
scale hyperparameters were selected from that interval. As discussed, to
aid the inversion of the matrices a nugget term with ¢2 = 0.05 was
included.

For the current work, it is important that the surrogate model is an
accurate representation of the Thermo-Calc™ data, therefore, the results
from the GP were validated against 10,000 data points calculated by
uniform sampling with 10 samples for each dimension. The coefficient
of determination (Eq. 12) was used as the measure of fit.

In addition to measuring the coefficient of determination, the results
were plotted against the Thermo-Calc™ results for the two alloys of
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interest in the current work. For this comparison, the composition of the
alloys was fixed and the temperature varied over the design range. Since
there is no training data that directly corresponds to the Thermo-Calc™
data for these two alloys, this method helps provide visual confirmation
of how well the model is predicting general values of the design space.

2.4. Uncertainty propagation

As discussed earlier, the compositional variation of production-grade
steels informs the parametric variability. Since the published steel
grades show the possible variation in the elemental composition it is
possible to define a maximum and minimum value for any given input.

Two approaches were used in the current work, however, it is noted
that these were chosen for convenience rather than being definitive
methods for approaching this kind of problem. The first method was to
assume that the input distribution was a uniform distribution between
the maximum and minimum values for the input. This is considered a
non-informative approach. The second method was to assume that the
input was normally distributed and that the maximum and minimum
values define a distance of two standard deviations away from the mean.
This approach does make a strong assumption about the input distri-
bution being normal.

Using these two distributions the parametric variability of the model
is assessed by sampling from the input distributions and then calculating
the mean and variance of the mean output from the GP. This is one of the
simpler methods for obtaining the parametric variability since it doesn’t
take into account the code uncertainty of the GP. This also simplifies the
definition of the parametric variability to be a multivariate normal
distribution with mean 0 and variance ¢ (epqr ~.77(0,0)) and the model
definition given in Eq. (3) and developed in Eq. (7) can be further
developed to include the uncertainty due to parametric variability.

Y(x) = £(x) + €ops (¥) + Scoae (X) + €par (%) an
3. Results
3.1. Building of the surrogate model

The first tests involved building the GP model with the squared
exponential kernel. The optimization of the GP hyperparameters was
conducted with training points from both the uniform and Latin hy-
percube sampling. For each sampling method, the best performing
hyperparameters were recorded for the seven output values from
Thermo-Calc. The hyperparameters of interest in the current work are
the characteristic length scale (1) and the signal variance (o), since the
noise variance, or nugget (c,,), was kept constant.

To measure the accuracy of the GP model, the coefficient of deter-
mination was used. The Coefficient of determination uses the ratio be-
tween the residual sum of squares (Eq. 13) and the total sum of squares
(Eq. 14), where y; is a Thermo-Calc™ output, y is the mean of all
Thermo-Calc™ outputs and f; is the surrogate model value corre-
sponding to the inputs of Thermo-Calc™ output y;. The residual sum of
squares is the square of the distance between the predicted values and
the true values, while the total sum of squares is the distance between
the true values and the mean of the true values. The coefficient of
determination is defined for the interval [0, 1] with a value of 1 indi-
cating a perfect fit, and a value of 0 indicating that the prediction is no
better than the mean. Any values outside of this range indicate that the
predicted values from the model are further from the true values than
the mean.

CoD =1- & 12)
SStor
88 = (i =) 13

i
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Table 2
Coefficient of determination for the 10,000 test data points for each of the
sample sets used in both uniform and LHS sampling.

Uniform Data LHS Data

1296 2401 4096 6561 1296 2401 4096 6561
V}"‘m 0.99 0.99 1.00 1.00 0.48 0.48 0.95 1.00
Xxgar 0.98 0.99 0.99 0.99 0.57 0.42 1.00 0.97
X"S';.“" 0.99 1.00 1.00 1.00 0.57 0.53 0.41 1.00
Xpyar 0.99 1.00 1.00 1.00 0.72 0.54 1.00 0.99
Xié‘”’ 0.97 0.98 0.99 0.99 0.66 0.54 0.27 1.00
Xéﬂi" 0.99 1.00 1.00 1.00 0.46 0.31 1.00 1.00
X’;f,;’ 0.98 0.99 0.99 1.00 0.70 0.62 1.00 1.00

S =D (i =" as)

i
The accuracy of each of the GPs using the optimum length scale and
noise variance hyperparameter results are shown in Table 2. As can be
seen, the accuracy of the GP increases with increasing sample size. This
effect is more noticeable with the Latin hypercube training data than the
uniform training data. What is interesting to note is that the uniform
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0.00 ———
0.0 0.5 1.0
Thermo-Calc V}"
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0.00 - —— :
0.0 0.5 1.0
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(c) 4096
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training data has a much higher accuracy against the test data than the
same number of training points generated from a Latin hypercube
sampling. As already noted, Latin hypercube sampling is typically used
when only a very sparse sampling of the input space is possible.
Therefore, for a 4-dimensional problem such as is considered in the
current work, the sample size of 1000 to 7000 is sufficiently large for the
uniform sampling to perform better. Choosing smaller sample sizes or
increasing the dimensionality of the problem will almost certainly result
in the Latin hypercube sampling performing better than the uniform
sampling.

