This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3060068, IEEE

Transactions on Software Engineering

Forecasting Architectural Decay from
Evolutionary History

Joshua Garcia, Member, IEEE, Ehsan Kouroshfar, Negar Ghorbani and Sam Malek, Member, IEEE

Abstract—As a software system evolves, its architecture tends to decay, leading to the occurrence of architectural elements that
become resistant to maintenance or prone to defects. To address this problem, engineers can significantly benefit from determining
which architectural elements will decay before that decay actually occurs. Forecasting decay allows engineers to take steps to prevent
decay, such as focusing maintenance resources on the architectural elements most likely to decay. To that end, we construct novel
models that predict the quality of an architectural element by utilizing multiple architectural views (both structural and semantic) and
architectural metrics as features for prediction. We conduct an empirical study using our prediction models on 38 versions of five
systems. Our findings show that we can predict low architectural quality, i.e., architectural decay, with high performance—even for
cases of decay that suddenly occur in an architectural module. We further report the factors that best predict architectural quality.

Index Terms—software architecture, prediction model, architectural smell, architectural decay

1 INTRODUCTION

In a software system’s life cycle, software maintenance tends
to dominate other activities in terms of time, effort, and cost
[1], [2], [3], [4]. Throughout that life cycle, a major artifact
that must undergo maintenance in a long-lived software sys-
tem is its architecture, which determines the key properties
of a software system. Such maintenance activities include
determining the system’s current architecture, refactoring or
restructuring it, or assessing its current ability to achieve its
non-functional properties. Architectural elements abstract
away unnecessary complexity (e.g., details of source-code
constructs), allowing engineers to focus on higher-level de-
sign decisions. However, a software system’s architecture is
known to commonly undergo the phenomenon of architec-
tural decay [5], where design decisions are added to and may
even violate an architecture, leading to defects and other

major architectural problems.
Although decay is typically treated once its detrimental

effects (e.g., highly defective component or one that is highly
resistant to change) are detected in a system, engineers can
benefit from stemming architectural decay before such ef-
fects occur. To make such a determination, engineers would
significantly benefit from predicting which architectural el-
ements are most likely to undergo decay so that they can
allocate resources to those elements in the most effective
manner. Previous work has produced models for predicting
only defects for packages or directories [6], [7], [8]. However,
defects are not the only forms of architectural decay [9],
[10]. Futhermore, packages represent a structural view of the
architecture [11]. A structural view is an architectural view
drawn from packages, directories, or control- or data-flow

e Joshua Garcia, Negar Ghorbani, and Sam Malek are with the Department
of Informatics, Institute for Software Research, University of California
Irvine, Irvine, CA.

E-mail:{joshug4,negargh,malek }@uci.edu

e Ehsan Kouroshfar is with Amazon.com, New York, New York

E-mail: ekouroshfar@gmail.com

Authorized licensed use limited to: Access paid by The UC Irvine Li

based dependencies among code-level elements [12], [13],
[14], [15]. This structural view is one of several architectural
views that represent code organization structure in software
architecture, dating back to Kruchten’s seminal 4+1 view
model of software architecture [11], [16], [17]. For example,
Kruchten’s 4+1 view model referred to this view as the
Development view, while Clements et al. referred to this
view as the Module Viewtype.

Although such a view is valuable for determining decay,
a semantic view of the architecture is needed to identify
decay involving the concerns attributed to different archi-
tectural elements (e.g., one component handles job tracking,
while another component handles filesystem management).
A semantic view is an architectural view drawn from the
words and terms in a software system, often obtained using
some form of information retrieval or natural language
processing [12], [13], [14], [15].

To stem architectural decay, engineers can significantly
benefit from predicting a variety of constructs related to ar-
chitectural quality—including indicators of architectural de-
cay, i.e., architectural bad smells [9], [10], and the quality of an
architecture’s modularization [18]. Architectural bad smells—
which are patterns of architectural constructs that may neg-
atively affect the maintenance of software systems—reduce
the quality of a software system’s architecture but do not
constitute a defect that should be fixed in all cases. We take
a software defect to be a mistake that does not meet the
software system’s specification and can result in unintended
behavior [19]. Smells do not introduce functional bugs or
effect software behavior, instead they affect maintainability.
Determining that an architectural module is decaying, even
before it is involved in an architectural smell or exhibits
low modularization quality, can reduce maintenance time
and effort. By predicting architectural decay of modules,
an engineer or architect can proactively use information
about specific decay to prevent its occurrence. For instance,
if the prediction technique indicates that a module will
soon handle too many concerns or be involved in too many

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution recgnre_s IEEI% pem}issigndSee hétp:/{wwvl\)/.ieeﬁgr&&)zu‘}a1ictaE]igngéstzasdagfigl%ublical'%%gr)ights/indexhtml for more information.
raries. bownloaded on september , al 100! rom

plore. Restrictions apply.



0098-5589 (c) 2021 IEEE. Personal use is

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3060068, IEEE

Transactions on Software Engineering

dependencies, engineers and architects can work together to

ensure that best practices (e.g., use of design patterns that

encourage separation of concerns) are followed to prevent
that module from being bloated.

To forecast architectural decay, we construct novel mod-
els that predict the quality of an architectural element
(i.e., architectural module) by utilizing multiple architec-
tural views (both structural and semantic) and architectural
metrics as features for prediction. To obtain multiple archi-
tectural perspectives, we utilize two module-level views:
a package-level view and a semantic view, obtained by
leveraging an information retrieval-based technique [20],
[21] shown to work accurately based on the latest eval-
uations of techniques for recovering a software system’s
architecture [21], [22], [23]. Our architectural-quality pre-
diction models utilize an effective set of prediction metrics
(i.e., file-level metrics, smell-based metrics, and architectural
metrics) and metrics for representing architectural quality
at the module level (i.e. defects, smell-based metrics, and
modularization quality). Each architectural view provides
an alternative perspective that can be used to prioritize
architectural modules and allocate resources to them for
maintenance purposes.

We conduct our study on 38 versions of 5 open-source
Java systems from the Apache Software Foundation. The
overarching findings of our experiments are as follows:

e Our models can predict low architectural quality, indicat-
ing decay, with high performance. Specifically, our models
can predict defectiveness of modules with AUC (area
under the curve of the receiver operating characteristic,
which is a measure of a predictive model’s performance)
results of 0.76-0.88 and the occurrence of architectural
smells in modules with AUC of 0.84-1.0. Furthermore,
our models can rank modules with high accuracy based
on their numbers of defects (as represented by Spearman
correlation results of 0.48-0.73) and their modularization
quality (as represented by a Spearman correlation of 0.70-
0.98). All the Spearman correlations we report are signifi-
cant at the 0.01 level.

o Although at most 12% of modules exhibit smell emer-
gence—which represent sudden occurrence of smells in
modules—we are still able to predict these instances of
smell emergence with AUC of 0.79-0.96.

« We investigate which factors are important for predict-
ing different aspects of architectural decay. Our findings
suggest that to predict each aspect of architectural decay,
different combinations of factors are needed. In particu-
lar, file-level metrics are not enough to comprehensively
predict architectural quality.

« To facilitate replication of our experiments and reuse of
our tools and data, we make both our tools and dataset
for our experiments publicly available online [24].

The remainder of this paper is organized as follows:
Section 2 introduces the research questions we study. Section
3 describes our approach for predicting architectural quality.
That section is followed by a description of our experiments’
design and setup (Section 4), the results of our experiments
(Section 5), practical importance of our findings (Section
6), and the threats to validity (Section 7). A discussion of
related work (Section 8) and conclusions round out the
paper (Section 9).

ermitted, but republication/redistribution re

2 RESEARCH QUESTIONS

For our study, we seek to answer research questions that
assess the effectiveness of our architectural-quality predic-
tion models. To that end, we study different regression
models, the extent of change of each architectural-smell
metric, the ability of our models to predict the emergence
of an architectural smell, and the metrics that work best for
each of our models. Architectural-quality metrics measure a
software system’s architecture in terms of its non-functional
properties, especially those related to maintainability. Smells
metrics are a type of architectural-quality metric. We focus
on smells because they give specific instances of low ar-
chitectural quality with concrete mechanisms for repairing
them (e.g., specific architectural restructurings or refactor-
ings).

We produce a different prediction model for each
architectural-quality metric. To ensure high performance of
these prediction models, we intend to determine the most
effective regression models for making these predictions.
Note that performance in this context means the correctness
of a prediction model—i.e., performance in the sense used
in prediction-model literature. Consequently, we study the
following research question:

RQ1: What is the performance of each prediction model for
the different architectural-quality metrics?

To better understand the applicability of our models for
predicting architectural smells, the architectural-smell met-
rics we predict should exhibit change. Each architectural-
smell metric measures whether a module has a particular
architectural smell. To that end, we must determine the
extent of change for each architectural-smell metric in our
study. As a result, we study the following research question:

RQ2: What is the amount of change across releases for each
architectural-smell metric?

Potentially, predicting architectural smells is most impor-
tant in the case of smell emergence, i.e., the addition of smells
to a software system. For example, if a module has not had a
type of smell in the current release but will have that smell in
the next release, our models should predict this occurrence,
allowing an engineer to take preventive measures to stem
that decay. To that end, we aim to answer the following
research question:

RQ3: Can we effectively predict architectural-smell emer-
gence?

Although we select prediction metrics that intuitively
determine architectural quality, the exact combinations of
metrics that best predict architectural quality must be as-
sessed empirically. For our study, we select combinations of
metrics that are (1) obtained at the file level and aggregated
to modules, and (2) are architectural in nature. Thus, we
investigate the following final research question:

RQ4: What are the important metrics for predicting each
architectural quality metric?

3 PREDICTION MODEL CONSTRUCTION

Figure 1 overviews our approach for predicting architectural
quality. Our approach begins with a set of source files, a

) E e {) ) i 'cglire_s IEEE permission. See http://www.ieeeorggaublicationsﬁstandards/publications/r)ights/indexhtml for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 13,2021 at 18:53:29 UTC from IEEE

plore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3060068, IEEE

Transactions on Software Engineering

version control repository, and architectural modules identi-
fied by an Architectural Module Extractor from the source
files. Given those three artifacts, four Metrics Extractors—
Lifted File-Level Extractor, Architectural Co-Change Extractor,
Architectural Smell Extractor, and Architectural Dependency
Extractor—compute 19 metrics that are used as independent
variables for a stepwise regression analysis. A user selects
a metric among 6 architectural-quality metrics to be pre-
dicted, which serves as the dependent variable inputted to
the stepwise regression analysis. The result of regression
analysis is a prediction model for the selected quality metric.
Each prediction model produced by our approach utilizes
independent variables of release k of system s and predicts
the selected architectural-quality metric for k£ + 1 of system
5.

In the remainder of this section, we describe the major
parts of our approach: the techniques we leveraged to obtain
architectural modules, our selected regression models, the
six quality metrics to be predicted, and the metrics extracted
and used as independent variables.

Metric Selection by User
f

D dent Variable
Variables )
Selected
Metric
—

Architectural Co-Change Stepwise

@ j=={ Regression

Analysis
F\rchitectural Smells i

Architectural Quality Metrics

EICCD)

.
.

Metrics Extractors

Lifted
File-Level
Extractor

Source
Files

Architectural
Co-Change =i
Extractor

Version
Control ~

®

Architectural
Smell Extractor

00
60

Prediction
Model for
Selected Metric

Archi D

Extractor Extractor

Architectural . Architectural
Module Architectural | Dependenc:
=
Modules P Y

00
06
0

—
Fig. 1: Overview of our approach for architectural-quality
metric prediction

3.1 Obtaining Architectural Modules

We consider two different techniques for recovering ar-
chitectural modules, which are used by Architectural Mod-
ule Extractor. As a result, we obtain multiple architectural
views [25], allowing an engineer to obtain architectural-
quality metrics from different perspectives. This maximizes
the possibility of identifying architectural-quality problems
throughout a software system. Note that an architecture-
recovery technique can be substituted for a ground-truth
architecture verified as correct by a software system'’s archi-
tects. In such a situation, our prediction models would likely
achieve better performance, since they would not need to

correct for improperly recovered modules.
The package structure of a system can be treated as a

proxy for the decomposition of the system into architec-
turally significant elements, as packages are created by the
developers of the system. In fact, package structuring has
been used as a decomposition reference in prior research
[26], [27], [28]. Packages and their sub-packages can be rep-
resented in a tree structure corresponding to the packaging

Authorized licensed use limited to: Access paid by The UC Irvine Li

3

hierarchy. Each leaf of the tree is a Java class contained in a
package, which itself may belong to a higher level package.
The root of the tree is the top-level package.

