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Many engineering tasks, such as optimization, analysis, model development, model cali-
bration, and others, can potentially exploit information from many sources. These sources
include numerical models, expert opinion, and experimental data. Information fusion over
these sources of information has the potential to provide a more complete quantitative picture
of the current state of knowledge of a given ground truth quantity of interest. This state of
knowledge can be updated as new information from any given source is acquired. In this
work, we compare two information fusion approaches that both seek to combine all available
information to form a surrogate model of the ground truth. These are model reification and
cokriging. The comparison considers several test functions as well as a real world NACA 0012
analysis. A quantity of interest is considered for each test case, as well as the derivative of the
quantity of interest in some cases. Each fusion approach performs well generally, with each
being superior to the other under certain conditions.

I. Introduction
In most engineering applications there are available many different models for the task at hand. These can include

computational models of varying fidelity, historical experimental data, new experimental data to be acquired, and expert
opinion. These different models, comprising different physical or mathematical assumptions and having potentially
widely varying execution costs in terms of certain essential resources, are referred to collectively as information sources.
Since every information source may provide valuable information to the task at hand, it is useful and at times critical,
that all information be gathered from these sources efficiently and fused dynamically to ensure that all information is
used throughout the given task. Many information fusion approaches have been proposed, such as Bayesian modeling
averaging [1–6], the use of adjustment factors [7–10], covariance intersection methods [11, 12], and fusion under
known correlation [13–15] and cokriging [16–18]. Each of these have their pros and cons depending on whether the
task requires a physics-based fused model, a conservative approach to fusion, or knowledge about information source
correlation. In this work, we approach the information fusion process from the perspective of dynamically constructing
a surrogate model that encompasses all available information at a given point in the engineering task.

Surrogate modeling is often a critical component in the execution of many engineering tasks. These tasks include
analysis and optimization of systems, model development, parameter estimation, and many others. The appeal of
surrogate models lies in the ability to tradeoff potentially prohibitive computational expensive for diminished accuracy.
Understanding this tradeoff as the task unfolds allows for the dynamic selection of which source to query and where
to query to ensure that the fused surrogate model comprising all available information is as effective as possible. In
this work, we consider a Bayesian approach to surrogate modeling using information gathering policies based on
information gain. For this, Gaussian processes are used as surrogate models for each information source. Discrepancy
is quantified between each information source and available ground truth information, which often is only given by
expert opinion or an assumed highest fidelity model (that is often computational). The fusion takes place over these
Gaussian process surrogates and leads to another Gaussian process model, which we refer to as the fused model. This
fused model comprises our best quantification of the current available information. By generating synthetic data from
prior predictive Gaussian processes of the information sources, we temporarily update the fused model. This begets
a new potential posterior distribution of our data that could follow an actual query to a true underlying information
source (and not the source’s Gaussian process). These potential posterior distributions are compared to each other to
measure information gain using the Kullback–Leibler divergence [19, 20]. The information source and query location
that provide the largest expected information gain are selected to perform the next experiment (physical or computer).
The fused model is then updated. This process can be carried out by the well-known cokriging method or by our newly
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developed sequential model reification procedure presented in Ref. [21], which was originally developed to handle a
lack of ground truth information.

The goal of this work is to compare the sequential fusion techniques of model reification [21–23] and cokriging [16–
18]. The comparison will study the advantages and disadvantages of each technique under different conditions, such as
noisy sampling, availability of online sampling from the highest fidelity model, or presence of prior information of
highest fidelity model. First, we apply these fusion techniques on several test conditions using analytical test functions
and then consider each approach on an aerodynamic design problem.

The rest of the paper is organized as follows. Sec. II presents the different ingredients of each approach. In Sec. III,
each approach is demonstrated on test functions in different design conditions and then on an aerodynamic design
problem. Finally, conclusions are drawn in Sec. IV.

