
Multi-level Steiner Trees

REYAN AHMED, University of Arizona, USA

PATRIZIO ANGELINI, Universität Tübingen, Germany

FARYAD DARABI SAHNEH, ALON EFRAT, and DAVID GLICKENSTEIN,

University of Arizona, USA

MARTIN GRONEMANN, Universität zu Köln, Germany

NIKLAS HEINSOHN, Universität Tübingen, Germany

STEPHEN G. KOBOUROV, RICHARD SPENCE, and JOSEPH WATKINS,

University of Arizona, USA

ALEXANDER WOLFF, Universität Würzburg, Germany

In the classical Steiner tree problem, given an undirected, connected graphG = (V ,E) with non-negative edge
costs and a set of terminalsT ⊆ V , the objective is to find aminimum-cost tree E ′ ⊆ E that spans the terminals.

The problem is APX-hard; the best-known approximation algorithm has a ratio of ρ = ln(4) + ε < 1.39. In this

article, we study a natural generalization, themulti-level Steiner tree (MLST) problem: Given a nested sequence

of terminalsT� ⊂ · · · ⊂ T1 ⊆ V , compute nested treesE� ⊆ · · · ⊆ E1 ⊆ E that span the corresponding terminal

sets with minimum total cost.

The MLST problem and variants thereof have been studied under various names, including Multi-level

Network Design, Quality-of-Service Multicast tree, Grade-of-Service Steiner tree, and Multi-tier tree. Sev-

eral approximation results are known. We first present two simple O (�)-approximation heuristics. Based on

these, we introduce a rudimentary composite algorithm that generalizes the above heuristics, and determine

its approximation ratio by solving a linear program. We then present a method that guarantees the same

approximation ratio using at most 2� Steiner tree computations. We compare these heuristics experimentally

on various instances of up to 500 vertices using three different network generation models. We also present

several integer linear programming formulations for the MLST problem and compare their running times on

these instances. To our knowledge, the composite algorithm achieves the best approximation ratio for up to

� = 100 levels, which is sufficient for most applications, such as network visualization or designingmulti-level

infrastructure.

This work is partially supported by NSF Grants No. CCF-1423411 and No. CCF-1712119

Authors’ addresses: R. Ahmed, F. D. Sahneh, and R. Spence, Room 721, Department of Computer Science, Gould-Simpson

Building, The University of Arizona, Tucson, AZ 85721-0077; emails: abureyanahmed@email.arizona.edu, faryad@cs.

arizona.edu, rcspence@email.arizona.edu; P. Angelini and N. Heinsohn, Arbeitsbereich Algorithmik, Wilhelm-Schickard

Institut für Informatik, Sand 14, D-72076 Tübingen, Deutschland; email: heinsohn@informatik.uni-tuebingen.de; A. Efrat,

Room 742, Department of Computer Science, Gould-Simpson Building, The University of Arizona, Tucson, AZ 85721-0077;

email: alon@cs.arizona.edu; D. Glickenstein, Room 204, Department of Mathematics, The University of Arizona, Tucson,

AZ 85721-0089; email: glickenstein@math.arizona.edu; M. Gronemann, Universität zu Köln, Institut für Informatik, Wey-

ertal 121, D-50931 Köln; email: gronemann@informatik.uni-koeln.de; S. G. Kobourov, Room 715, Department of Computer

Science, Gould-Simpson Building, The University of Arizona, Tucson, AZ 85721-0077; email: kobourov@cs.arizona.edu;

J. Watkins, Room S321, ENR2, The University of Arizona, Tucson, AZ 85719; email: jwatkins@math.arizona.edu; A. Wolff,

Room E29, Lehrstuhl für Informatik I, Universität Würzburg Am Hubland, D-97074 Würzburg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1084-6654/2019/12-ART2.5 $15.00

https://doi.org/10.1145/3368621

ACM Journal of Experimental Algorithmics, Vol. 24, No. 2, Article 2.5. Publication date: December 2019.

mailto:permissions@acm.org
https://doi.org/10.1145/3368621

2.5:2 R. Ahmed et al.

CCS Concepts: • Theory of computation→ Sparsification and spanners;

Additional Key Words and Phrases: Approximation algorithm, Steiner tree, multi-level graph representation

ACM Reference format:

Reyan Ahmed, Patrizio Angelini, Faryad Darabi Sahneh, Alon Efrat, David Glickenstein, Martin Gronemann,

Niklas Heinsohn, Stephen G. Kobourov, Richard Spence, Joseph Watkins, and Alexander Wolff. 2019. Multi-

level Steiner Trees. J. Exp. Algorithmics 24, 2, Article 2.5 (December 2019), 22 pages.

https://doi.org/10.1145/3368621

1 INTRODUCTION

Let G = (V ,E) be an undirected, connected graph with positive edge costs c : E → R+, and let
T ⊆ V be a set of vertices called terminals. A Steiner tree is a tree in G that spans T . The network
(graph) Steiner tree problem (ST) is to find a minimum-cost Steiner tree E ′ ⊆ E, where the cost of E ′

is c (E ′) =
∑

e ∈E′ c (e). ST is one of Karp’s initial NP-hard problems [13]; see also a survey [22], an
online compendium [12], and a textbook [19].
Due to its practical importance in many domains, there is a long history of exact and approxi-

mation algorithms for the problem. The classical 2-approximation algorithm for ST [11] uses the
metric closure ofG, i.e., the complete edge-weighted graphG∗ with vertex setT in which, for every
edge uv , the cost of uv equals the length of a shortest u–v path in G. A minimum spanning tree
of G∗ corresponds to a 2-approximate Steiner tree in G.

Currently, the last in a long list of improvements is the LP-based approximation algorithm of
Byrka et al. [6], which has a ratio of ln(4) + ε < 1.39. Their algorithm uses a new iterative ran-
domized rounding technique. Note that ST is APX-hard [4]; more concretely, it is NP-hard to ap-
proximate the problem within a factor of 96/95 [8]. This is in contrast to the geometric variant
of the problem, where terminals correspond to points in the Euclidean or rectilinear plane. Both
variants admit polynomial-time approximation schemes (PTAS) [1, 16], while this is not true for
the general metric case [4].
In this article, we consider the natural generalization of ST where the terminals appear on

“levels” (or “grades of service”) and must be connected by edges of appropriate levels. We pro-
pose new approximation algorithms and compare them to existing ones both theoretically and
experimentally.

Definition 1.1 (Multi-level Steiner Tree (MLST) Problem). Given a connected, undirected graph
G = (V ,E) with edge weights c : E → R+ and � nested terminal sets T� ⊂ · · · ⊂ T1 ⊆ V , a multi-

level Steiner tree consists of � nested edge sets E� ⊆ · · · ⊆ E1 ⊆ E such that Ei spans Ti for all 1 ≤
i ≤ �. The cost of an MLST is defined by the sum of the edge weights across all levels,

∑�
i=1 c (Ei) =∑�

i=1

∑
e ∈Ei c (e). The MLST problem is to find an MLST EOPT, � ⊆ · · · ⊆ EOPT,1 ⊆ E with minimum

cost.

Since the edge sets are nested, the cost of an MLST equivalently equals
∑

e ∈E L(e)c (e), where
L(e) denotes the highest level that edge e appears in, where L(e) = 0 if e � E1. This emphasizes
that the cost of each edge is multiplied by the number of levels it appears on.
We denote the cost of an optimal MLST by OPT. We can write

OPT = �OPT� + (� − 1)OPT�−1 + · · · + OPT1,

where OPT� = c (EOPT, �) and OPTi = c (EOPT,i\EOPT,i+1) for � − 1 ≥ i ≥ 1. Thus, OPTi represents
the cost of edges on level i but not on level i + 1 in the minimum cost MLST. Figure 1 shows an
example of an MLST for � = 3.

ACM Journal of Experimental Algorithmics, Vol. 24, No. 2, Article 2.5. Publication date: December 2019.

https://doi.org/10.1145/3368621

Multi-level Steiner Trees 2.5:3

Fig. 1. An MLST with � = 3 for the input graph (a). Filled and empty circles represent terminal and non-

terminal nodes, respectively. Note that the level-3 tree (b) is contained in the level-2 tree (c), which is in turn

contained in the level-1 tree (d).

Applications. This problem has natural applications in designing multi-level infrastructure of
low cost. Apart from this application in network design, multi-scale representations of graphs are
useful in applications such as network visualization, where the goal is to represent a given graph
at different levels of detail.

Previous Work. Variants of the MLST problem have been studied previously under various
names, such as Multi-level Network Design (MLND) [2], Multi-tier Tree (MTT) [15], Quality-of-
Service (QoS) Multicast Tree [7], and Priority-Steiner Tree [9].