In addition to packages, we include a semantic view of
modules obtained using an architecture-recovery technique
called Architectural Recovery using Concerns (ARC) [15], [20],
[21], which utilizes hierarchical clustering and information
retrieval to produce modules. ARC leverages a statistical
language model, Latent Dirichlet Allocation (LDA) [29], to
represent each source file of a system as textual documents
consisting of concerns, which are extracted from the iden-
tifiers and comments of each file. A concern could be a
role, concept, or responsibility of a system. The number
of modules recovered by ARC is selectable by an engineer,
enabling the consideration of recovered modules at a high
level and low level, just as in the case of packages. For ARC’s
implementation, every entity in a module is a Java source
file. Note that for both recovery techniques, the entirety of a

file is mapped to a single module.
Once modules have been identified or recovered, we

must be able to determine which module my, in release k
is the same module my4; in release k + 1. This determi-
nation allows us to make predictions for my; based on
our metrics for my. We leverage a technique described in
prior work that traces modules across releases based on the
degree of overlap among them [15].

3.2 Regression Analysis Selection

We constructed the prediction models in this study using the
releases of each project. We use three well-known regression
models in this study and compare the results: linear regres-
sion (LR), negative binomial regression (NBR), and random
forest (RF). We used the MASS library in R [30] for building

LR and NBR and the randomForest library for RF [31].
Although LR is popular and widely used in the liter-

ature, some have argued that NBR is a more appropriate
regression model for defect prediction [32]. Unlike LR, NBR
makes no assumptions about the linearity of the relationship
between the variables, or the normality of the variable dis-
tributions. NBR is applicable to non-negative integers and,
more importantly, can be used for over-dispersed count data
(i.e., when the conditional variance of the data exceeds the
conditional mean) [33]. We also chose RF since it has been
shown to perform best for software defect prediction [34],
making RF potentially suitable for predicting architectural
quality. For NBR, we use the log, transformation of our
metrics to reduce the influence of extreme values, similar
to prior work [33].

We do not want our prediction metrics to exhibit mul-
ticollinearity, a phenomenon where prediction metrics are
correlated, since this can cause our prediction models to
become unstable [35]. To avoid the multicollinearity prob-
lem, we use stepwise regression to build the models. We
leverage the stepAIC function in the MASS library of R for
this purpose. Akaike Information Criteria (AIC) is a commonly
used static measure for goodness of fit. Models can be built
in two ways: forward and backward. Forward stepwise re-
gression begins with no variable in the model. The variable
that improves the model the most is identified and added to
the model. The process continues until none of the remain-
ing variables can improve the model. Backward stepwise

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution recgnre_s IEEI% pem}issigndSee hétp:/{wwvl\)/.ieeﬁgr&&)zu‘}a1ictaE]igngéstzasdagfigl%ublical'%%gr)ights/indexhtml for more information.
raries. bownloaded on september , al 100! rom

plore. Restrictions apply.



0098-5589 (c) 2021 IEEE. Personal use is

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3060068, IEEE

Transactions on Software Engineering

regression starts with the full model, improves the model by
deleting variables, and repeats this deletion until no further
improvement is possible. To determine the optimal model,
we ran both forward and backward stepwise regression.
We used stepwise regression when building models with
LR and NBR. We utilized all of the metrics when building
models using RF because it works well with a large number
of independent variables [36], where our model includes
only 19 such variables.

3.3 Dependent Variables

We selected the following six metrics that serve as repre-
sentations of architectural decay: the number of defects in a
module; four architectural-smell metrics, where each metric
indicates whether a module has a specific type of smell;
and a metric that indicates a module’s quality in terms of
coupling and cohesion. Each of these metrics is a dependent

variable for a single architectural-quality prediction model.

The number of defects per module, shown as DEF in
Figure 1, are determined by summing up the defects in each
file contained within an architectural module.

The coupling and cohesion of a module is a strong
indicator of the module’s quality. To that end, we included
Cluster Factor (CF) [18], a metric used widely in previous
architectural studies [18], [21], [37], [38] that represents the
coupling and cohesion of a module. We calculate C'F' for
a module m as follows: CF; = M‘ﬁ, where p;
is the number of dependencies between entities within a
module, €;; is the number of dependencies from module 4
to module j, and €;; is the number of dependencies from
module j to module i.

The presence or absence of architectural bad smells in a
module may inform our prediction models as to the future
occurrence of architectural decay. To that end, we select four
architectural smells for our study that represent structural
or semantic maintainability problems of a module. Each
smell falls into one of two categories: concern-based smells
or dependency-based smells. Concern-based smells are caused
by inappropriate or inadequate separation of concerns;
dependency-based smells arise due to module interactions
resulting from code relationships among entities within a
module.

We identify the following smells that a module may
suffer from, which have been studied in previous work [9],
[10], [39].

e Scattered Functionality (SF) is a concern-based architectural
smell that describes a system in which multiple modules
are responsible for realizing the same high-level concern,
while some of those modules are also responsible for
additional, orthogonal concerns.

e Concern Overload (CO) is a concern-based architectural
smell that occurs for a module when it implements an
excessive number of concerns. For practical identification
of such a smell, a given number of concerns is excessive if
that number exceeds the mean plus standard deviation of
the number of concerns across the modules of the software
system in question. This selection of a threshold represent-
ing “excessiveness” minimizes the bias of making such a
determination [39].

o Dependency Cycle (DC) is a dependency-based architec-
tural smell that occurs when a set of modules are linked

ermitted, but republication/redistribution re

4

in such a way that they form a cycle, causing changes to
one module to possibly affect all other modules involved
in the cycle.

e Link Overload (LO) is a dependency-based smell that oc-
curs when a module is involved in an excessive number
of dependencies to other modules. A module can have
an excessive number of incoming links, outgoing links, or
both. Similar to CO, a given number of links is excessive
if that number exceeds the mean plus standard deviation
of the number of links across the modules of the software
system in question.

To represent each of these smells as an architectural-
quality metric to be predicted, we create a binary metric for
each smell: s5¢, Sco, Sqc, and sg,. If @ module m has a smell
s, then s = 1. Otherwise, s = 0. For example, if a module
mq has CO, then s., = 1 for m;.

3.4 Independent Variables

We use four types of metrics extractors to obtain a combina-

tion of file-level and architectural-level metrics for predicting

architectural quality. Many prediction models from existing

literature have focused on predicting software defects [32],

[40], [41], [42]. We chose a subset of metrics from the

prior literature, particularly at the file level, as independent

variables for prediction, since they may be indicators of
architectural problems.

Lifted File-Level Extractor obtains the following file-level
metrics:

o The lines of code (LOC) of a file is a measure of the size of
a file determined by counting the number of non-empty
non-comment lines.

o Sum cyclomatic complexity (SCC) of any structured program
with only one entry point and one exit point is equal to
the number of decision points contained in that program
plus one.

o The depth of inheritance tree (DIT) is the depth of a class
within an inheritance hierarchy calculated as the maxi-
mum number of nodes from the class node to the root of
the inheritance tree.

o Coupling between objects (CBO) for a class is the number of
other classes to which it is coupled. Class A is coupled to
class B if class A uses a type, data, or member from class
B.

o Lack of cohesion in methods (LCM) is calculated as 100%
minus average cohesion for class data members. Average
cohesion is calculated as the percentage of pairs of meth-
ods in a class that have at least one field in common. A
lower percentage means higher cohesion between class
data and methods.

o Number of changes (NC) is the number of times that a file
is committed to a repository.

o Number of co-changed files (NCL) is the number of other
files that a given file is changed with [43].

To represent file-level metrics at the module-level, we [ift
them up to the architectural level by summing up the values
of each file-level metric across all files inside each module.
The resulting sum is then used as a representation of each
file-level metric for a module. For example, in the case of
SCC, a module m with four files can have the following
SCC values, one for each file: 2, 5, 6, and 9. The SCC for
module m is the sum of all SCCs of its constituent files, i.e.,

) E e {) ) i 'cglire_s IEEE permission. See http://www.ieeeorggaublicationsﬁstandards/publications/r)ights/indexhtml for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 13,2021 at 18:53:29 UTC from IEEE

plore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3060068, IEEE

Transactions on Software Engineering

22. This approach has been used for predicting defects for

packages [6], [7].

Among our architectural metrics, we include metrics
involving co-changes between modules that are extracted
by Architectural Co-Change Extractor. Co-changes are process
metrics that represent modifications that occur simultane-
ously within or across modules. Prior work has demon-
strated that architectural co-changes correlate with defects
[44], [45]. Consequently, architectural co-change metrics
may potentially improve our prediction models. We select
the following architectural co-change metrics:

o Cross-module co-changes (CMC) is the number of co-
changes for a file, where the co-changes are made across
more than one architectural module.

o Inner-module co-changes (IMC) is the number of co-changes
for a file, where there is at least another co-changed file in
the same architectural module.

A number of our selected architectural-quality metrics
are based on dependencies between modules, which are
code relationships among source-level entities within a
module (e.g., method invocations, field accesses, import
statements, etc.). To predict architectural quality based on
such dependencies, Architectural Dependency Extractor ob-
tains module-dependency metrics.

We consider two methods for measuring the depen-
dencies between modules. The first method models the
dependencies as a binary variable, meaning that we only
measure whether a module has a dependency on another
module. The second method is to count all of the depen-
dencies between the modules, which considers the num-
ber of dependencies between the files inside each of the
modules. Using these two methods, we select the following
dependency-based metrics:

e Incoming module dependency (CMD) is a binary metric
for a module m; with a value of 1 if there is at least
one dependency from another module ms to my, and 0
otherwise.

o Outgoing module dependency (OMD) is a binary metric
for a module m; with a value of 1 if there is at least
one dependency from m; to another module my, and 0
otherwise.

o Total incoming module dependencies (TCMD) is the total
number of dependencies to a module m; and originating
from other modules in a software system.

o Total outgoing module dependencies (TOMD) is the total
number of dependencies from a module m; to other
modules in a system.

o Internal module dependencies (IMD) is the total number of
dependencies among all files within a module.

o External module dependencies (XMD) is the total number of
incoming and outgoing dependencies of a module.

The existence of architectural smells in a module may
indicate further architectural decay in the future for that
module. For example, a module with CO may be more
likely to exhibit LO in the future. As another example, LO
may be an indicator of future reductions in a module’s CF.
To that end, Architectural Smell Extractor identifies the four
architectural smells described in Section 3.3 and computes
the corresponding metrics.

Note that CF and DEF are not used as independent vari-
ables because the process we describe to select independent

Authorized licensed use limited to: Access paid by The UC Irvine Li

5

variables (i.e., stepwise regression as discussed in Section
3.2) demonstrated that these variables did not contribute to
the regression models.

4 EXPERIMENTAL SETUP

To evaluate our prediction models, this section discusses
the experimental setup we use to answer our research
questions.

4.1 Projects Studied

Table 1 depicts the five projects used in our experiments,
including the number of releases, size of the projects, num-
bers of modules, numbers of defects, and numbers of smells.
We selected projects that (1) are written in Java; (2) are
maintained by Apache Software Foundation (ASF) because
they maintain links between issues and code—allowing us
to link defects with specific modules; and (3) vary across
application domains and size. Further statistical information
about the five studied projects are provided in the following
paragraphs.

TABLE 1: Studied Projects and Release Information

Project  Description #Rel KSLOC # Mod # Def # Smells
HBase Distributed 11 39- 12-118 29-267 3-86
(Hb) Database 246
Hive  Data ‘Ware- ¢ (g 3204 15115 19-84
(Hi) house

Facilities
OpenJPA Java Persis- 6 153-407 63-257  24-157  23-99
(Op) tence

Framework
Camel — Message- 9 99-390 187-545  178-457  33-212
(Cam) Oriented

Middleware
Cassandra Distributed 6 50-90 18-75 17-259 13-86
(Cas) DBMS

Figure 2 shows the number of modules across different
releases and projects for both ARC (a semantic or concern-
based view) and packages (a structural view). We set ARC
to produce a number of modules equivalent to 20% of
the classes in a version of a project, which is the number
of modules for which ARC obtained accurate results in a
comparative analysis of recovery techniques [21]. Across the
five projects, we obtained 29-391 modules for ARC and 12-
545 modules for packages. Except for Camel, most of the
projects contained more ARC modules than packages.