II. Approach

A. Gaussian Process Regression Surrogates
To estimate a quantity of interest, there may be several information sources with different mathematical formulations,

costs, and varying fidelity. Making decision in different steps of the process needs predictions of the response surface of
these information sources. Following Refs. [24, 25], we assume there are available some information sources, 58 (x),
where 8 ∈ {1, 2, . . . , (}, used to estimate a quantity of interest, 5 (x), at a design point x. By constructing a surrogate
model, we are able to predict the output of information sources at design points that have not been executed yet. The
surrogate models are built for each information source using Gaussian process regression [26]. A Gaussian process is a
powerful mathematical modeling tool due to its easy manipulation and implementation. This is important, particularly
in Bayesian analysis and optimization frameworks, since the models need to be updated as new information is added to
the system. A Gaussian process is a probabilistic model that provides a normal distribution as the prior and posterior
prediction of the function value corresponding to a query location. Gaussian processes are constructed with kernels that
make certain assumptions regarding the correlation between data points. Depending on the nature of the function being
modeled by a Gaussian process, different kernel functions can be utilized.

Using #8 previously evaluations of information source 8 described by {X#8
, y#8
}, where X#8

= (x1,8 , . . . , x#8 ,8)
represents the #8 input samples to information source 8 and y#8

=
(
58 (x1,8), . . . , 58 (x#8 ,8)

)
are the corresponding outputs

from information source 8, the posterior distribution of information source 8 at a design point x is represented as

5GP,8 (x) | X#8
, y#8

∼ N
(
`8 (x), f2

GP,8 (x)
)

(1)

where
`8 (x) =  8 (X#8

, x)) [ 8 (X#8
,X#8

) + f2
=,8 �]−1y#8

(2)

f2
GP,8 (x) = :8 (x, x) −  8 (X#8

, x)) [ 8 (X#8
,X#8

) + f2
=,8 �]−1 8 (X#8

, x) (3)

and  8 (X#8
,X#8

) is the #8 × #8 matrix whose (<, =) entry is :8 (x<,8 , x=,8), and  8 (X#8
, x) is the #8 × 1 vector whose

<Cℎ entry is :8 (x<,8 , x) for information source 8, where :8 (x, x′) is a real-valued kernel function over the input space.
For the kernel function, a common choice is the squared exponential covariance function

:8 (x, x′) = f2
B exp

(
−

3∑
ℎ=1

(Gℎ − G ′ℎ)
2

2;2
ℎ

)
(4)

where 3 is the dimensionality of the input space, f2
B indicates signal variance, and ;ℎ, where ℎ = 1, 2, . . . , 3, is the

characteristic length-scale that is used to define the correlation between points within dimension ℎ. By putting the term
f2
=,8
, we can model observation error for information sources based on experiments as well.
To determine the uncertainty for each information source with respect to the ground truth quantity of interest, we

add a term associated with the fidelity of the information source at a given location in the input space, f2
5 ,8
(x). Then,

the total variance is calculated including the variance associated with Gaussian process and the variance associated with
the information source fidelity over the input space.

f2
8 (x) = f2

GP,8 (x) + f
2
5 ,8 (x), (5)
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and the term f2
5 ,8
(x) can be estimated from, for example, expert opinion or available real-world data. Here, our method

to find this variance is to calculate the square of the difference between available data from the ground truth quantity of
interest and an information source. A Gaussian process is then performed using the values as training points to estimate
the fidelity variance over the input space as mean of the Gaussian process. More details are available in Ref. [27].

B. Reification-based Fusion of Multiple Information Sources
Every employed information source contains potentially useful information about the quantity of interest that may

not be accessible from other information sources [22, 23, 25, 27, 28]. The goal is to fuse available new information
from every information source query to make sure we are using the resources wisely. As noted previously, several
approaches exist for fusing multiple sources of information such as Bayesian modeling averaging [1–6], the use of
adjustment factors [7–10], covariance intersection methods [11, 12], and fusion under known correlation [13–15]. By
assuming that every information source provides useful information regarding the ground truth quantity of interest,
when incorporating more information sources into a fusion process , the expectation is to have the variance of the
quantity of interest estimates decreased. This is not guaranteed for the mentioned fusion techniques with the exception
of fusion under known correlation. Thus, it is important to determine the correlations prior to fusion.

