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Computational electrodynamics (CED), the numerical solution of Maxwell’s equations, plays 
an incredibly important role in several problems in science and engineering. High accuracy 
solutions are desired, and the discontinuous Galerkin (DG) method is one of the better 
ways of delivering high accuracy in numerical CED. Maxwell’s equations have a pair of 
involution constraints for which mimetic schemes that globally satisfy the constraints 
at a discrete level are highly desirable. Balsara and Käppeli (2019) presented a von 
Neumann stability analysis of globally constraint-preserving DG schemes for CED up to 
fourth order. That paper was focused on developing the theory and documenting the 
superior dissipation and dispersion of DGTD schemes in media with constant permittivity 
and permeability. In this paper we present working DGTD schemes for CED that go up to 
fifth order of accuracy and analyze their performance when permittivity and permeability 
vary strongly in space.
Our DGTD schemes achieve constraint preservation by collocating the electric displacement 
and magnetic induction as well as their higher order modes in the faces of the mesh. 
Our first finding is that at fourth and higher orders of accuracy, one has to evolve some 
zone-centered modes in addition to the face-centered modes. It is well-known that the 
limiting step in DG schemes causes a reduction of the optimal accuracy of the scheme; 
though the schemes still retain their formal order of accuracy with WENO-type limiters. 
In this paper, we document simulations where permittivity and permeability vary by 
almost an order of magnitude without requiring any limiting of the DG scheme. This very 
favorable second finding ensures that DGTD schemes retain optimal accuracy even in the 
presence of large spatial variations in permittivity and permeability. We also study the 
conservation of electromagnetic energy in these problems. Our third finding shows that the 
electromagnetic energy is conserved very well even when permittivity and permeability 
vary strongly in space; as long as the conductivity is zero.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The numerical solution of Maxwell’s equations plays an incredibly important role in the computational solution of many 
problems in science and engineering. The Finite Difference Time Domain (FDTD) method, originally proposed by Yee [56]
and greatly developed since the seminal papers by Taflove and Brodwin [48], [47], has been the mainstay for computational 
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electrodynamics (CED) chiefly because it globally preserves the involution constraints that are inherent in Maxwell’s equa-
tions. Several modern texts and reviews document the development of FDTD (Taflove and Hagness [49], Taflove, Oskooi and 
Johnson 2013, Gedney [33]). As a result, given the enormously well-cited works by Yee and Taflove, it is very desirable to 
include global preservation of involution constraints into more modern schemes for CED.

FDTD had been formulated well before the explosion in modern higher order Godunov schemes, which started with 
the pioneering work of van Leer [50], [51]. Since that work, there has been a strong drive to include the physics of wave 
propagation into the numerical solution of hyperbolic systems; CED being a case in point. Two strong strains of early 
effort to develop higher order Godunov schemes for CED include finite-volume time-domain (FVTD) methods (Munz et 
al. [40], Ismagilov [36], Barbas and Velarde [21]) and discontinuous Galerkin time-domain (DGTD) methods (Hesthaven and 
Warburton [34], Cockburn, Li and Shu [26]). There has also been a strong effort in the engineering CED community to 
design DGTD schemes for CED (Chen & Liu [25], Ren et al. [41], Angulo et al. 2015) and some of those methods indeed 
use locally constraint-preserving bases. However, none of those DGTD methods incorporated the very beneficial globally 
constraint-preserving aspect of FDTD. For that next phase of evolution, one had to wait for developments that emerged in 
the field of numerical MHD and are now rapidly finding their way into CED.

In MHD, one evolves Faraday’s law in addition to the equations of computational fluid dynamics (Brecht et al. [22], 
Evans and Hawley [32], DeVore [29], Dai and Woodward [27], Ryu et al. [42], Balsara and Spicer [19]). While studying 
adaptive mesh refinement and numerical schemes for MHD, advances were made in constraint-preserving reconstruction 
of magnetic fields (Balsara [2], [3], [4], Balsara and Dumbser [10], Xu et al. [55]). This made it possible to start with the 
face-centered magnetic induction fields in the Yee-type mesh and specify them at all locations within a computational zone. 
The edge-centered electric fields that are inherent to a constraint-preserving update of Faraday’s law would then have to 
be multidimensionally upwinded. This multidimensional upwinding was achieved by using a newly-designed multidimen-
sional Riemann solver (Balsara [5], [6], [7], [8], Balsara, Dumbser and Abgrall [12], Balsara and Dumbser [11], Balsara and 
Nkonga [17]). These twin innovations, consisting of constraint-preserving reconstruction of vector fields, and multidimen-
sional Riemann solvers, permitted a logically complete description of numerical MHD. Along the way, a third innovation 
in ADER (Arbitrary DERivatives in space and time) time-stepping schemes was added which, while not essential, greatly 
simplified the accurate temporal evolution of MHD variables (Dumbser et al. [30], [31], Balsara et al. [18], [16]). DG schemes 
for the induction equation that were globally constraint-preserving were also devised by Balsara and Käppeli [14]. The stage 
was now set for migrating these innovations back again to CED.

FVTD schemes for CED that were based on the above-mentioned three innovations were developed in Balsara et al. ([9], 
[20], [13]). The constraint-preservation was accomplished by making a constraint-preserving reconstruction of the magnetic 
induction and the electric displacement. Unlike FDTD that operates on a pair of staggered control volumes, the present 
methods operate on the same control volume, see Fig. 1 from Balsara et al. [20]. To ensure the mimetic preservation of the 
constraints, the primal variables were taken to be the facially collocated normal components of the electric displacement 
and the magnetic induction; where both vector fields were collocated on the same faces. The facially collocated magnetic 
induction evolves in response to the edge collocated electric fields, yielding a discrete representation of Faraday’s law. 
The facially collocated electric displacement evolves in response to the edge collocated magnetic fields, yielding a discrete 
representation of Ampere’s law. The resulting methods were indeed globally constraint-preserving in that the magnetic 
induction always remains divergence-free at all locations on the mesh and the electric displacement always satisfies the 
constraint imposed by Gauss’ Law at any location on the mesh. All these above-mentioned advances that were made to 
mimetic FVTD schemes have been recently embedded into the DGTD schemes that we report on below.