Figure 3 illustrates the number of defects across releases
and projects, and for both architectural views. The figure
indicates that the number of defects tends to be greater
for packages than for ARC modules across projects and
releases. Specifically, the ARC view contains 15-378 defects,
while the package view has 23-457 defects, due to the
number of packages being fewer than the number of ARC
modules.

Figure 4 depicts the number of architectural smells ob-
tained from the ARC and package views across releases
and projects. The number of smells are greater in the ARC
view—containing 16-212 smells—than the package view—
which has 3-78 smells. This result is unsurprising since
concern-based smells (i.e., CO and SF) are not obtainable
from the package view, as that view does not represent a
software system’s concerns (recall Section 3.1).

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution recgnre_s IEEB pem}issigndSee hétp:/{wwvl\)/.ieeﬁgr&&)zu‘}a1ictaE]igngéstzasdagfigl%ublical'%%gr)ights/indexhtml for more information.
raries. bownloaded on september , al 100! rom

plore. Restrictions apply.



0098-5589 (c) 2021 IEEE. Personal use is

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3060068, IEEE

Transactions on Software Engineering

6
ARC Packages ARC Packages
200
400 150
3 o
3 2
=] 100 .
= @ . .
200 Q
% . = [ ﬁ
0
0
Cam Cas Hb Hi Op Cam Cas Hb Hi Op Cam Cas Hb Hi Op Cam Cas Hb Hi Op

Fig. 2: Number of Modules Across Projects.

ARC Packages

Hb Hi Op Cam Cas Hb Hi Op

Fig. 3: Number of Defects Per Module Across Projects and
Releases.

400
300

]

[53

2

I3

0200

Cam Cas

4.2 Data Collection and Metric Measurement

To enable prediction of architectural quality, we collect data
about bug fixes and metrics at both the code and architec-

tural levels. We utilize different tools for that purpose.
We obtain code-level metrics per file and for each release.

The first five file-level metrics (LOC, SCC, DIT, CBO and
LCM) are measured using UNDERSTAND from Scitools! for

each release.
The change metrics (NC, NCL, CMC and IMC) are cal-

culated by processing the developer commits from an SVN
repository and extracting the groups of files in the same
commit transaction that have been modified together (i.e.,
co-changes). We use SVNKit, a Java toolkit providing APIs

to subversion repositories.
To obtain architectural metrics, we leverage Architecture

Recovery, Change, And Decay Evaluator (ARCADE) [15], [39],
a workbench containing tools for addressing architectural
decay. Specifically, ARCADE consists of algorithms for
detecting architectural smells and computing architectural
dependency information, enabling the extraction of our
four selected architectural smell metrics (SF, CO, DC, and
LO) and six architectural dependency-based metrics (CMD,
OMD, TCMD, TOMD, IMD, and XMD). To parameterize
ARC for this experiment, we simply used the default pa-
rameters provided by ARC, which is part of ARCADE, and

used in prior studies [15], [20], [22], [39].
In the ASF software repositories and, by extension, the

projects studied in this paper, the commits that are bug fixes
are identifiable since bugs are referred to by a project name
and bug number in SVN commit logs. For example, all of the
bug fixes in HBASE begin with HBASE-<bug number> (e.g.,
HBASE-3172). This enabled us to find all bug fixes by just
parsing the log of commits in SVN and finding the keyword
HBASE-<bug number>. To determine the number of defects

1. http:/ /www.scitools.com/

ermitted, but republication/redistribution re

uires IEEE permission. See http://www.ieee.o

Fig. 4: Number of Smells Across Projects and Releases.

for each module, we sum up the number of bug fixes in all
files within each module.

We chose releases so that the period of time between
each release is 3 to 4 months. Choosing releases with near-
equal time intervals reduces the effects of wide disparities
between releases. For example, if one pair of releases in
our study are weeks apart, while another pair are years
apart, our prediction models may be affected by the large
difference in time between the pairs of releases. As a result,
we control for time to an extent. Our chosen approach for
dealing with time intervals between releases is consistent
with previous literature on prediction models for software
engineering [46] and empirical studies on architectural co-
change [45]. Additionally, this release interval resulted in
obtaining the most number of releases as possible while still
trying to account for time in a balanced manner for this
study.

4.3 Data Splitting and Evaluation Metrics

We first discuss the splitting strategy we select for training
our models and testing them. We then cover the two criteria
we chose to evaluate the performance of our prediction
models: predictive power and ranking.

Data Splitting. In order to evaluate the performance of
the models, we use data splitting, a commonly used eval-
uation technique, where a data set is divided into subsets
for building and evaluating the model. For evaluating the
performance of our prediction models on release k, we
use the data of all releases up to but not including that
release to train the models, and then we use the data of
release k as test data. We assess the performance of our
prediction models for multiple releases depending on the
number of releases for a project. For HBase and Camel, we
evaluate our prediction models for the last three releases.
For the remaining projects, we test the models on the last

two releases.
Predictive Power. We assess the predictive power of a

model by selecting an appropriate performance measure.
We considered a variety of measures often utilized to eval-
uate the performance of predictive models for software-
engineering purposes. We will briefly discuss some com-
monly used measures—accuracy, precision, and recall—and
why they are undesirable for our study. We then follow
that discussion with an introduction and justification of our
chosen measure for predictive performance: area under the
curve (AUC) of the receiver operating characteristic (ROC).
Precision and recall are pairs of performance measures
commonly used together for prediction models. Precision is
a measure of a model’s ability to predict modules without

rg/publications_standards/publications/ri:
Authorized licensed use Iimifed to: Access paid by The UC Irvine Lict)raries. Downloaded on September 13,5(?21 at 18:53:29 UTC from IEEE Xgplore. Restrictions apply.

hts/index.html for more information.



0098-5589 (c) 2021 IEEE. Personal use is

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3060068, IEEE

Transactions on Software Engineering

falsely marking them as having low architectural quality.
Recall is a measure of a model’s ability to correctly predict
all modules with low architectural quality. A prediction
model should have a high precision and recall; however,

increasing one often decreases the other.
Accuracy is the proportion of correct predictions, which

can be a bad performance measure for imbalanced data [47].
For example, if we only have a few defective modules in our
data set, a model that considers all modules as clean would

have a high accuracy.
Precision, recall, and accuracy all require the arbitrary

setting of discrimination thresholds to declare a module as
having low architectural quality. To avoid arbitrary setting
of thresholds in our experiments, we utilize AUC of ROC as
the performance measure for comparing prediction models,

as suggested by [34], and further described below.
The Receiver operating characteristic (ROC) is a curve that

plots true positive rates (y-axis) against false positive rates
(x-axis) for all possible thresholds between 0 and 1 that are
used to convert a prediction model score to a class label—
precluding the need to arbitrarily set thresholds. AUC is a
scalar performance measure derived from ROC and is the
area enclosed by the curve and the x-axis. AUC separates
predictive performance from class and cost distributions,
which are based on characteristics of projects. A class dis-
tribution represents the balance of class instances in the
dataset (e.g., they can be uniform or imbalanced). A cost
distribution represents the tradeoff between the true posi-
tive rate and false positive rate of a prediction model. In
other words, AUC computes a predictive performance that
is independent of the balance of class instances in the dataset
or the tradeoffs between the false positive rate and true pos-
itive rate. The best possible model is a curve close to y = 1
with AUC of 1.0; a random classifier would obtain AUC
of 0.5. In code-level defect prediction literature, an AUC
of 0.7 or above is considered a high level of performance
for a prediction model [34], [41]. Given the similarity of
architectural decay and defects, we also consider AUC of 0.7
and above as a high level of performance for architectural-
quality prediction.

o
= 7
v
4
4
e
© Ve
i 7
4
4
2 ,
& o | e
g - .
E=] 4
2 ,
o Ve
o < Vi
O o 7 4
=} 4
= 7
4
4
N e
o 4
L7 — NBR classifier
L7 - - Random classifier
e ] b
o

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate
Fig. 5: ROC Curve for Defect Prediction.

For illustration, Figure 5 shows an ROC curve corre-

ermitted, but republication/redistribution re

7

sponding to one of our models for predicting defects in
architectural modules of the Open]PA project. Every point
on a ROC curve represents a threshold tradeoff between
the true positive rate and false positive rate. For example,
at the top-right end of the curve we identify all modules
as defective, resulting in also a 100% false positive rate.
Ideally, even on the left end of the curve, where we select
thresholds that push the false positive rate to zero, we obtain
high true positive rates. As a result, the ROC curve shows
all the different tradeoffs between the rates that can act
as discrimination thresholds. By choosing a different dis-
crimination threshold for declaring a module defective, the
prediction model would produce a different performance, as
shown in this curve. Rather than reporting the results using
an arbitrary threshold, we use AUC to holistically compare
the classification performance of different prediction models
under all possible thresholds.

Our approach for evaluating the prediction models is
orthogonal to how the engineers would use the models in
software projects. In practice, the engineer can choose a
discrimination threshold that achieves the desired balance
of precision and recall based on the characteristics of a
project. For instance, if a project is understaffed and there
are insufficient resources to thoroughly review the system’s
architecture/code, the engineer may choose a threshold that
achieves a higher precision and a lower recall, meaning less
wasted effort investigating false positives, at the expense
of not fixing all architectural issues in time. On the other
hand, if a project has the necessary staff and resources
to thoroughly review the system’s architecture/code, the
engineer may choose a threshold that achieves a lower
precision and a higher recall, meaning more wasted effort
of investigating false positives, but increased likelihood of
fixing all architectural concerns. As another example, in a
safety-critical software project, the engineers may choose
to use thresholds that maximize the recall to reduce archi-
tectural decay factors, and thereby improve the quality of
software, as much as possible.

Ranking. Determining the modules with the lowest ar-
chitectural quality allows engineers to prioritize their efforts
to those modules first. To that end, we assess if a model can
correctly predict the order of modules according to their
architectural-quality metrics. Ranking is not applicable to
architectural smells since they are binary variables. How-
ever, we can obtain ranking results for defects and CF In
defect ranking, we build the prediction models using data
splitting, predict the number of faults for each module, and
compare the ordering of the predicted defect numbers with
actual defect numbers using Spearman correlation. Simi-
larly, we predict CF values for each module and compare the
ranking of predicted CF values with the ranking of actual CF
values.

We consider a Spearman correlation greater than 0.4 that
is statistically significant at the 0.01 level to be a reliable
ranking of modules. A correlation of 1.0 denotes a perfect
ranking. Previous work on code-level defect prediction has
considered Spearman correlation values greater than 0.4
to be sufficiently strong [6], [48]. Given the similarity of
predicting code-level defects and architectural decay, this
consideration is sensible for our prediction models. Note
that all the Spearman correlations that we report are signifi-

) E e {) ) i 'cglire_s IEEE permission. See http://www.ieeeorggaublicationsﬁstandards/publications/r)ights/indexhtml for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 13,2021 at 18:53:29 UTC from IEEE

plore. Restrictions apply.



0098-5589 (c) 2021 IEEE. Personal use is

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3060068, IEEE

Transactions on Software Engineering

cant at the 0.01 level.

5 EXPERIMENTAL RESULTS

Given our approach and the experimental design described
in the previous sections, we now discuss the results ob-
tained for each of our research questions. We begin by
assessing the overall performance of our prediction models
for each architectural-quality metric. We follow that study
by assessing the degree of change for each architectural-
smell metric. Afterwards, we focus on prediction results
for smell emergence. Lastly, we determine the metrics that
best predict architectural quality. For readers interested in
extra details of results, we have provided an appendix that
shows 58 additional box plots for each project displaying
results for six predicted architectural metrics (cluster factor,
defects, and smells)—associated with the different research
questions we studied.