Following the Refs. [22, 23, 25, 27, 28], by representing information sources using intermediate Gaussian processes,
their fusion suggests the normally distributed information. If correlations between the discrepancies of information
sources are known, the fused mean and variance are found using the following equations [15]

E[ 5̂ (x)] = eTΣ̃(x)−1-(x)
eTΣ̃(x)−1e

(6)

Var
(
5̂ (x)

)
=

1
eTΣ̃(x)−1e

(7)

where e = [1, . . . , 1]) , -(x) = [`1 (x), . . . , `( (x)]T given ( models, and Σ̃(x)−1 is the inverse of the covariance matrix
between the information sources. Note that there is no assumption of hierarchy of the information sources in contrast
with some traditional approaches [29–36].

Before using equations (6) and (7), we need to estimate the correlation coefficients between information sources over
the input domain. This task is described in [22, 23] as the reification process. To estimate the correlation coefficients
between the deviations of information sources 8 and 9 , each of the information sources 8 and 9 , one at a time, is reified
meaning that it is taken as the ground truth. If information source 8 is reified, the correlation coefficients between the
information sources 8 and 9 , for 9 = 1, . . . , 8 − 1, 8 + 1, . . . , (, are given as

d8 9 (x) =
f2
8
(x)

f8 (x)f9 (x)
=

f8 (x)√(
`8 (x) − ` 9 (x)

)2 + f2
8
(x)

(8)

where `8 (x) and ` 9 (x) are the mean values of the Gaussian processes of information sources 8 and 9 accordingly, at x,
and f2

8
(x) and f2

9
(x) are the total variances at x. Then, information source 9 is reified to estimate d 98 (x). To estimate

the correlation between the errors, the variance weighted average of the two estimated correlation coefficients is used

d̄8 9 (x) =
f2
9
(x)

f2
8
(x) + f2

9
(x)

d8 9 (x) +
f2
8
(x)

f2
8
(x) + f2

9
(x)

d 98 (x) (9)

Finally, the covariance matrix is computed using the average correlations, Then the fused mean and variance in
equations (6) and (7) are estimated. Details on how to build the covariance matrix is discussed in Ref. [37].

C. Cokriging
In design applications with different computational models available to estimate the same quantity of interest,

cokriging is considered as an approach to employ all models predicting the response of the highest fidelity model at
a new design point. Most often, when a function is more expensive to evaluate, there are fewer samples available to
provide information about the function. By assuming this, a cokriging system is designed to estimate the output of
the highest fidelity model by combination of cheaper functions with more samples available. Although the traditional
cokriging method uses one primary and one secondary function to estimate the output of the primary function, there
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have been several works to extend the idea to use any number of secondary functions or information sources available
to do the estimation. We show how to build the cokriging system using multiple information sources based on the
proposed method in Ref. [38].

To construct the cokriging system equations, we need a number of samples from eachmodel. In general, the number of
available samples for amodel decrease as the fidelity of themodel increases due to the cost of evaluations. We take samples
as (XT

e ,YT
e ) = [(G1

e , H
1
e), ..., (Gne , Hne)]T for highest fidelity model and (XT

: ,Y
T
: ) = [(G1

:
, H1
:
), ..., (G=

:
: , H=

:
: )]T with : =

1, ..., # for other lower fidelity models where we assume there are = samples for highest fidelity model and =: samples
for lower fidelity model : . Following Refs. [16, 18], the multifidelity cokriging system is constructed as

y4 (G) =
#∑
:=1

d:y: (G) + y3 (G), (10)

where y4 (G) is the estimate of the highest fidelity model, d: is the scaling factor for model : , and y3 (G) indicating
a stationary random process independent of y: (G) with variance f2

3
at location G. Another assumption in terms of

stochastic processes is independence of different lower fidelity models in estimating He (G), leading to

cov(y8 (G), y 9 (G)) = 0, 8 ≠ 9 , 8, 9 = 1, ..., #. (11)

The covariance matrix in cokriging is defined as

C =

©­­­­­«
f2

1K1 (X1,X1) 0 . . . d1f
2
1K1 (X1,X4)

0 f2
2K2 (X2,X2) . . . d2f

2
2K2 (X2,X4)

...
...

. . .
...

d1f
2
1K1 (X4,X1) d2f

2
2K2 (X4,X2) . . .