The scatter plots in Fig. 1 show how as the sample size increases the
fit improves. However, this representation also provides a further
observation. The fit deviates most significantly for higher temperature
samples. As such, if the input space was reduced to lower temperatures,
it might be possible to achieve the same accuracy with fewer training
samples.

Using the data for the two alloys DP980 and DF140T, the trained GPs
were used to predict the outputs from the Thermo-Calc model to assist in
providing a visual representation of how well the GPs are performing.
When comparing the GP output with that of Thermo-Calc for the two
alloys specifically, the performance is not as good as the performance on
the test points, particularly when it concerns the composition of the
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-
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Fig. 1. Scatter plot of the 10,000 volume fraction results from Thermo-Calc™ with the results from the GP with a squared exponential covariance function.
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Table 3
Coefficient of determination for the DP980 data set when using the samples as specified with the Squared Exponential covariance function.
Uniform Data LHS Data
1296 2401 4096 6561 1296 2401 4096 6561

V}"“’T 0.99 0.99 0.98 0.98 0.26 —-0.22 0.92 0.97
xger 0.76 0.70 0.66 0.64 -1.25 -5.17 0.68 0.66
xgart —159.84 —124.60 —100.29 —92.65 0.15 0.02 —-2.21 —97.55
Xyt —0.20 —0.47 —-0.57 —0.64 -3.37 —7.40 —0.67 —0.47
Xéﬂ" 0.07 —0.61 -1.30 -1.74 —11.61 —-10.95 —4.18 —-1.21
e —284.15 ~195.05 ~146.80 ~130.84 0.00 ~1.19 ~112.38 ~116.29
X’;;;’ —51.08 —60.73 —61.58 —63.01 -31.91 —93.48 —53.73 —64.72

Table 4
Results from the Matérn Kernel fit using only the sample set with 6561
samples and uniform sampling.

DF140T DP980
V}"“" 0.991 0.985
xger 0.999 0.998
xger 0.952 0.899
Xyt 0.997 0.995
ngﬂ 0.981 0.987
Xéf" 0.79 0.719
X{MZ: 0.91 0.869

phases in the alloy. Table 3 shows the results for the DP980 alloy. The
DF140T alloy results showed a similar trend.

The results of the fit to the composition of the phases in the two test
alloys is slightly concerning and also surprising. The fit to the test points
for the composition results is almost perfect, while the fit to the
composition values of the test alloys is very bad. As a test, the number of
training points was increased to 10,000 and the results still showed the
same problem.

The next step was to implement the GP model with a Matérn (5/2)
covariance function. This approach resulted in a significantly better fit
for the composition of the phases, Table 4. This indicates that the Matérn
(5/2) is a better covariance function to use in the current work. Despite
the better fit, Fig. 2 shows that the interpolation error of the composition
values is still significant. The error has been truncated at zero since a
negative composition has no physical meaning.

The results in Table 4 also show that the predictions for the
martensite phase composition are better than for the ferrite phase. As
such, it would be best to use the GPs to predict the martensite compo-
sition and then calculate the ferrite composition using the mass balance
of the elements.

Since one of the aims of the current work is to have a fast surrogate
model, the time taken to calculate the 10,000 samples was measured for

each of the GPs constructed. This measurement was done by repeating
the calculation of the test set 20 times and averaging the results. These
results are shown in Table 5 in the appendix. These show that even for
the largest training sample size the time taken to calculate 10,000 data
points is reasonably small. Considering this, and the increased accuracy
that using the larger training set provides, it was decided that the largest
training set would be used in the subsequent analyses.

3.2. Parameter variability

Using the two methods described the parametric variability was
added to the results from the surrogate model. As discussed in the
methods, the approach in the current work was to predict the mean
response at each sampling from the composition and temperature input
space and then find the average and variance of this mean output. This is
used to define the normally distributed parametric error. Following Eq.
(11) this parametric error was added to the code or interpolation error
and the 95% confidence interval was calculated. These results for the
two sampling procedures are shown in Fig. 3.

As can be seen the parametric error approximately doubles the 95%
confidence interval of the data. However, the uniform sampling results
in a smaller confidence interval. The most likely reason for this is that
using the interval between the bounds results in a smaller sampling
region around the mean. The normal distribution allows values outside
of the region in the uniform sampling approach.