5.1 RQ1: Performance for Architectural-Quality Metrics
Defects. We first assess our model’s ability to predict
whether a module has at least one defect, which we refer to
as defect existence prediction. Figure 6a shows AUC results for
defect existence prediction for RF (F), LR (L), and NBR (N),
using both ARC and packages. Every box plot for a partic-
ular regression model (i.e., random forest, linear regression,
or negative binomial regression) and architecture-recovery
technique (i.e., ARC or Packages) represents a variety of
statistics (e.g., minimum and maximum AUC values, differ-
ent quartiles, and the median). Hence, we simply compute
these different statistics and visualize them as those box
plots. The results show that the prediction performance of
NBR is higher than LR and RFE. Particularly in the case of
NBR, our models predict module defectiveness with AUC
of at least 0.76.

ARC Packages ARC Packages
09 \
. 0.75
0.8 . $ %
S = Eos0 = ‘
<07 . o
Q.
(]
0.6 0.25
0.5 . .
: 0.00 :
F L N F L N F L N F L N
Models #RF=LR®=NBR Models ERF=LR=NBR

(a) AUC Performance Defects (b) Spearman Correlation for
Ranking Defective Modules

Fig. 6: Defect Prediction Performance

Only predicting which modules have defects in future
releases does not help in prioritizing modules for defect
analysis and removal. Particularly, roughly 50% of modules
in our study tend to have defects, which provides engineers
with little information as to which modules should be
allocated more maintenance resources. To address this issue,
our models can predict the amount of defects a module may
have, rather than simply whether a module has a defect.
Predicting the magnitude of a module’s defectiveness al-
lows an engineer to prioritize modules for defect analysis
and removal.

ermitted, but republication/redistribution re

ARC-CO
T

0.9

ARC-SF

-

ARC-DC

=

ARC-LO Pkg-DC

T

Pkg-LO

W

AUC

0.7

Models ERFESLR®NBR

Fig. 7: AUC Performance Architectural Smells. CO stands
for concern overload; SF stands for scattered functionality;
DC stands for dependency cycle; and LO stands for link
overload.

. ARC  Packages 40 ARC___  Packages
1.0 :
F ﬁ * 0.8 # i *
0.8 . é
o .
. £
2 Sos
Q. .
0.6 n )
0.4
F L N F L N F L N F L N

Models =#RF=LR=NBR Models =#RF&LR=NBR

(a) AUC Performance Cluster (b) Spearman Correlation
Factor Cluster Factor

Fig. 8: Cluster Factor Prediction Performance

We assess our model’s ability to predict the extent of
a module’s defectiveness by using Spearman correlation to
compare the actual ranking of defective modules with our
model’s predicted rankings. Figure 6b shows these results.
As before, NBR outperforms LR and RF: Prediction for ARC
modules obtains a Spearman correlation of 0.48-0.69; for
packages, our models obtain a Spearman correlation of 0.62-
0.73.

Smell Prediction. We determine whether our models
can predict the occurrence of different types of smells by
utilizing AUC as our performance measure. Figure 7 shows
the AUC results for predicting smells in ARC. We have
the results of all four smells from ARC; however, two of
the smells are concern-based and only applicable to ARC.
The recovered architectures obtained by using packages
as modules do not provide a representation of the system
concerns needed to identify concern-based smells. Thus, for
packages, we have results for DC and LO only.

Recall from Section 3.1 that ARC represents each source
file as containing a set of concerns. These concerns are
needed to identify SF and CO in a software system’s
architecture, precluding these types of smells from being
determined from the package view. As shown in Figure 7,
we can predict the occurrences of smells in modules with
a high AUC of 0.84 or above. Furthermore, LR, NBR, and
RF obtain similar prediction results, in terms of AUC, for
smells.

Cluster Factor. The overwhelming majority of modules
in projects have low architectural quality as measured by CF.
We consider a module m as having a low CF when CF < 0.2

) E e {) ) i 'cglire_s IEEE permission. See http://www.ieeeorgg;)ublicationsﬁstandards/publications/r)ights/indexhtml for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 13,2021 at 18:53:29 UTC from IEEE

plore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3060068, IEEE
Transactions on Software Engineering

TABLE 2: Prediction of Cluster Factor (CF) for Packages in HBase (version 0.92)

Package Name CF  Predicted CF  Rank of CF  Rank of Predicted CF
org.apache.hadoop.hbase.thrift.generated 0.00 0.01 1 1
org.apache.hadoop.hbase.client.coprocessor 0.01 0.02 2 2
org.apache.hadoop.hbase.io 0.03 0.03 3 3
org.apache.hadoop.hbase.replication 0.05 0.04 6 4
org.apache.hadoop.hbase.executor 0.04 0.04 4 5
org.apache. hadoop.hbase.master.handler 0.05 0.05 5 6
org.apache.hadoop.hbase.util.hbck 0.06 0.06 7 7
org.apache.hadoop.hbase.replication.regionserver ~ 0.09 0.08 8 8
org.apache.hadoop.hbase.rest.client 0.11 0.10 9 9
org.apache.hadoop.hbase.mapreduce 0.11 0.11 10 10
org.apache.hadoop.hbase.mapred 0.13 0.14 11 11
org.apache.hadoop.hbase.regionserver 0.18 0.20 12 12
org.apache.hadoop.hbase.rest 0.22 0.24 13 13
org.apache.hadoop.hbase.io.hfile 0.25 0.28 14 14
org.apache.hadoop.hbase.filter 0.27 0.31 15 15

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution re:

for m. This CF value indicates that the vast majority of m’s
dependencies are with entities outside of m, as opposed to
within m, indicating high coupling and low cohesion. Using
the threshold of CF < 0.2, we created a binary, independent
variable that we used to assess the CF prediction perfor-
mance in terms of AUC. Note that AUC is applicable to
classification problems. As a result, we need to make the
continuous variable CF into a discrete variable, which we
achieve by converting CF to a binary variable representing
low and high CF.

Figure 8a shows AUC results for predicting the CF
values of modules. Similar to our previous results, RF and
NBR outperform LR. Both RF and NBR obtain AUC values
for CF of at least 0.71, demonstrating high effectiveness for
predicting CF.

Given that modules mostly have low CF values, it is
particularly important that engineers identify the modules
with the worst CE. With such information, engineers can
allocate maintenance resources to those modules first. To
that end, we further assess the ranking results of CF.

Figure 8b depicts the ranking results for CF values
compared using Spearman correlation. For both ARC and
packages, NBR and RF perform similarly, achieving more
than 0.7 correlation, with RF performing slightly better than
NBR. Both models outperform LR.

To illustrate how the results of this research might be
used by the engineers, we describe one of the prediction
models from Figure 8b in more detail. We show the CF
prediction results for a subset of packages in HBase version
0.92. Table 2 shows the actual values of CF for packages, the
predicted value of CF, and also the corresponding ranking.
As shown, the predicted values of CF are very close to the
actual values of CF. Out of 15 modules, 12 modules are
ranked correctly by the prediction model, while for the 3
remaining modules (i.e., handler, executor, and replication)
the actual and predicted rankings are quite close. Engineers
could use such information to identify architectural prob-
lems (e.g., identify the modules with low CF) and prioritize
their effort (e.g., refactor the modules with lowest CF).
For instance, the top-3 most decayed packages in Table
2 (i.e., .thrift.generated, .client.coprocessor,
and .io) should be refactored to reduce coupling and
increase cohesion.

RQ1 Summary. Overall, the results show that our mod-
els can effectively predict the different architectural-quality

Authorized licensed use limited to: Access paid by The UC Irvine Li

metrics. For most cases, NBR provides superior results and
is the best overall model for predicting architectural quality.

5.2 RQ2: Changes for Architectural Smells

Figure 9a shows the percentages of changes across all re-
leases and systems for each architectural smell. We compute
smell change o for release r, which represents the ratio of
smell emergence or removal of modules in release r + 1 to
all modules with smells in r, using the following equation:

_ Hma € M, : 05(mg, 7,7+ 1)} 1
[{ms € M, : haso(my)}]

os(m,r,r+ 1) =0cem(m,r,r + 1) Vore(m,r,r+1)

M, is the set of modules for release r. o, is true when
module m has no smell in release r but has a smell in release
r =+ 1, and false otherwise—representing a smell emergence.
0re 18 true when a module m has a smell in release r but
does not have that same smell in release r» + 1, and is false
otherwise—representing a smell being removed or changed
to another smell. haso(m) returns true if module m has
any smell, and false otherwise. Intuitively, the denominator
calculates the number of modules for a release that have any
smells; the numerator calculates the number of modules in
the current release that will change in the next release.

oan(Mp,r,r+1) 00

~ ARC  Packages . ARC  Packages

100
75 A10
X X
g T
2 50 2
© (] 5
&) 5

25 ° - .

= = ?
o T B == ol — _

CO DC LO SF CO DC LO SF CO DC LO SF CO DC LO SF

Smells =CO=DC=LO=SF Smells :CO=DC=LO=SF

(a) Any Changes (b) Smell Emergence

Fig. 9: Percentages of Changes for Architectural Smells. CO
stands for concern overload; DC stands for dependency cy-
cle; LO stands for link overload; and SF stands for scattered
functionality.

Although all types of architectural smells change across
releases, the amount of change varies: SF, DC, and CO

cglire_s IEEE permission. See http://www.ieeeorggaublicationsﬁstandards/publications/r)ights/indexhtml for more information.
raries. Downloaded on September 13,2021 at 18:53:29 UTC from IEEE

plore. Restrictions apply.



0098-5589 (c) 2021 IEEE. Personal use is
Authorized licensed use Iimifed to: Access paid by The UC Irvine Lict)raries. Downloaded on September 13

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3060068, IEEE

Transactions on Software Engineering

ARC-CO ARC-SF ARC-DC

an

ARC-LO Pkg-DC

-

Pkg-LO

1.00

0.75

AUC

0.25

Models B8 RF & LR B NBR

Fig. 10: AUC Performance for Architectural Smell Emer-
gence. CO stands for concern overload; SF stands for scat-
tered functionality; DC stands for dependency cycle; and
LO stands for link overload.

exhibit relatively little change; LO changes drastically across
all releases of our systems. The amount of change under-
gone by smells SE, DC, and CO is relatively small ranging
from about 5% to 35%. However, LO change is highly
substantial ranging from about 60% to 99%.

Overall, we find that architectural smells do exhibit
significant change worth predicting. However, we would
like to determine if our prediction models can forecast a
particular type of architectural-quality change, i.e., smell
emergence, so that engineers can possibly take action before
a smell occurs—resulting in possible savings of future time
and effort.

5.3 RQa3: Predicting Architectural-Smell Emergence

As part of answering this research question, we first assess
the frequency of smell emergence. Figure 9b shows the
percentages of smell emergence in architectural modules
across all systems and releases. We compute the percentage
of smell emergence oX" for release r using the following
equation:

{ma € My : gem(mg,r,m+ 1)}

100
[{my € M, : haso(mp)}|

o (My,ryr+1) =

This equation is highly similar to oa; however, cX" does

not utilize o, and, thus, only accounts for smell emergence.
Intuitively, cX" computes the ratio of modules that experi-
ence smell emergence in release r + 1 to all modules with
smells for release 7.

LO is the most frequent type of smell emergence with
a median of 9% occurring for modules. SF and DC smell
emergence occurs less than 5% in ARC; DC smell emergence
does not occur in most projects. Although smell emergence
occurs infrequently, this phenomenon is intuitively difficult
to predict and preventing its occurrence may reduce future
maintenance issues.

To build a model for predicting smell emergence cases,
we created new binary variables for each smell: se.,, Sedc,
sejo, Sesf. se variables are equal to 1 whenever the value of
the corresponding smell is 0 in the current release and 1 in
the next release—meaning that the smell does not exist in
the previous release, but it emerges in the next release. We

ermitted, but republication/redistribution re

10

created models for predicting smell emergence using these

new dependent variables.
Figure 10 shows the AUC prediction results for smell

emergence for all systems and releases. Despite the number
of smell-emergence instances being low, NBR predicts those
instances with AUC of 0.83 on average. The performance
of RF drops considerably for smell-emergence prediction
compared to LR and NBR. This occurs because RF can
lose significant performance when a dataset is extremely
imbalanced [49]; however, stepwise regression with LR and
NBR are less susceptible to imbalanced data.

In summary, our models can predict smell emergence—

and architectural-quality metrics in general—with high per-
formance.

