
Cori: Dancing to the Right Beat of Periodic Data
Movements over Hybrid Memory Systems

Thaleia Dimitra Doudali
Georgia Institute of Technology

thdoudali@gatech.edu

Daniel Zahka
Georgia Institute of Technology

dzahka3@gatech.edu

Ada Gavrilovska
Georgia Institute of Technology

ada@cc.gatech.edu

Abstract—Emerging hybrid memory systems that comprise
technologies such as Intel’s Optane DC Persistent Memory,
exhibit disparities in the access speeds and capacity ratios of
their heterogeneous memory components. This breaks many
assumptions and heuristics designed for traditional DRAM-only
platforms. High application performance is feasible via dynamic
data movement across memory units, which maximizes the ca-
pacity use of DRAM while ensuring efficient use of the aggregate
system resources. Newly proposed solutions use performance
models and machine intelligence to optimize which and how
much data to move dynamically. However, the decision of when to
move this data is based on empirical selection of time intervals,
or left to the applications. Our experimental evaluation shows
that failure to properly configure the data movement frequency
can lead to 10%-100% performance degradation for a given data
movement policy; yet, there is no established methodology on how
to properly configure this value for a given workload, platform
and policy. We propose Cori, a system-level tuning solution that
identifies and extracts the necessary application-level data reuse
information, and guides the selection of data movement frequency
to deliver gains in application performance and system resource
efficiency. Experimental evaluation shows that Cori configures
data movement frequencies that provide application performance
within 3% of the optimal one, and that it can achieve this up
to 5× more quickly than random or brute-force approaches.
System-level validation of Cori on a platform with DRAM and
Intel’s Optane DC PMEM confirms its practicality and tuning
efficiency.

Index Terms—Hybrid Memory, Optane Persistent Memory,
Tuning, Data Movement Frequency, Page Scheduler, Data Tiering

I. INTRODUCTION

Big data analytics, machine learning workloads and data
intensive scientific simulations need massive main memory
capacities to accelerate data retrieval times and overall ap-
plication performance. To satisfy this demand, memory hier-
archies have become more complex, incorporating emerging
memory technologies and disaggregation techniques in order
to offset the skyrocketing cost that DRAM-only systems
would impose. For example, the Intel® OptaneTM DC Persistent
Memory (PMEM) platform introduces a high-density, non
volatile memory technology at least 3× slower than DRAM
[2], [21], but also 2×-3× cheaper than DRAM [3]. Server
configurations with 6 TBs of PMEM pagkaged together with
375 GB of DRAM, such as the Optane platform used in this
work, can significantly boost application performance with
proper dynamic data management [34], [35].

There are two primary ways to organize hybrid memory
hierarchies. One is a vertical organization (cache mode), where
one memory type acts as a cache for the other and is managed
by hardware. The other is a horizontal organization (flat
mode), where all memories ‘lay flat’ and are managed by
software – the operating system or applications themselves.
These correspond to the Memory and App-direct modes in
Intel’s Optane DC PMEM platform, and each mode introduces
different trade-offs with respect to system resource efficiency
and application performance. For instance, recent work has
shown that the cache organization improves performance of
graph applications [17]. In contrast, the flat organization allows
for lower energy cost and higher bandwidth use [34], [35], and
a number of hardware and software techniques have recently
been proposed to further improve the associated management
overheads [5], [19], [23], [24], [32], [36].

Prefetching solutions speculatively bring select data from
slower to faster memory, such as PMEM to DRAM, when
hybrid memory is organized in cache mode. Recent advances
in prefetching include novel access pattern prediction meth-
ods that use machine learning [20] and dynamic windowing
together with majority voting techniques [31]. In contrast, data
tiering solutions dynamically rearrange data allocations across
flat hybrid memory, such that frequently accessed data resides
in fast memory (e.g., DRAM), thus maximizing its use. Recent
advances in data tiering incorporate machine learning methods
into the data selection and movement process [11].

Data tiering solutions often include a page scheduler that
monitors data access behavior, and periodically migrates data
across hybrid memory tiers. While a significant body of
research focuses on optimizing the selection of which data
to move, there is little insight towards when that data should
be moved. Focusing on the latter, Table I summarizes the
operational frequencies of related data tiering solutions, whose
difference in time ranges four orders of magnitude. These
values are empirically tuned to meet the performance require-
ments of the specific pool of applications evaluated for their
respective systems.

Empirical tuning of page scheduling frequency can miss
significant performance improvements by not testing certain
frequency ranges in an effort to minimize tuning overhead.
For example, a common approach [24], [32] is to experiment
with period durations that are an order of magnitude apart,
e.g., 0.01 sec, 0.1 sec and 1 sec, so as to identify in only



Solution Period Duration Requests per Period
Thermostat [5] 10 sec 100,000

Nimble [40] 5 sec 50,000
Ingens [25] 2 sec 20,000
HMA [32] 1 sec 10,000

Hetero-OS [23] 0.1 sec 1,000
Kleio [11] 0.01 sec 100

Unimem [38] MPI phase N/A

TABLE I: Frequency of data monitoring and movement across
existing solutions mapped to our simulation-based analogy.

three trials which one offers the highest DRAM hitrate while
maintaining reasonable data movement overhead. On the other
hand, exploring all frequency choices leads to impractical
tuning overheads. In addition, the periodic solutions in Table I
fix their operational frequency at the system-level, so that they
do not have to repeat the empirical tuning for every applica-
tion. However, this can potentially leave a significant amount
of unexploited performance for applications with data access
behaviors and sizes that the empirical tuning did not consider.
Another approach is to completely rely on the application
to explicitly control data allocation and movement, via use
of specialized pragmas or malloc-like APIs. Such modified
applications then explicitly control how the underlying system-
level solution maintains the necessary state to dynamically
manage data tiering across hybrid memory [6], [15], [38], [39].
Problem Statement. Impractical tuning overheads and lack of
insight force existing data tiering solutions to rely on empirical
tuning of their operational frequency, or on application-level
modifications suitable for specific execution models and APIs.
As a result, for general scenarios where modifying the appli-
cations is not appropriate, there can be significant levels of
performance that existing data tiering solutions do not realize,
due to their empirically-tuned and fixed operational frequency.
Paper Contributions. To address this, we propose Cori1
– a system-level solution for tuning the operational periods
in page schedulers, that maximizes the effectiveness of the
schedulers in terms of application performance and platform
efficiency, and achieves that with low tuning overheads. Cori
operates in an application and runtime-agnostic manner, and
relies on observation-based insights to guide the frequency
tuning process to a small number of viable candidates. We
demonstrate that Cori is effective, it can provide performance
gains across applications with different data access behaviors
and for different page scheduling policies, and can be practi-
cally integrated into the existing hybrid memory management
software stack.
The specific contributions of this paper are the following:
• We demonstrate that current data tiering solutions can

experience 10%-100% performance loss due to sub-optimal
choice of their operational frequencies (Section III-A).