In MLND, the vertices of the given graph are partitioned into � levels, and the task is to construct
an �-level network. Each edge (i, j) ∈ E can contain one of � different facility types (levels), each
with a different cost (denoted “secondary” and “primary” with costs 0 ≤ bi j ≤ ai j for two levels).
The vertices on each level must be connected by edges of the corresponding level or higher, and
edges of higher level are more costly. The cost of an edge partition is the sum of all edge costs,
and the task is to find a partition of minimum cost. Let ρ be the ratio of the best approximation
algorithm for (single-level) ST, that is, currently ρ = ln(4) + ε < 1.39. Balakrishnan et al. [2] gave a
(4/3)ρ-approximation algorithm for two-level MLND with proportional edge costs. Note that the
definitions of MLND and MLST treat the bottom level differently. While MLND requires that all
vertices are connected eventually, this is not the case for MLST.
For MTT, which is equivalent to MLND, Mirchandani [15] presented a recursive algorithm that

involves 2� Steiner tree computations. For � = 3, the algorithm achieves an approximation ratio
of 1.522ρ independently of the edge costs c1, . . . , c� : E → R+. For proportional edge costs, Mir-
chandani’s analysis yields even an approximation ratio of 1.5ρ for � = 3. Recall, however, that this
assumes T1 = V , and setting the edge costs on the bottom level to zero means that edge costs are
not proportional.
In the QoS Multicast Tree problem [7] one is given a graph, a source vertex s , and a level be-

tween 1 and k for each terminal (1 for highest priority). The task is to find a minimum-cost Steiner
tree that connects all terminals to s . The level of an edge e in this tree is the minimum over the
levels of the terminals that are connected to s via e . The cost of the edges and of the tree are as
above. As a special case, Charikar et al. [7] studied the rate model, where edge costs are propor-
tional, and show that the problem remains NP-hard if all vertices (except the source) are terminals
(at some level). Note that if we choose as source any vertex at the top level T� , then MLST can be
seen as an instance of the rate model.
Charikar et al. [7] gave a simple 4ρ-approximation algorithm for the rate model. Given an in-

stance φ, their algorithm constructs an instance φ ′ where the levels of all vertices are rounded up
to the nearest power of 2. Then the algorithm simply computes a Steiner tree at each level of φ ′

and prunes the union of these Steiner trees into a single tree. The ratio can be improved to eρ,
where e is the base of the natural logarithm, using randomized doubling.
Instead of taking the union of the Steiner trees on each rounded level, Karpinski et al. [14]

contract them into the source in each step, which yields a 2.454ρ-approximation. They also gave
a (1.265 + ε)ρ-approximation for the two-level case. (Since these results are not stated with re-
spect to ρ, but depend on several Steiner tree approximation algorithms—among them the best

ACM Journal of Experimental Algorithmics, Vol. 24, No. 2, Article 2.5. Publication date: December 2019.

2.5:4 R. Ahmed et al.

approximation algorithm with ratio 1.549 [20] available at the time—we obtained the numbers
given here by dividing their results by 1.549 and stating the factor ρ.)
For the more general Priority-Steiner Tree problem, where edge costs are not necessarily pro-

portional, Charikar et al. [7] gave a min{2 ln |T |, �ρ}-approximation algorithm. Chuzhoy et al. [9]
showed that Priority-Steiner Tree does not admit anO (log logn)-approximation algorithm unless

NP ⊆DTIME(nO (log log logn)). For Euclidean MLST, Xue et al. [23] gave a recursive algorithm that
uses any algorithm for Euclidean Steiner Tree (EST) as a subroutine. With a PTAS [1, 16] for EST,

the approximation ratio of their algorithm is 4/3 + ε for � = 2 and (5 + 4
√
2)/7 + ε ≈ 1.522 + ε for

� = 3.

Our Contribution. We give two simple approximation algorithms for MLST, bottom-up and
top-down, in Section 2.1. The bottom-up heuristic uses a Steiner tree at the bottom level for the
higher levels after pruning unnecessary edges at each level. The top-down heuristic first computes
a Steiner tree on the top level. Then it passes edges down from level to level until the bottom level
terminals are spanned.
In Section 2.2, we propose a composite heuristic that generalizes these, by examining all possible

2�−1 (partial) top-down and bottom-up combinations and returning the one with the lowest cost.
We propose a linear program that finds the approximation ratio of the composite heuristic for any
fixed value of �, and compute approximation ratios for up to � = 100 levels, which turn out to
be better than those of previously known algorithms. However, the composite heuristic requires
roughly 2�� ST computations.

Therefore, we propose a procedure that achieves the same approximation ratio as the composite
heuristic but needs at most 2� ST computations. In particular, it achieves a ratio of 1.5ρ for � =
3 levels, which settles a question posed by Karpinski et al. [14] who were asking whether the
(1.522 + ε)-approximation of Xue et al. [23] can be improved for � = 3. Note that Xue et al. treated
the Euclidean case, so their ratio does not include the factor ρ. We generalize an integer linear
programming (ILP) formulation for ST [18] to obtain an ILP formulation for the MLST problem
in Section 3. We experimentally evaluate several approximation and exact algorithms on a wide
range of problem instances in Section 4, and discuss an application of this problem in visualizing
large networks. The results show that the new algorithms are also surprisingly good in practice.
We conclude in Section 5.

2 APPROXIMATION ALGORITHMS

In this section, we propose several approximation algorithms for the MLST problem.
In Section 2.1, we show that the natural approach of computing edge sets either from top to

bottom or vice versa, already yieldsO (�)-approximations; we call these two approaches top-down
and bottom-up, and denote their costs by TOP and BOT, respectively. Then, we show that running
the two approaches and selecting the solutionwithminimum cost produces a better approximation
ratio than either top-down or bottom-up.
In Section 2.2, we propose a composite approach that mixes the top-down and bottom-up ap-

proaches by solving ST on a certain subset of levels, then propagating the chosen edges to higher
and lower levels in a way similar to the previous approaches. We then run the algorithm for each
of the 2�−1 possible subsets, and select the solution with minimum cost. For all practically relevant
values of � (� ≤ 100), our results improve over the state of the art.

2.1 Top-down and Bottom-up Approaches

We present top-down and bottom-up approaches for computing approximate multi-level Steiner
trees. The approaches are similar to the MST and Forward Steiner Tree (FST) heuristics by Balakr-
ishnan et al. [2]; however, we generalize the analysis to an arbitrary number of levels.

ACM Journal of Experimental Algorithmics, Vol. 24, No. 2, Article 2.5. Publication date: December 2019.

Multi-level Steiner Trees 2.5:5

In the top-down approach, an exact or approximate Steiner tree ETOP, � spanning the top levelT�
is computed. Then, wemodify the edgeweights by setting c (e) := 0 for every edge e ∈ ETOP, � . In the
resulting graph, we compute a Steiner tree ETOP, �−1 spanning the terminals in T�−1. This extends
ETOP, � in a greedy way to span the terminals in T�−1 not already spanned by ETOP, � . Iterating this
procedure for all levels yields a solution ETOP, � ⊆ · · · ⊆ ETOP,1 ⊆ E with cost TOP.

In the bottom-up approach, a Steiner tree EBOT,1 spanning the bottom level T1 is computed.
This induces a valid solution for all levels. We can “prune” edges by letting EBOT,i be the smallest
subtree of EBOT,1 that spans all the terminals in Ti , giving a solution with cost BOT. Note that the
top-down and bottom-up approaches involve � and 1 Steiner tree computations, respectively.
A natural approach is to run both top-down and bottom-up approaches and select the solu-

tion with minimum cost. This yields an approximation ratio better than those from top-down or
bottom-up. Let ρ ≥ 1 denote the approximation ratio for ST (that is, ρ = 1 corresponds to using an
exact ST subroutine). Let MINi denote the cost of a minimum Steiner tree over the terminal setTi
with original edge weights, independently of other levels, so that MIN� ≤ MIN�−1 ≤ · · · ≤ MIN1.

Then OPT ≥ ∑�
i=1 MINi trivially.

Theorem 2.1. For � ≥ 2 levels, the top-down approach is an �+1
2 ρ-approximation to the MLST

problem, the bottom-up approach is an �ρ-approximation, and the algorithm returning the minimum

of TOP and BOT is an �+2
3 ρ-approximation.

In the following, we give the proof of Theorem 2.1. Let TOP be the total cost produced by the
top-down approach, and let TOPi = c (ETOP,i\ETOP,i+1) be the cost of edges on level i but not on
level i + 1. Then TOP =

∑�
i=1 iTOPi . Define BOT and BOTi analogously.

Lemma 2.2. The following inequalities relate TOP with OPT:

TOP� ≤ ρOPT�, (2.1)

TOP�−i ≤ ρ (OPT�−i + · · · + OPT�) for all 1 ≤ i ≤ � − 1. (2.2)

Proof. Inequality Equation (2.1) follows from the fact that ETOP, � is a ρ-approximation for
ST over T� , that is, TOP� ≤ ρMIN� ≤ ρOPT� . To show Equation (2.2), note that TOP�−i repre-
sents the cost of the Steiner tree over terminals T�−i with some edges (those already included
in E�−i+1) having weight c (e) set to zero. Then TOP�−i ≤ ρMIN�−i . Since EOPT, �−i spans T�−i
by definition, we have MIN�−i ≤ c (EOPT, �−i) = OPT�−i + · · · + OPT� . By transitivity, TOP�−i ≤
ρ (OPT�−i + · · · + OPT�) as desired. �

Using Lemma 2.2 yields an upper bound on TOP in terms of OPT1, . . . ,OPT� :

TOP = �TOP� + (� − 1)TOP�−1 + · · · + TOP1
≤ �ρOPT� + (� − 1)ρ (OPT�−1 + OPT�) + · · · + ρ (OPT1 + OPT2 + · · · + OPT�)

= ρ

(
(� + 1)�

2
OPT� +

�(� − 1)
2

OPT�−1 + · · · +
2 · 1
2

OPT1

)

≤ � + 1
2

ρ · OPT.