5.4 RQ4: Factors Enabling Architectural Prediction

To obtain our prediction models, it is important to identify
the metrics that best improve our prediction models. Our
previous results show that prediction models using NBR
tend to perform as well or outperform LR and RF in the
majority of cases. Consequently, to answer RQ4 we focus
on identifying the best metrics, obtained through stepwise
regression, for NBR. We produced 50 prediction models
for architectural quality using NBR. These were obtained
from the combination of five systems, two architectural
views (ARC and packages), and six dependent variables
(defects, SF, CO, DC, LO and CF), where SF and CO are
only applicable for ARC. Similarly, we constructed several
prediction models for smell emergence. Due to the number
of prediction models, we do not report the coefficient values
and significance level of all of the independent variables in

each model. 2
Table 3 showcases the factors, i.e., independent vari-

ables, that contribute to prediction models for each quality
metric: Each column represents an independent variable;
each row represents a dependent variable. Factors for smell-
emergence models are denoted by -SE. Values in the ta-
ble depict the number of times each independent variable
contributes to a prediction model. The maximum value in
each cell is 10 (the combination of two architectural views
and five systems). However, for concern-based architectural
smells (SF, CO, SF-SE and CO-SE), 5 is the maximum value,
because the package view does not include such smells (de-
noted by highlighted row headers in Table 3). For example,
LOC contributes to all models for predicting defects and,
thus, is included in all 10 models.

A wide variety of metric types, from all categories,
are important factors—with values of at least 5—for pre-
dicting defects: lifted file-level metrics (LOC, CBO, and
NCQ), architectural co-changes (CMC and IMC), architectural
smells (DC), and architectural-dependency metrics (OMD
and XMD).

In general, for three of the four types of architectural
smells (SE, CO, and DC), the important factor for predicting
those smells is if the smell exists for a module in the current
release. For example, if a module has CO, it is likely to
continue having CO in the next release. However, a wider
variety of metrics are important factors for predicting LO.

2.Readers may find the study artifacts, including the pre-
diction models and results, at: https://sites.google.com/view/
forecasting-arch-decay

uires IEEE permission. See http://www.ieeeorgg)zu‘}a1ictaE]igngéstzasdagfigl%ublical'%%gr)ights/indexhtml for more information.
, at 18:53: rom

plore. Restrictions apply.


https://sites.google.com/view/forecasting-arch-decay
https://sites.google.com/view/forecasting-arch-decay

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution re:

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3060068, IEEE

Transactions on Software Engineering

11

TABLE 3: Factors contributing to each model

LOC SCC DIT CBO LCM NC NCL CMC IMC SF CO DC 1O CMD OMD TCMD TOMD IMD XMD
Defects 10 2 4 7 1 8 4 6 7 0 3 5 1 1 6 1 4 4 6
SF 1 4 1
CcO 1 5 1 1
DC 10
LO 3 1 4 1 3 3 1 1 2 2 9 2 1 4 3 4 4
CF 1 1 2 1 9 5
SF-SE 1 2 1 1 2 1 2 1 1 1 1
CO-SE 1 1 1 1 1
DC-SE 1 3 1 1 1 3 1 2 3 3 1 2 2
LO-SE 4 1 4 1 3 1 2 2 1 2 1 4 3 3 2 3 8

Overall, these smell results indicate that architectural
smells are rarely restructured, meaning that smell-oriented
decay tends to remain in a system once it emerges. This
result further motivates the need to predict smell emergence
and prevent smell occurrence.

The important factors for predicting smell emergence
are starkly different from predicting the general case of
architectural quality: A wide variety of metrics predicted
each type of smell emergence. This result indicates that
smell emergence originates from a complex set of factors
that warrants further research.

Overall, our results indicate that all categories of inde-
pendent variables are important for predicting architectural
quality. Unlike previous work for predicting defects in
packages [8], [50], which only used lifted file-level metrics,
we show that both lifted file-level metrics and architectural
metrics are important for predicting architectural quality.
Futhermore, stepwise regression using NBR provides the
best results for such prediction.

6 EXAMPLE CASE

In the previous section, we relied on statistical criteria to
empirically assess the performance of our prediction mod-
els. To determine the usefulness of these predictions from a
practical perspective, we also manually studied some of the
results produced by our models. Without being exhaustive,
here we describe some of our findings in the case of the
Camel project, providing concrete evidence as to how the
prediction models can be useful in practice for identifying
the architectural problems. We focus on Camel as a case
study for two key reasons. First, Camel is a popular project
with many commits and users, making it particularly inter-
esting as a case study. Second, Camel is one of the larger
projects in our study, with a higher number of LOC and
versions studied.

We manually investigated whether architectural qual-
ity metrics, such as architectural smells, used in the con-
struction of our prediction models, are indeed architectural
problems the developers care about and aim to resolve. We
conducted this investigation by reading through commit
logs. We only report architectural problems described in
the commit history by the developers. We found cases
corroborating the validity of our quality metrics through
the developers” commit logs and changes that involved

Authorized licensed use limited to: Access paid by The UC Irvine Li

restructuring of the system’s architecture. For instance, our
metrics identified the following four packages to have DC
on 2/17/09: component.cxf, component.cxf.util, converter.stream
and converter. Two months later, those packages no longer
had a DC. To confirm our DC metric is indeed properly
capturing an issue in the architecture of the system, we
looked at the log commits of Camel, filtered the changes that
include those packages, and found the following messages:

e revision: 749227, date: 3/2/2009, log
message: CAMEL-588: LoggingLevel moved
from model to root pacakge to improve API
package.

e revision: 749236, date: 3/2/2009, log
message: CAMEL-588: Fixed bad package
tangle.

e revision: 749561, date: 3/3/2009, log
message: CAMEL-588: Removed package

dependency and using the type converter
API to find the right converter instead of
direct usage.

We also looked at CAMEL-588 in Jira; the description
of issue starts as follows: ‘‘Currently there is a
bad dependency cycle between camel, spi and
model...’’. These comments clearly describe the same
phenomenon intended to be measured by the DC metric
(recall Section 3.3). Experiences such as this provide
concrete evidence that architectural smell metrics can be
effective in practice with helping the practitioners identify
architectural problems and decaying elements.

We also found cases in which our smell emergence
predictions were found to be issues that the developers
had acknowledged in their commit logs and had attempted
to resolve. A concrete example of this situation occurred
with the language.simple package, which did not have DC
for multiple releases, but our model predicted that it will
start to have DC from version 2.5 (10/31/2010). When we
manually investigated the commit logs, excerpts of which
are shown below, not only did we find evidence of DC
emergence, but also attempts by the developers to fix the
problem afterwards:

e revision: 1150991, date: 7/26/2011, log
message: CAMEL-3961: Polished and reduced
some package tangling

e revision: 1171490, date: 9/16/2011,

cglire_s IEEE permission. See http://www.ieeeorggaublicationsﬁstandards/publications/r)ights/indexhtml for more information.
raries. Downloaded on September 13,2021 at 18:53:29 UTC from IEEE

plore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3060068, IEEE

Transactions on Software Engineering

log message: CAME1-4457 Move types of
the simple language to a new package
simple.types to avoid dependency cycle

The description of CAMEL-4457 in Jira sum-
marizes the issue: ‘‘Currently we have a big
dependency cycle between language.simple and
language.simple.ast’’.

We believe using our smell-emergence prediction mod-
els, Camel developers could have identified and refactored
the decaying architectural modules earlier.

These phenomena were not limited to DC. For example,
we were able to predict component.log will not have the LO
smell in a future release, even though it had that smell
in previous releases. We found evidence in commit logs
that the architecture of the system had been refactored in
between the releases:

e revision: 749193, date: 3/2/2009, log
message: CAMEL-588: Package tangle fixes.
Tokenizer in spring renamed to Tokenize.
And fixed a CamelCase.

749212, date:
message: CAMEL-588:
from model to core package,
tangle.

In summary, our analysis suggests that we can accurately
predict many architectural quality concerns and that such
concerns are indeed taken seriously by the developers of
open-source software, as evidenced by commit logs show-
casing their attempts to fix degraded architectural modules.
We believe our prediction models could help developers
detect software architectural decay in a systematic fashion,
possibly prior to its full manifestation in code.

3/2/2009, log
Moved LoggingLevel
to fix bad

e revision:

7 THREATS TO VALIDITY
We now describe the main threats to validity of our findings.
Construct validity is concerned with whether we are actu-
ally or accurately measuring the constructs we are interested
in studying. One such threat involves the correctness of
our linking of modules and their constituent files with
defects. However, recall from Section 4.1 that the process
used by engineers in ASF to link bug-fixing commits and
issues significantly mitigates this threat. We chose fixed bugs
instead of reported bugs because fixed bugs are verified to
be legitimate by developers while reported bugs may not be

verified by developers.
Another threat to construct validity involves the accu-

racy of the architectural modules we obtain. We address
this threat in several ways: We selected a technique, ARC,
that has exhibited high accuracy when compared to other
techniques in previous work [21] and used the settings for
ARC that worked well in previous work [15], [21] We further
complement the semantic view provided by ARC with a
structural view obtained through packages. The package-
based view is often considered architectural [6], [7], [8], [26],
[27], [28], [51], [52]. Both of these techniques obtained highly
accurate architecture recoveries in previous work [15], [21]
—even when the recovered architectures were compared to
manually recovered architectures obtained with the actual
architects of widely used software systems (e.g., Hadoop
and the Bourne-again shell or Bash, for short) [53]. We
choose these two different views because they are strikingly

Authorized licensed use limited to: Access paid by The UC Irvine Li

12

different views, resulting in highly different modules. Any
inaccuracies in the identification of architectural modules
would degrade the results of our predictions, reducing the
possibility of accurately relating similar modules across re-
leases. However, our models still achieve high performance.

The final threat to construct validity involves whether
our selected metrics actually represent architectural decay
or the factors that predict architectural quality. To ensure
that we have a comprehensive set of metrics that represent
architectural decay, we included three types of architectural-
quality metrics: architectural defects, architectural smells,
and CF. For the factors that may indicate architectural decay,
i.e., the independent variables of our models, we selected a
wide variety of metrics that do not overlap, in order to avoid
the multicollinearity problem.

Threats to external validity involve the generalizability of
our findings. One such threat is that all our projects are from
ASF and are implemented in Java. To mitigate this threat,
we selected projects from different application domains that
vary in their sizes. Furthermore, Java is a widely used lan-
guage, making our results more generalizable. Specifically,
our results become particularly generalizable to the many
software projects worldwide that are implemented in Java,
or similar languages.

Another threat to external validity relates to the architec-
tural views this paper utilizes for recovery. This paper uses
a structural view corresponding the Development view in
Kruchten’s 4+1 view model [11], [17] or the Module view
[16] from Clements et al. An architecture recovery for this
view does not generalize to the execution-oriented views
such as the Component-and-Connector view of Clements et
al. or the Process view of Kruchten’s model. Nevertheless,
there is currently no architectural decay prediction tech-
nique based on the Development view or Module view
which already has well-established and widely used and
studied techniques (e.g., ACDC or ARC). As a result, this
paper contributes a novel and important first step toward
performing architectural decay prediction for other views,
such as the Process view or the Component-and-Connector
view.

Threats to conclusion wvalidity are concerned with the
correctness of relationships among variables. One potential
threat to conclusion validity is the correctness of using an
architectural smell in an older version to help predict the
introduction of or change to an architectural smell in a
later version. Essentially, architectural smells can be both
dependent and independent variables in our models. To
mitigate this potential threat, we carefully construct predic-
tion models using three regression models and show that,
in fact, architectural smells do contribute to the ability to
predict such smells in later versions (see Table 3).

Another threat to validity involves our choice of re-
gression models and their parameterization. To ensure va-
lidity of these selections, we chose widely-used and well-
established prediction models (i.e., LR, RF, and NBR). These
models were parameterized using standard or widely-used
parameter values or determined using standard algorithms
(e.g., Akaike Information Criteria for stepwise regression).

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution recgnre_s IEEB pem}issigndSee hétp:/{wwvl\)/.ieeﬁgr&&)zu‘}a1ictaE]igngéstzasdagfigl%ublical'%%gr)ights/indexhtml for more information.
raries. bownloaded on september , al 100! rom

plore. Restrictions apply.