Globally constraint-preserving DGTD schemes were also explored in Balsara and Käppeli ([15], BK henceforth). BK found 
that higher order DGTD schemes were almost totally free of dispersion error, having a dispersion error that was almost 
75 times smaller than FDTD. Since the methods were based on Riemann solvers, some dissipation is inevitable. Even so, 
BK found that the higher order DGTD schemes were almost free of dissipation even when electromagnetic waves spanned 
only a few zones. While BK was strongly focused on von Neumann stability analysis of DGTD schemes for CED, the present 
paper extends this study in several ways, which we list in the rest of this paragraph. First, BK focused on DGTD schemes 
up to fourth order, whereas the present paper presents flux reconstruction (FR) based DGTD schemes1 that go up to fifth 
order, and the reconstruction schemes at fourth and fifth order presented in this work are new. This drive to higher order 
enables us to generalize an observation from BK who found that from fourth order and upwards one has to include some 
volumetrically-evolved modes in addition to the facially-evolved modes. Second, BK did not touch on the topic of limiting 
DGTD schemes since that work was dedicated to Fourier stability analysis; moreover it was realized that the non-linear 
hybridization of DGTD schemes for CED should be done with the utmost carefulness, if even it is needed. The limiting of 
any DG scheme always diminishes the optimal accuracy of a DG scheme. This reduction occurs to a greater or lesser extent 
based on whether the limiter is applied more or less aggressively, respectively. BK did find that DGTD schemes did not 
need any limiting up to fourth order but they only tried situations where the permittivity and permeability were constant. 
In this paper we report the very favorable finding that DGTD schemes don’t seem to require any limiting even when the 
permittivity and permeability vary by almost an order of magnitude. This result is quite useful; however, it is predicated on 
the assumption that the conductivity is zero. Dealing with non-zero conductivity will be the topic of a subsequent study. 

1 We will use DGTD to refer to the current scheme though strictly it is a combination of FR and DG schemes.
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Third, when conductivity is zero the Maxwell’s equations conserve a quadratic energy. While this energy conservation 
was not built into the scheme, BK found the very desirable result that quadratic energy was effectively conserved by fourth 
order DGTD schemes when the waves spanned only a few zones. This paper extends this study to fifth order DGTD schemes. 
Furthermore, we study the energy conservation of high order DGTD when the permittivity and permeability vary with space. 
A fourth offering in this paper is a proof that DGTD schemes for CED that are constructed according to the principles in BK 
and this paper are indeed energy stable.

The rest of the paper is organized as follows. Section 2 introduces the Maxwell’s equations and the simplified 2-D model 
that we consider in this paper. Section 3 explains the polynomial spaces used to approximate the solution variables and 
section 4 explains the divergence-free reconstruction scheme at fourth order of accuracy. The numerical discretization of 
the Maxwell’s equations using flux reconstruction and DG method is shown in section 5 together with constraint preserving 
property. In section 6, we perform the stability analysis of the semi-discrete scheme at first order and show the dissipative 
character coming from the 1-D and 2-D Riemann solvers. Section 7 presents many test cases to demonstrate the performance 
of the scheme. Finally, the Appendix explains the reconstruction scheme at other orders and also briefly discusses the 
Riemann solvers.

2. Maxwell’s equations

The Maxwell’s equations are a system of linear partial differential equations that model the wave propagation behavior
of electric and magnetic fields in free space and material media. They can be written in vector form as

∂B

∂t
+ ∇ × E = 0,

∂D

∂t
− ∇ × H = − J

where

B = magnetic flux density D = electric flux density
E = electric field H = magnetic field

J = electric current density

The fields are related to one another by constitutive laws

B = μH , D = εE, J = σ E μ,ε ∈R3×3 symmetric

where the coefficients

ε = permittivity tensor

μ = magnetic permeability tensor

σ = conductivity

are material properties and are in general tensorial functions of spatial coordinates. In free space ε = ε0 = 8.85 × 10−12

F/m and μ = μ0 = 4π × 10−7. The divergence of the electric flux gives the electric charge density ρ , which itself obeys a 
conservation law

∇ · D = ρ,
∂ρ

∂t
+ ∇ · J = 0

Moreover, since magnetic monopoles have never been observed in nature, the divergence of the magnetic flux must be 
zero ∇ · B = 0, which is an additional constraint that must be satisfied by the solution. Note that if the initial condition is 
divergence-free, then under the time evolution induced by the Maxwell’s equations, the divergence remains zero at future 
times also.

In the present work, we will consider a 2-D model of the Maxwell’s equations (TE polarization) for which the equations 
can be written in Cartesian coordinates as

∂Dx

∂t
− ∂Hz

∂ y
= 0 (1)

∂Dy

∂t
+ ∂Hz

∂x
= 0 (2)

∂Bz

∂t
+ ∂E y

∂x
− ∂Ex

∂ y
= 0 (3)

where

(Ex, E y) = 1
(Dx, Dy), Hz = 1

Bz

ε μ
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and μ, ε are scalars which may depend on spatial coordinates. We will consider a constraint on the divergence of the 
electric flux density D instead of the magnetic field, which has only one component in the above model. The above system 
of three PDE can be written in conservation form

∂U

∂t
+ ∂ F

∂x
+ ∂G

∂ y
= 0 (4)

where

U =
⎡
⎣ Dx

D y

Bz

⎤
⎦ , F =

⎡
⎣ 0
Hz

E y

⎤
⎦=

⎡
⎢⎣

0
1
μ Bz
1
ε Dy

⎤
⎥⎦ , G =

⎡
⎣−Hz

0
−Ex

⎤
⎦=

⎡
⎣− 1

μ Bz

0
− 1

ε Dx

⎤
⎦

This is a system of hyperbolic conservation laws for which a Riemann problem can be solved exactly to determine the 
fluxes required in the numerical schemes like finite volume and DG method. This is explained in the Appendix. While for 
simplicity, we consider scalar material properties, the constraint preserving nature of the scheme holds for general material 
properties. In fact, everything we describe in this paper holds for the general case, and the only additional change required 
is to use the Riemann solvers for the general case, which are explained e.g., in [20].

In the absence of currents, the Maxwell’s equations conserve the total energy provided there is no net gain of energy 
at the boundaries or if we have periodic boundaries. For the 2-D model that we consider in this work, the total energy is 
given by

E(t) =
∫
�

[
1

2ε
(D2

x + D2
y) + 1

2μ
B2
z

]
dxdy

We will study the behavior of the numerical schemes developed in this work with respect to how well they preserve this 
quantity.

