
Scheduling HPC Workflows with Intel Optane
Persistent Memory

Ranjan Sarpangala Venkatesh
Georgia Institute of Technology

ranjansv@gatech.edu

Tony Mason
University of British Columbia
Georgia Institute of Technology
fsgeek@{gatech.edu,cs.ubc.ca}

Pradeep Fernando
Georgia Institute of Technology

pradeepfn@gatech.edu

Greg Eisenhauer
Georgia Institute of Technology

eisen@cc.gatech.edu

Ada Gavrilovska
Georgia Institute of Technology

ada@cc.gatech.edu

Abstract—HPC workloads and their increasing data processing
demands have led to using in situ execution, which couples sim-
ulation and analytics to reduce cross node memory accesses and
their negative impact on overall performance. In situ executions
can benefit from new classes of persistent memory technologies,
such as Intel® OptaneTM DC Persistent Memory (PMEM), which
provide a denser, lower cost, and lower performance memory
option for server class machines. However, PMEM creates a
new set of trade-offs that must be considered to further improve
performance for these HPC workloads and to realize the expected
benefits. Prior work has only focused on describing how to tune
for a single workload component, which may not yield optimal
results for the entire workload.

In this paper, we use a suite of workflows with different
characteristics to understand the impact of using PMEM for
in situ workflow executions with respect to different decisions on
how PMEM is shared. Based on our experimental observations,
we make recommendations for the considerations that must be
incorporated for future workflow schedulers to maximize the
benefits of the PMEM resource.

I. INTRODUCTION

High Performance Computing (HPC) workloads are increas-
ingly required to process larger data volumes, which lead to
excessive data movement costs across memory and storage
tiers. One common solution to this is to reduce cross-node
traffic by using coupled simulation and analytics applications.
These in situ executions benefit from using local persistent
memory, which provides large memory capacity at access
latencies similar do DRAM. This provides memory-speed I/O
performance, while leaving the available DRAM capacity to
be utilized for core computations [1]. The first commercially
available persistent memory, Intel® OptaneTM DC Persistent
Memory (Intel Optane), has been rapidly adopted by the
HPC community. Intel Optane is already being used by
several supercomputer facilities including Aurora, Frontera,
and Barcelona Supercomputing Center. Intel Optane provides
large capacity (up to 6TB per node) and is persistent and byte
addressable.

This raises the question, How to maximize the benefit
that in situ workflows can obtain from using PMEM for
their data exchanges? Recent work has developed detailed

performance analysis of individual applications on PMEM
platforms [2], [3]. These efforts demonstrate that due to certain
characteristics of the PMEM technology parameters, such as
read-write access and bandwidth asymmetry, the characteristic
of the device-internal cache, access stride and width, etc.,
applications exhibit significant variability of the observed
device bandwidth and latency. The extent of this variability
is determined by both the configuration of the software stack
and by a range of application-level parameters, such as access
locality, granularity, stride, presence of concurrent operations,
read-write mix, etc., and can range up to 30× [2]. In response,
the past work has also developed recommendations regarding
the configuration of application parameters and the PMEM
software stacks, so as to maximize the potential performance
gains.

Unlike a single application, in situ workflows iterate over
I/O data as it is being streamed across the simulation
and analytics components forming the workflow execution
pipeline [1], [4]. Optimizing just one of these components
has implications on the performance experienced by the other
component. Figure 1 illustrates this by showing normalized
runtime of two workflows based on miniAMR. The work-
flows differ with respect to the analytics component – an
I/O-intensive read only component vs. a compute-intensive
analytics kernel based on matrix multiplication. We run the
two workflows in two different configurations, the parameters
of which are not germane for the current illustration (but are
presented later in section II). Although the simulation app is
the same in both the workflows, optimizing purely for this
component is insufficient as a change in the analytics kernel
can result in a 1.4-1.6× loss in performance, unless some
other parameters of how the workflow or its use of the PMEM
resources are changed. In fact, as we show in this paper, the
effects of a poorly configured use of PMEM for streaming I/O
across a set of workflow components, can obviate any benefits
expected by use of PMEM. The exact effect of a shared use
of PMEM in workflows is application-specific and sensitive
to properties such as the composition of the iteration cycle
of individual components (i.e., their compute vs. I/O time),



Fig. 1: Performance of miniAMR workflows with different
configurations

writer and reader mix and concurrency, the granularity of I/O
operations, etc. Optimizing individual workflow components
does not guarantee a best choice in end-to-end workflow
performance and there is no single configuration which works
for all workflows. Although prior work has explored the
impact of the configuration parameters of the PMEM stack on
individual applications, the interplay of these in the context of
HPC workflows has not been studied.