• We identify a relationship among observable application

1The name is inspired by the ancient Greek mythology, where Cori (short
for Terpsichore) was the muse of dance and daughter of Mnemosyne, the
goddess of memory.

Application Kernel Suite Domain
Back Prop. backprop Rodinia Machine Learning

Kmeans kmeans Rodinia Machine Learning
HotSpot hotspot Rodinia Physics Simulation

LU Decomp. lud Rodinia Linear Algebra
Breadth-First bfs Rodinia Graph Algorithms

B+Tree bptree Rodinia Databases
Pennant pennant Coral-2 Hydrodynamics

Quicksilver quicksilver Coral-2 Monte-Carlo
CP Decomp. cpd ParTI! Sparse Tensors

TABLE II: Application kernels used in experiments.

properties – their data reuse – and the favorable scheduling
periods (Section III-C).
• We describe the design of Cori and its frequency tuning
methodology, for a simulation-based prototype and in real
system settings. (Section IV).
• We evaluate Cori, demonstrating its ability to identify

operational frequencies which realize performance improve-
ments within only 3% from the ideal frequency selection,
on average, across applications and page schedulers. Cori
achieves this with 5× fewer number of tuning trials, com-
pared to insight-less tuning approaches (Sections V-A, V-B).
• We validate Cori’s insights, effectiveness and practicality

on a real hardware testbed with DRAM and Intel’s Optane
DC PMEM (Section V-C).

II. METHODOLOGY

Applications. Table II summarizes the applications that we
selected for experimental evaluation from the Rodinia [7],
Coral-2 [1] and ParTI! [27] benchmark suites. The selected
benchmarks and mini-apps cover a wide range of application
domains and memory access patterns.

A. Optane DC PMEM Platform

We have access to a server with Intel Optane DC Persistent
Memory Modules (PMEM), which we configure in App Direct
mode. The machine contains 375 GB of DRAM and 6 TB of
PMEM. We implement a page migration module2 for Linux
kernel version 5.4 that attaches to a target process and periodi-
cally selects 4 KB pages to move between DRAM and PMEM.
Every period, we identify page accesses using the available
OS-level information, as also done in [19], [23]. In more detail,
the module determines which pages were accessed by scanning
the target’s page table entries and recording whether or not
each accessed bit was set during that period. All accessed
bits are then cleared so that they can be tested again during
the next scan. To estimate the page hotness, we calculate the
exponential moving average (with a certain smoothing factor)
of the page’s accessed bit history and compare it with a hotness
threshold that classifies a page as hot or cold, as also done
in [25]. Then, utilizing the move_pages() function from
the kernel’s NUMA-based migration API, we asynchronously
move hot pages to DRAM and cold pages to PMEM. The
kernel module dynamically adjusts the page migration cutoff,

2https://github.com/GTkernel/x86-Linux-Page-Scheduler.git



1%
10%

100%
Predictive Page Scheduler - Performance Slowdown from Best Frequency

cori thermostat nimble ingens HMA Hetero Kleio

backprop kmeans hotspot quicksilver cpd lud bfs bptree pennant average
1%

10%
100%

Reactive Page Scheduler - Performance Slowdown from Best Frequency

Fig. 1: Performance comparison of a predictive and reactive page scheduler across operational frequencies of existing solutions
and the proposed solution Cori, given a simulated hybrid memory system with DRAM and PMEM.

dividing the process memory footprint across DRAM and
PMEM at a certain capacity ratio, such as 20% DRAM and
80% PMEM, across all experiments in this paper.

B. Simulation

Memory Access Trace Collection. We use Intel’s Pin [4]
dynamic binary instrumentation tool to capture the memory
address of the last level cache misses out of a simulated three
level data cache hierarchy. In order to allow for reasonable
trace sizes and analysis times we simulate a cache hierarchy of
smaller but proportional capacity ratio to the Intel Optane DC
PMEM platform. Then we fix the application data inputs such
that we observe similar last level cache miss rate to application
execution in the native PMEM platform.

Hybrid Memory System. We develop a Python-based simula-
tion environment3 that allows fast trace-based analysis similar
to [11], [32]. In particular, we assume a flat organization of fast
(e.g., DRAM) and slow (e.g., PMEM) memory, similar to the
App Direct mode configuration of the Intel Optane platform.
Following the observed PMEM access speeds [21] we set a 1:3
latency and 1:0.37 bandwidth ratio between the fast and slow
memory. We assume that the overall capacity of the memory
system is equal to an application’s memory footprint, split into
20% DRAM and 80% PMEM across all experiments. Since
we are not using cycle-accurate simulation, we assume that a
period is the time duration when a fixed number of memory
requests are issued, e.g., 1,000 requests per period. To estimate
the runtime we aggregate the access latency of the memory
requests for their coresponding memory allocation across
periods. In addition, we account for any limited bandwidth
availability, by injecting appropriate delays given the number
of memory requests serviced over a window of time. Finally,
we add constant delays for every page migration and start of
a period to account for the overhead of the page scheduler
itself, using the proposed values in [24], [32].

Page Scheduler. We extend the Python-based simulation with
a page scheduler that periodically aggregates per page access
counts from the collected access trace and migrates pages
between fast and slow memory. The initial page allocation

3https://github.com/GTkernel/cori-sim.git

is done in an interleaved manner across memories, which is
typical for NUMA systems. Every period the page scheduler
identifies the pages that are frequently accessed (hot) and
moves to fast memory any hot pages that reside in slow
memory, replacing any least recently used (LRU) pages. The
number of page migrations per period is capped by the
available fast memory capacity, since hot and LRU pages are
swapped across hybrid memory. These page swaps happen
asynchronously, assuming DMA support, and sequentially in
order of (hot, LRU) page pairs.