∑#
:=1 d

2
:
f2
:
K: (X4,X4) + f2

3
Kd (X4,X4)

ª®®®®®¬
, (12)

where K1, . . . ,K: ,Kd are the covariance matrices indicating correlations between set of data points using hyper
parameters according to the model. We use Eq. (4) to define the covariance matrices, K8 . Note that in Eq. (4), f2

B is
included in the function while here we are showing the term as a coefficient multiplied to a covariance matrix. In the
multifidelity cokriging, we have to estimate Θ: , d: , : = 1, . . . , # and Θd and dd as the hyper parameters. To define
hyper parameters, we need to maximize the log likelihood of y: given as

− =:
2

ln (f̂2
: ) −

1
2

ln |det(K: (X: ,X: ) |, (13)

where

f̂2
: =
(y: − 1 ˆ̀: )TK: (X: ,X: )−1 (y: − 1 ˆ̀: )

=:
, (14)

and

ˆ̀: =
1TK: (X: ,X: )−1y:
1TK: (X: ,X: )−11

, (15)

with 1 as a column vector of ones. The next step is to find scaling factors and Θd. To do so, first we build the following
relation

d = y4 −
#∑
:=1

d:y: (X: ). (16)

The same process is followed by maximizing the Eq. (13) for f̂2
:
, X4, Kd, and replacing y: by d in Eqs. (14) and (15).

Finally
Ĥ4 (G) = ˆ̀ + cTC−1 (y − 1 ˆ̀), (17)

where y = {y1, . . . , y: , y4} and

ˆ̀ =
1TC−1y
1TC−11

, (18)
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c =

©­­­­­«
d̂1f̂

2
1K1 (X1, G)

d̂2f̂
2
2K2 (X2, G)
...∑#

:=1 d
2
:
f2
:
K: (X4, G) + f2

3
Kd (X4, G)

ª®®®®®¬
. (19)

Note the similarity of Eq. (17) and Eq. (2). Using Eq. (17), we estimate the response of the highest fidelity model for
locations in the input space not yet executed based on the samples available from other lower fidelity models. The
estimated mean squared error of the predictor using standard stochastic process then is calculated as [16, 18]

(̂2 (G) =
#∑
:=1

d2
:f

2
: + f

2
3 − c

TC−1c + 1 − 1TC−1c
1TC−11

. (20)

D. Kullback–Leibler divergence
The next step is to use a systematic approach to determine the next point and information source to query. The

process begins with generating Latin hypercube samples in the design space as alternative points, Xalt. We need to find
an alternative point and an information source to query that provides us with the most information about the ground
truth considering the cost of query. Among different policies developed to measure the information gain term, we use
the Kullback-Leibler divergence method [19–21]. The term �KL (% | |&), which denotes the Kullback-Leibler (KL)
divergence, is a criterion to evaluate the difference between two probability distributions % and & with densities ?(G)
and @(G) given as

�KL (% | |&) =
∫ +∞

−∞
?(G) log

?(G)
@(G) 3G. (21)

Now, to find the an alternative point and an information source to query, we generate #alt alternative Latin hypercube
samples in the input space and calculate the mean and variance using Eqs. (2) and (3). Note that we are constructing
temporary Gaussian processes for the information sources in both the reification fusion and cokriging approaches to be
able to predict the response surface of the information sources. Then, for each alternative point and each information
source, we draw #@ samples by leveraging the fact that the function value of information source 8 at design point x is
normally distributed with mean `8 (x) and variance f2

GP,i (x), according to the Eq. (1). For example, at alternative point
x and information source 8 we sample such that

5
@

8
(x) ∼ N

(
`8 (x), f2

GP,8 (x)
)
, for @ = 1, . . . , #@ , (22)

and the alternative point x and the objective value 5 @
8
(x) are temporarily augmented to the available samples of the

corresponding information source one at a time. The current Gaussian process of the given source is then updated
temporarily with this new data point. Note that our predictive model can be constructed using reification fusion or
the cokriging approach. Denoting the mean and variance of this model at #alt previously generated samples before
update as ` 9 ,curr and f2

9 ,curr and the mean and variance after temporarily updating the information sources as ` 9 ,temp

and f2
9 ,temp, the Kullback-Leibler divergence between current and temporary estimates is computed as

�
8,@

KL (curr| |temp) = 1
2#?