Therefore, the top-down approach is an �+1
2 ρ-approximation. In Figure 2, we provide an example

showing that our analysis is tight for ρ = 1.
The bottom-up approach is a fairly trivial �ρ-approximation to theMLST problem, even without

pruning edges. Consequentially, BOT ≤ � · c (EBOT,1) as pruning no edges results in a solution with
cost � · c (EBOT,1).

ACM Journal of Experimental Algorithmics, Vol. 24, No. 2, Article 2.5. Publication date: December 2019.

2.5:6 R. Ahmed et al.

Fig. 2. The approximation ratio of �+1
2 for the top-down approach is asymptotically tight. In the example

above for � = 2, the input graph (left) consists of a (k + 1)-cycle with one edge of weight k − ε . The solution
returned by top-down (right) has cost TOP = (k − ε) + (k − ε + k) ≈ 3k , whereas OPT = 2k .

Fig. 3. The approximation ratio of � for the bottom-up approach is asymptotically tight. Using the same

input graph as in Figure 2, except by modifying the edge of weight k − ε so that its weight is 1 + ε , we see
that BOT = 2k , whereas OPT = (1 + ε) + (1 + ε + k − 1) ≈ k + 1.

As EBOT,1 is found by computing a Steiner tree over the bottom level T1, we have c (EBOT,1) ≤
ρMIN1. Additionally, MIN1 ≤ c (EOPT,1) = OPT1 + OPT2 + · · · + OPT� as EOPT,1 is necessarily a
Steiner tree spanning T1. Combining these inequalities yields

BOT ≤ � · c (EBOT,1)
≤ �ρMIN1

≤ �ρ (OPT1 + OPT2 + · · · + OPT�)

≤ �ρ
�∑
i=1

iOPTi

= �ρ · OPT.

Again, the approximation ratio (for ρ = 1) is asymptotically tight; see Figure 3.
We show that taking the better of the two solutions returned by the top-down and the bottom-

up approach provides a 4
3ρ-approximation to MLST for � = 2. To prove this, we use the simple

fact that min{x ,y} ≤ αx + (1 − α)y for all x ,y ∈ R and α ∈ [0, 1]. Using the previous results on
the upper bounds for TOP and BOT for � = 2:

min{TOP,BOT} ≤ α (3ρ OPT2 + ρ OPT1) + (1 − α) (2ρ OPT2 + 2ρ OPT1)

= (2 + α)ρ OPT2 + (2 − α)ρ OPT1.

Setting α = 2
3 gives min{TOP,BOT} ≤ 8

3ρ OPT2 +
4
3ρ OPT1 =

4
3ρ OPT.

ACM Journal of Experimental Algorithmics, Vol. 24, No. 2, Article 2.5. Publication date: December 2019.

Multi-level Steiner Trees 2.5:7

For � > 2 levels, using the same idea gives

min{TOP,BOT} ≤ αρ
�∑
i=1

i (i + 1)

2
OPTi + (1 − α)�ρ

�∑
i=1

OPTi

=

�∑
i=1

[(
i (i + 1)

2
− �
)
α + �

]
ρOPTi .

Since we are comparing min{TOP,BOT} to t · OPT for some approximation ratio t > 1, we can
compare coefficients and find the smallest t ≥ 1 such that the system of inequalities

(
�(� + 1)

2
− �
)
ρα + �ρ ≤ �t

(
(� − 1)�

2
− �
)
ρα + �ρ ≤ (� − 1)t

...(
2 · 1
2
− �
)
ρα + �ρ ≤ t

has a solution α ∈ [0, 1]. Adding the first inequality to �/2 times the last inequality yields �2+2�
2 ρ ≤

3�t
2 . This leads to t ≥ �+2

3 ρ. Also, it can be shown algebraically that (t ,α) = (�+23 ρ, 23) simultane-

ously satisfies the above inequalities. This implies that min{TOP,BOT} ≤ �+2
3 ρ · OPT and con-

cludes the proof of Theorem 2.1.
Combining the graphs in Figures 2 and 3 shows that our analysis of the combined top-down and

bottom-up approaches (with ratio 4
3) is asymptotically tight.

2.2 Composite Algorithm

We describe an approach that generalizes the above approaches to obtain a better approximation
ratio for � > 2 levels. The main idea behind this composite approach is the following: In the top-
down approach, we choose a set of edges ETOP, � that spans T� , and then we propagate this choice
to levels � − 1, . . . , 1 by setting the cost of these edges to 0. However, in the bottom-up approach,
we choose a set of edges EBOT,1 that spansT1, which is propagated to levels 2, . . . , � (possibly with
some pruning of unneeded edges). The idea is that for � > 2, we can choose a set of intermediate
levels and propagate our choices between these levels in a top-down manner, and to the levels
lying in between them in a bottom-up manner.
Formally, let Q = {i1, i2, . . . , im } with 1 = i1 < i2 < · · · < im ≤ � be a subset of levels sorted in

increasing order. We first compute a Steiner tree Eim = ST (G,Tim) on the highest level im , which
induces trees Eim+1, . . . ,E� similar to the bottom-up approach. Then, we set the weights of edges in
Eim inG to zero (as in the top-down approach) and compute a Steiner tree Eim−1 = ST (G,Tim−1) for
level im−1 in the reweighed graph. Again, we can use Eim−1 to construct the trees Eim−1+1, . . . ,Eim−1.
Repeating this procedure until spanning Ei1 = E1 results in a valid solution to the MLST
problem.
Note that the top-down and bottom-up heuristics are special cases of this approach, with
Q = {1, 2, . . . , �} and Q = {1}, respectively. Figure 4 provides an illustration of how such a
solution is computed in the top-down, bottom-up, and an arbitrary heuristic. Given Q ⊆
{1, 2, . . . , �}, let CMP(Q) be the cost of the MLST solution returned by the composite approach
over Q.

ACM Journal of Experimental Algorithmics, Vol. 24, No. 2, Article 2.5. Publication date: December 2019.

2.5:8 R. Ahmed et al.

Fig. 4. Illustration of the composite heuristic for various subsets Q, with � = 5. Orange arrows pointing

downward indicate propagation of edges similar to the top-down approach. Blue arrows pointing upward

indicate pruning of unneeded edges, similar to the bottom-up approach.

Lemma 2.3. For any set Q = {i1, . . . , im } ⊆ {1, 2, . . . , �} with 1 = i1 < · · · < im ≤ �, we have

CMP(Q) ≤ ρ
m∑
k=1

(ik+1 − 1)MINik ,

with the convention im+1 = � + 1.

For example, Q = {1, 3, 4}with � = 5 in Figure 4 yields CMP(Q) ≤ ρ (2MIN1 + 3MIN3 + 5MIN4).
With Q = {1, 2, 3, 4, 5}, we have CMP(Q) ≤ ρ (MIN1 + 2MIN2 + · · · + 5MIN5), similar to
Lemma 2.2.

Proof. The proof is similar to that of Lemma 2.2: when we compute Eim , a ρ-approximate
Steiner tree for Tim , we incur a cost of at most �ρMINim . This is due to the fact that the cost of
Eim is at most ρMINim , and these edges are propagated to all levels 1 through �, incurring a cost
of at most �ρMINim . When we compute Eik , we incur a cost of at most ρMINik , and these edges
are propagated to levels 1 through ik+1 − 1, incurring a cost of at most (ik+1 − 1)ρMINik . �

Using the trivial lower bound OPT ≥ ∑�
i=1 MINi , we can find an upper bound for the approxi-

mation ratio. Without loss of generality, assume
∑�

i=1 MINi = 1, so that OPT ≥ 1; otherwise, the
edge weights can be scaled linearly. Also, since all the equations and inequalities scale linearly in

ρ, we assume ρ = 1. Then, for a given Q, the ratio CMP(Q)
OPT is upper bounded by

CMP(Q)
OPT

≤
ρ
∑m

k=1 (ik+1 − 1)MINik∑�
i=1 MINi

=

m∑
k=1

(ik+1 − 1)MINik .

Given any Q, we determine an approximation ratio to the MLST problem, in a way similar to
the top-down and bottom-up approaches. We start with the following lemma:

Lemma 2.4. Let c1, c2, . . . , c� be given non-negative real numbers with the property that c1 > 0,
and the nonzero ones are strictly increasing (i.e., if i < j and ci , c j � 0, then 0 < ci < c j .) Consider
the following linear program: max c1y1 + c2y2 + · · · + c�y� subject to y1 ≥ y2 ≥ · · · ≥ y� ≥ 0, and∑�

i=1 yi = 1. Then the optimal solution has y1 = y2 = · · · = yk = 1
k
for some k , and yi = 0 for i > k .