3. Approximation spaces

We would like to approximate the vector field D such that its divergence is zero inside the cell if there is no charge 
density. If there is some electric charge, then the divergence of D must match this charge density, but we do not deal 
with this case in the present work. The approach we take to ensure divergence-free property is to use the divergence-free 
reconstruction ideas of Balsara [2], [3], [4] which makes use of known values of the normal component of D on the faces 
of the cell and then reconstruct the vector field inside the cell by enforcing appropriate constraints on its divergence.

We will approximate the normal components of D on the faces by one dimensional polynomials of degree k ≥ 0. We map 
each cell to the reference cell [− 1

2 , + 1
2 ] × [− 1

2 , + 1
2 ] with coordinates (ξ, η). Let Pk(ξ) denote one dimensional polynomials 

of degree at most k in the variable ξ , and Pk(ξ, η) denote two dimensional polynomials of degree at most k. On the two 
vertical faces of a cell, the normal component is given by

D±
x (η) =

k∑
j=0

a±
j φ j(η) ∈ Pk(η)

while on the two horizontal faces, the corresponding normal component is given by

D±
y (ξ) =

k∑
j=0

b±
j φ j(ξ) ∈ Pk(ξ)

Note that the coefficients a±
j , b

±
j form part of the degrees of freedom or solution variables in our numerical approach. They 

depend on time and will be evolved using the numerical scheme applied to the Maxwell’s equations. The location of these 
polynomials is illustrated in Fig. 1. The basis functions φ j are mutually orthogonal polynomials given by

φ0(ξ) = 1, φ1(ξ) = ξ, φ2(ξ) = ξ2 − 1
12 , φ3(ξ) = ξ3 − 3

20ξ, φ4(ξ) = ξ4 − 3
14ξ2 + 3

560

φ5(ξ) = ξ5 − 5

18
ξ3 + 5

336
ξ, etc.

The magnetic field Bz will be approximated inside each cell by two dimensional polynomials of degree k given by

Bz(ξ,η) =
N(k)−1∑

αi�i(ξ,η) ∈ Pk(ξ,η), N(k) = 1

2
(k + 1)(k + 2)
i=0
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Fig. 1. Storage of solution variables: (a) k = 0,1,2 (b) k = 3 (c) k = 4. For k ≥ 3, we need extra information in addition to face solution.

where the two dimensional basis functions are given by

�i ∈ {1, φ1(ξ), φ1(η), at second order

φ2(ξ), φ1(ξ)φ1(η), φ2(η), at third order

φ3(ξ), φ2(ξ)φ1(η), φ1(ξ)φ2(η), φ3(η), at fourth order

φ4(ξ), φ3(ξ)φ1(η), φ2(ξ)φ2(η), φ1(ξ)φ3(η), φ4(η)} at fifth order

(5)

Fig. 1 shows the location of the above solution polynomials. By Gauss Theorem

0 =
∫
C

∇ · Ddxdy =
∫
∂C

D · n

which implies that

(a+
0 − a−

0 )
y + (b+
0 − b−

0 )
x = 0 (6)

The above constraint will be satisfied by the initial condition, and the update scheme we devise will ensure that it is 
satisfied at future times also. Note that the above constraint depends only on the face averages of the solution variables 
stored on the faces.

The previous paragraphs have shown us how the modes that are the primal variables in our DG scheme are collocated 
(for the most part) at the faces of the mesh. While this is needed in order to formulate a globally constraint-preserving 
scheme, we should realize that we are actually interested in the solution of a PDE. Because of the Cauchy problem, the 
time-evolution of Maxwell’s equations, just like the time-evolution of any hyperbolic PDE, relies on having all the spatial 
gradients. The reconstruction strategy that we describe below ensures that we can start with the modes at the skeleton 
(facial) mesh and obtain from it the variation of the electric displacement and magnetic induction at all locations on the 
mesh in a manner that is consistent with the involution constraint. Using the information of D±

x , D±
y on the faces which 

are one dimensional polynomials of degree k, we have to reconstruct D = D(ξ, η) ∈ Vk(ξ, η) inside each cell such that the 
following conditions are satisfied.

1. The normal components of D(ξ, η) match the known values on the faces

Dx(± 1
2 , η) = D±

x (η), ∀η ∈ [− 1
2 ,+ 1

2 ], Dy(ξ,± 1
2 ) = D±

y (ξ), ∀ξ ∈ [− 1
2 ,+ 1

2 ]
2. The divergence of D is zero everywhere inside the cell

∇ · D(ξ,η) = 0, ∀ξ,η ∈ [− 1
2 ,+ 1

2 ]
The polynomial space Vk will be chosen so that the reconstruction problem is uniquely solvable. Note that we would like 
to have (k + 1)’th order accurate approximations inside the cell since we have this type of approximation on the faces, 
which implies that Pk(ξ, η) ⊂Vk(ξ, η) must be satisfied. However the space Vk must be bigger than Pk in order to be able 
to satisfy the matching conditions on the faces and the divergence-free condition inside the cells. The precise form of the 
polynomial D(ξ, η) and hence the space Vk , and the solution of the above reconstruction problem at various orders will 
be explained in the next section and in Appendix. Our strategy will be to choose the smallest space Vk ⊃ Pk which allows 
us to satisfy all the conditions listed above. For k = 0, 1, 2 (upto third order accuracy), the reconstruction problem can be 
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solved using the information of normal components on the faces but for k ≥ 3, we require additional information from 
inside the cells to solve the reconstruction problem. For k = 3 we specify an additional cell moment ω1 while for k = 4, we 
specify three additional cell moments, ω1, ω2, ω3, see Fig. 1.

4. Divergence-free reconstruction of D inside a cell

In this section, we explain how to reconstruct the field D inside the cell given the values of the normal component 
on the faces of the cell, and in such a way that ∇ · D = 0. We explain the procedure for the case k = 3 which leads to a 
fourth order approximation. The lower orders can be obtained from the fourth order solution and the reader can consult the 
Appendix. The fifth order case (k = 4) is also detailed in the Appendix. For solving the reconstruction problem, it is useful 
to note down the following results related to the 1-D orthogonal polynomials.