In this paper, we explore the effect of the decisions re-
garding how workflow components are scheduled on a server
platform and how they use the available Intel Optane resources
for streaming I/O on end-to-end workflow performance. We
do this by considering HPC workflows with different char-
acteristics, so as to illustrate the importance of the problem
across workloads and to develop recommendation strategies
for workflow scheduling and resource management engines.
We demonstrated up to 69% performance improvement, mea-
sured by end-to-end workflow execution runtime, using syn-
thetic benchmarks and application kernels based on real HPC
applications, GTC and miniAMR, on a testbed based on the
first-generation Intel Optane memory.

II. BACKGROUND

We briefly summarize the decision space of in situ workflow
scheduling, and present the characteristics of PMEM that are
most relevant to the question of shared use of its resources for
streaming I/O in workflows.

A. In situ Workflow Deployment Considerations
In situ workflow scheduling is based on deploying the

components of a single workflow to shared server nodes.
This allows acceleration of data movements across workflow
components, which has been shown possible and important by
workflow systems in operation today [5]. In situ scheduling
presents challenges as well due to the multi-tenancy aspect
of the server platform. Simulation and analytics components
share server resources – cores, memory hierarchy, I/O devices
and their resource allocation and execution must be managed
to avoid contention points from dominating the end-to-end
execution. Failing to do so eliminates potential benefits from
in situ execution.

Prior work has explored these challenges in the context
of shared use of compute cores and caches, accelerators,

and network [6]–[9]. In this work, we focused on challenges
related to the shared use of the PMEM resources. For this
reason, we focus on workflow deployments which change
how the PMEM resource is used and impact the contention
points that get exhibited in the path of PMEM access. We
assume that PMEM is not used as compute memory during
the computational phases of workflow components, since that
has been shown to degrade execution time [10], but focus on
its use for streaming I/O, as shown important in our prior
work [1].

For concreteness, we consider a simplified server platform
comprising two compute sockets, each with locally attached
DRAM and PMEM resources, as illustrated in Figure 2.
We do not focus on deployment scenarios where workflow
components share individual cores or even sockets, as in such
cases, the dominant factors impacting workflow performance
are related to the benefits of shared cache accesses, which
may accelerate data movement under certain conditions [11].
Instead we focus on configurations that are directly impacted
by the shared use of the PMEM resource and the relative
locality of workflow components to the I/O data channels
placed in PMEM, or the contention arising from concurrent
accesses to the shared PMEM controllers.

We also do not consider scenarios where simulation and
analytics can be scheduled in alternation on a single socket.
HPC applications are long-running and have large memory
footprints, hence analytics needs to be scheduled to run
concurrently (or in interleaved manner) with the simulation,
so as to operate on its output in an online manner, and needs
to be placed on distinct set of resources that do not result in
cache and memory pollution.
Locality of PMEM accesses. For the sample platform
illustrated in Figure 2, the simulation (writer) and analytics
(reader) components of a workflow are placed on two different
sockets. The streaming I/O channel is allocated in one of the
PMEM modules, either local to the simulation, or local to the
analytics. The locality choice impacts the I/O performance that
each of the workflow components will experience, as remote
PMEM accesses are shown to degrade the effective PMEM
latency and bandwidth. As such, the question that arises is
the placement decision that the system scheduler needs to
make – which workflow component should be prioritized with
respect to its PMEM locality so as to maximize the end-to-end
performance benefits.
Contention for PMEM resources. In situ workflow com-
ponents can benefit from being executed at the same time,
in parallel, in the absence of contention on a single shared
resource. This is because contention for shared resources such
as accelerators (e.g., GPU [12]) or interconnects ( [13]) limit
parallelism. The extent to which the shared use of PMEM
leads to significant contention, is further depended on how
the workflows are scheduled: in parallel, where simulation
and analytics are scheduled to execute during the same time
and their I/O operations and access PMEM overlap in time, or
serially, where the two workflow components are scheduled



Fig. 2: Considered workflow deployment alternatives. The PMEM component, shown local either to simulation or analytics, is
used for streaming I/O data buffers. Additional scheduling decisions concern whether simulation and analytics are permitted
to access PMEM in parallel, or their accesses are scheduled to occur in distinct intervals, but scheduling their I/O phases in a
serial manner.

TABLE I: Summary of configurations
Config
label

Execution
Mode Placement

S − LocW Serial local-write-remote-read
S − LocR Serial remote-write-local-read
P − LocW Parallel local-write-remote-read
P − LocR Parallel remote-write-local-read

consecutively, and their I/O operations that access PMEM do
not overlap in time.

Based on this P arallel vs. S erial scheduling dimension,
and whether the placement decisions illustrated in Figure 2
prioritize Locality to the streaming I/O buffers for simulation
(W ) or analytics (R) , we consider four scheduler configu-
rations (S − LocW |R and P − LocW |R) as summarized in
Table I.