Proof. Suppose that in the optimal solution, there exists some i such that yi > yi+1 > 0. If
ci+1 = 0, then setting y1 := y1 + yi+1 and yi+1 = 0 improves the objective function, a contradic-
tion. If ci+1 � 0, then ci < ci+1, and it can be shown with elementary algebra that replacing yi and
yi+1 by their arithmetic mean,

yi+yi+1
2 , improves the objective function as well. �

ACM Journal of Experimental Algorithmics, Vol. 24, No. 2, Article 2.5. Publication date: December 2019.

Multi-level Steiner Trees 2.5:9

A simple corollary of Lemma 2.4 is that the maximum value of the objective in the LP equals

max
(
c1,

1
2 (c1 + c2),

1
3 (c1 + c2 + c3), . . . ,

1
� (c1 + · · · + c�)

)
. For a given Q (assuming ρ = 1), the com-

posite heuristic on Q = {i1, . . . , im } is a t-approximation, where t is the solution to the following

simple linear program: max t subject to t ≤ ∑m
k=1 (ik+1 − 1)yik ;y1 ≥ y2 ≥ · · · ≥ y� ≥ 0;

∑�
i=1 yi = 1.

As this LP is of the form given in Lemma 2.4, we can easily compute an approximation ratio for a
given Q as

t (Q) = max
m′ ≤m

∑m′

k=1 (ik+1 − 1)
im′

.

For example, the corresponding objective function for TOP is maxy1 + 2y2 + · · · + �y� , and
the maximum equals max(1, 12 (1 + 2), . . . ,

1
� (1 + 2 + · · · + �)) =

�+1
2 , which is consistent with

Theorem 2.1. The corresponding objective function for BOT is max � = �.
An important choice of Q is Q = {1, 2, 4, . . . , 2m } where m = �log2 �
. Charikar et al. [7]

show that this is a 4-approximation, assuming ρ = 1. Indeed, according to the above formula

t = max(1, (2−1)+(2
2−1)

21
, . . . ,

∑
m

i=0 (2
i+1−1)

2m) = 4 −m/2m ≤ 4.

When � ≥ 2, there are 2�−1 possible subsets Q, giving 2�−1 possible heuristics. In particular,
for � = 2, the only 22−1 = 2 heuristics are top-down and bottom-up (Section 2.1). The composite
algorithm executes all possible heuristics and selects theMLSTwithminimum cost (denoted CMP):

CMP = min
Q⊆{1, . . ., �}

1∈Q

CMP(Q).

Theorem 2.5. For � ≥ 2, the composite heuristic produces a t�-approximation, where t� is the so-
lution to the following linear program (LP):

max t

subject to t ≤
m∑
k=1

(ik+1 − 1)yik ∀Q = {i1, . . . , im }

yi ≥ yi+1 ∀ 1 ≤ i ≤ � − 1
�∑
i=1

yi = 1

yi ≥ 0 ∀ 1 ≤ i ≤ �.

Proof. Again, we assume, without loss of generality, that ρ = 1 and that
∑�

i=1 MINi = 1. Given
an instance of MLST and the corresponding values MIN1, . . . ,MIN� , let Q∗ = {i1, . . . , im } de-
note the subset of {1, . . . , �} for which the quantity

∑m
k=1 (ik+1 − 1)MINik is minimized. Then by

Lemma 2.3, we have CMP ≤ CMP(Q∗) ≤ ∑m
k=1 (ik+1 − 1)MINik = t̂ . So, for a specific instance of

the MLST problem, CMP is upper bounded by t̂ , which is the minimum over 2�−1 different expres-
sions, all linear combinations of MIN1, . . . ,MIN� .

As t� is the maximum of the objective over all feasible MIN1, . . . ,MIN� , we have t̂ ≤ t� , so
CMP ≤ t� = t� · OPT as desired. �

The above LP has � + 1 variables and 2�−1 + 2� constraints. Each subset Q ∈ {1, 2, . . . , �} with
1 ∈ Q corresponds to one constraint.

Lemma 2.6. The system of 2�−1 inequalities can be expressed in matrix form as

t · 12�−1×1 ≤ M�y,

ACM Journal of Experimental Algorithmics, Vol. 24, No. 2, Article 2.5. Publication date: December 2019.

2.5:10 R. Ahmed et al.

where y = [y1,y2, . . . ,y�]
T and M� is a (2�−1 × �)-matrix that can be constructed recursively as

M� =

[
P�−1 +M�−1 02�−2×1

M�−1 � · 12�−2×1

]
and P� =

[
P�−1 02�−2×1

02�−2×(�−1) 12�−2×1

]
,

starting with the 1 × 1 matricesM1 = [1] and P1 = [1].

Proof. The idea is that the rows of P� encode the largest element of their corresponding
subsets—if we list the 2�−1 subsets of {1, 2, . . . , �} in the usual ordering ({1}, {1, 2}, {1, 3}, {1, 2, 3},
{1, 4}, . . .), then Pi, j = 1 if j is the largest element of the ith subset.
We provide proof by induction. If � = 1, then we have only one possible subset of levels Q = {1}

and one inequality: t < y1. Hence,M1 = [1] and P1 = [1]. We assume that the claim is true for � − 1
levels. To show that the claim is also true for � levels, we first prove that the recursive construction
of P� is valid. We now have one more level, which is the �th level. Hence, all possible subsets of
levels for � − 1 levels are still valid subsets of levels for the new configuration, where we have
one additional level. However, we now have � − 1 additional subsets of levels, each of which can
be generated from a previous subset of levels by just adding the new level � in the subset. The
previous subset of levels will have the same encoding in P� . Hence, we just concatenate 02�−2×1
in the upper right corner of of P� . For the new possible subsets, the largest element is always �.
Which validates the recursive formulation of P� .
It remains to show that the recursive construction of M� is valid. Given M�−1 and P�−1, we can

construct M� by casework on whether � ∈ Q or not. If � � Q, then we build the first 2�−2 rows
by using the previous matrix M�−1, and adding 1 to the rightmost nonzero entry of each column
(which is equivalent to adding P�−1). If � ∈ Q, then we build the remaining 2�−2 rows by using the
previous matrixM�−1, and appending a 2�−2 × 1 column whose values are equal to �. �

This recursively defined matrix is not central to the composite algorithm, but gives a nice way
of formulating the LP above.
Solving the above LP directly is challenging for large � due to its size. We instead use a column

generation method. The idea is that solving the LP for only a subset of the constraints will produce
an upper bound for the approximation ratio—larger values can be returned due to relaxing the
constraints. Now, the objective would be to add “effective” constraints that would be most needed
for getting a more accurate solution.
In our column generation, we only add one single constraint at a time. LetQ denote the set of all

the constraints at the running step. Solving the LP provides a vector y and an upper bound for the
approximation ratio t . Our goal is to find a new set Qnew = {i1, i2, . . . , ik } that gives the smallest
value of

∑m
k=1 (ik+1 − 1)yik given the vector y from the current LP solver. We can use an ILP to

find the set Qnew. Specifically, we define indicator variables θi j so that θi j = 1 if and only if i and j
are consecutive level choices for the new constraint Qnew, and θi j = 0, otherwise. For example, for
Qnew = {1, 3, 7} with � = 10, we must have θ1,3 = θ3,7 = θ7,11 = 1 and all other θi j ’s equal to zero.
Given a vector y = [y1, . . . ,y�], the choice of Qnew = {i : θi j = 1, i < j and i, j ∈ {1, 2, . . . , �}}.

Lemma 2.7. The following ILP minimizes
∑m

k=1 (ik+1 − 1)yik , where ik is the kth smallest element

of Q and im+1 = � + 1.

Minimize

�∑
i=1

�+1∑
j=i+1

(j − 1)θi jyi

subject to
∑
i :j>i

θi j ≤ 1, ∀j ∈ {2, . . . , � + 1}

ACM Journal of Experimental Algorithmics, Vol. 24, No. 2, Article 2.5. Publication date: December 2019.

Multi-level Steiner Trees 2.5:11

Fig. 5. Approximation ratios for the composite algorithm for � = 1, . . . , 100 (black curve), compared to the

ratio t = eρ (red dashed line) guaranteed by the algorithm of Charikar et al. [7] and t = 2.454ρ (green dashed
line) guaranteed by the algorithm of Karpinski et al. [14]. The table to the right lists the exact values of t� .

∑
j :i<j

θi j ≤ 1, ∀i ∈ {1, . . . , �}

∑
i :i<k

θik =
∑
j :j>k

θk j ∀k ∈ {2, . . . , �}

∑
j :1<j

θ1j = 1,

∑
i :i<�+1

θi (�+1) = 1,

θi j ∈ {0, 1}.