0098-5589 (c) 2021 IEEE. Personal use is

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3060068, IEEE

Transactions on Software Engineering

8 RELATED WORK

We overview prior work covering three areas: defect pre-
diction; studies focused on architectural evolution or ar-
chitectural decay; and studies concerned with architectural-
quality metrics.

8.1 Defect Prediction

Several studies have shown that metrics mined from code
change history can be effective in locating defect-prone code
[40], [43], [54], [55], [56], [57], [58], [59], [60], [61], [62]. A
number of studies use different statistical methods in order
to predict the location or number of faults in a software
system [42]. Ostrand et al. [32] developed a model based on
NBR to predict the number of faults in files. Menzies et al.
[41] demonstrated that the method for building prediction
models is significantly more important than the attributes
selected for those models. Similarly, prior work has demon-
strated that architectural co-changes correlate with defects
[44], [45].

While most of the bug prediction studies are at the file-
level, some studies focus on the subsystem level. Mockus
and Weiss [55] found that in a large switching software
system, the number of subsystems modified by a change
can be a predictor of whether the change results in a fault.
Nagappan et al. [50] used post-release defect history of five
Microsoft software systems and found that failure-prone
software entities are statistically correlated with code com-
plexity measures. Zimmermann and Nagappan [63] investi-
gated the architecture and dependencies in Windows Server
2003, demonstrating how the complexity of a subsystem’s
dependency graph can be used to predict the number of
failures.

Several studies used packages as modules. Martin and
Martin [64] introduced the Common Closure Principle
(CCP) as a design principle about package cohesion. This
principle implies that a change to a component may affect
all the classes in that component, but should not affect
other components. Although the authors introduce CCP as
a guideline for good decomposition of architecture, they do
not investigate its impact on software defects. Zimmermann
et. al [6] showed that complexity metrics are indicators of
defects in Eclipse using files and packages. Kamei et. al [7]
showed that package-level predictions do not outperform
file-level predictions when the effort needed to review or
test the code is considered. Schroter et. al [8] showed that
import dependencies can predict defects using both files and
packages. Bouwers et. al [65] investigated twelve architec-
ture metrics for their ability to quantify the encapsulation of
an implemented architecture and used packages for evalua-
tion.

While the majority of existing studies on defect predic-
tion are at the file level, our study is at the architectural
level. We further examine indicators of architectural decay
and quality other than defects (i.e., architectural smells and
modularization quality). Furthermore, existing studies of
prediction models at the subsystem level used either pack-
ages as architectural modules or other pre-defined modules
(e.g. studies on Windows that used binaries as architectural
modules). In this work, we use packages and a recovery
technique for identifying modules from source code. These

ermitted, but republication/redistribution re

13

recovered architectural views enable us to build architec-
tural prediction models for any system.

8.2 Architectural Evolution and Decay

A wide variety of studies are concerned with architectural
decay across multiple versions of a software system. None
of the following studies aim to predict architectural quality
or decay.

Two studies have examined architectural decay by us-
ing the reflexion method [66], a technique for comparing
descriptive architectures (i.e., architectures as designed by
its architects) and recovered architectures (i.e., architectures
as represented by implementation-level artifacts). Brunet et
al. [67] studied the evolution of architectural violations from
four subject systems. Rosik et al. [68] conducted a case study
using the reflexion method to assess whether architectural
drift, i.e.,, unintended design decisions, occurred in their
subject system and whether instances of drift remain un-

solved.
A number of studies investigate architectural decay

without using the reflexion method. In terms of novel
techniques for investigating architectural decay, Hassaine
et al. [69] present a recovery technique, which they use to
study decay in three systems. van Gurp et al. [70] con-
duct two qualitative studies of software systems to better
understand the nature of architectural decay and how to
prevent it. D’Ambros et al. [71] present an approach for
studying software evolution that focuses on the storage
and visualization of evolution information at the code and

architectural levels.
Other studies of architectural decay are more exploratory

or descriptive in nature. Two studies [45], [51] examine the
effects of code changes on architectural modules and archi-
tectural decay. Ernst et al. [72] surveyed 1,831 participants,
mostly software engineers and architects, on technical debt,
finding that architectural decisions are the most important
form of technical debt.

Two studies focus on patterns that represent architec-
tural decay. Mo et al. [73] study patterns of recurring ar-
chitectural problems at the file and package level, finding
evidence of proneness to errors and changes for such entities
involved in such patterns. Le et al. [74] investigate the nature
and impact of architectural smells.

Three other studies [75], [76], [77] focus on the impact of

code anomalies, their relations, and co-occurrences on the
possibility of architecture degradation.

8.3 Architectural-Quality Metrics

A variety of metrics have been established in the software-
engineering literature that quantify architectural quality and
are applicable to architectural modules. Most of the metrics
focus on representing coupling and cohesion between archi-
tectural entities. Other metrics consider the concerns (i.e.,
concepts, roles, or responsibilities) of the software system.
Furthermore, some metrics have been applied to studies of

architectural evolution.
Several studies focus on coupling and cohesion metrics

for architectural modules. Allen and Khoshgoftaar [78] de-
fine coupling and cohesion metrics based on information
theory. Briand et al. [79] present coupling and cohesion
metrics based on object-oriented design princples. Sarkar

) E e {) ) i 'cglire_s IEEE permission. See http://www.ieeeorggaublicationsﬁstandards/publications/r)ights/indexhtml for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 13,2021 at 18:53:29 UTC from IEEE

plore. Restrictions apply.



0098-5589 (c) 2021 IEEE. Personal use is

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3060068, IEEE

Transactions on Software Engineering

et al. [80], [81] defined a series of metrics concerned with
quality at the module and object-oriented levels. Most of
these metrics highly overlap with previous metrics and are
based on coupling and cohesion. Many of these metrics
overlap with constructs measured by our selected metrics,
while others are dependent on specific technologies or are
not fully automatable—precluding their inclusion in our

study.
Sant’Anna et al. [82] present architectural metrics based

on concerns. These metrics are highly similar to concern-
based architectural smells and focus on aspect-oriented
systems. They do not provide mechanisms for identifying
concerns that are not aspect-oriented, precluding the use of

these metrics for our study.
Wermelinger et al. [83] apply architectural-decay metrics

across multiple releases of Eclipse, with a focus on cou-
pling, cohesion, and stability metrics. Sangwan et al. [84]
apply architectural complexity metrics to multiple versions
of Hibernate. Finally, Zimmerman et al. [85] propose that
true coupling is determined by studying revision histories
and code-level entities rather than the decomposition of
modules or files. None of this previous work aims to predict
architectural quality, which is the focus of our research.

9 CONCLUSION

Architectural decay is a phenomenon of software systems
that leads to defects and increases maintenance time and
effort. To address this issue, we constructed models for
predicting three types of architectural decay: architectural
defects, architectural smells, and modularization quality.
For 38 versions of five software systems, we can predict
architectural decay with high performance across two archi-
tectural views—one semantic view and another structural
view. Even when architectural smells suddenly emerge in a
module, we can predict these rare cases with high perfor-
mance (AUC of 0.79-0.96). We further discovered that archi-
tectural smells tend to remain in modules once they emerge.
Lastly, we discovered that a wide variety of metrics—of
which file-level metrics are only a subset—are needed to
predict architectural decay.

To enable replication of our results and improvement
over our approach for architectural-quality prediction, we
make our prediction models and results available online
[24].

REFERENCES

[1] A. Telea, L. Voinea, Visual software analytics for the build
optimization of large-scale software systems, Computational
Statistics 26 (4) (2011) 635-654 (Dec. 2011). doi:10.1007/
s00180-011-0248-2.

URL http:/ /link.springer.com/10.1007 /s00180-011-0248-2

[2] T. A.Standish, An Essay on Software Reuse, IEEE Transactions on
Software Engineering SE-10 (5) (1984) 494497, conference Name:
IEEE Transactions on Software Engineering (Sep. 1984). doi:10.
1109/TSE.1984.5010272.

[3] T. A.Corbi, Program understanding: Challenge for the 1990s, IBM
Systems Journal 28 (2) (1989) 294-306, conference Name: IBM
Systems Journal (1989). doi1:10.1147/s3.282.0294.

[4] S.Yau,]. Collofello, Some Stability Measures for Software Mainte-
nance, IEEE Transactions on Software Engineering SE-6 (6) (1980)
545-552, conference Name: IEEE Transactions on Software Engi-
neering (Nov. 1980). doi1:10.1109/TSE.1980.234503.

[5] D. E. Perry, A. L. Wolf, Foundations for the Study of Software
Architecture, SIGSOFT Softw. Eng. Notes 17 (4) (1992) 40-52 (Oct.
1992). doi1:10.1145/141874.141884.

6]

(71

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

ermitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/|
Authorized licensed use Iimifed to: Access paid by The UC Irvine Libraries. Downloaded on September 13,5(?21 at 18:53:29 UTC from IEEE

14

T. Zimmermann, R. Premraj, A. Zeller, Predicting Defects for
Eclipse, in: Proceedings of the Third International Workshop on
Predictor Models in Software Engineering, PROMISE ‘07, IEEE
Computer Society, Minneapolis, MN, USA, 2007, pp. 9- (May
2007). doi:10.1109/PROMISE.2007.10.

Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams,
A. E. Hassan, Revisiting Common Bug Prediction Findings Using
Effort-aware Models, in: Proceedings of the 2010 IEEE Inter-
national Conference on Software Maintenance, ICSM 10, IEEE
Computer Society, Timisoara, Romania, 2010, pp. 1-10 (Sep. 2010).
doi:10.1109/ICSM.2010.5609530.

A. Schroter, T. Zimmermann, A. Zeller, Predicting Component
Failures at Design Time, in: Proceedings of the 2006 ACM/IEEE
International Symposium on Empirical Software Engineering, IS-
ESE '06, ACM, Rio de Janeiro, Brazil, 2006, pp. 18-27 (Sep. 2006).
doi:10.1145/1159733.1159739.

J. Garcia, D. Popescu, G. Edwards, N. Medvidovic, Identifying Ar-
chitectural Bad Smells, in: 13th European Conference on Software
Maintenance and Reengineering, Kaiserslautern, Germany, 2009,
pp. 255-258 (Mar. 2009). doi:10.1109/CSMR.2009.59.

J. Garcia, D. Popescu, G. Edwards, N. Medvidovic, Toward a
Catalogue of Architectural Bad Smells, in: Proceedings of the 5th
International Conference on the Quality of Software Architectures:
Architectures for Adaptive Software Systems, QoSA "09, Springer-
Verlag, East Stroudsburg, PA, USA, 2009, pp. 146-162 (Jun. 2009).
doi:10.1007/978-3-642-02351-4_10.

P. Kruchten, The 4+1 view model of architecture, Software, IEEE
12 (6) (1995) 42-50 (Nov 1995). doi:10.1109/52.469759.

M. Risi, G. Scanniello, G. Tortora, Architecture recovery using
latent semantic indexing and k-means: an empirical evaluation, in:
2010 8th IEEE International Conference on Software Engineering
and Formal Methods, IEEE, 2010, pp. 103-112 (2010).

G. Bavota, A. De Lucia, A. Marcus, R. Oliveto, Using struc-
tural and semantic measures to improve software modularization,
Empirical Software Engineering 18 (5) (2013) 901-932, publisher:
Springer (2013).

G. Bavota, A. De Lucia, A. Marcus, R. Oliveto, Software re-
modularization based on structural and semantic metrics, in: 2010
17th Working Conference on Reverse Engineering, IEEE, 2010, pp.
195-204 (2010).

D. M. Le, P. Behnamghader, J. Garcia, D. Link, A. Shahbazian,
N. Medvidovic, An empirical study of architectural change in
open-source software systems, in: 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories, IEEE, 2015, pp. 235
245 (2015).

P. Clements, D. Garlan, R. Little, R. Nord, J. Stafford, Documenting
software architectures: views and beyond, in: 25th International
Conference on Software Engineering, 2003. Proceedings., 2003,
pp. 740-741, iSSN: 0270-5257 (May 2003). doi:10.1109/ICSE.
2003.1201264.

P. Kruchten, Architectural Blueprints—The “4+1” View Model of
Software Architecture (1995) 15 (1995).

B. Mitchell, S. Mancoridis, On the automatic modularization of
software systems using the Bunch tool, IEEE Transactions on
Software Engineering 32 (3) (2006) 193-208 (2006). doi:10.
1109/TSE.2006.31.