Table 5
Time taken to build the GP and query 10,000 data points simultaneously.
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Fig. 2. Comparison of the GP outputs and the Thermo-Calc™ results for the elemental compositions of the martensite phase for the DF140T alloy. These show the

very large confidence interval around the GP prediction for the phase composition.
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comparison of the magnitude of one side of the 95% confidence interval for the two sampling approaches.

4. Discussion

During the current work, namely fitting a GP surrogate model to
Thermo-Calc™ results several noteworthy results were obtained. Firstly,
it was found that using a squared exponential function for the GP pro-
vided a good fit to the volume fraction output of the code, but failed
when fitting the composition of the phases. The exact reason for this is
not known, however, this result does show that testing of multiple
covariance functions is necessary to ensure the best fit for the results.

The second noteworthy finding was that Latin hypercube sampling
produces GPs with a worse fit to the data when compared to the same
number of samples from a uniform sampling procedure. This would
possibly be a result of the Thermo-Calc™ output being relatively smooth
over most of the domain, however, more testing would be required to
confirm this. The second reason for the poor performance of the Latin
hypercube approach is that the design space is still small enough to be
effectively sampled by uniform sampling. Therefore, when expanding
this work to larger design spaces with more dimensions, the Latin

hypercube sampling will become a better approach since it won’t be
computationally possible to consider uniform sampling.

The procedure followed in the current work developed a set of GP
surrogate models that were able to separately account for three sources
of uncertainty in the modeling process. These sources were observation
error, code uncertainty, and parametric variability. While in the current
work, the observation error is neglected since the Thermo-Calc™ result
is a deterministic result, this approach would be able to account for this
error. This would be done by including the observation error as the noise
variance (6,) for each of the observations.

The code uncertainty in the models of the current work is reasonable
for the prediction of the volume fraction, however, it was observed that
the code uncertainty for the elemental composition of the phases was
significantly larger. This could potentially be decreased by using a larger
sample, however, the time cost of the larger training set would need to
be tested to determine the optimal size that can lower the interpolation
uncertainty while not increasing the computational time to unreason-
able levels.
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Parametric variability was added to the surrogate model by using
two distributions, uniform and normal, defined by the residual vari-
ability of production-grade steel. This approach was found to produce
reasonable uncertainty to the results. Both distributions of the input
parameters approximately doubled the size of the 95% confidence in-
terval. However, the uniform distribution had a smaller 95% confidence
interval. As a result, using the normal distribution will result in a more
conservative estimate of the error.

5. Conclusions

The current method developed a set of GP surrogate models that can
be easily integrated with ICME materials design approaches. These
models provide basic information on the microstructure of a material
following a simple heat-treatment process. Further, these models can be
evaluated quickly, which means that they will not increase the compu-
tational time of an optimization approach significantly.

Using the residual uncertainty in the composition of production-
grade steel materials, the distributions for the calculation of para-
metric uncertainty were defined. This provides the opportunity for
propagating this uncertainty through structure-to-property models in
the PSP chains used in ICME approaches.

While the surrogate model developed in this work can be easily in-
tegrated into any existing ICME approach, the intention is to integrate
this model into the multi-information source fusion method presented
by Ghoreishi et al. [21]. This is to expand the work on the multi-
information source fusion approach to include materials composition
and processing parameters since this was identified as an area for
development in this approach.

As a final note, while these results are a useful addition to the
modeling of material microstructures, the volume fraction of phases and
phase composition are only some of the variables that are needed to fully
determine the mechanical properties of a material. One of the other
significant parameters that are necessary is the grain size of the phases.
Therefore, while the current work has proven that it is possible to obtain
good results from a GP fit to Thermo-Calc™ data, in addition to the
expansion of the thermodynamic modeling explained earlier, it is
necessary to expand the current work to include calculations of the grain
size of the material.

6. Data Availability

On reasonable request, the data used for this work can be obtained
from the corresponding author.
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Appendix A

A.1. Code timing comparison

The timing of the code was done by building and training the GP
model and then querying 10,000 data points from the model. This
measurement was repeated 20 times and the results were averaged.

Computational Materials Science 188 (2021) 110133

These results are shown in Table 5 in the appendix. These show that even
for the largest training sample size the time taken to calculate 10,000
data points is reasonably small (17s for the MATLAB implementation
and 8s for the Python Implementation. This shows that for this particular
application, it is not necessary to sacrifice the accuracy of the largest
dataset for a faster GP model since the times taken by the model built
from the largest dataset are small enough to not significantly impact an
optimization approach.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the
online version, athttps://doi.org/10.1016/j.commatsci.2020.110133.
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