We refer to this type of page scheduler, that makes a
selection of page migrations using access history, as a reactive
page scheduler, since it ‘reacts’ to the changes in the memory
access pattern, as also done in [5], [19], [23], [25], [32], [40].
We also simulate a predictive page scheduler, that predicts
memory access patterns, thus makes a more sophisticated
page migration selection or even has a-priori knowledge of
the access pattern, described as the oracular baseline in [11],
[32]. The reactive page scheduler is configured to act upon a
single period of past access history, and similarly the predictive
page scheduler to make an access pattern prediction for the
upcoming period.

Comparison with existing solutions aims to capture the
application performance impact caused only by the selection
of when to move data, not which and how much data to move.
For this purpose we assume the aforementioned page schedul-
ing implementations and compare their behavior with data
movement frequencies of existing solutions, as summarized
in Table I. Since these proposed values vary across orders of
magnitude, we create corresponding period durations that map
to our previously described runtime simulation.

III. MOTIVATION

A. Performance Gap

The big disparity in the proposed page scheduling frequencies
across related works, summarized in Table I, hints that they are
empirically tuned to work best for their given page scheduling
implementations and evaluated applications. For this reason,
we capture the application performance gap created by using
these proposed frequencies as opposed to an optimal frequency
across a wide range of data access patterns. Figure 1 captures



application runtime slowdown from the case of an optimal
frequency that provides best performance for each application.
The optimal (best) frequency is derived via exhaustive exper-
imental evaluation of a wide range of possible frequencies
for every application, as described later in Section III-C. The
performance of our proposed solution Cori is also included in
the figure, but will be further analyzed in Section V-A.

The proposed frequencies create a 10%-100% performance
slowdown compared to the performance achievable with a
best-case frequency, on average, across applications and page
schedulers. This makes a case for the need for a more robust
tuning approach than the empirical one. Taking a closer
look, we observe that no single frequency works best across
applications and page schedulers. On average, predictive page
schedulers experience the lowest performance slowdown when
operating at periods of 1 second, as configured in HMA [32]. In
contrast, reactive page schedulers benefit from periods that are
an order of magnitude longer, that is 10 seconds, as configured
in thermostat [5]. Additionally, the frequency that works
best on average for a certain page scheduler may not provide
best performance across all applications. For example, the
lowest slowdown for a reactive page scheduler provided by
thermostat is not the best choice for pennant, lud,
hotspot and kmeans. In particular, it incurs up to 40%
slowdown from the respective best proposed frequency, that is
additional to the slowdown from the best frequency itself.

Takeaways. This initial experiment validates our concern that
frequencies proposed by existing solutions leave a significant
performance gap when applied across different applications
and page scheduler designs. No single proposed value works
best across all applications and page schedulers, and we
observe this gap to be in the range of 10%-100%. For large-
scale high performance computing and datacenter systems,
even small percentage difference can have major implications
on cost [12]. Therefore, it is important to close this gap by
tuning the operational memory management frequency such
that applications maximize their performance across execution
platforms and page scheduling policies.

B. Tuning Overheads

Existing solutions choose to empirically tune their page
scheduling frequency and fix it across applications, to avoid
the non-trivial tuning overheads of fine-grained frequency ex-
ploration. Stated more formally, an empirical tuning approach
has constant time complexity, since it chooses upon a constant
set of frequencies. However, the choice of the frequencies
themselves is critical, since an insight-less selection can lead
to the aforementioned performance gap.

An exhaustive tuning approach has linear time complexity,
because the number of possible frequencies grows linearly
with the application runtime. For example, the possible period
durations for an application that generates M memory requests
in total, are the windows of any length between [1, M2 ] memory
accesses, assuming that a page scheduler should run for at least
two periods of M

2 requests each. Similarly, if we consider
the time domain instead of the memory request domain, the

(a) Representative memory access traces. The vertical lines corre-
spond to the fixed period boundaries that provide best performance,
as selected by Cori.

Requests0

10

backprop
Page Reuse Distance 

Histogram

Requests per Period0

100

200

% Slowdown from 
Infinite DRAM

predictive
reactive

102 103 104 105

Requests per Period

0

25

50

% Slowdown from 
Best Frequency

predictive
reactive

Requests0

50

cpd
Page Reuse Distance 

Histogram

Requests per Period0

100

200
% Slowdown from 

Infinite DRAM
predictive
reactive

102 103 104 105

Requests per Period

0

50

% Slowdown from 
Best Frequency

predictive
reactive

(b) Histogram of page reuse distance and its relationship with
application performance across period durations, for a predictive and
reactive page scheduler over a simulated platform with DRAM and
PMEM. The red dots correspond to the performance of the candidate
frequencies generated by Cori.

Fig. 2: Performance relationship of the page reuse distance
with the period duration (requests per period) of the page
scheduler.

number of possible period durations is such that is splits
the application runtime at multiples of a timestep, where a
timestamp could be related to the Linux scheduling time slice,
for instance.

The need for some insight. The long runtime of applica-
tions that require massive hybrid memory systems makes an
exhaustive tuning approach completely impractical. Instead,
we need a more insightful tuning method that can drastically
reduce these overheads, and also eliminate the performance
gap caused by a poor choice of operational frequency made
by empirical selection approaches.

C. ‘Don’t Break the Data Reuse’ Insight

To identify insights that can guide the tuning of the frequency,
we first perform exhaustive tuning to determine the best
frequency for a given scenario. We select applications with



a wide range of data access behavior. For brevity Figure 2a
shows a visual representation of the memory access patterns
only for backprop and cpd; we present similar analyses
with additional applications in an extended version of this
work [13]. We can distinguish the strided array traversals of
backprop vs. the distinctly shaped sparse tensor traversals
of cpd.

The top graphs in Figure 2b depict information on data
reuse. In the context of these analyses, we use page reuse
distance as a measure for page reuse, where the page reuse
distance is the number of memory accesses that are issued to
other pages, between two consecutive accesses to a particular
page. There is a clear connection between the page reuse
distances and the access patterns in Figure 2a. For example,
for backprop the reuse distance of 20,000 requests maps to
the gap between the large access strides, and it appears 15
times since there are 16 strides.