#?∑
9=1

[
f2
9 ,curr

f2
9 ,temp

+
(` 9 ,temp − ` 9 ,curr)2

f2
9 ,temp

− 3 + ln
f2
9 ,temp

f2
9 ,curr

]
, (23)

where superscript 8, @ indicates augmentation sample @ to the available data of information source 8 and 3 is dimension
of the design space. Repeating the process for all #@ samples drawn for the alternative point x and information source 8,
the expected Kullback-Leibler divergence at alternative x and information source 8 is calculated as

E(�8,xKL) =
1
#@

#@∑
@=1

�
8,@

KL(curr| |temp). (24)
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After computing the expected Kullback-Leibler divergence for all alternatives and information sources, denoting that
the cost of querying information source 8 at alternative point x is defined as �8,x, the next design point and information
source to query is selected as

(8#+1, x#+1) = arg max
x∈X

E(�8,xKL)
�8,x

. (25)

After querying the selected alternative and information source, it will be added to the available data of that information
source and the corresponding Gaussian process is updated. This process continues until a termination criterion is met.

III. Demonstration
In this section, we use and compare the reification and cokriging techniques to perform fusion of multiple information

sources on several test conditions and a real-world application. The aim of each technique is to build accurate fused
models for predicting the response of the highest fidelity model (ground truth or truth model). Since the fusion process
can be influenced by samples from the truth model, a variety of conditions are studied to investigate the characteristics
of each approach in different settings. Accessibility to the truth model for online sampling, availability of prior truth
samples, and a noisy truth model are settings considered. Samples from the truth models help to quantify model
discrepancy for each source and to make corrections/updates as new data arrive. To compare the performance of each
fusion approach in different conditions, the mean squared error is calculated and averaged over 200 replications of
simulations for each fusion approach. In what follows, we assume the cost of executing a medium fidelity model is 100
units and the low fidelity model is 10 units. We limit the budget to 4000 units. These values are chosen to ensure we can
visualize trends prior to exhausting the total budget.

A. Test problems
In Fig. 1, the response of two information sources varying in fidelity to estimate a truth model are illustrated. The

shaded area around the truth function shows the lower and upper bounds of the truth model’s response when the noise is
added to the system to study how it influences the fused model estimation accuracy and capability of a fusion technique
to handle the noise. In presence of noise, the truth response is a uniform distribution in the bounds for a particular
design point.

Fig. 1 Two information sources and the truth model. When sampling the truth model in noisy condition, the
truth objective value can be any value inside the shaded area for a particular design point.

Absence of any information about the truth model, for example, unavailability of prior evaluations or online sampling
due to the cost of evaluations or lack of a function or experiment to evaluate the ground truth objective value for a
specific design, is a common condition in engineering design. For example, to design a new airplane, initially there is
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no physical model built yet to study the drag and lift coefficients during different flight conditions to provide real data to
help the design process. In this case, the designer has to use lower fidelity information sources to approximate the real
data values based on his opinion about the performance of cheaper information sources to make inferences about the
truth model.

Fig. 2 Fused models obtained by reification and cokriging techniques when there is no information available
about the truth model. Reification is showing quietly better approximations of the truth model as it suggests
lower mean squared error.

In Fig. 2, the final estimates of the truth model’s response using reification and cokriging fusion techniques are
shown in the case where there is not any information about the truth model available and the model discrepancies are
set by expert opinion. The point here is with reification, the fused model predicts more accurately even in the initial
iterations when there is only a few samples available from the information sources while cokriging needs more samples
to increase the estimation accuracy.

Another condition to consider is when we have access to some prior evaluations of the truth model, however, online
sampling for new design points is not possible. Using the prior samples, we can calculate each model discrepancy at
some locations in the objective space with respect to the truth model to make the approximation more accurate around
those regions but we should also consider the situation in which the available data of the truth model might be noisy. In
fact, for a real-world design problem, the presence of noise in the data is inevitable and should be taken into account.
While reification based method performs quite consistently in fusion of information even in noisy conditions, the fused
model constructed by cokriging shows high dependency on samples from the truth model. When the data is corrupted
by noise, cokriging is unable to correct the estimations using the information from lower fidelity models.