Proof. Using the indicator variables,
∑m

k=1 (ik+1 − 1)yik can be expressed as
∑�

i=1

∑�+1
j=i+1 (j −

1)θi jyi , because θik ,ik+1 = 1 and the other θi j ’s are zero. In the above formulation, the first con-
straint indicates that, for every given i or j, at most one θi j is equal to one. The second constraint
indicates that, for a given k , if θik = 1 for some i , then there is also a j such that θk j = 1. In other
words, there are no overlapping intervals. For example, θ3,7 and θ4,9 cannot both equal 1, because
[3, 7] overlaps [4, 9]. Consider the example provided above; Qnew = {1, 3, 7}. Here, θ1,3 = 1. Hence,
there is exactly one possible j > 3 such that θ3, j = 1. In our example, this is j = 7. The last con-
straints guarantees that level 1 is chosen for Qnew. �

Lemma 2.7 allows for a column generation technique to solve the LP of Theorem 2.5 for com-
puting the approximation ratio of CMP algorithm. We initially start with an empty set Q and
y = [1, 12 , . . . ,

1
�]. Using Lemma 2.7, we then find Qnew and add it to the constraint set Q. We re-

peat the process until Qnew already belongs to Q. Without the column generation technique, we
could reach only � = 22 levels. The new techniques, however, allows us to solve for much larger
values of �. In the following, we report the results up to 100 levels.

Theorem 2.8. For any � = 2, . . . , 100, the MLST returned by the composite algorithm yields a

solution whose cost is at most t� · OPT, where the values of t� are listed in Figure 5.

Neglecting the factor ρ for now (i.e., assuming ρ = 1), the approximation ratio t = 3/2 for � = 3

is slightly better than the ratio of (5 + 4
√
2)/7 + ε ≈ 1.522 + ε guaranteed by Xue et al. [23] for

the Euclidean case. (The additive constant ε in their ratio stems from using Arora’s PTAS as a

ACM Journal of Experimental Algorithmics, Vol. 24, No. 2, Article 2.5. Publication date: December 2019.

2.5:12 R. Ahmed et al.

subroutine for Euclidean ST, which corresponds to the multiplicative constant ρ for using an ST
algorithm as a subroutine for MLST.) Recall that an improvement for � = 3 was posed as an open
problem by Karpinski et al. [14]. Also, for each of the cases 4 ≤ � ≤ 100 our results in Theorem 2.8
improve the approximation ratios of eρ ≈ 2.718ρ and 2.454ρ guaranteed by Charikar et al. [7]
and by Karpinski et al. [14], respectively. The graph of the approximation ratio of the composite
algorithm (see Figure 5) for � = 1, . . . , 100 suggests that it will stay below 2.454ρ for values of �
much larger than 100.
The obvious disadvantage is that computing CMP involves 2�−1 different heuristics, requiring

2�−2 (� + 1) ST computations, which is not feasible for large �. In the following, we show that we
can achieve the same approximation guarantee with at most O (�) ST computations.

Theorem 2.9. Given an instance of the MLST problem, a specific subset Q∗ ⊆ {1, 2, . . . , �} (with
1 ∈ Q∗) can be found through � ST computations, such that running the composite heuristic on Q∗ is
a t�-approximation.

Proof. Given a graphG = (V ,E) with cost function c , and terminal setsT� ⊂ T�−1 ⊂ · · · ⊂ T1 ⊆
V , compute a Steiner tree on each level and set MINi = c (ST (G,Ti)). Again, assume w.l.o.g. that∑�

i=1 MINi = 1, which can be done by scaling the edge weights appropriately after computing the
minimum Steiner trees.
Since y = [MIN1, . . . ,MIN�]

T and t = minM�y is a feasible, but not necessarily optimal, so-
lution to the LP for computing the approximation ratio t� , we have minM�y = t ≤ t� . Let q ∈
{1, 2, . . . , 2�−1} be the row of M� whose dot product with y is minimized (i.e., equals t), and let
Q∗ be the subset of levels corresponding to the qth row of M� , which can be obtained from the
non-zero entries of the qth row. Then for this specific subset Q∗ of levels, we have CMP(Q∗) ≤
t ≤ t� ≤ t�OPT. The optimal choice of Q∗ given y = [MIN1, . . . ,MIN�]

T can be obtained very ef-
ficiently using the ILP with column generation. �

Note that the total number of ST computations is reduced from 2�−2 (� + 1) to at most 2�; we
need � ST computations to determine Qnew (according to the proof of Theorem 2.9) and another
at most � ST computations to “execute” Qnew. The resulting solution with cost CMP(Q∗) does
not necessarily have the same cost as the solution with cost CMP, however, the solution returned
is still at most t� times the optimum. It is worth noting that the analyses in this section did not
assume that the computed edge sets are trees, only that the edge sets are nested and that the cost
of a solution is the sum of the costs over all levels.

3 INTEGER LINEAR PROGRAMMING (ILP) FORMULATIONS

In this section, we discuss several different ILP formulations for the MLST problem.

3.1 ILP Based on Cuts

This is a standard ILP formulation for the (single-level) Steiner tree problem. Recall that T ⊆ V is
the set of terminals. Given a cut S ⊆ V , let δ (S) = {uv ∈ E | u ∈ S,v � S } denote the set of all edges
that have exactly one endpoint in S . Given an undirected edge uv ∈ E, let xuv = 1 if uv is present
in the solution, 0 otherwise. An ILP formulation for ST is as follows:

Minimize
∑
uv ∈E

c (u,v) · xuv

subject to
∑

uv ∈δ (S)
xuv ≥ 1 ∀S ⊂ V ;S ∩T � ∅;S ∩T � T

xuv ∈ {0, 1} ∀uv ∈ E.

ACM Journal of Experimental Algorithmics, Vol. 24, No. 2, Article 2.5. Publication date: December 2019.

Multi-level Steiner Trees 2.5:13

The cut-based formulation generalizes to � levels naturally. Let x iuv = 1 if edge uv is present on
level i , and 0 otherwise. We constrain that the graph on level i is a subgraph of the graph on level
i − 1 by requiring x iuv ≤ x i−1uv for all 2 ≤ i ≤ � and for all uv ∈ E. Then a cut-based formulation for
the MLST problem is as follows:

Minimize

�∑
i=1

∑
uv ∈E

c (u,v) · x iuv

subject to
∑

uv ∈δ (S)
x iuv ≥ 1 ∀S ∈ V ;S ∩T � ∅,T ; 1 ≤ i ≤ �

x iuv ≤ x i−1uv ∀uv ∈ E; 2 ≤ i ≤ �
x iuv ∈ {0, 1} ∀uv ∈ E; 1 ≤ i ≤ �.

The number of variables is O (� · |E |), however, the number of constraints is O (� · 2 |V |).

3.2 ILP Based on Multi-commodity Flow

We recall here the well-known undirected flow formulation for ST [2, 18]. Let s ∈ T be a fixed
terminal node, the source. Given an edge uv ∈ E, the indicator variable xuv equals 1 if the edge uv
is present in the solution and 0 otherwise. This formulation sends |T | − 1 unit commodities from

the source s to each terminal inT − {s}. The variable f
p
uv denotes the (integer) flow from u to v of

commodity p. A multi-commodity ILP formulation for ST is as follows:

Minimize
∑
uv ∈E

c (u,v) · xuv

subject to
∑
vw ∈E

f
p
vw −

∑
uv ∈E

f
p
uv =

⎧⎪⎪⎨⎪⎪⎩
1 if v = s
−1 if v = p
0 otherwise

∀v ∈ V

0 ≤ f
p
uv ≤ 1 ∀uv ∈ E

0 ≤ f
p
vu ≤ 1 ∀uv ∈ E
xuv ∈ {0, 1} ∀uv ∈ E.

To generalize to the MLST problem, we add the linking constraints (x iuv ≤ x i−1uv as before) and
enforce the flow constraints on levels 1, . . . , �.

3.3 ILP Based on Single-commodity Flow

ST can also be formulated using a single-commodity flow, instead of multiple commodities. Here,
we will assume the input graph is directed, by replacing each edge uv with directed edges (u,v)
and (v,u) of the same cost. As before, fuv denotes the flow from u to v :

Minimize
∑

(u,v)∈E
c (u,v) · xuv

subject to
∑

(v,w)∈E
fvw −

∑
(u,v)∈E

fuv =
⎧⎪⎪⎨⎪⎪⎩
|T | − 1 if v = s
−1 if v ∈ T \ {s}
0 otherwise

∀v ∈ V

0 ≤ fuv ≤ (|T | − 1) · xuv ∀ (u,v) ∈ E
xuv ∈ {0, 1} ∀ (u,v) ∈ E.

ACM Journal of Experimental Algorithmics, Vol. 24, No. 2, Article 2.5. Publication date: December 2019.

2.5:14 R. Ahmed et al.

To generalize to multiple levels, we add the linking constraints x iuv ≥ x i−1uv as before. Let f iuv denote
the integer flow along edge (u,v) on level i . Let s ∈ T� be a source terminal on the top level T� .
Then the MLST problem can be formulated using single-commodity flows on each level:

Minimize

�∑
i=1

∑
(u,v)∈E

c (u,v)x iuv

subject to
∑

(v,w)∈E
f ivw −

∑
(u,v)∈E

f iuv =
⎧⎪⎪⎨⎪⎪⎩
|Ti | − 1 if v = s
−1 if v ∈ Ti \ {s}
0 else

∀v ∈ V ; 1 ≤ i ≤ �

x iuv ≥ x i−1uv ∀ (u,v) ∈ E; 2 ≤ i ≤ �
0 ≤ f iuv ≤ (|Ti | − 1) · x iuv ∀ (u,v) ∈ E; 1 ≤ i ≤ �

x iuv ∈ {0, 1} ∀ (u,v) ∈ E; 1 ≤ i ≤ �.