Relation of Performance and Data Reuse. The bottom
graphs in Figure 2b capture an exhaustive exploration of the
application runtime slowdown from the case of infinite DRAM
capacity and from the case of optimal frequency selection,
across all possible period durations for predictive and reactive
page schedulers. The x-axis is aligned with the histogram (top
graph) and aims to capture the relation between the page reuse
distances and page scheduling period durations.

We observe that predictive page schedulers, which make
a better selection of which pages to move, provide best
application performance for much shorter periods than re-
active ones. However, irrespective of the page scheduler’s
effectiveness, very short periods create a significant aggregate
data monitoring and movement overhead, as also shown in
Figure 1. In addition, arbitrarily long periods do not allow
the page scheduler to react promptly to changes in the access
pattern behavior, and thus create insufficient data movement
to dynamically improve the data tiering.

Moreover, the effectiveness of reactive page schedulers
suffers at periods whose length is shorter than the page reuse
distances which appear frequently, incurring an average of
50% additional performance slowdown compared to predictive
schedulers. For example, this is the case for backprop when
periods are shorter than 20,000 requests per period, which
is the page reuse distance of its strided access pattern. The
scheduler’s effectiveness drops because its reactive design
identifies as hot pages the ones that correspond to a certain part
of the access stride, then moves them to the limited DRAM
capacity, but they will not be accessed in the next period,
when the rest of the pages of the stride will be accessed. Such
reactive page scheduling approaches are more effective when
they operate over larger windows of access history, enabled
either by longer periods or longer history of shorter periods.
Regardless, the time window of access history should be large
enough to not ‘break’ the data reuse.

Lessons learned. This extensive application performance
characterization shows a clear relationship among the data
reuse times and the page scheduling period durations which

provide best performance. Reactive page schedulers benefit
from periods that don’t break the data reuse, to make better
page migration decisions. Both reactive and predictive sched-
ulers should avoid very short periods that reveal the data
monitoring and movement costs, as well as arbitrarily long
periods that do not allow a prompt response to changes in
the data access pattern and create insufficient aggregate data
movement.

IV. SOLUTION

Design Goals. The objectives of our proposed frequency
tuning solution are as follows:
G1 Bridge the performance gap left by existing solutions that

do not properly tune their page scheduling frequency.
G2 Drastically reduce the number of tuning trials needed to

find the frequency that enables desired performance.
G3 Build a generic tuning approach that works across appli-

cations and page schedulers.
G4 Enable practical system-level integration using readily

available information on application data access behavior,
without explicit code-level modifications or specific APIs.

To address these goals, we propose Cori, a method for tun-
ing the data movement frequency in hybrid memory systems.
Cori gleans data-movement requirements based on application-
specific data reuse trends to guide the frequency tuning
process, and select a frequency which delivers performance
gains or increases in data movement efficiency (G1) with a
small number of tuning trials (G2). Cori extracts the necessary
information from execution profiles, and does not require any
changes to applications or the memory management stack
(G3). Experimental results from a real testbed with DRAM
and Intel Optane PMEM validate the simulation-bases evalua-
tion of Cori, and demonstrate the feasibility of its system-level
integration (G4).

Cori Overview. Figure 3 illustrates the system design of Cori
and its interactions with the hybrid memory page scheduler,
summarized as follows:
1. The Reuse Collector executes a single profile run of the
application to collect information on data reuse.

2. The Frequency Generator analyzes the data reuse profile
and generates a range of proposed data movement frequen-
cies. To achieve this, it first calculates the dominant reuse
period as a weighted average of the observed reuses (2a).
Then, it generates a range of candidate frequencies at time
intervals that are multiples of the dominant reuse period
(2b), and outputs the frequencies to the Tuner in decreasing
order, from higher to lower frequencies, thus shorter to
longer periods.

3. The Tuner makes a number of tuning trials with the
candidate frequencies in the proposed order. It configures
the page scheduler to operate at each of the recommended
frequencies (3a). It then observes the application runtime
and resource use and determines whether the application
performance has reached best or desired levels (3b). If not,



DRAM PMEM
cold pageshot pages

Hybrid Memory System

Page Scheduler

3a.Frequency

1.

3b. Performance

Frequency Generator
2a. Dominant Reuse

2b. Candidate Frequencies

Reuse 
Collector

Application Execution

2.

3.
Tuner

number 
of trials

Cori

Fig. 3: System components of Cori and its integration with
the hybrid memory software stack.

the Tuner moves on to the next frequency in order, going
back to step 3a.

Next, we describe in more detail these steps and system
components.

A. Reuse Collector

The goal of the Reuse Collector component is to generate
a histogram of data reuse similar to the ones shown in
Section III-C. In the context of the simulation-based analysis
we collect memory access traces and have access to detailed
information on data reuse in terms of page reuse distances at
the granularity of each individual memory access. This cannot
be generally achieved for arbitrary applications, therefore, we
propose a practical system-level alternative to collect similar
information on data reuse.

Loop Durations. We make the intuitive observation that data
reuse appears mostly within loop operations during application
execution. Therefore, information on the time duration of
loops can be a practical estimation to page reuse distance
in the time domain. Figure 5a depicts the time duration of
loops across applications including backprop. We observe a
similar histogram shape to the ones generated via the memory
access traces for the page reuse distances in Figure 2b:
backprop has distinct loop durations that repeat around 15
times, which corresponds to the 16 data access strides depicted
in Figure 2a. We validate that the loop duration histograms of
the remaining applications match what we observed via the
memory access trace collection.

Collection of Loop Durations. In the context of validating
Cori on a native testbed in Section V-C, we instrumented the
applications source code and individually timed the duration
of the primary for loops. In principle, however, such instru-
mentation can easily be performed using compiler-level [10],
[18] or binary instrumentation techniques [16], [33]. In the
current paper, we do not present a complete Cori tool which
integrates such techniques, rather we focus on establishing
the methodology that forms the basis of such a tool, and

demonstrate via manual instrumentation that the methodology
is effective. We verify that we can obtain accurate loop
timings using a LLVM compiler pass, similar to what has been
used as part of the Beacons compiler framework [10], which
automatically generates the instrumented binary without any
application source code modifications.