φ1(± 1
2 ) = ±1

2
, φ2(± 1

2 ) = 1

6
, φ3(± 1

2 ) = ± 1

20
, φ4(± 1

2 ) = 1

70

φ′
1(ξ) = 1, φ′

2(ξ) = 2φ1(ξ), φ′
3(ξ) = 3φ2(ξ) + 1

10
, φ′

4(ξ) = 4φ3(ξ) + 6

35
φ1(ξ)

φ′
5(ξ) = 5φ4(ξ) + 5

21
φ2(ξ) + 1

126

We will assume the following polynomial form for the vector field D inside the cell

Dx(ξ,η) = a00 + a10φ1(ξ) + a01φ1(η) + a20φ2(ξ) + a11φ1(ξ)φ1(η) + a02φ2(η)+
a30φ3(ξ) + a21φ2(ξ)φ1(η) + a12φ1(ξ)φ2(η) + a03φ3(η) + a40φ4(ξ)+
a31φ3(ξ)φ1(η) + a22φ2(ξ)φ2(η) + a13φ1(ξ)φ3(η)

Dy(ξ,η) = b00 + b10φ1(ξ) + b01φ1(η) + b20φ2(ξ) + b11φ1(ξ)φ1(η) + b02φ2(η)+
b30φ3(ξ) + b21φ2(ξ)φ1(η) + b12φ1(ξ)φ2(η) + b03φ3(η) + b31φ3(ξ)φ1(η)+
b22φ2(ξ)φ2(η) + b13φ1(ξ)φ3(η) + b04φ4(η)

Note that Dx has the form of a polynomial P4(ξ, η) except that the terms corresponding to η4 are not included. Similarly, 
Dy belongs to P4(ξ, η) except for the term ξ4 which is not included. Such polynomial spaces to approximate vector fields in 
a divergence conforming manner were introduced in [23] and are called Brezzi-Douglas-Fortin-Marini (BDFM) polynomials. 
Both the components completely include P3(ξ, η) polynomials. Matching the cell solution to the face solution, we get the 
following 16 equations

a00 ± 1
2a10 + 1

6a20 ± 1
20a30 + 1

70a40 = a±
0

a01 ± 1
2a11 + 1

6a21 ± 1
20a31 = a±

1

a02 ± 1
2a12 + 1

6a22 = a±
2

a03 ± 1
2a13 = a±

3

b00 ± 1
2b01 + 1

6b02 ± 1
20b03 + 1

70b04 = b±
0

b10 ± 1
2b11 + 1

6b12 ± 1
20b13 = b±

1

b20 ± 1
2b21 + 1

6b22 = b±
2

b30 ± 1
2b31 = b±

3

The divergence of the vector field D is a polynomial of degree 3 and making it zero inside the cell yields the following set 
of 10 equations

(a10 + 1
10a30)
y + (b01 + 1

10b03)
x = 0

(2a20 + 6
35a40)
y + (b11 + b13/10)
x = 0

(a11 + a31/10)
y + (2b02 + 6
35b04)
x = 0

3a30
y + b21
x = 0

2a21
y + 2b12
x = 0

a12
y + 3b03
x = 0
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4a40
y + b31
x = 0

3a31
y + 2b22
x = 0

2a22
y + 3b13
x = 0

a13
y + 4b04
x = 0

The first equation in the above set is redundant since it is contained in the other equations due to the constraint (6). 
Ignoring this equation, we can solve for some of the coefficients aij , bij in terms of the face solution as follows:

a00 = 1
2 (a−

0 + a+
0 ) + 1

12 (b+
1 − b−

1 ) 
x

y

a10 =a+
0 − a−

0 + 1
30 (b+

2 − b−
2 ) 
x


y

a20 = − 1
2 (b+

1 − b−
1 ) 
x


y + 3
140 (b+

3 − b−
3 ) 
x


y

a30 = − 1
3 (b+

2 − b−
2 ) 
x


y

a03 = 1
2 (a−

3 + a+
3 )

a12 =a+
2 − a−

2

a13 =a+
3 − a−

3

a40 = − 1
4 (b+

3 − b−
3 ) 
x


y

b00 = 1
2 (b−

0 + b+
0 ) + 1

12 (a+
1 − a−

1 )

y

x

b01 =b+
0 − b−

0 + 1
30 (a+

2 − a−
2 )


y

x

b02 = − 1
2 (a+

1 − a−
1 )


y

x + 3

140 (a+
3 − a−

3 )

y

x

b30 = 1
2 (b−

3 + b+
3 )

b03 = − 1
3 (a+

2 − a−
2 )


y

x

b21 =b+
2 − b−

2

b31 =b+
3 − b−

3

b04 = − 1
4 (a+

3 − a−
3 )


y

x

The remaining coefficients satisfy the following 9 equations

a01 + 1
6a21 = 1

2 (a+
1 + a−

1 ),

a02 + 1
6a22 = 1

2 (a+
2 + a−

2 ),

a11 + 1
10a31 = a+

1 − a−
1 ,

b10 + 1
6b12 = 1

2 (b+
1 + b−

1 ),

b20 + 1
6b22 = 1

2 (b+
2 + b−

2 ),

b11 + 1
10b13 = b+

1 − b−
1 ,

2a21
y + 2b12
x =0

3a31
y + 2b22
x =0

2a22
y + 3b13
x =0
and we have more unknowns than equations. We can set the following coefficients which are not needed for fourth order 
accuracy to zero

a31 = b22 = a22 = b13 = 0

and we further obtain the solution for the following coefficients

a11 = a+
1 − a−

1 , a02 = 1
2 (a+

2 + a−
2 ), b11 = b+

1 − b−
1 , b20 = 1

2 (b+
2 + b−

2 ) (7)

The remaining unknowns satisfy the following set of equations

a01 + 1

6
a21 = 1

2
(a−

1 + a+
1 ) =: r1

b10 + 1

6
b12 = 1

2
(b−

1 + b+
1 ) =: r2

b12
x+ a21
y = 0

We have four unknowns but only three equations. We cannot make any further assumptions regarding these coefficients 
since they are all at or below third degree, and we must retain all of them in order to get fourth order accuracy. The only 
way to complete the reconstruction is to provide an additional equation. Let us assume that we know the value of ω1 such 
that

b10 − a01 = ω1 (8)

Note that ω provides information about the mean value of the curl of the vector field in the cell. Then we can solve the 
equations to obtain

a01 = 1

1+ 
y

x

[
r1


y


x
+ r2 − ω1

]
, b10 = ω1 + a01

a21 = 6(r1 − a01), b12 = 6(r2 − b10)