The number of variables isO (� |E |) and the number of constraints isO (�(|E | + |V |)). In Section 3.4,
we reduce the number of variables and constraints to O (|E |) and O (|E | + |V |), respectively.

3.4 A Smaller ILP Based on Single-commodity Flow

We can simplify the flow-based ILP in Section 3.3 so that the number of variables isO (|E |) and the
number of constraints isO (|E | + |V |). This is done by only enforcing the single-commodity flow on
the bottom level. Let L(v) denote the highest level thatv is a terminal in, i.e., ifv ∈ Ti andv � Ti+1,
then L(v) = i . Ifv � T1, then L(v) = 0. For each directed edge (u,v) ∈ E, let xuv = 1 if (u,v) appears
on the bottom level (level 1) in the solution, and xuv = 0 otherwise. Letyuv denote the highest level
that (u,v) appears in, i.e., yuv = i if (u,v) is present on level i but not on level i + 1, and yuv = 0
if (u,v) is not present anywhere. The variables yuv indicate the number of times we pay the cost
of edge (u,v) in the solution. Let N (v) = {u ∈ V | (u,v) ∈ E} denote the neighborhood of v . As
in Section 3.3, let fuv denote the flow along directed edge (u,v), and let s ∈ T� be the source. A
reduced ILP formulation is as follows:

Minimize
∑
uv ∈E

c (u,v) (yuv + yvu), (3.1)

subject to
∑

(v,w)∈E
fvw −

∑
(u,v)∈E

fuv =
⎧⎪⎪⎨⎪⎪⎩
|T1 | − 1 v = s
−1 v ∈ T1 − {s}
0 otherwise

∀v ∈ V , (3.2)

0 ≤ fuv ≤ (|T1 | − 1)xuv ∀uv ∈ E, (3.3)∑
u ∈N (v)

xuv ≤ 1 ∀v ∈ V , (3.4)

xuv ≤ yuv ≤ �xuv ∀uv ∈ E, (3.5)∑
u ∈N (v)−{w }

yuv ≥ yvw ∀vw ∈ E,v � s, (3.6)

∑
u ∈N (v)

yuv ≥ L(v) ∀v ∈ T1 − {s}, (3.7)

xuv ∈ {0, 1} ∀uv ∈ E. (3.8)

Constraint Equations (3.2) and (3.3) are the same as before, but we only enforce the flow con-
straint on the bottom level (level 1).

ACM Journal of Experimental Algorithmics, Vol. 24, No. 2, Article 2.5. Publication date: December 2019.

Multi-level Steiner Trees 2.5:15

Constraint Equation (3.4) enforces that each vertex has at most one incoming edge in the
solution.
The combination of constraint Equations (3.2) and (3.3) ensures that if (v,w) is an edge in the

solution, andv is not the root, then there is some u � w for which (u,v) is an edge in the solution.
Combined with constraint Equation (3.4), this implies that v has exactly one incoming edge, and
it is not the edge (w,v).
Constraint Equation (3.5) ensures that if xuv = 0, thenwe do not incur cost for edge (u,v), and so

yuv = 0. Otherwise, if xuv = 1, then we pay for edge (u,v) between 1 and � times, or 1 ≤ yuv ≤ �.
Constraint Equation (3.6) ensures that if edge (v,w) appears on levels 1, . . . , i (i.e., yuv = i), and

v is not the root, then the sum over all neighbors u of v (other thanw) of yuv is at least i . As v has
exactly one incoming edge (u,v) and u � w , constraint Equation (3.6) combined with constraint
Equations (3.4) and (3.5) together imply that v has exactly one incoming edge, and its level is
greater than or equal to yvw .

Constraint Equation (3.7) ensures that if v is any terminal besides the root, then the sum over
all neighbors u of yuv is at least its level, L(v). Combined with constraint Equations (3.4) and (3.5),
this implies that every non-root terminal has exactly one incoming edge that appears on at least
L(v) levels.

Constraint Equation (3.8) ensures that all xuv variables are binary, which implies 0 ≤ yuv ≤ �
for all variablesyuv . Given a solution to the above ILP, the graphG1 is such thatuv ∈ G1 if xuv = 1
or xvu = 1. More generally, uv ∈ Gi if yuv ≥ i or yvu ≥ i .

Lemma 3.1. In the optimal solution to the above ILP, the graph G1 = (V ,E1) with E1 = {uv ∈ E |
xuv = 1 or xvu = 1} is a Steiner tree spanning the terminals in T1.

Proof. We show that (i)G1 contains no cycle, (ii) there exists a path inG1 from the source s to
every terminal v ∈ T1, and (iii) G1 is connected.

(i) Assume otherwise that G1 contains a cycle C . Such a cycle contains directed edges ori-
ented in the same direction; otherwise, there exist vertices u, v , w along the cycle such
that xuv = xwv = 1, which violates Equation (3.4). Additionally, such a cycle cannot have
any “incoming” edges (edges (u,v) whereu � C andv ∈ C), as this violates Equation (3.4)
as well.
If C contains s , then removing its preceding edge (v, s) and reducing all flows on C

by fvs yields a feasible solution with lower cost, contradicting optimality. If C does not
contain s , but contains some terminalv ∈ T1, then since there are no incoming edges into
C , we cannot satisfy the flow constraint on v . If C contains no terminal, then removing
C along with its edge flows gives a solution with lower cost.

(ii) Consider an arbitrary terminal v ∈ T1 with v � s . Then using previous arguments, v has
exactly one incoming edge (u,v) (whose level is at least L(v)). If u = s , we are done.
Otherwise, we continue this process until we reach the source s . Note that continuing
this process does not revisit a vertex, as G1 contains no cycle.

(iii) Since there exists a directed path from s to each terminal v ∈ T1, then all terminals are in
the same connected component in G1. If there exist other connected components in G1,
then removing them and setting flows to zero yields a solution with lower cost. �

Lemma 3.2. In the optimal solution to the above ILP, the graph Gi = (V ,Ei) with Ei = {uv ∈ E |
yuv ≥ i or yvu ≥ i} is a Steiner tree spanning all terminals Ti .

Proof. The graph Gi is necessarily a subgraph of G1, since yuv ≥ i or yvu ≥ i implies xuv ≥ 1
or xvu ≥ 1 by Equation (3.5). Consider some terminal v ∈ Ti , v � s . By constraint Equation (3.7),

ACM Journal of Experimental Algorithmics, Vol. 24, No. 2, Article 2.5. Publication date: December 2019.

2.5:16 R. Ahmed et al.

there is exactly one incoming edge (u,v) to v such that yuv ≥ L(v). Applying similar arguments
using constraint (3.6), we will eventually reach the root via a path, all of whose edges appear at
least L(v) times. �

Theorem 3.3. The optimal solution to the above ILP with cost OPTI LP yields the optimal MLST

solution.

Proof. The optimal MLST solution whose cost is OPT is a feasible solution to the ILP, as we
can set the xuv , yuv , and fuv variables accordingly, so OPTI LP ≤ OPT. By Lemmas 3.1 and 3.2, the
optimal solution OPTI LP gives a feasible solution to the MLST problem, so OPT ≤ OPTI LP . Then
OPT = OPTI LP . �

The number of flow variables is 2|E | (where |E | is the number of edges in the input graph),
and the total number of variables isO (|E |). The number of flow constraints isO (|V |) and the total
number of constraints isO (|V | + |E |). Additionally, the integrality constraints on the flow variables
fuv as well as the variables yuv may be dropped without affecting the optimal solution.

4 EXPERIMENTAL RESULTS

Graph Data Synthesis. The graphs we used in our experiment are synthesized from graph gen-
eration models. In particular, we used three random network generation models: Erdős–Renyi
(ER) [10], Watts–Strogatz (WS) [21], and Barabási–Albert (BA) [3]. These networks are very well
studied in the literature [17].
The Erdős–Renyi model, ER(n,p), assigns an edge to every possible pair among n = |V | ver-

tices with probability p, independently of other edges. It is well-known that an instance of

ER(n,p) with p = (1 + ε) lnn
n

is almost surely connected for ε > 0 [10]. For our experiment, n =
50, 100, 150, . . . , 500, and ε = 1.
The Watts–Strogatz model, WS(n,K , β), initially creates a ring lattice of constant degree K , and

then rewires each edge with probability 0 ≤ β ≤ 1 while avoiding self-loops or duplicate edges.
Interestingly, theWatts–Strogatzmodel generates graphs that have the small-world propertywhile
having high clustering coefficient [21]. In our experiment, the values of K and β are equal to 6 and
0.2, respectively.
The Barabási–Albert model, BA(m0,m), uses a preferential attachment mechanism to generate

a growing scale-free network. The model starts with a graph ofm0 vertices. Then, each new vertex
connects tom ≤ m0 existing nodes with probability proportional to its instantaneous degree. The
BA model generates networks with power-law degree distribution, i.e., few vertices become hubs
with extremely large degree [3]. This model is a network growth model. In our experiments, we
let the network grow until a desired network size n is attained. We varym0 from 10 to 100 in our
experiments. We keep the value ofm equal to 5.
For each generation model, we generate graphs on size |V | = 50, 100, 150, . . . , 500. On each

graph instance, we assign integer edge weights c (e) randomly and uniformly between 1 and 10
inclusive. We only consider connected graphs in our experiment. Computational challenges of
solving an ILP limit the size of the graphs to a few hundred in practice.