B. Frequency Generator

Dominant Reuse. The Frequency Generator analyzes the data
reuse histogram provided by the Reuse Collector, in order to
identify the one that best represents the range of captured
reuses. We refer to this as the dominant reuse. Dominant reuse
(DR) is computed as a weighted average of the observed data
reuses (N different reuses) in the histogram, as summarized
in Equation 1. The weights are the number of appearances
repeati of a reuse distance reusei in the corresponding
histogram. This will shift the average towards the data reuse
distances that repeat more times. Additionally, we introduce
an extra weight (N − i) that favors shorter reuse distances,
because this will allow us to generate a more calibrated
selection of candidate frequencies, that works irrespective of
the page scheduler’s effectiveness, as we show in Section V.

DR =

∑N
i=1(N − i)× repeati × reusei∑N

i=1(N − i)× repeati
(1)

CandidatePeriods = [DR, 2×DR, ...,
Runtime

2
] (2)

Output Candidate Frequencies. Based on DR, the Frequency
Generator creates a sequence of candidate data movement
periods at time intervals that are multiples of DR, as shown
in Equation 2. The last possible candidate in the sequence is
the one that splits in half the overall application runtime that
the Reuse Collector has previously observed. The candidate
frequencies are derived by simply inverting the values of the
candidate periods. Figure 2b includes a visual representation
of the candidate periods as red dots. Finally, the Frequency
Generator outputs to the Tuner the candidate frequencies in
the specified order from shorter to longer periods, thus higher
to lower data movement frequencies. This priority ordering,
together with the dominant reuse calculation, is essential to
Cori’s success, compared to other possible solutions, as shown
in Section V-B.

C. Tuner

The Tuner uses the sequence of candidate frequencies to
perform the actual tuning procedure. The Tuner starts its initial
trial with the first frequency in order, sets it as the operational
page scheduling frequency and executes the application over
the hybrid memory. If performance is within desired levels
or the best one observed (after the first trial), the Tuner
chooses to stop or continue the tuning process. When the
Tuner finds the frequency that provides best performance after
a number of trials, the selected frequency is kept for any
subsequent execution of the particular application on the given
combination of platform configuration and page scheduler.



D. Discussion

Cori currently improves upon tuning approaches, such as
the empirical ones, by observing best performance across
a number of tuning trials of actual application execution.
The decision of after how many trials the tuning stops is
flexible. There can be a fixed number of trials or tuning can
stop after performance reaches desired levels or shows no
significant variation from the last trial. Such an execution-
based tuning methodology may be impractical for long running
applications, such as training machine learning models and
scientific simulations.

However, one can envision future online solutions that
build on Cori’s methodology and rely on observations made
about applications during the initial execution intervals or
periodically. Importantly, Cori only requires the collection of
data reuse information, that can be made readily available
using compiler-assisted instrumentation, laying the grounds
towards such a practical online frequency tuning solution.
Cori can be extended with system-level performance metrics
and combined with online access pattern detection solutions
used in prefetching [20], [31], or machine intelligent page
schedulers [11], so as to adapt the page migration frequency
to dynamic changes in data reuse and access patterns.

Finally, the recommendations made by Cori depend on the
calculation of the dominant reuse, and are therefore sensitive to
the granularity at which the data reuse information is collected
and aggregated. The evaluations presented in this paper base
the calculation on reuse information captured at granularity of
1000s of data accesses (in the simulation framework) and of
each loop (on the real hardware testbed). This instrumentation
granularity can be dynamically adjusted to trade among the
tuning overheads vs. the quality of the recommendations.

V. EVALUATION

The goal of the evaluation is to demonstrate how Cori
realizes its design goals. First, we highlight the benefit of using
Cori with respect to application performance improvements.
Second, we evaluate the tuning overheads of using Cori.
Finally, we validate the effectiveness and practicality of Cori
on the native Intel Optane platform.

A. Benefit of Using Cori

Figure 1 includes the application performance when the page
scheduling frequency is tuned with Cori, compared to the
frequencies proposed by existing solutions. Cori achieves on
average a 3% slowdown via its sophisticated frequency selec-
tion, compared to when using the ‘best’ possible frequency
for each of the applications. The ‘best’ frequency corresponds
to the one that maximizes application performance, and it is
determined via extensive experimental evaluation of a wide
range of frequencies, as shown in Figure 2b. In comparison,
the frequencies used by other techniques result in an average
10%-100% slowdown from the ideal case. For cases where
Cori does not provide the best application performance, as in
the case of quicksilver with a predictive page scheduler,
the performance with Cori is less than 3% away from the best

backp
rop
km

eans
hotsp

ot

quicks
ilvercpd lud bfs

bptree
pennant

average

20

40

2 4 4 3 2 5 3 5

Number of tuning trials

Frequency Tuning Solution
base-random base-left base-right cori

(a) Number of tuning trials to find best performance, on average,
across page schedulers. Cori (blue text) requires the minimum number
of trials on average across applications and page schedulers.

backp
rop
km

eans
hotsp

ot

quicks
ilvercpd lud bfs

bptree
pennant

average

20

40

Performance Slowdown from Best Frequency

Frequency Tuning Solution
base-random base-left base-right cori

(b) Performance slowdown from best frequency for Cori’s number of
trials, on average, across page schedulers. Cori is the only solution
that provides lowest slowdown consistently across applications and
page schedulers.

Fig. 4: Comparison of Cori with other baseline frequency
tuning solutions for a simulated hybrid memory system.

observed one. As discussed in Section III-A, no other set of
frequencies proposed by existing solutions provides as good
performance across applications and page schedulers, as Cori.

Cori meets the G1 design goal by bridging the performance
gap left by existing solutions and achieves only a 3% average
slowdown from an optimal frequency selection across appli-
cations and page schedulers.

B. Overhead of Using Cori

We evaluate the overheads of using Cori by comparing the
number of tuning trials required by Cori to find the best
frequency vs. what is required to find that value using other
tuning methods. We also evaluate whether Cori’s overheads are
justified, by comparing how close Cori is to the performance of
a system which operates at the best possible frequency for each
of the applications, vs. how close would the other methods be
if they use the same number of trials as Cori.

Given the lack of a non-empirical tuning approach, we
construct a baseline, which like Cori, operates at the system-
level, but is blind to any insights it might have regarding
application requirements. This baseline explores the problem
space of all possible frequencies by using a simple step
function, with candidate periodic time intervals that differ by
a time step duration of τstep, as summarized in Equation 3.