In some simulations and experiments, the truth model is defined and is accessible or the conditions to run an
expensive experiment is feasible but we are not given enough resources to evaluate many design points. Therefore, we
run the expensive evaluations only to update the discrepancy associated with each information source in highly uncertain
regions in the objective space to decrease the fused model’s estimation error as much as possible. However, there are
cases in which the sampling is done in presence of some level of noise and the fusion methods have to tackle this fact
too. Figure 4 shows the superiority of cokriging when it has access to online sampling of the truth model. However,
when the truth model is noisy, it adversely affects the cokriging performance and the fused model is misleading, not
representing the truth model correctly, although it is estimating the ground truth value better than reification based
fusion. On the other side, reification based fusion is not influenced remarkably by noise and it has the capability to
represent the truth model nicely but it is not estimating very close to the ground truth values.

In Fig. 5, the mean squared error is shown as a function of cost for all situations. The left plot presents the mean
squared error when using some prior information about the truth model. The right plot considers when online sampling
is possible. Again, the results show that cokriging is suggesting a better estimate considering the mean squared error,
but its performance can be affected significantly in presence of noise. Also, note that the 95% confidence intervals have
been grown in noisy conditions.
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Fig. 3 Fused models built with reification and cokriging using prior information of the truth model with and
without noise in the truth samples.

Fig. 4 Fused models built with reification and cokriging when online sampling from the truth model is possible
considering noiseless and noisy sampling situations.

As seen in Figs. 3, 4, and 5, noise is an important factor influencing the fused model estimation of the truth model.
In Fig. 6, a set of 5 experiments for building the fused model using the reification and cokriging approaches is designed
to show how the truth model estimate is affected in the presence of noise. For both approaches, two conditions of using
prior samples or online sampling is considered. The results show that with reification, we are able to handle the noisy
information about the ground truth and obtain more consistent estimates of the truth model. However, the cokriging is
highly dependent on the truth data. In the presence of noise, while the estimates are closer to the truth model, the overall
shape of the fused model is not representing the correct variation of the objective value with respect to the design space.
This could be very problematic for certain tasks requiring derivative estimates.

Sometimes it is not only the estimated value that is important, but also we need to gain information about the
behavior of a black-box function when moving through different regions in the input design space. In other words,
the gradient might give important information about the function in some applications as well. It has been shown
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Fig. 5 The mean squared error as a function of cost. Left: using prior information. Right: online sampling of
the truth model.

that in presence of noise, the cokriging method suggests a better estimate of the ground truth value but not a correct
representation of the response surface shape. We define another criterion to address this aspect of a fused model
performance. As the shape of the objective function is defined via the gradient of the objective function, we compare
the error in derivatives to check how close the shape is to the correct representation of the truth model. The derivative
mean squared error is shown versus cost in Fig. 7. As expected, the reification based fusion is performing better in the
matter of how close the fused model approximates the derivative of the truth model.

Overall, the reification based approach performs more consistently over the different conditions tested. However,
when there is information about the truth model, cokriging appears to provide better estimates. When considering the
derivative of the truth model, which at times can be essential, reification appears to provide better estimates.

B. Real world problem application
In this section, both reification and cokriging approaches are applied on a computational fluid dynamics problem

to build fused models to estimate the drag and lift coefficients of the NACA 0012 airfoil [39, 40] in different flight
conditions. We use computational fluid dynamic simulator programs XFOIL [41] and SU2 [42] as the lower fidelity
information sources and the real-world tunnel data of the NACA 0012 airfoil as the truth model to validate the methods.
The problem has a two-dimensional input space with Mach number and angle of attack as the input variables. For this
problem, the only information about the truth model are 68 data points previously evaluated. Thus, we are unable to do
online sampling. Additionally, there is no evidence of how the data is collected and if it is corrupted by noise.