B. Optane PMEM
Prior work describes the access performance characteristics

of Intel Optane PMEM [2], [3], [14]. We summarize their
findings here and show how they relate to the choice of
workflow scheduling configurations.
Access granularity. Intel Optane PMEM consists of up to
6 persistent memory modules per node. For maximum band-
width, modules are configured in interleaved mode, where data
is striped across all modules in the PMEM device. Optane
uses 4KB contiguous chunks to form 24KB stripes spread
across the 6 interleaved modules, similar to RAID-0. Prior
work [2] has shown non-uniform distribution of random 4KB
accesses by 6 or more threads can reduce performance. With
4KB accesses, multiple threads eventually end up contending
for the same Optane DIMM module. This reduces performance
due to its limited bandwidth.
Effective bandwidth. In interleaved mode Optane has a max-
imum local read bandwidth of 39.4GB/s, and maximum local
write bandwidth of 13.9 GB/s. Further, the read bandwidth
scales up to 17 concurrent operations, while write bandwidth
scaling is limited beyond 4 concurrent operations [14]. Be-
cause of these properties, a serially executed workflow with
a high degree of concurrent operations experiences bandwidth
degradation. For workflows in which the simulation’s compute
phase is much longer than the I/O phase which issues PMEM
access operations, the benefits of parallel computation out-
weigh the loss of PMEM bandwidth during I/O. For workflows

in which the components are I/O intensive, we must carefully
control concurrency levels to limit contention in PMEM. By
limiting performance degradation while accessing PMEM, we
can improve the effective memory bandwidth. And this in turn
minimizes the end-to-end workflow runtime.

The effective PMEM bandwidth is also impacted by the lo-
cality of the PMEM controller to the issuing CPU. Any mem-
ory access to PMEM on a remote NUMA node is much slower
with as few as three concurrent memory operations. More than
three concurrent memory operations quickly decrease effective
bandwidth to under 1GB/s. This is caused by contention for
interconnect links [3]. Writes are more adversely affected by
remote NUMA memory operations than reads because of their
lower baseline performance. Our measurements show a 15X
drop in write bandwidth with 24 concurrent write operations
compared to a 1.3X slowdown for read operations.
Access latency. Because the PMEM controller includes
buffering for cache line writes, writing a small amount of
data to idle PMEM has a write latency of 90 ns compared
to a read latency of 169 ns. As a result, for workflows that do
not throttle memory bandwidth, reducing read latency helps
improve overall workflow performance.

III. GOALS

The previous section outlined scheduling decisions that
expose different PMEM-related performance bottlenecks for
co-running workflow components. These are related either to
the reduction in the effective PMEM bandwidth available to
one or more (including all) workflow components, or to the
change in access latencies. Motivated by these observations,
the goal of this paper is to explore the following questions:
Q1 How significantly can the workflow performance be af-

fected due to these bottlenecks?
Q2 How are workflow scheduling decisions impacted by the

workflow characteristics, concerning the shared PMEM
use?

Q3 What are the best practice recommendations that can
maximize the benefits that a workflow can experience
from using PMEM for its streaming I/O?

In order to answer these questions, in the remainder of the
paper we first identify the workflow characteristics which are
most related to its performance sensitivity to PMEM’s use, and
next perform detailed experimental analysis to demonstrate



and scope the impact of PMEM and to establish recommen-
dations for scheduling systems.

IV. REPRESENTATIVE WORKFLOWS

In order to perform the analyses, we first identify the
most relevant parameters of the streaming I/O patterns that
determine the sensitivity of the workflow performance to the
effective performance of PMEM, and then construct a suite
of workflows which exhibit different characteristics in the
parameter space.

A. Workflow Streaming I/O Parameters

The following parameters of a workflow component deter-
mine its sensitivity to changes in effective PMEM bandwidth
or access latency:
Concurrency. High concurrency can reduce compute time for
certain applications. However, increased I/O concurrency also
means increased contention in the Optane internal cache. The
thrashing of the internal cache is known to reduce the effective
bandwidth of Optane. The concurrency of the workflow com-
ponents are statically determined via parameters in workflow
launch scripts without actually requiring a run.
Object size. The size of the objects streamed across the
workflow has implications on the PMEM access granularity
and on the overheads incurred in the I/O software stack.
Each streaming I/O operation performed over PMEM includes
software costs required by the PMEM software stack (e.g.,
NVStream [1] or NOVAfs [15]) to update I/O metadata in
various internal datastructures, as well as costs to perform
the actual PMEM read (load) or write (store) operations.
When streaming I/O with large object sizes, the software
overheads executed by the CPU are drastically reduced, and
PMEM bandwidth may be saturated even with small number of
threads. When streaming small objects, the aggregate software
overheads of each I/O operation can dominate. In particular,
in the case of filesystems like NOVAfs, that require a user
to kernel space border crossing, the overhead is even more
significant. The object size is determined by the workflow,
based on the composition of the objects forming the snapshot
streamed across the workflow during each iteration, and by
the configuration of the I/O stack, determining the granularity
at which objects are written/read in and out of PMEM.
Iteration cycle composition. Each iteration cycle of both
simulation and analytics components is composed of compute
and I/O phases. If I/O time >>compute time, there is more
overlap among concurrent access operations to PMEM. This
causes contention for Optane resources and reduces effective
bandwidth and increases access latency. On the other hand, if
compute time >>I/O time, there is an opportunity to hide the
I/O time when executing the workflow in the parallel mode
without a significant reduction in the effective bandwidth.