The corresponding frequencies are derived by inverting the
periodic time intervals.

Base Candidates = [τstep, 2× τstep, ...,
Runtime

2
] (3)

Next, we vary the priority ordering of the generated
candidate frequencies. First, the base-left baseline starts
from low frequencies (large periods) and moves to the left
towards higher frequencies (short periods) in the sequence
described in Equation 3. The base-right baseline starts
from high frequencies and moves towards the right to lower
ones, similar to Cori. Third, we also assume a base-random
approach that randomly explores values in the sequence.

Figure 4a shows the number of tuning trials required to
find the frequency that maximizes application performance,
on average, across predictive and reactive page schedulers.
We include scheduler-specific results in the extended version
of this work [13]. We observe that all baseline approaches take
a significant number of trials, on average, to find a frequency
that maximizes application performance. This is due to their
insight-less selection of the exploration time step between
tuning trials and the given priority ordering. Even though
base-random is independent of such a priority ordering, its
unpredictable frequency selection results in worst-case average
tuning overheads. In contrast, the guided frequency selection
performed by Cori, allows it to reduce the number of trials
by 5×, from 25 on average across baselines down to only 5
trials, at the average case.

Cori meets the G2 design goal by reducing by 5× the
number of tuning trials needed to reach an average of only
3% performance slowdown, compared to baselines that ignore
insights about application data access behaviors.

Figure 4b shows the performance that the baselines provide
when executing for the same number of tuning trials that Cori
requires to find best performance. The values are averaged
across the page schedulers. On average, the baselines incur
higher performance slowdown because they require signifi-
cantly more trials to reach best performance, as shown in
Figure 4a. Within the execution overhead of Cori, only the
base-random approach seems to be able to still choose
frequencies that provide good performance, but only for some
of the applications; for others (e.g., quicksilver and
pennant), base-random is less effective even compared
to some of the other baselines.

Cori meets the G3 design goal since it provides maximum
performance improvements for minimum number of tuning
trials across applications and page schedulers.

C. Optane PMEM Validation

We validate the simulation-based observations about Cori by
providing results from a native hybrid memory platform. These
experiments also demonstrate the feasibility of using Cori as
a practical system-level solution for frequency tuning. The ex-
periments are conduced on an Intel Optane platform, a reactive
page scheduler kernel module that operates over a window of
past access history, both as described in Section II-A. Then,

0 1 2 3
Time (sec)

0
10

backprop

0.96 0.98 1.00
Time (sec)

0

20
kmeans

1.0 1.1 1.2 1.3
Time (sec)

0
25

hotspot

0.0 0.5 1.0
Time (sec)

0
500

lud

(a) Cori Step 1: Collect loop time durations.

backprop
kmeans

hotspot lud
0

2

4

6

Ti
m

e 
(s

ec
)

3 trials

1 trials
2 trials

4 trials

Cori Candidate Periods > DR
DR/2
DR/4
DR
2 DR

3 DR
4 DR
5 DR
cori

(b) Cori Step 2: Calculate the
dominant reuse DR and generate
candidate period lengths at mul-
tiples of the DR. Final Choice:
Select the first period length (blue
bar) after x trials, that brings low-
est runtime and migrations.

0

200

Pe
rc

en
ta

ge
 (%

) Performance Slowdown 
from infinite DRAM

0

200

400

Ti
m

e 
(s

ec
) Runtime

backprop
kmeans

hotspot lud
0

25

50

GB
s

Data moved

(c) Cori Step 3: Tuning trials of
application performance.

Fig. 5: System-level validation of Cori for a reactive page
scheduler that executes on a native Optane PMEM platform.

we go through the steps of Cori as summarized in Figure 3
and report our findings in Figure 5.

Recreating Cori’s steps. First, we gather information on data
reuse. More specifically, we collect the time duration of the
loops across applications, as shown in Figure 5a, using the
suggested approach in Section IV. Second, we calculate the
dominant reuse as described in Equation 1 and generate the
candidate period durations at multiples of the dominant reuse,
as shown in Figure 5b. While for backprop, kmeans,
hotspot the dominant reuse is around 1 sec, for lud it is
much less, given the corresponding loop duration histogram.
We also include period durations that are less than the domi-
nant reuse, to validate whether performance indeed is not best
for such periods that Cori does not include in its sequence
of candidates. Third, we replicate Cori’s tuning process by
executing the applications for the selected period durations in
increasing order and observe the runtime, its slowdown from
the ideal case of infinite DRAM and data moved, as shown in
Figure 5c. The final choice according to Cori is the first period
duration in the experimentation order that significantly reduces
the application runtime and aggregate data movements. Figure
5b indicates in blue the final period choice and the number of
tuning trials it required.
Validation observations. First, we observe that period lengths



that are shorter than the dominant reuse (DR/4, DR/2), create
tens of GBs of more data moved, consistently across all appli-
cations. This confirms the insight presented in Section III-C
that the operational period should not be shorter than the
data reuse pattern. Also, it validates Cori’s effectiveness in
calculating the dominant reuse and choosing it as the initial
point of tuning. The performance with much larger periods is
not included in Figure 5c, since it can be substantially worse,
such as 50% of runtime slowdown for lud at 5 second periods,
and Cori’s tuning ends at much shorter periods.

Second, regarding application performance and system re-
source efficiency, Cori selects the period duration that reduces
to their lowest levels both the data moved and the runtime
slowdown from the case of infinite DRAM capacity, across
all applications. For some applications these levels of runtime
slowdown are less significant than others. For applications
like kmeans and lud, very short periods that force the
reactive page scheduler to create a burst of asynchronous data
movements, are not enough to stress the Optane’s bandwidth
and proportionally reflect on their runtime. Regardless, Cori
identifies the page scheduling frequency that enables the best
performance levels allowed by the available DRAM capacity
and minimizes data movement overheads. Additionally, the
levels of runtime slowdown observed in this experiment, are
very similar to the ones captured in our simulation (Figure 2b),
validating its correctness.

Finally, the selected periods themselves are different across
applications and range between 1-3 seconds. Even though this
doesn’t seem as a substantial difference, empirical approaches
may have ignored values in such proximity, however, for
backprop the runtime slowdown reduces by 50% when
going from 1 second to 3 second periods, and for hotspot
by 30% when switching from 1 second to 2 second periods.
This validates the benefit from using Cori toward realizing
significant application performance improvements, within only
2-3 average tuning trials, minimizing the tuning overheads.