Selection of Levels and Terminals. For each generated graph, we generated MLST instances
with � = 2, 3, 4, 5 levels. We adopted two strategies for selecting the terminals on the � levels: linear
vs. exponential. In the linear case, we select the terminals on each level by randomly sampling
�|V | · (� − i + 1)/(� + 1)
 vertices on level i so that the size of the terminal sets decreases linearly.
As the terminal sets are nested,Ti can be selected by sampling fromTi−1 (or fromV if i = 1). In the
exponential case, we select the terminals on each level by randomly sampling �|V |/2�−i+1
 vertices
so that the size of the terminal sets decreases exponentially by a factor of 2.

ACM Journal of Experimental Algorithmics, Vol. 24, No. 2, Article 2.5. Publication date: December 2019.

Multi-level Steiner Trees 2.5:17

To summarize, a single instance of an input to theMLST problem is characterized by four param-
eters: network generation model NGM ∈ {ER,WS,BA}, number of vertices |V |, number of levels �,
and the terminal selection method TSM ∈ {Linear,Exponential}. Since each instance of the ex-
periment setup involves randomness at different steps, we generated five instances for every choice
of parameters (e.g., WS, |V | = 100, � = 5, Linear).

Algorithms and Outputs. We implemented the bottom-up, top-down, and composite heuristics
described in Section 2.
For evaluating the heuristics, we also implemented all ILPs described in Section 3 using CPLEX

12.6.2 as an ILP solver. The ILP described in Section 3.4 works very well in practice. Hence, we
have used this ILP for our experiment. The model of the HPC system we used for our experiment
is Lenovo NeXtScale nx360 M5. It is a distributed system; the models of the processors in this HPC
are Xeon Haswell E5-2695 Dual 14-core and Xeon Broadwell E5-2695 Dual 14-core. The speed of
a processor is 2.3 GHz. There are 400 nodes each having 28 cores. Each node has 192 GB memory.
The operating system is CentOS 6.10.
For each instance of the MLST problem, we compute the costs of the MLST from the ILP so-

lution (OPT), the bottom-up solution (BOT), the top-down solution (TOP), the quality-of-service
solution (QoS) from [7], the composite heuristic (CMP), and the guaranteed performance heuristic
(CMP(Q∗) where Q∗ is chosen suitably). The four heuristics involve a (single-level) ST subroutine;
we used both the 2-approximation algorithm of Gilbert and Pollak [11], as well as the flow formu-
lation described in Section 3.4, which solves ST optimally. The purpose of this is to assess whether
solving ST optimally significantly improves the approximation ratio.
After completing the experiment, we compared the results of the heuristics with exact solutions.

We show the performance ratio for each heuristic (defined as the heuristic cost divided by OPT),
and how the ratio depends on the experiment parameters (number of levels �, terminal selection
method, number of vertices |V |). We record the number of ST computations involved for the guar-
anteed performance heuristic (CMP(Q∗)) (note that this equals � + |Q∗ |). Finally, we discuss the
running time of the ILP we have used in our experiment. All box plots shown below show the min-
imum, interquartile range (IQR) and maximum, aggregated over all instances using the parameter
being compared.

Results.We found that the four heuristics perform verywell in practice using the 2-approximation
algorithm as a (single-level) ST subroutine, and that using an exact ST subroutine did not signifi-
cantly improve performance. Hence, we only discuss the results that use the 2-approximation as
a subroutine.
Figure 6 shows the performance of the four heuristics compared with the optimal solution as

a function of �. As expected, the performance of the heuristics gets slightly worse as � increases.
The bottom-up approach had the worst performance, while the composite heuristic performed
very well in practice.
Figure 7 shows the performance of the four heuristics compared with the optimal solution as

a function of terminal selection, either linear or exponential. Overall, the heuristics performed
slightly worse when the sizes of the terminal sets decrease exponentially.
Figures 8 through 10 show the performance of the heuristics compared with the optimal solu-

tion, as a function of the number of vertices |V |. The minimum, average, and maximum values
for “Ratio” are aggregated over all instances of |V | vertices (terminal selection, number of levels
�, 5 instances for each). Due to space, we omit the bottom-up (BU) heuristic here, which tends
to be comparable or slightly worse in performance than the top-down (TD) heuristic. Again, the
composite (CMP) has the best ratio as it selects the best over all 2�−1 possible solutions; top-down
and CMP(Q∗) were comparable.

ACM Journal of Experimental Algorithmics, Vol. 24, No. 2, Article 2.5. Publication date: December 2019.

2.5:18 R. Ahmed et al.

Fig. 6. Performance of BOT, TOP, QoS, CMP, and CMP(Q∗) w.r.t. the number � of levels using the 2-

approximation for ST as a subroutine. Note that the range of the Y -axis is not the same for all plots in

the row.

Fig. 7. Performance of BOT, TOP, QoS, CMP, and CMP(Q∗) w.r.t. the terminal selection method using the

2-approximation for ST as a subroutine. Note that the range of the Y -axis is not the same for all plots in the

row.

Fig. 8. Performance of TOP, CMP, and CMP(Q∗) on Erdős–Rényi graphs using the 2-approximation for ST

as a subroutine.

The most time-consuming part of this experiment was calculating the exact solutions of all
MLST instances. It took 88.64 hours to compute all exact solutions. The computation time for
network models ER, WS, and BA were 73.8, 7.84, and 7 hours, respectively. Figure 11 shows the
time taken to compute the exact solutions (with cost OPT), as a function of the number of levels
�. As expected, the running time of the heuristics gets worse as � increases. Note that the y-axes
of the graphs in these figures have different scales for different network models. The Erdős–Rényi
network model had the highest running time in the worst case.

ACM Journal of Experimental Algorithmics, Vol. 24, No. 2, Article 2.5. Publication date: December 2019.

Multi-level Steiner Trees 2.5:19

Fig. 9. Performance of TOP, CMP, and CMP(Q∗) on Watts–Strogatz graphs.

Fig. 10. Performance of TOP, CMP, and CMP(Q∗) on Barabási–Albert graphs using the 2-approximation for

ST as a subroutine.

Fig. 11. Experimental running times for computing exact solutions w.r.t. the number � of levels, aggregated

over all instances with � levels.

Figure 12 shows the time taken to compute the exact solutions, as a function of the terminal
selection method, either linear or exponential. Overall, the running times are slightly worse
when the size of the terminal sets decreases exponentially, especially in the worst case.
Figure 13 shows the time taken to compute the exact solutions, for each of the network models

BA, ER, WS, as a function of the number of vertices |V |. Since several instances share the same
network size, we show minimum, mean, and maximum values. Note that the y-axes of the graphs
in these figures have different scales for different network models. As expected, the running time
slightly deteriorated as |V | increased, especially in the worst case.
One motivation for the MLST problem is the visualization of large networks. We have used

the algorithms described in this article on a real-world network, originating from a visualization
project called UAMap. The underlying data for UAMap is obtained from Google Scholar academic

ACM Journal of Experimental Algorithmics, Vol. 24, No. 2, Article 2.5. Publication date: December 2019.

2.5:20 R. Ahmed et al.

Fig. 12. Experimental running times for computing exact solutions w.r.t. the terminal selection method, ag-

gregated over all instances with Linear or Exponential terminal selection.

Fig. 13. Experimental running times for computing exact solutions w.r.t. the graph size |V |, aggregated over

all instances of |V | vertices.

research profiles and is used to create a weighted research topic graph. The vertices of the graph
correspond to self-reported research topics and the edges indicate co-occurring topics in the pro-
files. The system supports map-based interactive features, including semantic zooming, panning,
and searching [5]; see Figure 14. The graph contains 5,947 vertices and 26,695 edges. There are
eight levels determined by the popularity of the corresponding research topics. We have run BOT,
TOP, and CMP on this graph using the 2-approximation algorithm as a (single-level) ST subrou-
tine. The total cost of BOT, TOP, and CMP is 1702.14, 1701.31, and 1700.66, respectively. Using
the solutions of these algorithms, we can visualize the tree of different levels using a similar
interactive method mentioned above [5]. Since in every level, we have a tree, we will be able to
draw the tree without edge crossings, which is convenient for visualization purposes. Similar to
the interactive map visualizations, at a minimum level of zoom, only the most important vertices
and edges are visible, and these are provided by the top level tree T� . Increasing the level of zoom
adds in new vertices and edges, and these are provided by the next tree in the filtration until the
maximum zoom level is reached and the entire graph is shown.