(9)

This completes the reconstruction of D inside the cell. Note that we had to introduce a cell moment to complete the 
reconstruction and the face solution alone is not sufficient to do this. We will know the value of ω1 from the initial 
condition and we have to devise a scheme to evolve it forward in time which is explained in section 5.2.
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Fig. 2. Location of solution points of FR scheme on a vertical face for k = 2. The blue squares are Gauss-Legendre quadrature points. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

Remark. We have detailed the divergence-free reconstruction upto fifth order of accuracy in this paper. Beyond third order 
accuracy, we observe that the solution on the face alone does not determine the reconstruction and we require additional 
information which we supply in the form the curl of the vector field at fourth order and including its derivatives at fifth 
order. This process can be continued at higher orders where higher order derivatives of the curl can be used as additional 
information to solve the reconstruction problem. At the same time, evolution equations for these additional quantities can 
be derived in analogous manner to the fourth and fifth order cases as explained in the following sections.

5. Numerical scheme

We are now in a position to explain the constraint preserving scheme. Recall that we have several solution polynomials, 
some of which are stored on the faces and some are stored inside the cells. The basic solution variables have been illus-
trated in Fig. 1. The solution polynomials Dx(ξ, η), Dy(ξ, η) are not independent and are obtained by the divergence-free 
reconstruction process described in section 4 and in the Appendices.

1. The normal component of D stored on the faces will be evolved by a flux reconstruction scheme applied on each face.
2. At fourth and fifth orders, we have additional quantities ωi which are located inside the cells and we will devise a DG 

scheme for these quantities.
3. The magnetic flux density has only one component in the 2-D model we use, which is stored inside the cells and this 

will be evolved by a standard DG scheme.

The FR and DG schemes require some numerical fluxes that are obtained from 1-D and 2-D Riemann problems. We give a 
short summary of these numerical fluxes in the Appendices C.1-C.2.

5.1. Flux reconstruction scheme for D on the faces

Let us first describe the evolution scheme for the solution stored on the faces which is the normal component of D . 
While we could use a DG scheme for this purpose, and this has been done by other researchers, in this work we will 
employ the flux reconstruction scheme which is also a high order numerical method for approximating the solutions of 
conservation laws. Like the spectral difference method [37], [38], the flux reconstruction scheme [35] is based on the differ-
ential formulation of conservation laws. By contrast, the DG schemes are based on an integral formulation. The basic idea is 
to first locally approximate the flux by a continuous polynomial using the piecewise discontinuous solution polynomial and 
some numerical fluxes coming from a Riemann solver. The solution is then updated to next time level using a collocation 
approach which avoids quadratures, which makes the method very efficient especially for 3-D problems. The construction of 
the continuous flux polynomial involves certain correction functions for which there are many possible choices available in 
the literature. Huynh [35] proposed Radau polynomials as correction functions and later a more general family of correction 
functions were developed in [53] based on energy stability arguments in a Sobolev norm. This general correction function 
contains a parameter c that is allowed take values in a certain interval and hence generates an infinite family of possible 
correction functions all of which lead to stable schemes. It has been discovered that FR schemes are equivalent to other 
high order schemes like spectral difference [35] and certain types of nodal DG schemes [35], [53], [28], [39] by choosing 
the correction functions appropriately, i.e., by choosing the parameter c. The nodal DG type schemes are recovered by using 
c = 0 and this choice also leads to the most accurate numerical schemes [24], [52]. The FR scheme has also been developed 
for advection-diffusion problems including Navier-Stokes equations and we refer the reader to the review article [54] for 
more references.

Let us consider a vertical face on which Dx is approximated by a polynomial of degree k and we want to construct a 
scheme to update this information to the next time level. Note that Dx evolves due to the y derivatives of the magnetic 
field Hz and hence the equation for Dx can be discretized by a 1-D scheme on the vertical faces. Let us choose k + 1
Gauss-Legendre (GL) quadrature points {ηi, 0 ≤ i ≤ k} on the face, see Fig. 2, and let � j , j = 0, 1, . . . , k be the corresponding 
Lagrange polynomials given by
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� j(η) =
k∏

i=0
i �= j

(
η − ηi

η j − ηi

)

Let us first interpolate Hz using the Lagrange polynomials as follows

Hδ
z(η) =

k∑
j=0

(Ĥz) j� j(η)

The quantities (Ĥz) j are values at the GL nodes as illustrated in Fig. 2; while we have a unique value of Dx at each GL 
node of a vertical face, the other quantities Dy , Bz are possibly discontinuous. Note that Dy at the GL points are obtained 
from the reconstructed polynomial on the two cells sharing the face and Bz is obtained by another polynomial inside the 
two neighboring cells. Since we have a 1-D Riemann problem at each GL point, we can compute (Ĥz) j from a 1-D Riemann 
solver. This innovation adds a new aspect to FR schemes for involution constrained problems. This aspect is not present 
while solving usual conservation laws and arises because we are applying the FR scheme on the faces rather than over cells. 
Similarly, we will construct an interpolant Hδ

z(ξ) on each of the horizontal faces in the mesh. At any vertex, if we evaluate 
the flux Hδ

z , we will get four different values from the four faces meeting at the vertex, and they need not agree with one 
another. In the next step, we will correct each of the interpolants to make them continuous at the vertices.