Cori meets the G4 design goal by allowing for a practical
integration with existing hybrid memory system-level man-
agers, and can be realized without modification to applications
and system-level components. Validation of Cori on the Intel
Optane PMEM platform, confirms the simulation-based moti-
vational arguments and insights, and highlights the benefit of
using Cori and its low tuning overhead.

VI. RELATED WORK

Data Tiering across Hybrid Memory. There is a wide range
of data tiering solutions for hybrid memory systems configured
as a flat memory address space, that operate across levels
of the memory management stack. First, at the application-
level there are solutions that propose custom data allocation
APIs to improve initial and dynamic data placement [6],
[15]. Second, at the runtime-level solutions instrument MPI
communication phases and task-based parallel execution to
initiate and synchronize the data movement [38], [39]. Mov-
ing to the operating system-level (or hypervisor-level) there
are solutions which perform periodic data movements using

the current NUMA-based page migration support [5], [19],
[23], [40], [40], or appropriately extend NUMA-based data
balancing policies [14]. Finally, hardware-assisted solutions
aim to reduce the data monitoring and movement software
overheads [29], [32], [36]. Our work targets operating system-
level periodic data tiering solutions and tunes their operational
frequency.
Tuning of System Parameters. The opportunities for improv-
ing performance and efficiency via careful tuning of system-
level parameters have been established and demonstrated
across different contexts, ranging from operating system-level
configuration parameters [22], voltage-frequency balancing for
power management [9], CPU scheduling [37], and database
index tuning [8]. Such traditional observation-driven tuning
techniques are being replaced by reinforcement learning [26],
[28], and more generally, learning-augmented solutions are
being developed across the systems software stack, and can
be unified using machine intelligence frameworks such as
AutoSys [30]. Cori uses a traditional observation-driven tuning
approach and targets optimizations of the hybrid memory page
scheduling frequency, however, the insight from this work can
be incorporated in future machine learning-based approaches.

VII. CONCLUSION

This work presents Cori, a system-level solution for tuning
the operational frequency of data tiering solutions that peri-
odically move data across flat hybrid memory components.
Cori synthesizes insights on data reuse information to better
guide the process of selecting frequency candidates, reducing
by, on average, 5× the number of tuning trials from an
insight-less exploration. This way, Cori delivers performance
improvements within 3% from the case of optimally chosen
frequency, completely eliminating the 10%-100% performance
gap created by using operational frequencies adopted across
recent related works. Cori is robust, and provides benefits
across application data access patterns and page migration
policies. Importantly, we validate that Cori’s approach is
effective in the context of a real system, and that it can be
integrated as part of a system-level tuning solution. This is
feasible via the use of information that can be automatically
extracted through compiler-based methods, without requiring
any code-level modifications of applications or across the
memory management software stack; our next steps will
enhance the system with such capabilities.

ACKNOWLEDGMENT

We thank the anonymous reviewers on their constructive
feedback. This work is partially supported by NSF awards
SPX-1822972 and CNS-2016701, a Facebook research grant,
and via access to an Optane PMEM hardware testbed provided
by Intel.

REFERENCES

[1] CORAL-2 Benchmarks. https://asc.llnl.gov/coral-2-benchmarks/, 2020.
[2] Intel® OptaneTM DC Persistent Memory. https://www.intel.com/content/

www/us/en/architecture-and-technology/optane-dc-persistent-memory.
html, 2020.



[3] MemVerge - More Memory. Less Cost. https://www.memverge.com/
more-memory-less-cost/, 2020.

[4] Pin - A Dynamic Binary Instrumentation Tool. https:
//software.intel.com/content/www/us/en/develop/articles/
pin-a-dynamic-binary-instrumentation-tool.html, 2020.

[5] N. Agarwal and T. F. Wenisch. Thermostat: Application-transparent page
management for two-tiered main memory. ASPLOS ’17, pages 631–644,
New York, NY, USA, 2017. Association for Computing Machinery.

[6] C. Cantalupo, V. Venkatesan, J. Hammond, K. Czurlyo, and S. D.
Hammond. memkind: An extensible heap memory manager for het-
erogeneous memory platforms and mixed memory policies. 3 2015.

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron. Rodinia: A benchmark suite for heterogeneous computing.
In Proceedings of the 2009 IEEE International Symposium on Workload
Characterization (IISWC), IISWC ’09, pages 44–54, Washington, DC,
USA, 2009. IEEE Computer Society.

[8] D. Dash, N. Polyzotis, and A. Ailamaki. Cophy: A scalable, portable,
and interactive index advisor for large workloads. Proc. VLDB Endow.,
4(6):362–372, Mar. 2011.

[9] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu.
Memory power management via dynamic voltage/frequency scaling. In
Proceedings of the 8th ACM International Conference on Autonomic
Computing, ICAC ’11, page 31–40, New York, NY, USA, 2011. Asso-
ciation for Computing Machinery.

[10] V. Deodhar, H. Parikh, A. Gavrilovska, and S. Pande. Compiler Assisted
Load Balancing on Large Clusters. In 2015 International Conference
on Parallel Architecture and Compilation (PACT), 2015.

[11] T. D. Doudali, S. Blagodurov, A. Vishnu, S. Gurumurthi, and
A. Gavrilovska. Kleio: A hybrid memory page scheduler with machine
intelligence. In Proceedings of the 28th International Symposium on
High-Performance Parallel and Distributed Computing, HPDC ’19,
pages 37–48, New York, NY, USA, 2019. ACM.

[12] T. D. Doudali and A. Gavrilovska. Mnemo: Boosting memory cost
efficiency in hybrid memory systems. In 2019 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pages 412–421, 2019.

[13] T. D. Doudali, D. Zahka, and A. Gavrilovska. Tuning the frequency
of periodic data movements over hybrid memory systems. https://arxiv.
org/abs/2101.07200, 2021.

[14] Z. Duan, H. Liu, X. Liao, H. Jin, W. Jiang, and Y. Zhang. Hinuma:
Numa-aware data placement and migration in hybrid memory systems.
In 2019 IEEE 37th International Conference on Computer Design
(ICCD), pages 367–375, 2019.