B. Workflow Benchmarks

Based on the above characteristics, we assemble a suite
of workflows comprising simulation and analytics compo-

nents which exhibit different properties. We do this using
microbenchmarks and real application kernels.
Microbenchmark. To investigate the impact of object size
and thread concurrency on workflow runtime and performance,
we use a workflow microbenchmark that allows us to vary
different parameters. The simulation and analytics components
of the microbenchmark are configured with the same number
of threads. Their level of concurrency is set to low, medium
or high using 8, 16 or 24 threads respectively. Each iteration
stream produces a 1GB snapshot using either small (2 KB) or
large (64 MB) objects. Each thread in the microbenchmark
performs 10 iterations, hence, a higher number of threads
increases the amount of data output and pressure on Optane
bandwidth. Both writers and readers perform only I/O and do
not have a compute kernel.

Application kernels We also use several workflow bench-
marks based on real HPC applications. For the simulation
components we use the following applications:

Gyrokinetic Toroidal Code (GTC) is a three-dimensional
particle-in-cell application used in micro-turbulence fusion de-
vice studies. The checkpoint data constitutes of 2D/3D arrays.
We change the original input parameters npartdom, micell and
mecell in constant factors to weak scale the workload size of
the benchmark. Here, we use GTC to represent a class of
applications that whose I/O consists of a few relatively large
objects.

miniAMR applies a seven-point stencil calculation on a unit
cube computational domain, which is divided into blocks. The
blocks all have the same number of cells in each direction
and communicate ghost values with neighboring blocks. With
adaptive mesh refinement, the blocks can represent different
levels of refinement in the larger mesh. In our analysis,
miniAMR represents a class of applications that whose I/O
consists of a many relatively small objects.

Analytics kernels. The application workflow benchmarks use
two different analytics kernels used in our prior work [5].

Read-only kernel. This is a read-only kernel which reads
objects from a single writer. This kernel is employed with GTC
+ Read Only and miniAMR + Read-Only workflows to study
the impact of I/O heavy analytics kernel with an insignificant
compute phase.

Compute-heavy kernel. This analytics kernel performs ma-
trix multiplication over objects read from individual writer.
Our use of this kernel is meant as a compute-intensive stand-
in, as opposed to something that might be more appropriate
for the science, so that our analysis could focus on the 1-to-
1 data flow scenario with appropriate levels of computation
that might act in place of heavier analysis. There are different
version of this kernel for GTC and miniAMR. When coupled
with GTC, it performs 10 million matrix multiplication of
large 2D arrays. With miniAMR it performs only 5 matrix
multiplications on each object. However, since the miniAMR
snapshots are made of 528K small objects the compute phase
length is still relatively large.
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Fig. 3: Workflow parameter space

C. Workflow Suite
Using the above microbenchmarks and application kernels,

we construct a suite of workflows. Each workflow in the
testing suite corresponds to an appropriate combination of a
simulation and analytics component, which are then further
configured to execute at different levels of concurrency, i.e.,
with different number of MPI ranks. In the discussion in this
paper, we interchangeably use ranks or threads, to refer to
these separate execution contexts. The workflows are con-
structed such that both workflow components are configured
with the same number of ranks (i.e., corresponding to a 1:1 I/O
exchange), and both components access the complete object
(i.e., they operate using the same I/O granularity).

Figure 3 shows the parameter and configuration options
exercised by the workflows. The four axes of Simulation
I/O Index, Concurrency, Object Size and Analytics I/O index
represent workflow parameters. The iteration time of the sim-
ulation and analytics kernels is composed of compute and I/O
phases. We define I/O index as the ratio of I/O time/Iteration
time when the application is executing standalone (i.e., as
in serial, with no contention) and with node-local access to
PMEM. A given workflow would be represented by a sequence
of points along each of the axes. For instance, GTC + Read-
Only at 24 threads, W1 in figure 3, has low Simulation I/O
Index, high concurrency uses large 64MB objects with a high
Analytics I/O index. For this workload we determine (shown
later in Figure 10a in Section VII) that it should be scheduled
in Serial mode with Simulation placed local to the PMEM
(S − locW ).