At each vertex, we will have four different states that come together and define a 2-D Riemann problem and solution of 
this problem is briefly described in section C.2. Assume that we have computed the value of Hz at all the vertices of the 
mesh using the 2-D Riemann solver. So at the bottom (l) and top (r) vertices, see Fig. 2, we know the unique values of Hz

which are given by the multidimensional Riemann solvers as H̃l
z , H̃r

z , respectively. We correct the above interpolant Hδ
z as 

follows

Hc
z(η) = Hδ

z(η) + [H̃l
z − Hδ

z(− 1
2 )]gl(η) + [H̃r

z − Hδ
z(+ 1

2 )]gr(η) (10)

where the correction functions gl , gr are polynomials of degree k + 1 and have the property

gl(− 1
2 ) = gr(+ 1

2 ) = 1, gl(+ 1
2 ) = gr(− 1

2 ) = 0

This implies that

Hc
z(− 1

2 ) = H̃l
z, Hc

z(+ 1
2 ) = H̃r

z

and hence Hc
z(η) is a polynomial of degree k + 1 and is continuous at the vertices. Following Huynh [35], the correction 

functions will be taken to be Radau polynomials of degree k + 1 which also corresponds to taking c = 0 in the general class 
of functions derived in [53]. The correction functions are given by

gl(η) = (−1)k

2
[Lk(2η) − Lk+1(2η)], gr(η) = 1

2
[Lk(2η) + Lk+1(2η)]

where Lk : [−1, +1] → R is the Legendre polynomial of degree k. Note that we have to do a scaling of η since in our 
convention we take η ∈ [− 1

2 , + 1
2 ]. The normal component Dx can now be updated by using a collocation approach

∂Dx

∂t
(ηi) = Ri := 1


y

∂Hc
z

∂η
(ηi), 0 ≤ i ≤ k (11)

Since Hc
z is of degree k + 1, the right hand side is of degree k which agrees with the degree of the solution polynomial of 

Dx; hence the collocation scheme completely specifies the update for the facial solution.
The above discussion of the FR scheme shows that it is natural to use nodal basis functions which makes the collocation 

scheme easy to implement. However, in our approach, we actually represent Dx(η) using orthogonal polynomials where 
solution coefficients are modal values and not nodal values, and hence the above nodal collocation update cannot be directly 
used. The use of orthogonal basis functions is convenient to write the solution of the divergence-free reconstruction problem 
in a simple form. The scheme for modal coefficients can be easily obtained by making a simple transformation. Let V ∈
R(k+1)×(k+1) be the Vandermonde matrix of the orthogonal polynomials corresponding to the GL nodes, i.e.,

Vij = φ j(ηi), 0 ≤ i, j ≤ k

Then the update of the modal coefficients a = [a0, a1, . . . , ak]
 of Dx(η) can be performed using the following equation

da

dt
= V−1R, R = [R0, R1, . . . , Rk]


Since we use orthogonal polynomials and GL nodes, the condition number of the Vandermonde matrix are not too large; the 
condition numbers based on Euclidean vector norm are approximately 3.4, 14.1, 57.1 and 230.1 for k = 1, 2, 3, 4 respectively. 
The Vandermonde matrix is also used to evaluate the polynomial Dx(η) at the GL points. This matrix is common to each 
face so that V and it’s inverse can be computed once in a pre-processing stage.
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5.2. Fourth order scheme for D

At fourth order of accuracy (k = 3), the face solution D does not completely determine the divergence-free reconstruction 
inside the cell. We have to specify ω1 as an additional information so that the reconstruction problem can be solved, which 
is defined as

ω1 = b10 − a01 = 12

1
2∫

− 1
2

1
2∫

− 1
2

[Dy(ξ,η)ξ − Dx(ξ,η)η]dξdη

We will derive an evolution equation for ω1 using the induction equation. Since

1

12

dω1

dt
=

1
2∫

− 1
2

1
2∫

− 1
2

(
∂Dy

∂t
ξ − ∂Dx

∂t
η

)
dξdη = −

1
2∫

− 1
2

1
2∫

− 1
2

(
1


x

∂Hz

∂ξ
ξ + 1


y

∂Hz

∂η
η

)
dξdη

Performing an integration by parts and using a numerical flux on the faces which is based on a 1-D Riemann solver, we 
obtain a semi-discrete DG scheme

1

12

dω1

dt
= − 1


x

⎡
⎢⎢⎣1

2

1
2∫

− 1
2

Ĥx−
z dη + 1

2

1
2∫

− 1
2

Ĥx+
z dη −

1
2∫

− 1
2

1
2∫

− 1
2

Hzdξdη

⎤
⎥⎥⎦

− 1


y

⎡
⎢⎢⎣1

2

1
2∫

− 1
2

Ĥ y−
z dξ + 1

2

1
2∫

− 1
2

Ĥ y+
z dξ −

1
2∫

− 1
2

1
2∫

− 1
2

Hzdξdη

⎤
⎥⎥⎦

where the superscripts x−, x+ denotes the left and right faces of the cell, and y−, y+ denotes the bottom and top 
faces of the cell, and the fluxes Ĥz are obtained from the 1-D Riemann solver. The face integrals will be computed using 
(k + 1)-point GL quadrature and the cell integral will be computed using tensor product of the same quadrature rule. Note 
that the quadrature points on the faces correspond to the solution points used in the FR scheme described in previous 
section; hence the flux Ĥz used in the ω1 equation is also used in the FR scheme described in the previous section.

5.3. Fifth order scheme for D

At fifth order of accuracy (k = 4), the face solution D does not completely determine the divergence-free reconstruction 
inside the cell. We have to specify three cell moments ω1, ω2, ω3 as an additional information so that the reconstruction 
problem can be solved as shown in Appendix B. The update of ω1 has already been explained in previous section. The 
update equations for ω2 and ω3 can be derived in similar way. By definition

ω2 = b20 − a11 =
1
2∫

− 1
2

1
2∫

− 1
2

[180Dy(ξ,η)φ2(ξ) − 144Dx(ξ,η)φ1(η)φ1(ξ)]dξdη

and the semi-discrete scheme for the time evolution of ω2 is given by

dω2

dt
= − 180


x

⎡
⎢⎢⎣−1

6

1
2∫

− 1
2

Ĥx−
z dη + 1

6

1
2∫

− 1
2

Ĥx+
z dη −

1
2∫

− 1
2

1
2∫

− 1
2

2Hzξdξdη

⎤
⎥⎥⎦

− 144


y

⎡
⎢⎢⎣1

2

1
2∫

− 1
2

Ĥ y−
z ξdξ + 1

2

1
2∫

− 1
2

Ĥ y+
z ξdξ −

1
2∫

− 1
2

1
2∫

− 1
2

Hzξdξdη

⎤
⎥⎥⎦

Similarly, we have
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ω3 = b11 − a02 =
1
2∫

− 1
2

1
2∫

− 1
2

[144Dy(ξ,η)φ1(η)φ1(ξ) − 180Dx(ξ,η)φ2(η)]dξdη

whose semi-discrete time evolution scheme is given by

dω3

dt
= − 144


x

⎡
⎢⎢⎣1

2

1
2∫

− 1
2

Ĥx−
z ηdη + 1

2

1
2∫

− 1
2

Ĥx+
z ηdη −

1
2∫

− 1
2

1
2∫

− 1
2

Hzηdξdη

⎤
⎥⎥⎦

− 180


y

⎡
⎢⎢⎣−1

6

1
2∫

− 1
2

Ĥ y−
z dξ + 1

6

1
2∫

− 1
2

Ĥ y+
z dξ −

1
2∫

− 1
2

1
2∫

− 1
2

2Hzηdξdη

⎤
⎥⎥⎦

The face integrals will be computed using (k + 1)-point GL quadrature and the cell integral will be computed using tensor 
product of the same quadrature rule. Note that the quadrature points on the faces correspond to the solution points used 
in the FR scheme; hence the flux Ĥz used in the ω2, ω3 equation is also used in the FR scheme applied on the faces.