In Fig. 8, the drag and lift coefficients are plotted by fixing the Mach number to 0.3 and varying the angle of attack.
As seen here, the simulations done by SU2 estimate the objective values closer to the truth value but the cost of a
simulation in SU2 is more than XFOIL program. Based on the simulation time, the evaluation cost assigned to the
cheap and expensive information sources are set to 30 and 50 units respectively.

Initially, we assume that there is no data point providing information about the truth model and there are only two
information sources to estimate the quantities of interest. Simulated expert opinion is used to set each model discrepancy
with respect to the truth model, where we assume SU2 is more accurate than XFOIL. By calculating the mean squared
error associated to the fused models built with different fusion techniques, the results in Fig. 9 show the reification based
method is estimating the coefficient of drag (left) better than cokriging but for coefficient of lift (right), both approaches
suggest a very small error with cokriging slightly better. Looking at the errors in estimating the drag coefficient, we
see the same behavior as in Fig. 2 that the fused model built with reification based approach is more accurate than
cokriging. However, both reification based fusion and cokriging are approximating the truth model well. Note that a
potential factor to influence the results is how the truth values are distributed in relative to other information sources.
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Fig. 6 Five different realizations of the fusion process using prior samples and online sampling for both
methods.

For example, in Fig. 8, the drag coefficient is suggesting the truth values in between the values suggested by information
sources while for lift coefficient, both information sources are estimating values larger than the truth values for most of
the design region.

Finally, we use 10 data points as the prior information about the truth model and do the same process. However, this
time the discrepancy of each information source is defined by the prior information we have added to the system. The
results are shown in Fig. 10. Similar to the results seen in the test problems, the performance of cokriging performance
is improved significantly and is slightly outperforming the reification based approach. Again, in approximating the lift
coefficient, both approaches are acting similarly, suggesting close mean squared error estimating the lift coefficient. A
point of interest here is that the addition of a few truth data points has resulted in a notable improvement in the cokriging
initial esimation error. This does not occur in reification.

When using prior samples to add information about the truth model to the system, it is not surprising to see the
error is increased in some cases, particularly if the design space is high dimensional. In general, we do not have many
evaluations from the truth model to cover the design space sufficiently to calculate the discrepancy associated to every
information source accurately everywhere. Consequently, the estimation error around areas where there is not enough
training points grows due to miscalculation of models discrepancy. A subject of future study could be investigating how
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Fig. 7 Comparing the mean squared error in the derivative of the function suggested by each fused model.

Fig. 8 Coefficients of drag and lift estimates fromSU2 andXFOIL in comparison to the truthmodel determined
by wind tunnel data for fixed Mach number of 0.3.

to import expert opinion in areas where information to calculate the model discrepancy is not sufficient, so that we can
take advantage of both expert opinion and prior information in the process.

IV. Conclusions
In this study, the goal was to compare two known fusion approaches in a variety of conditions to investigate their

advantages and disadvantages in different situations. First, by creating a series of test problems, it has been shown
that in absence of any information about the ground truth quantity of interest and the truth model, the reification based
approach is a more reliable choice for building a fused model to represent ground truth. When prior evaluations of a
truth model are available we conclude that cokriging is a better option to estimate the truth values more accurately.
However, in the presence of noise, the cokriging approach might be unable to represent the correct shape of the truth
model, leading to potential degradation when gradient information is required. When online sampling is possible for
sequential fusion, we have found that cokriging provides better estimates early in the process than reification. However,
under noisy conditions, cokriging’s reliance on the truth model again leads to inappropriate derivative estimates. Similar
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Fig. 9 Fused models estimation error with respect to the truth data for drag (left) and lift (right) coefficients
when system has no information about the truth model.

Fig. 10 Fused models estimation error with respect to the truth data for drag (left) and lift (right) coefficients
when system has prior information as data points from the truth model.

results were found when each method was used for the NACA 0012 airfoil analysis. We note here that the conclusions
made here have been made only for the test problems considered in this work. In future work we will consider robustness
against faulty ground truth data and consider a more theoretic comparison. As it stands now, either fusion approach can
be used for estimating quantities of interest under a variety of conditions. We note that reification should be preferred
when only expert opinion exists regarding ground truth or when the shape, in terms of derivatives, of the quantity of
interest are important. Cokriging is preferred when ground truth data is available and is accurate.
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