Since we have 18 total workloads, for legibility, the figure
does not represent a complete radar chart, and shows the 9
application kernel workflows only. Instead, the goal of figure
is to illustrate the wide spectrum of parameter combinations
provided by the workflows used in our experiments. Note that
each node on each axis has a fan out of at least 2, illustrating
that the suite includes configurations which overlap and differ
in other workload parameters.

We also show the scheduling decisions via two additional
axes: Execution Mode and Placement. A complete radar chart

illustration of all workflows in the suite does confirm that
no one single parameter of the workflow configuration space
determines the configuration of the scheduling decision.

V. METHODOLOGY

Hardware testbed. All experiments are conducted on a
testbed with dual-socket Intel Xeon Scalable processors with
28 physical cores per socket. There are two memory con-
trollers per socket each having three channels. Each channel
has two DIMM slots. 512GB Optane DIMMs configured in
App-Direct Mode. NOVA Linux kernel based on 5.0.
Software stack. From the software stack, PMEM can be
accessed via a file system or via an object-based API. Since
the choice of the API further impacts the access characteristics
of PMEM, we perform the evaluations using a PMEM-aware
file system NOVAfs, and a PMEM-aware in-memory object
store, further specialized for streaming I/O, NVStream.
NOVAfs [1] is a log-structured filesystem designed for persis-
tent memory. It maintains a separate log file for each inode to
improve concurrency while taking advantage of fast random
access provided by persistent memory. The logs are used to
provide atomicity of metadata, data, and map atomicity. The
data is stored outside of logs to reduce garbage collection
costs. NOVAfs supports DAX (direct access) mode to by-pass
page cache and creates file mappings that allow load/store
access to persistent memory.
NVStream [15] is a data transport designed for HPC work-
flows over persistent memory. Filesystems, when used as data
transport, incur overheads such as POSIX-based system call
and journaling/logging costs. NVStream is a log-based ver-
sioned object store in userspace that is optimized for streaming
workflows. NVStream uses non-temporal stores to maximize
persistent memory bandwidth utilization. Furthermore, this
avoids cache pollution since simulation applications don’t read
back snapshot data and they are immutable.
Measurements. The analyses are performed by measuring
the execution of the workflows in the suite in each of the four
scheduling configurations, S−LocW |R and P −LocW |R. In
each workflow, the simulation (writer) component instantiates
objects in the beginning and periodically produces output in
the form of a checkpoint to the PMEM I/O channel. The
I/O data is subsequently consumed by the analytics (readers)
component. Each checkpoint stores all output objects with a
new version number. The writers I/O time is the time to write
all objects from DRAM to persistent memory. The readers
read individual objects in sequence from the I/O channel. The
readers I/O time is the time to read an individual object from
persistent memory to local DRAM.

For each workflow, depending on the deployment configu-
ration, writer and reader processes (MPI ranks) are always
pinned to cores either local or remote with respect to the
persistent memory. The configuration also specifies whether
writers and readers are scheduled to execute serially (in
S − LocW and P − LocW ), or parallelly (in S − LocR and
P − LocR).



We measure the end-to-end execution time for a workflow.
In the case of sequentially scheduled workflows, the execution
time is shown as a split bar graph with separate writer
and reader components. Inspection of split costs gives us
insights on the impact of writers’ or readers’ PMEM locality
on write/read performance, and is used to inform placement
decisions. For parallel, the execution time is measured as the
total time for the readers and writers to complete.

VI. OBSERVATIONS

A. S-LocW: Serial execution in local-write and remote-read

Workflows with I/O intensive simulation and analytics
kernels at moderate and high I/O concurrency levels
should be executed in S − LocW configuration.

With little opportunity to hide I/O operations with compute
phases, the workflow is bandwidth constrained. Thus, remote
writes are more adversely affected by PMEM bandwidth
contention relative to remote reads. Placing writers local to
PMEM maximizes the available bandwidth. Further, serial
execution performance is better because co-scheduling analyt-
ics increases contention for Optane and reduces the effective
bandwidth.

The 64MB workflows shown in figures 4a,4b and 4c exhibit
these characteristics. During parallel execution, interconnect
contention creates back pressure on the Optane internal cache.
The remote reads hold resources that also slow writes. Given
the large object size, the software overhead is minimal,
therefore minimizing contention for interconnect and Optane
bandwidth is critical to achieve good performance for this
workflow. Since this workload is composed of large objects,
remote-writes experience greater interconnect contention and
slowdown than remote-reads. With moderate (16) and large
(24) number of threads, serial execution with local writes
(S −LocW ) provides the best runtime across placements, up
to 2.5× better than other scenarios.