IEEE Standard Glossary of Software Engineering Terminol-
ogy, IEEE Std 610.12-1990 (1990) 1-84Conference Name: IEEE
Std 610.12-1990 (Dec. 1990). doi:10.1109/IEEESTD.1990.
101064.

J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, Y. Cai, En-
hancing Architectural Recovery Using Concerns, in: Proceedings
of the 26th IEEE/ACM International Conference on Automated
Software Engineering, ASE "11, IEEE Computer Society, Lawrence,
KS, USA, 2011, pp. 552-555 (Nov. 2011). doi:10.1109/ASE.
2011.6100123.

J. Garcia, I. Ivkovic, N. Medvidovic, A comparative analysis of
software architecture recovery techniques, in: IEEE/ACM 28th
International Conference on Automated Software Engineering
(ASE), Palo Alto, CA, USA, 2013, pp. 486-496 (Nov. 2013). doi:
10.1109/ASE.2013.6693106.

T. Lutellier, D. Chollak, J. Garcia, L. Tan, D. Rayside, N. Medvi-
dovic, R. Kroeger, Comparing software architecture recovery tech-
niques using accurate dependencies, in: Proceedings of the 37th
International Conference on Software Engineering, 2015 (2015).

T. Lutellier, D. Chollak, J. Garcia, L. Tan, D. Rayside, N. Medvi-
dovi¢, R. Kroeger, Measuring the impact of code dependencies on

ublications_standards/publications/rights/index.html for more information.
plore. Restrictions apply.


http://link.springer.com/10.1007/s00180-011-0248-2
http://link.springer.com/10.1007/s00180-011-0248-2
https://doi.org/10.1007/s00180-011-0248-2
https://doi.org/10.1007/s00180-011-0248-2
http://link.springer.com/10.1007/s00180-011-0248-2
https://doi.org/10.1109/TSE.1984.5010272
https://doi.org/10.1109/TSE.1984.5010272
https://doi.org/10.1147/sj.282.0294
https://doi.org/10.1109/TSE.1980.234503
https://doi.org/10.1145/141874.141884
https://doi.org/10.1109/PROMISE.2007.10
https://doi.org/10.1109/ICSM.2010.5609530
https://doi.org/10.1145/1159733.1159739
https://doi.org/10.1109/CSMR.2009.59
https://doi.org/10.1007/978-3-642-02351-4_10
https://doi.org/10.1109/52.469759
https://doi.org/10.1109/ICSE.2003.1201264
https://doi.org/10.1109/ICSE.2003.1201264
https://doi.org/10.1109/TSE.2006.31
https://doi.org/10.1109/TSE.2006.31
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1109/ASE.2011.6100123
https://doi.org/10.1109/ASE.2011.6100123
https://doi.org/10.1109/ASE.2013.6693106
https://doi.org/10.1109/ASE.2013.6693106

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3060068, IEEE

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

(39]

[40]

(41]

[42]

[43]

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorggaublicationsﬁstandards/publications/ri hts/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 13,

Transactions on Software Engineering

software architecture recovery techniques, IEEE Transactions on
Software Engineering 44 (2) (2017) 159-181 (2017).
arch-prediction-tools on GitHub, https://github.com/jgarci40/
arch-prediction-tools.

P. Kruchten, Architecture blueprints—the 4+1’" view model of
software architecture, in: Tutorial Proceedings on Ada’s Role in
Global Markets: solutions for a changing complex world, TRI-
Ada 95, ACM, Anaheim, CA, USA, 1995, pp. 540-555 (Nov. 1995).
doi:10.1145/216591.216611.

F. Beck, S. Diehl, Evaluating the Impact of Software Evolution
on Software Clustering, in: 17th Working Conference on Reverse
Engineering, Beverly, Massachusetts, 2010, pp. 99-108 (Oct. 2010).
doi:10.1109/WCRE.2010.19.

K. Kobayashi, M. Kamimura, K. Kato, K. Yano, A. Matsuo,
Feature-gathering dependency-based software clustering using
dedication and modularity, in: Software Maintenance (ICSM), 2012
28th IEEE International Conference on, 2012, pp. 462471 (Sept
2012). doi:10.1109/ICSM.2012.6405308.

A. Corazza, S. Di Martino, V. Maggio, G. Scanniello, Investigat-
ing the use of lexical information for software system cluster-
ing, in: Software Maintenance and Reengineering (CSMR), 2011
15th European Conference on, 2011, pp. 35-44 (March 2011).
doi:10.1109/CSMR.2011.8.

D. M. Blei, A. Y. Ng, M. L. Jordan, Latent Dirichlet Allocation, J.
Mach. Learn. Res. 3 (2003) 993-1022 (Mar. 2003).

CRAN - Package MASS, http://cran.r-project.org/web/
packages/MASS/index.html.

CRAN - Package randomForest, http://cran.r-project.org/web/
packages/randomForest/index.html.

T. Ostrand, E. Weyuker, R. Bell, Predicting the location and
number of faults in large software systems, IEEE Transactions
on Software Engineering 31 (4) (2005) 340-355 (2005). doi:
10.1109/TSE.2005.49.

J. Cohen, J. Cohen, Applied multiple regression/correlation anal-
ysis for the behavioral sciences, L. Erlbaum Associates, Mahwah,
N.J., 2003 (2003).

S. Lessmann, B. Baesens, C. Mues, S. Pietsch, Benchmarking
Classification Models for Software Defect Prediction: A Proposed
Framework and Novel Findings, IEEE Transactions on Software
Engineering 34 (4) (2008) 485496 (Jul. 2008). doi:10.1109/TSE.
2008.35.

D. E. Farrar, R. R. Glauber, Multicollinearity in regression analysis:
The problem revisited, The Review of Economics and Statistics
49 (1) (1967) pp. 92-107 (1967).

A. Prinzie, D. Van den Poel, Random multiclass classification:
Generalizing random forests to random mnl and random nb,
in: R. Wagner, N. Revell, G. Pernul (Eds.), Database and Expert
Systems Applications, Vol. 4653 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2007, pp. 349-358 (2007).
doi:10.1007/978-3-540-74469-6_35.

J. Wu, A. Hassan, R. Holt, Comparison of clustering algorithms
in the context of software evolution, in: 21st IEEE International
Conference on Software Maintenance, Budapest, Hungary, 2005,
pp- 525-535 (Sep. 2005). doi:10.1109/ICSM.2005.31.

K. Praditwong, M. Harman, X. Yao, Software module cluster-
ing as a multi-objective search problem, Software Engineering,
IEEE Transactions on 37 (2) (2011) 264-282 (March 2011). doi:
10.1109/TSE.2010.26.

J. Garcia, A unified framework for studying architectural decay of
software systems, Ph.D. thesis, University of Southern California
(2014).

M. Cataldo, A. Mockus, J. Roberts, J. Herbsleb, Software Depen-
dencies, Work Dependencies, and Their Impact on Failures, IEEE
Transactions on Software Engineering 35 (6) (2009) 864-878 (2009).
doi:10.1109/TSE.2009.42.

T. Menzies, J. Greenwald, A. Frank, Data Mining Static Code At-
tributes to Learn Defect Predictors, IEEE Transactions on Software
Engineering 33 (1) (2007) 2-13 (2007). doi:10.1109/TSE.2007.
256941.

M. D’Ambros, M. Lanza, R. Robbes, An extensive comparison of
bug prediction approaches, in: 7th IEEE Working Conference on
Mining Software Repositories, Cape Town, South Africa, 2010, pp.
31-41 (May 2010). doi:10.1109/MSR.2010.5463279.

E. Shihab, A. Mockus, Y. Kamei, B. Adams, A. E. Hassan, High-
impact defects: a study of breakage and surprise defects, in: 19th
ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering, ESEC/FSE "11, ACM,

(4]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(57]

(58]

[59]

[60]

[61]

15

Szeged, Hungary, 2011, pp. 300-310 (Sep. 2011). doi:10.1145/
2025113.2025155.

E. Kouroshfar, Studying the effect of co-change dispersion on
software quality, in: ACM Student Research Competition, 35th
International Conference on Software Engineering (ICSE), San
Francisco, CA, 2013, pp. 1450-1452 (May 2013). doi:10.1109/
ICSE.2013.6606741.

E. Kouroshfar, M. Mirakhorli, H. Bagheri, L. Xiao, S. Malek, Y. Cai,
A study on the role of software architecture in the evolution
and quality of software, in: Proceedings of the 12th Working
Conference on Mining Software Repositories, MSR "15, IEEE Press,
Piscataway, NJ, USA, 2015, pp. 246-257 (2015).

URL http://dl.acm.org/citation.cfm?id=2820518.2820548

N. Nagappan, T. Ball, Using software dependencies and churn
metrics to predict field failures: An empirical case study, in:
Empirical Software Engineering and Measurement, 2007. ESEM
2007. First International Symposium on, 2007, pp. 364-373 (Sept
2007). doi:10.1109/ESEM.2007.13.

P-N. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2005 (2005).

T. Zimmermann, N. Nagappan, Predicting Defects Using Net-
work Analysis on Dependency Graphs, in: Proceedings of the
30th International Conference on Software Engineering, ICSE "08,
ACM, Leipzig, Germany, 2008, pp. 531-540 (May 2008). doi:
10.1145/1368088.1368161.

URL http://doi.acm.org/10.1145/1368088.1368161

C. Chen, A. Liaw, L. Breiman, Using random forest to learn
imbalanced data, University of California, Berkeley (2004).

N. Nagappan, T. Ball, A. Zeller, Mining Metrics to Predict Compo-
nent Failures, in: Proceedings of the 28th International Conference
on Software Engineering, ICSE '06, ACM, Shanghai, China, 2006,
pp- 452-461 (May 2006). doi:10.1145/1134285.1134349.

M. Paixao, J. Krinke, D. Han, C. Ragkhitwetsagul, M. Harman, Are
developers aware of the architectural impact of their changes?, in:
Proceedings of the 32Nd IEEE/ACM International Conference on
Automated Software Engineering, ASE 2017, IEEE Press, Piscat-
away, NJ, USA, 2017, pp. 95-105 (2017).

URL http://dl.acm.org/citation.cfm?id=3155562.3155578

M. Paixao, J. Krinke, D. Han, C. Ragkhitwetsagul, M. Harman, The
impact of code review on architectural changes, IEEE Transactions
on Software Engineering (2019).

J. Garcia, I. Krka, C. Mattmann, N. Medvidovic, Obtaining ground-
truth software architectures, in: Proceedings of the International
Conference on Software Engineering, ICSE ‘13, IEEE Press, San
Francisco, CA, USA, 2013, pp. 901-910 (May 2013).

URL http:/ /dl.acm.org/citation.cfm?id=2486788.2486911

T. Graves, A. Karr, J. Marron, H. Siy, Predicting fault incidence us-
ing software change history, IEEE Transactions on Software Engi-
neering 26 (7) (2000) 653-661 (2000). doi:10.1109/32.859533.
A. Mockus, D. M. Weiss, Predicting risk of software changes, Bell
Labs Technical Journal 5 (2) (2000) 169-180 (2000). doi:10.1002/
bltj.2229.

A. E. Hassan, Predicting faults using the complexity of code
changes, in: 31st International Conference on Software Engineer-
ing, ICSE '09, IEEE Computer Society, Vancouver, Canada, 2009,
pp. 78-88 (May 2009). doi:10.1109/ICSE.2009.5070510.

M. D’Ambros, M. Lanza, R. Robbes, On the Relationship Between
Change Coupling and Software Defects, in: 16th Working Confer-
ence on Reverse Engineering, Lille, France, 2009, pp. 135-144 (Oct.
2009). doi1:10.1109/WCRE.2009.19.

N. Nagappan, T. Ball, Use of relative code churn measures to
predict system defect density, in: 27th International Conference
on Software Engineering, St. Louis, Missouri, 2005, pp. 284-292
(May 2005). doi:10.1109/ICSE.2005.1553571.

S. Eick, T. Graves, A. Karr, J. Marron, A. Mockus, Does code
decay? Assessing the evidence from change management data,
IEEE Transactions on Software Engineering 27 (1) (2001) 1-12 (Jan.
2001). doi:10.1109/32.895984.