5.4. Discontinuous Galerkin method for Bz inside cells

In the 2-D model of Maxwell’s equations that is considered in this paper, there is only one component of B so that 
we do not have to consider any constraint on this quantity. The magnetic flux Bz is approximated by a two dimensional 
polynomial Pk inside each cell and we apply a standard DG scheme for this quantity, given by

1
2∫

− 1
2

1
2∫

− 1
2

∂Bz

∂t
�i(ξ,η)dξdη+

1
2∫

− 1
2

1
2∫

− 1
2

[
− 1


x
E y

∂�i

∂ξ
+ 1


y
Ex

∂�i

∂η

]
dξdη

+ 1


x

1
2∫

− 1
2

Êx+
y �i(+ 1

2 , η)dη − 1


x

1
2∫

− 1
2

Êx−
y �i(− 1

2 , η)dη

− 1


y

1
2∫

− 1
2

Ê y+
x �i(ξ,+ 1

2 )dξ + 1


y

1
2∫

− 1
2

Ê y−
x �i(ξ,− 1

2 )dξ = 0

where the test functions �i , i = 0, 1, . . . , N(k) −1 are the basis functions of Pk(ξ, η) as given in (5), Êx−
y , Êx+

y are the values 
on the left and right faces obtained from the 1-D Riemann solver, and, Ê y−

x , Ê y+
x are the values on bottom and top faces 

obtained from the 1-D Riemann solver. The integral inside the cell is evaluated using a tensor product of (k + 1)-point GL 
quadrature while the face integrals are evaluated using (k + 1)-point GL quadrature. The numerical fluxes used on the faces 
are common to the FR scheme and schemes for ωi at fourth and fifth order accuracy.

Remark. Note that in 3-D, we would approximate B in the same way as we approximate D , i.e., the normal components of 
B are approximated on the faces, and the value inside the cell is obtained by a divergence-free reconstruction process. The 
evolution of B would then also follow similar approach as used for D .

5.5. Compatibility condition

We have completely specified the semi-discrete scheme for all the variables which leads to a system of ODE. The update 
in time will be performed by standard time integration schemes. To solve the reconstruction problem, we must ensure that 
the compatibility condition (6) will be satisfied by the solution at future times also, assuming that it is satisfied by the 
initial condition. Such a scheme will then be referred to as being constraint preserving. Consider any cell C ; using the flux 
reconstruction scheme (11) and (k + 1)-point GL quadrature to integrate the normal component of D on the cell faces, we 
get

d

dt

∫
(D · n)ds =

k∑
i=0

[
∂Hc,x+

z

∂η
(ηi) − ∂Hc,x−

z

∂η
(ηi)

]
�i +

k∑
i=0

[
−∂Hc,y+

z

∂ξ
(ξi) + ∂Hc,y−

z

∂ξ
(ξi)

]
�i
∂C
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where the �i are the GL quadrature weights. In the above equation, Hc,x−
z , Hc,x+

z are the continuous flux approximations 
given by (10) on the left and right faces of the cell, and similarly, Hc,y−

z , Hc,y+
z are the continuous flux approximations on 

the bottom and top faces of the cell. The terms of the form ∂Hc
z

∂ξ
, ∂Hc

z
∂η are polynomials of degree k and the quadrature is 

exact for such a polynomial, so that we can replace the sums with integrals. Moreover, since the flux approximations Hc
z

are continuous at the vertices, we have

Hc,x+
z (η = 1

2 ) = Hc,y+
z (ξ = 1

2 ) = (H̃z)3, etc.

where the subscripts on the vertex flux H̃z obtained from the 2-D Riemann solver denote the vertices of the cell, see Fig. 1. 
Hence, we obtain

d

dt

∫
∂C

(D · n)ds =
1
2∫

− 1
2

∂Hc,x+
z

∂η
(η)dη −

1
2∫

− 1
2

∂Hc,x−
z

∂η
(η)dη

−
1
2∫

− 1
2

∂Hc,y+
z

∂ξ
(ξ)dξ +

1
2∫

− 1
2

∂Hc,y−
z

∂ξ
(ξ)dξ

= [(H̃z)3 − (H̃z)1] − [(H̃z)2 − (H̃z)0] − [(H̃z)3 − (H̃z)2] + [(H̃z)1 − (H̃z)0]
= 0

This implies that

d

dt
[(a+

0 − a−
0 )
y + (b+

0 − b−
0 )
x] = 0 (12)

Hence under any explicit time integration scheme, the compatibility condition (6) will be satisfied by our scheme assuming 
it holds for the initial condition. We see that the critical property required to achieve constraint preservation was to discretize the 
PDE on the faces and to use a unique value of Hz at the vertices of the cells which comes from a 2-D Riemann solver.