Figures 6c and 7c have similar impact on PMEM behavior
at high I/O concurrency levels since GTC uses 229MB objects.
Thus, with many concurrent MPI ranks the workload is band-
width constrained because remote-writes begin to dominate
the overall runtime, similar to the 64MB object size workflow
as shown in figure 4. Hence, S − LocW is the optimal
placement and is 6% faster than remote-write/local-read with
serial execution, or more for parallel executions.

At high I/O concurrency levels miniAMR + Read-Only
and miniAMR + MatrixMult, shown in Figures 8c, 9c, are
also able to create a similar contention of PMEM accesses
as the GTC workflows. This is because although miniAMR
uses 4.5KB objects, it has an I/O heavy simulation kernel.
Figure 8c shows that at 24 threads, the cost of remote writes
dominates the runtime in remote-write configurations. The
workflow begins to saturate the write bandwidth of Optane.
Hence, serial execution in S − LocW is 25% faster than in
S − LocR.

B. S-LocR: Serial execution in remote-write and local-read

Workflows which do not constrain the Optane band-
width at moderate and high I/O concurrency levels should
be executed in S − LocR configuration.

Workflows that either generate I/O in small granularity or
have long compute kernels overlapping with large granularity
I/O do not throttle the Optane bandwidth. Under such con-
ditions it is important to prioritize reads over writes since
reads have a higher access latency when PMEM is not band-
width constrained. Hence, remote-write/local-read placement
is chosen. In this case serial execution typically provides better
performance because at moderate to high I/O concurrency
levels co-scheduling analytics increases contention for Optane
and reduces the effective bandwidth.

The 2K workflow, shown in figure 5c, does not saturate
the bandwidth, even with high concurrently levels. Because
there are a large number of small objects, this workflow has
high software overhead. Thus, the high latency for remote-
read degrades workflow performance. In contrast to reads,
writes are marked complete once they are stored in the PMEM
controller. This differs from reads, which are completed after
data is returned from PMEM. Hence, S−LocR is the optimal
placement strategy for this workload. Although the bandwidth
is not constrained, reduced I/O concurrency due to serial
execution helps with contention for Optane internal cache: at
I/O concurrency of 24 threads, S−LocR provides 11.5% faster
runtime than parallel.

The GTC + Read-Only workflow at medium concurrency
level, shown in figure 6b also exhibits similar I/O behavior.
Although GTC uses large object sizes, due to its compute
intensive simulation kernel the workflow does not saturate the
bandwidth at medium I/O concurrency level. Figure 6b shows
that at 16 threads S − LocR is 6-7% faster than parallel and
provides optimal runtime for GTC + Read-Only workflow.

Figure 8b shows miniAMR + Read-Only workflow at
medium I/O concurrency level. This workflow is similar to
the 2K workflow since miniAMR uses small objects and
hence exhibits similar I/O behavior. The figure shows that
S −LocR is preferable and is 6% faster than the second best
configuration P − LocR.

C. P-LocW: Parallel execution in local-write and remote-read

Workflows having I/O intensive simulation with compute
intensive analytics at low concurrency levels should be
executed in P-LocW configuration.

In this workload, the concurrency levels are low, hence it
benefits from parallel execution. The analytics kernels has in-
terleaving compute between PMEM reads reducing contention.
As a result, keeping simulation PMEM writes local while
having analytics perform PMEM remote reads is the better
trade-off.

miniAMR + Matrixmult at 8 threads has high simulation
I/O Index and low analytics I/O index. As shown in Figure
9a, the P − LocW configuration is 7% better than the next
best alternative, P − LocR.



(a) Threads: 8, Data size: 80GB (b) Threads: 16, Data size: 160GB (c) Threads: 24, Data size: 240GB
Fig. 4: Benchmark Writer + Reader with 64MB objects: Runtime

(a) Threads: 8, Data size: 80GB (b) Threads: 16, Data size: 160GB (c) Threads: 24, Data size: 240GB
Fig. 5: Benchmark Writer + Reader with 2K objects: Runtime

(a) Threads: 8 (b) Threads: 16 (c) Threads: 24
Fig. 6: GTC + Read only: Runtime

D. P-LocR: Parallel execution in remote-write and local-read

Workflows at low and moderate levels of I/O concur-
rency which do not constrain the I/O bandwidth should
be executed in P − LocR configuration.

For this workload configuration optimizing the read latency
is important because the workflows are not bandwidth con-
strained. This is similar to the workflows with S − LocR
optimal configuration, though the reduced I/O concurrency
levels mean there is some performance benefit in using parallel
execution.