S. Eick, T. Graves, A. Karr, A. Mockus, P. Schuster, Visualizing
software changes, IEEE Transactions on Software Engineering
28 (4) (2002) 396412 (2002). doi:10.1109/TSE.2002.995435.
D. Poshyvanyk, A. Marcus, R. Ferenc, T. Gyiméthy, Using Infor-
mation Retrieval Based Coupling Measures for Impact Analysis,
Empirical Softw. Engg. 14 (1) (2009) 5-32 (Feb. 2009). doi:
10.1007/s10664-008-9088~-2.

21 at 18:53:29 UTC from IEEE Xplore. Restrictions apply.


https://github.com/jgarci40/arch-prediction-tools
https://github.com/jgarci40/arch-prediction-tools
https://doi.org/10.1145/216591.216611
https://doi.org/10.1109/WCRE.2010.19
https://doi.org/10.1109/ICSM.2012.6405308
https://doi.org/10.1109/CSMR.2011.8
http://cran.r-project.org/web/packages/MASS/index.html
http://cran.r-project.org/web/packages/MASS/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
https://doi.org/10.1109/TSE.2005.49
https://doi.org/10.1109/TSE.2005.49
https://doi.org/10.1109/TSE.2008.35
https://doi.org/10.1109/TSE.2008.35
https://doi.org/10.1007/978-3-540-74469-6_35
https://doi.org/10.1109/ICSM.2005.31
https://doi.org/10.1109/TSE.2010.26
https://doi.org/10.1109/TSE.2010.26
https://doi.org/10.1109/TSE.2009.42
https://doi.org/10.1109/TSE.2007.256941
https://doi.org/10.1109/TSE.2007.256941
https://doi.org/10.1109/MSR.2010.5463279
https://doi.org/10.1145/2025113.2025155
https://doi.org/10.1145/2025113.2025155
https://doi.org/10.1109/ICSE.2013.6606741
https://doi.org/10.1109/ICSE.2013.6606741
http://dl.acm.org/citation.cfm?id=2820518.2820548
http://dl.acm.org/citation.cfm?id=2820518.2820548
http://dl.acm.org/citation.cfm?id=2820518.2820548
https://doi.org/10.1109/ESEM.2007.13
http://doi.acm.org/10.1145/1368088.1368161
http://doi.acm.org/10.1145/1368088.1368161
https://doi.org/10.1145/1368088.1368161
https://doi.org/10.1145/1368088.1368161
http://doi.acm.org/10.1145/1368088.1368161
https://doi.org/10.1145/1134285.1134349
http://dl.acm.org/citation.cfm?id=3155562.3155578
http://dl.acm.org/citation.cfm?id=3155562.3155578
http://dl.acm.org/citation.cfm?id=3155562.3155578
http://dl.acm.org/citation.cfm?id=2486788.2486911
http://dl.acm.org/citation.cfm?id=2486788.2486911
http://dl.acm.org/citation.cfm?id=2486788.2486911
https://doi.org/10.1109/32.859533
https://doi.org/10.1002/bltj.2229
https://doi.org/10.1002/bltj.2229
https://doi.org/10.1109/ICSE.2009.5070510
https://doi.org/10.1109/WCRE.2009.19
https://doi.org/10.1109/ICSE.2005.1553571
https://doi.org/10.1109/32.895984
https://doi.org/10.1109/TSE.2002.995435
https://doi.org/10.1007/s10664-008-9088-2
https://doi.org/10.1007/s10664-008-9088-2

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3060068, IEEE

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorggaublicationsﬁstandards/publications/ri hts/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 13,

Transactions on Software Engineering

F. Rahman, P. Devanbu, How, and Why, Process Metrics Are
Better, in: Proceedings of the 2013 International Conference on
Software Engineering, ICSE ‘13, IEEE Press, San Francisco, CA,
USA, 2013, pp. 432441 (May 2013).

T. Zimmermann, N. Nagappan, Predicting Subsystem Failures
using Dependency Graph Complexities, in: The 18th IEEE Inter-
national Symposium on Software Reliability, Trollhattan, Sweden,
2007, pp. 227-236 (Nov. 2007). doi:10.1109/ISSRE.2007.19.
R. C. Martin, M. Martin, Agile principles, patterns, and practices
in C#, Prentice Hall, Upper Saddle River, NJ, 2007 (2007).

E. Bouwers, A. van Deursen, J. Visser, Quantifying the Encap-
sulation of Implemented Software Architectures, in: 30th IEEE
International Conference on Software Maintenance and Evolution
(ICSME), Victoria, BC, Canada, 2014, pp. 211220 (Oct. 2014).
doi:10.1109/ICSME.2014.43.

G. Murphy, D. Notkin, K. Sullivan, Software reflexion models:
Bridging the gap between design and implementation, IEEE TSE
27 (4) (2001) 364-380 (2001).

J. Brunet, R. A. Bittencourt, D. Serey, ]J. Figueiredo, On the evolu-
tionary nature of architectural violations, in: Reverse Engineering
(WCRE), 2012 19th Working Conference on, IEEE, 2012 (2012).

J. Rosik, A. Le Gear, J. Buckley, M. A. Babar, D. Connolly, Assessing
architectural drift in commercial software development: a case
study, Software: Practice and Experience (2011).

S. Hassaine, Y. Guéhéneuc, S. Hamel, G. Antoniol, Advise: Ar-
chitectural decay in software evolution, in: Software Maintenance
and Reengineering (CSMR), 2012 16th European Conference on,
IEEE, 2012 (2012).

J. van Gurp, S. Brinkkemper, J. Bosch, Design preservation over
subsequent releases of a software product: a case study of baan
erp, Journal of Software Maintenance and Evolution: Research and
Practice (2005).

M. D’Ambros, H. Gall, M. Lanza, M. Pinzger, Analysing soft-
ware repositories to understand software evolution, Springer, 2008
(2008).

N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, I. Gorton, Measure
it? manage it? ignore it? software practitioners and technical debt,
in: Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, ACM, New York, NY,
USA, 2015, pp. 50-60 (2015). doi:10.1145/2786805.2786848.
URL http://doi.acm.org/10.1145/2786805.2786848

R. Mo, Y. Cai, R. Kazman, L. Xiao, Hotspot Patterns: The Formal
Definition and Automatic Detection of Architecture Smells, in:
2015 12th Working IEEE/IFIP Conference on Software Archi-
tecture (WICSA), 2015, pp. 51-60 (May 2015). doi:10.1109/
WICSA.2015.12.

D. M. Le, D. Link, A. Shahbazian, N. Medvidovic, An empirical
study of architectural decay in open-source software, in: 2018 IEEE
International Conference on Software Architecture (ICSA), IEEE,
2018, pp. 176-17609 (2018).

F. A. Fontana, V. Ferme, M. Zanoni, Towards assessing soft-
ware architecture quality by exploiting code smell relations, in:
Proceedings of the Second International Workshop on Software
Architecture and Metrics, IEEE Press, 2015, pp. 1-7 (2015).

I. Macia, R. Arcoverde, A. Garcia, C. Chavez, A. von Staa, On the
relevance of code anomalies for identifying architecture degrada-
tion symptoms, in: 2012 16th European Conference on Software
Maintenance and Reengineering, IEEE, 2012, pp. 277-286 (2012).
W. Oizumi, A. Garcia, L. da Silva Sousa, B. Cafeo, Y. Zhao, Code
anomalies flock together: Exploring code anomaly agglomerations
for locating design problems, in: 2016 IEEE/ACM 38th Interna-
tional Conference on Software Engineering (ICSE), IEEE, 2016, pp.
440-451 (2016).

E. Allen, T. Khoshgoftaar, Measuring coupling and cohesion: an
information-theory approach, in: Software Metrics Symposium,
1999. Proceedings. Sixth International, 1999, pp. 119-127 (1999).
doi:10.1109/METRIC.1999.809733.

L. Briand, S. Morasca, V. Basili, Measuring and assessing main-
tainability at the end of high level design, in: Proceedings of
the Conference on Software Maintenance, Montreal, Canada, 1993
(Sep. 1993). doi:10.1109/TICSM.1993.366952.

S. Sarkar, G. Rama, A. Kak, Api-based and information-theoretic
metrics for measuring the quality of software modularization,
Software Engineering, IEEE Transactions on 33 (1) (2007) 14-32
(Jan 2007). do1:10.1109/TSE.2007.256942.

S. Sarkar, A. Kak, G. Rama, Metrics for measuring the quality of
modularization of large-scale object-oriented software, Software

(82]

(83]

[84]

(85]

16

Engineering, IEEE Transactions on 34 (5) (2008) 700-720 (Sept
2008). doi:10.1109/TSE.2008.43.

C. Sant’Anna, E. Figueiredo, A. Garcia, C. Lucena, On the
modularity of software architectures: A concern-driven mea-
surement framework, in: F. Oquendo (Ed.), Software Architec-
ture, Vol. 4758 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2007, pp. 207-224 (2007). doi:10.1007/
978-3-540-75132-8_17.

M. Wermelinger, Y. Yu, A. Lozano, A. Capiluppi, Assessing archi-
tectural evolution: a case study, Empirical Software Engineering
(2011).

R. S. Sangwan, P. Vercellone-Smith, C. J. Neill, Use of a multidi-
mensional approach to study the evolution of software complexity,
Innovations in Systems and Software Engineering (2010).

T. Zimmermann, S. Diehl, A. Zeller, How history justifies system
architecture (or not), in: Software Evolution, 2003. Proceedings.
Sixth International Workshop on Principles of, IEEE, 2003 (2003).

21 at 18:53:29 UTC from IEEE Xplore. Restrictions apply.


https://doi.org/10.1109/ISSRE.2007.19
https://doi.org/10.1109/ICSME.2014.43
http://doi.acm.org/10.1145/2786805.2786848
http://doi.acm.org/10.1145/2786805.2786848
https://doi.org/10.1145/2786805.2786848
http://doi.acm.org/10.1145/2786805.2786848
https://doi.org/10.1109/WICSA.2015.12
https://doi.org/10.1109/WICSA.2015.12
https://doi.org/10.1109/METRIC.1999.809733
https://doi.org/10.1109/ICSM.1993.366952
https://doi.org/10.1109/TSE.2007.256942
https://doi.org/10.1109/TSE.2008.43
https://doi.org/10.1007/978-3-540-75132-8_17
https://doi.org/10.1007/978-3-540-75132-8_17

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3060068, IEEE
Transactions on Software Engineering

17

Joshua Garcia is an assistant professor
in the School of Information and
Computer Sciences at the University
of California, Irvine. He received a
B.S. in computer engineering and
computer science from the University
of Southern California (USC), and M.S.
and Ph.D. degrees in computer science
from USC. He conducts research in
software engineering with a focus on software analysis and
testing, software security, and software architecture. He is a
member of the ACM, ACM SIGSOFT, and IEEE.

Ehsan Kouroshfar is a software
engineer at Amazon.com. He received
a Ph.D. in computer science from
George Mason University, an M.S. in
computer software engineering from
Sharif University of Technology, and
a B.S. in computer engineering from
Amirkabir University of Technology
- Tehran Polytechnic. His research
interests are in software engineering,
particularly software architecture and
empirical software engineering.

Negar Ghorbani is a Ph.D. candidate
in the Software Engineering program
at the School of Information and
Computer Sciences at the University
of California, Irvine. She received her
B.Sc. in software engineering from the
Computer Engineering Department of
Sharif University of Technology. Her
research interests are in software engineering with a focus
on software analysis and testing, software security, and
software architecture decay.

Sam Malek is a professor in the School
of Information and Computer Sciences
at the University of California, Irvine
(UCI). He is also the Director of the
Institute for Software Research at UCI.
He received a B.S. degree in Infor-
mation and Computer Science from
UCI, and M.S. and Ph.D. degrees in
Computer Science from the University
of Southern California. His general re-
search interests are in the field of soft-
ware engineering, and to date his focus has spanned the ar-
eas of software architecture, software security, and software
analysis and testing. He has received numerous awards
for his research contributions, including the U.S. National
Science Foundation CAREER award. He is a member of the
ACM, ACM SIGSOFT, and IEEE.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorgggublicationsﬁstandards/publications/ri hts/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 13,2021 at 18:53:29 UTC from IEEE Xplore. Restrictions apply.