5 CONCLUSIONS

We presented several heuristics for the MLST problem and analyzed them both theoretically and
experimentally. All the software (new heusritcs, approximation algorithms, ILP solvers, experi-
mental data, and analysis) are available online at https://github.com/abureyanahmed/multi_level_
steiner_trees.
The heuristics in this article rely on single-level ST subroutines. The composite heuristic CMP

achieves the best approximation ratio, as it is the minimum of all possible combinations of single-
level ST computations. Importantly, we showed that CMP(Q∗) guarantees the same approximation

ACM Journal of Experimental Algorithmics, Vol. 24, No. 2, Article 2.5. Publication date: December 2019.

https://github.com/abureyanahmed/multi_level_steiner_trees
https://github.com/abureyanahmed/multi_level_steiner_trees

Multi-level Steiner Trees 2.5:21

Fig. 14. A multi-level view of UAMap. At the top level, the main topics are shown. More detailed view can

be seen in terms of subtopics by zooming in toward the bottom levels.

ratio that CMP can provide, using O (�) rather than O (2�−1�) ST computations. One important
question is to consider whether it is possible to directly approximate the MLST problem, without
the use of multiple single-level ST subroutines, andwhether it is possible to do better than the CMP
approximation ratio. Further, it is natural to study whether there are stronger inapproximability
results for the MLST problem, compared to the standard ST problem.
Another interesting open problem is whether the approximation ratios t� (Section 2.2) are tight

for any �, and whether the output y from the LP formulation can help in designing worst-case
examples. In particular, even though we have computed the approximation ratio for up to � = 100
levels, it remains to determine the limit lim�→∞ t� .
As a final remark, even though our investigation focused on the MLST problem, much of the

analysis does not depend on the fact that we computed Steiner trees but only that the computed
graphs were nested. We thus wonder whether it is possible to generalize our results to other “spar-
sifiers” (e.g., node-weighted Steiner trees, graph t-spanners).

ACKNOWLEDGMENTS

The authors thank the organizers and participants of the First Heiligkreuztal Workshop on Graph
and Network Visualization where work on this problem began.

REFERENCES

[1] Sanjeev Arora. 1998. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric

problems. J. ACM 45, 5 (1998), 753–782. DOI:https://doi.org/10.1145/290179.290180
[2] Anantaram Balakrishnan, Thomas L. Magnanti, and Prakash Mirchandani. 1994. Modeling and heuristic worst-case

performance analysis of the two-level network design problem. Management Sci. 40, 7 (1994), 846–867. DOI:https://
doi.org/10.1287/mnsc.40.7.846

[3] Albert-László Barabási and Réka Albert. 1999. Emergence of scaling in random networks. Science 286, 5439 (1999),

509–512. DOI:https://doi.org/10.1126/science.286.5439.509

ACM Journal of Experimental Algorithmics, Vol. 24, No. 2, Article 2.5. Publication date: December 2019.

https://doi.org/10.1145/290179.290180
https://doi.org/10.1287/mnsc.40.7.846
https://doi.org/10.1287/mnsc.40.7.846
https://doi.org/10.1126/science.286.5439.509

2.5:22 R. Ahmed et al.

[4] Marshall Bern and Paul Plassmann. 1989. The Steiner problem with edge lengths 1 and 2. Inform. Process. Lett. 32, 4

(1989), 171–176. DOI:https://doi.org/10.1016/0020-0190(89)90039-2
[5] Randy Burd, Kimberly Andrews Espy, Md Iqbal Hossain, Stephen Kobourov, Nirav Merchant, and Helen Purchase.

2018. GRAM: Global research activitymap. In Proceedings of the International Conference on Advanced Visual Interfaces

(AVI’18). ACM, New York, NY. DOI:https://doi.org/10.1145/3206505.3206531
[6] Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. 2013. Steiner tree approximation via iterative

randomized rounding. J. ACM 60, 1 (2013), 6:1–6:33. DOI:https://doi.org/10.1145/2432622.2432628
[7] Moses Charikar, Joseph (Seffi) Naor, and Baruch Schieber. 2004. Resource optimization in QoS multicast routing of

real-time multimedia. IEEE/ACM Trans. Netw. 12, 2 (2004), 340–348. DOI:https://doi.org/10.1109/TNET.2004.826288
[8] Miroslav Chlebík and Janka Chlebíková. 2008. The Steiner tree problem on graphs: Inapproximability results. Theoret.

Comput. Sci. 406, 3 (2008), 207–214. DOI:https://doi.org/10.1016/j.tcs.2008.06.046
[9] Julia Chuzhoy, AnupamGupta, Joseph (Seffi)Naor, andAmitabh Sinha. 2008. On the approximability of some network

design problems. ACM Trans. Algorithms 4, 2 (2008), 23:1–23:17. DOI:https://doi.org/10.1145/1361192.1361200
[10] Paul Erdös and Alfréd Rényi. 1959. On random graphs I. Publicationes Mathematicae (Debrecen) 6 (1959), 290–297.

[11] Edgar N. Gilbert and Henry O. Pollak. 1968. Steiner minimal trees. SIAM J. Appl. Math. 16, 1 (1968), 1–29. DOI:
https://doi.org/10.1137/0116001

[12] Mathias Hauptmann and Marek Karpinski (eds.). 2015. A Compendium on Steiner Tree Problems. Retrieved from

http://theory.cs.uni-bonn.de/info5/steinerkompendium/.

[13] Richard M. Karp. 1972. Reducibility among Combinatorial Problems. In Complexity of Computer Computations, Ray-

mond E. Miller, James W. Thatcher, and Jean D. Bohlinger (Eds.). Plenum Press, New York, 85–103. DOI:https://
doi.org/10.1007/978-1-4684-2001-2_9

[14] Marek Karpinski, Ion I. Mandoiu, Alexander Olshevsky, and Alexander Zelikovsky. 2005. Improved approximation

algorithms for the quality of service multicast tree problem. Algorithmica 42, 2 (2005), 109–120. DOI:https://doi.org/
10.1007/s00453-004-1133-y

[15] Prakash Mirchandani. 1996. The multi-tier tree problem. INFORMS J. Comput. 8, 3 (1996), 202–218. DOI:https://doi.
org/10.1287/ijoc.8.3.202

[16] Joseph S. B. Mitchell. 1999. Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time

approximation scheme for geometric TSP, k-MST, and related problems. SIAM J. Comput. 28, 4 (1999), 1298–1309.

DOI:https://doi.org/10.1137/S0097539796309764
[17] Mark E. J. Newman. 2003. The structure and function of complex networks. SIAM Rev. 45, 2 (2003), 167–256. DOI:

https://doi.org/10.1137/S003614450342480

[18] Tobias Polzin and Siavash Vahdati Daneshmand. 2001. A comparison of Steiner tree relaxations. Discrete Appl. Math.

112, 1 (2001), 241–261. DOI:https://doi.org/10.1016/S0166-218X(00)00318-8
[19] Hans Jürgen Prömel and Angelika Steger. 2002. The Steiner Tree Problem. Vieweg and Teubner Verlag, Wiesbaden.

DOI:https://doi.org/10.1007/978-3-322-80291-0
[20] Gabriel Robins andAlexander Zelikovsky. 2005. Tighter bounds for graph Steiner tree approximation. SIAM J. Discrete

Math. 19, 1 (2005), 122–134. DOI:https://doi.org/10.1137/S0895480101393155
[21] Duncan J. Watts and Steven H. Strogatz. 1998. Collective dynamics of ’small-world’ networks.Nature 393, 6684 (1998),

440–442. DOI:https://doi.org/10.1038/30918
[22] Pawel Winter. 1987. Steiner problem in networks: A survey. Networks 17, 2 (1987), 129–167. DOI:https://doi.org/10.

1002/net.3230170203

[23] Guoliang Xue, Guo-Hui Lin, and Ding-Zhu Du. 2001. Grade of service Steiner minimum trees in the Euclidean plane.

Algorithmica 31, 4 (2001), 479–500. DOI:https://doi.org/10.1007/s00453-001-0050-6

Received October 2018; revised July 2019; accepted September 2019

ACM Journal of Experimental Algorithmics, Vol. 24, No. 2, Article 2.5. Publication date: December 2019.

https://doi.org/10.1016/0020-0190(89)90039-2
https://doi.org/10.1145/3206505.3206531
https://doi.org/10.1145/2432622.2432628
https://doi.org/10.1109/TNET.2004.826288
https://doi.org/10.1016/j.tcs.2008.06.046
https://doi.org/10.1145/1361192.1361200
https://doi.org/10.1137/0116001
http://theory.cs.uni-bonn.de/info5/steinerkompendium/.
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/s00453-004-1133-y
https://doi.org/10.1007/s00453-004-1133-y
https://doi.org/10.1287/ijoc.8.3.202
https://doi.org/10.1287/ijoc.8.3.202
https://doi.org/10.1137/S0097539796309764
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1016/S0166-218X(00)00318-8
https://doi.org/10.1007/978-3-322-80291-0
https://doi.org/10.1137/S0895480101393155
https://doi.org/10.1038/30918
https://doi.org/10.1002/net.3230170203
https://doi.org/10.1002/net.3230170203
https://doi.org/10.1007/s00453-001-0050-6