Figures 5a and 5b show 2K workflows at low and medium
levels of I/O concurrency. Since these 2K workflows use a
large number of small objects the bandwidth is not saturated
and due to their low and medium I/O concurrency there
isn’t high contention for Optane internal cache. This allows
leveraging parallel execution at low and moderate concurrency
levels. P−LocR provides optimal runtime for 8 and 16 threads
as shown in Figures 5a and 5b, and is 10 to 14% faster than
S−LocR. miniAMR + Read-Only shown in figure 8a at low
concurrency level exhibits similar I/O behavior.

Figures 6a and 7a show that at low thread concurrency

levels, both GTC+ Read only and GTC + matrixmult have the
optimal runtime using P − LocR. Despite GTC using large
objects, the performance is dominated by the long compute
phase, and thus this workflow configuration is not bandwidth
saturated. In addition, the I/O concurrency is low enough
that parallel execution yields better runtime performance, in
spite of the remote-write data placement. Parallel execution
overlaps simulation and analytics kernels and is 3-9% faster
than serial execution. Even with 16 threads, as shown in
figure 7b, despite the resulting increase in PMEM bandwidth
pressure, the overlap opportunities allow for parallel execution
to provide optimal performance.

VII. PERFORMANCE IMPLICATIONS

No single optimal configuration Figure 10 shows workflow
runtimes normalized to the runtime of the best configuration.
The graphs demonstrate that there is no single configuration
optimal across workflows. Further, always prioritizing simula-
tion or analytics may not be optimal for the overall workflow’s
runtime. For instance, when comparing the results in 10a and
10b, we observe that changing the analytics kernel used with



(a) Threads: 8 (b) Threads: 16 (c) Threads: 24
Fig. 7: GTC + matrixmult: Runtime

(a) Threads: 8 (b) Threads: 16 (c) Threads: 24
Fig. 8: miniAMR + Read only: Runtime

(a) Threads: 8 (b) Threads: 16 (c) Threads: 24
Fig. 9: miniAMR + matrixmult: Runtime

GTC will lead to 24% loss of performance, unless we make
corresponding adjustment in the scheduling and placement
decision (e.g., comparing S − LocR and P − LocW for the
16 thread workloads). A similar comparison for miniAMR in
Figures 10c and 10d shows that failure to properly configure
the workload placement and scheduling based on its use of
PMEM can lead to a slowdown of up to 70%.
Relevant for workflows with different parameters. Our
benchmarks and HPC workflows cover a wide spectrum of
workflow parameters in terms of I/O index, object size, and
I/O concurrency levels as shown in figure 3. Workflows with
the same I/O indexes can create different I/O bottlenecks when
varying the I/O concurrency levels. We show that choosing
the right configuration is very relevant across workflows and
workflow parameters.
Observations not tied to a particular storage mechanism.
We use two mechanisms, NOVA and NVStream, to show
that the problem of choosing optimal configuration is relevant
across storage mechanisms. In addition, we also show that
the choice of a configuration (S − LocW – P − LocR) is
not optimal entirely due to any particular idiosyncrasy of the
storage mechanism. We actually see similar trends with both

NOVA and NVStream for large objects, especially with GTC.
However, NVStream reduces the software I/O costs compared
to NOVAfs, and the change in software overheads has an
impact on the observations made for workflows which perform
I/O using many small objects.

VIII. SUMMARY AND RECOMMENDATIONS

The observations made in Section VI open up new opportu-
nities for smart workflow scheduling for platforms with shared
PMEM resources. In order to aid with such scheduler designs,
we summarize the observations as follows:
Maximize effective bandwidth by limiting concurrent de-
vice accesses. Workflows which have high levels of concur-
rency in simulation and analytics kernels, should be executed
in serial modes either using S−LocW or S−LocR configu-
rations. High levels of concurrency, i.e. using all cores in the
CPU, cause contention for Optane resources such as the inter-
nal cache. Serial execution mode limits contention by having
analytics begin execution after simulation has completed.

Placement choices at high concurrency levels are made
based on bandwidth utilization. Workflows which constrain



TABLE II: Configuration recommendations for Workflows
# Sim

Compute
Sim

Write
Analytics
Compute

Analytics
Read Object Size Concurrency Config Illustrative

Workflows

1 Nil high Nil high large low, medium
or high S − LocW

64MB workflows:
Fig 4a,4b,4c

2 high low low to
high medium, high large high S − LocW

GTC + Read-Only:
Fig 6c

GTC+MatrixMult:
Fig 7c

3 low high low high small high S − LocW
miniAMR + Read-Only

Fig 8c

4 low high high low small medium, high S − LocW
miniAMR + Matrixmult

Fig 9b,9c

5 low high Nil high small high S − LocR
2K workflows:

Fig 5c

6 high low low high large medium S − LocR
GTC + Read-Only:

Fig 6b

7 low high low high small medium S − LocR
miniAMR + Read-Only

Fig 8b

8 low high high low small low P − LocW
miniAMR + Matrixmult

Fig 9a

9 Nil, low high Nil medium, high small low, medium P − LocR

2K workflows:
Fig 5a, 5b

miniAMR+Read-Only:
Fig 8a

10 high low low to
high high large low, medium P − LocR

GTC + Read-Only:
Fig 6a

GTC+MatrixMult:
Fig 7a,7b
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Fig. 10: Workflow runtime normalized to the fastest configuration

the bandwidth should prioritize writes over reads using local-
write/remote read placement. Remote writes are more ad-
versely affected than remote reads during bandwidth con-
tention. However, when the bandwidth is not the bottleneck,
reads should be prioritized. This is because writes are marked
complete and return as soon as they are placed in the iMC
queue. However, remote reads will have to wait until the data
is fetched from Optane media.

Workflows with simulation and analytics kernels at low
levels of concurrency should be executed in parallel modes
either using P−LocW or P−LocR. At such low concurrency
levels for most workflows, i.e., using 8 CPU cores or less for
each application, the slowdown caused due to contention is
minimal. Hence, taking advantage of parallel execution is the
better trade-off.

The number of MPI ranks of simulation and analytics
kernel is a workflow parameter which determines the level
of concurrent access to PMEM. However, the actual level

of concurrency experienced by PMEM is a complex func-
tion of number of MPI ranks, software overhead to perform
writes/reads which is based on object size and interleaving
compute in simulation and analytics application.
High software stack I/O overheads lower PMEM con-
tention and allow for concurrent executions. The 2K work-
flow at 16 MPI ranks has large number (528K) of small objects
in a snapshot resulting in high software overhead. This reduces
the effective level of concurrent access to PMEM. Hence,
it is executed in parallel mode in P − LocR configuration.
However, GTC + Read-Only workflow also at 16 MPI ranks
is executed serially in S − LocR configuration. This is be-
cause GTC uses large objects which require minimal software
overhead. And hence PMEM experiences a higher level of
concurrent access compared to the 2K workflow. Another case
in point is the 64MB workflow at 8 MPI ranks. Although
the concurrency level is low, there is very minimal software
overhead and also there are no compute phases. Hence, it is



executed in the S − LocW configuration.
Interleaved compute hides effects of access contention and
high remote latency. Interleaving compute with I/O during
each interval, reduces the effective device access contention,
and allows for parallel execution. In addition, the compute
phase allows for hiding of remote access latencies. For in-
stance, GTC with low number of threads can be scheduled with
P − LocR which prioritizes analytics and allows for parallel
execution, although its I/O phase is similar to the purely I/O-
intensive microbenchmark. A compute-intensive analytics also
allows for the PMEM placement to prioritize simulation. For
instance using MatrixMult with miniARM prefers P −LocW
(see Figure 9a), whereas using Read-Only analytics prefers
P − LocR (see Figure 8a).

IX. RELATED WORK

The commercial release of Optane was followed by several
works which investigated the device performance charac-
teristics. Yang et al. [2] measured basic microarchitectural
parameters of latency and bandwidth. Their work listed the
key insights and best practices to take advantage of Optane
performance characteristics. Peng et al. [3] studied the impact
of Optane on in-memory graph processing in memory mode.
They devised fine-grained NUMA-aware allocation and write
isolation policies to distribute traffic between Optane and
DRAM to provide higher bandwidth and capacity. Further,
they present a roofline model for energy and power efficiency
across different distributions of read-only workload. In the
context of HPC, Wu et al. [16] analyzed the performance of
I/O-intensive HPC applications over Optane as a block device.
They compared Optane and HDD for MPI I/O and checkpoint
workload, and investigated the impact of Optane on PVFS2,
a parallel file system. None of the prior work has explicitly
focused on the end-to-end effects of using Optane for HPC
workflow I/O, which is the focus of our investigation.

X. CONCLUSIONS

Persistent memories will be integrated into future HPC
systems to address data demand, as they provide large capacity
at latencies comparable to DRAM. After years of speculation
about the technical parameters of these components, they have
finally become commercially available, through the release of
the Intel Optane DC Persistent Memory. This paper takes an
experimental approach in evaluating the impact of Intel Optane
PM on the performance of HPC workflows. We demonstrated
that achieved performance can vary up to 70% depending
on how workflow components are configured to use the
shared PMEM resource. Further, we showed that the preferred
configuration decision depends on a number of workflow
parameters. Using experimental analysis based on a suite of
workflow benchmarks, we made a set of recommendations
that have to be considered by future workflow schedulers for
PMEM-based HPC systems. Our future work is to explore
how these recommendations can be practically incorporated
in scheduling systems.
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