[15] S. R. Dulloor, A. Roy, Z. Zhao, N. Sundaram, N. Satish, R. Sankaran,
J. Jackson, and K. Schwan. Data tiering in heterogeneous memory
systems. In Proceedings of the Eleventh European Conference on Com-
puter Systems, EuroSys ’16, New York, NY, USA, 2016. Association
for Computing Machinery.

[16] DynInst: Putting the Performance in High Performance Computing.
dyninst.org.

[17] G. Gill, R. Dathathri, L. Hoang, R. Peri, and K. Pingali. Single machine
graph analytics on massive datasets using intel optane dc persistent
memory. Proc. VLDB Endow., 13(8):1304–1318, Apr. 2020.

[18] T. Grosser, A. Groesslinger, and C. Lengauer. Polly - Performing
polyhedral optimizations on a low-level intermediate representation.
Parallel Processing Letters, 22(4), 2012.

[19] V. Gupta, M. Lee, and K. Schwan. Heterovisor: Exploiting resource
heterogeneity to enhance the elasticity of cloud platforms. In Proceed-
ings of the 11th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, VEE ’15, pages 79–92, New York, NY,
USA, 2015. Association for Computing Machinery.

[20] M. Hashemi, K. Swersky, J. Smith, G. Ayers, H. Litz, J. Chang,
C. Kozyrakis, and P. Ranganathan. Learning memory access patterns.
In J. Dy and A. Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 1919–1928, Stockholmsmässan, Stockholm
Sweden, 10–15 Jul 2018. PMLR.

[21] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J.
Soh, Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson. Basic
performance measurements of the intel optane dc persistent memory
module, 2019.

[22] S. K. Johnson, B. Hartner, B. Pulavarty, and D. J. Vianney. Linux Server
Performance Tuning. Prentice Hall PTR, USA, 2005.

[23] S. Kannan, A. Gavrilovska, V. Gupta, and K. Schwan. Heteroos:
Os design for heterogeneous memory management in datacenter. In
Proceedings of the 44th Annual International Symposium on Computer
Architecture, ISCA ’17, pages 521–534, New York, NY, USA, 2017.
Association for Computing Machinery.

[24] V. R. Kommareddy, S. D. Hammond, C. Hughes, A. Samih, and
A. Awad. Page migration support for disaggregated non-volatile memo-
ries. In Proceedings of the International Symposium on Memory Systems,
MEMSYS ’19, pages 417–427, New York, NY, USA, 2019. Association
for Computing Machinery.

[25] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel. Coordinated
and efficient huge page management with ingens. In Proceedings of the
12th USENIX Conference on Operating Systems Design and Implemen-
tation, OSDI’16, page 705–721, USA, 2016. USENIX Association.

[26] G. Li, X. Zhou, S. Li, and B. Gao. Qtune: A query-aware database
tuning system with deep reinforcement learning. Proc. VLDB Endow.,
12(12):2118–2130, Aug. 2019.

[27] J. Li, Y. Ma, and R. Vuduc. ParTI! : A parallel tensor infrastructure for
multicore CPUs and GPUs, Oct 2018. Last updated: Jan 2020.

[28] Y. Li, K. Chang, O. Bel, E. L. Miller, and D. D. E. Long. Capes: Unsu-
pervised storage performance tuning using neural network-based deep
reinforcement learning. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, SC
’17, New York, NY, USA, 2017. Association for Computing Machinery.

[29] Y. Li, S. Ghose, J. Choi, J. Sun, H. Wang, and O. Mutlu. Utility-based
hybrid memory management. In 2017 IEEE International Conference
on Cluster Computing (CLUSTER), pages 152–165, 2017.

[30] C.-J. M. Liang, H. Xue, M. Yang, L. Zhou, L. Zhu, Z. L. Li, Z. Wang,
Q. Chen, Q. Zhang, C. Liu, and W. Dai. Autosys: The design and
operation of learning-augmented systems. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20), pages 323–336. USENIX
Association, July 2020.

[31] H. A. Maruf and M. Chowdhury. Effectively prefetching remote memory
with leap. In 2020 USENIX Annual Technical Conference (USENIX ATC
20), pages 843–857. USENIX Association, July 2020.

[32] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, and
G. H. Loh. Heterogeneous memory architectures: A hw/sw approach
for mixing die-stacked and off-package memories. In 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), volume 00, pages 126–136, Feb. 2015.

[33] T. Moseley, D. Grunwald, D. A. Connors, R. Ramanujam, V. Tovinkere,
and R. Peri. LoopProf : Dynamic Techniques for Loop Detection and
Profiling. In Workshop on Binary Instrumentation and Applications
(WBIA), 2006.

[34] O. Patil, L. Ionkov, J. Lee, F. Mueller, and M. Lang. Performance
characterization of a DRAM-NVM hybrid memory architecture for
HPC applications using intel optane DC persistent memory modules.
In Proceedings of the International Symposium on Memory Systems,
MEMSYS 2019, Washington, DC, USA, September 30 - October 03,
2019, pages 288–303. ACM, 2019.

[35] I. B. Peng, M. B. Gokhale, and E. W. Green. System evaluation of the
intel optane byte-addressable nvm. In Proceedings of the International
Symposium on Memory Systems, MEMSYS ’19, page 304–315, New
York, NY, USA, 2019. Association for Computing Machinery.

[36] A. Prodromou, M. Meswani, N. Jayasena, G. Loh, and D. M. Tullsen.
Mempod: A clustered architecture for efficient and scalable migration
in flat address space multi-level memories. In 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages
433–444, 2017.

[37] M. I. Seltzer and A. Fedorova. Operating system scheduling for chip
multithreaded processors. 2006.

[38] K. Wu, Y. Huang, and D. Li. Unimem: Runtime data managementon
non-volatile memory-based heterogeneous main memory. In Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’17, pages 58:1–58:14, New York,
NY, USA, 2017. ACM.

[39] K. Wu, J. Ren, and D. Li. Runtime data management on non-volatile
memory-based heterogeneous memory for task-parallel programs. In
Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, SC ’18, pages 31:1–
31:13, Piscataway, NJ, USA, 2018. IEEE Press.

[40] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee. Nimble page
management for tiered memory systems. ASPLOS ’19, page 331–345,
New York, NY, USA, 2019. Association for Computing Machinery.