6. Energy stability analysis

We will consider the energy stability of the first order scheme for constant ε and μ with periodic boundary conditions. 
Balsara and Käppeli [15] have performed Fourier stability analysis of fully discrete schemes and have derived CFL numbers 
for different time integration schemes. Here we perform direct energy stability analysis of the semi-discrete scheme. To aid 
in the proof, we introduce the usual (i, j) indexing notation for the cells and half indices will be used to denote the faces 
and vertices. At first order, our solution variables consist of face averages of normal components of D and cell average of 
Bz . The scheme is given by

d

dt
(Dx)i+ 1

2 , j =
(Ĥz)i+ 1

2 , j+ 1
2

− (Ĥz)i+ 1
2 , j− 1

2


y
,

d

dt
(Dy)i, j+ 1

2
= −

(Ĥz)i+ 1
2 , j+ 1

2
− (Ĥz)i− 1

2 , j+ 1
2


x

d

dt
(Bz)i, j = −

(Ê y)i+ 1
2 , j − (Ê y)i− 1

2 , j


x
+

(Êx)i, j+ 1
2

− (Êx)i, j− 1
2


y

Define the total energy

E∗
h (t) =

∑
i

∑
j

1

2ε
(Dx)

2
i+ 1

2 , j

x
y +

∑
i

∑
j

1

2ε
(Dy)

2
i, j+ 1

2

x
y +

∑
i

∑
j

1

2μ
(Bz)

2
i, j
x
y

Then using the above scheme, the rate of change of energy is given by

dE∗
h

dt
=
∑
i

∑
j

(Ex)i+ 1
2 , j[(Ĥz)i+ 1

2 , j+ 1
2

− (Ĥz)i+ 1
2 , j− 1

2
]
x

−
∑
i

∑
j

(E y)i, j+ 1
2
[(Ĥz)i+ 1

2 , j+ 1
2

− (Ĥz)i− 1
2 , j+ 1

2
]
y

+
∑
i

∑
j

(Hz)i, j

⎡
⎣−

(Ê y)i+ 1
2 , j − (Ê y)i− 1

2 , j


x
+

(Êx)i, j+ 1
2

− (Êx)i, j− 1
2


y

⎤
⎦
x
y

=: P1 +P2 +P3
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To simplify the analysis below, define the average and difference operators


x(·)i, j = (·)i+ 1
2 , j − (·)i− 1

2 , j, 
y(·)i, j = (·)i, j+ 1
2

− (·)i, j− 1
2

�x(·)i, j = 1

2
[(·)i+ 1

2 , j + (·)i− 1
2 , j], �y(·)i, j = 1

2
[(·)i, j+ 1

2
+ (·)i, j− 1

2
]

Using summation by parts we can write

P1 = −
∑
i

∑
j

(Ĥz)i+ 1
2 , j+ 1

2

y(Ex)i+ 1

2 , j+ 1
2

x, P2 =

∑
i

∑
j

(Ĥz)i+ 1
2 , j+ 1

2

x(E y)i+ 1

2 , j+ 1
2

y

P3 =
∑
i

∑
j

(Ê y)i+ 1
2 , j
x(Hz)i+ 1

2 , j
y −
∑
i

∑
j

(Êx)i, j+ 1
2

y(Hz)i, j+ 1

2

x

Let us use the fluxes obtained from a Riemann solver, see e.g. [20] and also the Appendix,

(Êx)i, j+ 1
2

= 1

4

[
(Ex)i− 1

2 , j + (Ex)i+ 1
2 , j + (Ex)i− 1

2 , j+1 + (Ex)i+ 1
2 , j+1

]
+ μc

2

y(Hz)i, j+ 1

2

= 1

2
[�y(Ex)i− 1

2 , j+ 1
2

+ �y(Ex)i+ 1
2 , j+ 1

2
] + μc

2

y(Hz)i, j+ 1

2

(Ê y)i+ 1
2 , j =

1

4

[
(E y)i, j− 1

2
+ (E y)i, j+ 1

2
+ (E y)i+1, j− 1

2
+ (E y)i+1, j+ 1

2

]
− μc

2

x(Hz)i+ 1

2 , j

= 1

2
[�x(E y)i+ 1

2 , j− 1
2

+ �x(E y)i+ 1
2 , j+ 1

2
] − μc

2

x(Hz)i+ 1

2 , j

(Ĥz)i+ 1
2 , j+ 1

2
= 1

4

[
(Hz)i, j + (Hz)i+1, j + (Hz)i, j+1 + (Hz)i+1, j+1

]
+ εc

2

y(Ex)i+ 1

2 , j+ 1
2

− εc

2

x(E y)i+ 1

2 , j+ 1
2

Note that the fluxes consist of a central part and some additional terms that depend on jumps in the solution variables. 
Then

P1 = −
∑
i

∑
j

1

2
[�y(Hz)i, j+ 1

2
+ �y(Hz)i+1, j+ 1

2
]
y(Ex)i+ 1

2 , j+ 1
2

x

−εc

2

∑
i

∑
j

[
y(Ex)i+ 1
2 , j+ 1

2
− 
x(E y)i+ 1

2 , j+ 1
2
]
y(Ex)i+ 1

2 , j+ 1
2

x

=: P4 +P5

P2 =
∑
i

∑
j

1

2
[�x(Hz)i+ 1

2 , j + �x(Hz)i+ 1
2 , j+1]
x(E y)i+ 1

2 , j+ 1
2

y

+εc

2

∑
i

∑
j

[
y(Ex)i+ 1
2 , j+ 1

2
− 
x(E y)i+ 1

2 , j+ 1
2
]
x(E y)i+ 1

2 , j+ 1
2

y

=: P6 +P7

P3 =
∑
i

∑
j

1

2
[�x(E y)i+ 1

2 , j− 1
2

+ �x(E y)i+ 1
2 , j+ 1

2
]
x(Hz)i+ 1

2 , j
y

−
∑
i
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x
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=: P8 +P9 +D1

Note that D1 ≤ 0. Now consider
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In the third term on the right, shift the i index back by one to obtain
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This follows because the term in each sum is a perfect difference. We show this for the first term.
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2
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Similarly, we can show that P6 +P8 = 0. If 
x = 
y = h then
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Hence we obtain

dE∗
h

dt
= D1 +D2 ≤ 0

If 
x �= 
y, then we cannot prove that D2 ≤ 0. In this case we have to modify the flux (Ĥz)i+ 1
2 , j+ 1

2
slightly as follows
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where h could be defined as h = max(
x, 
y). Then
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2


x

]2


x
y ≤ 0

and we can again prove energy stability. Note that the dissipation term D2 is created due to the curl of the electric field 
which is physically meaningful for the Maxwell model. We also observe that the dissipation is due to the additional terms 
in the numerical flux involving the jumps in solution variables, and the central part of the flux would lead to energy 
conservation.

Remark. The energy E∗
h we have analyzed above is the energy of the solution on the faces and is not the true energy, which 

is defined as
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where Dx, Dy inside the integral are obtained by the divergence-free reconstruction scheme. Note that, using the inequality 
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and, using the inequality ab ≥ −(a2 + b2)/2, we get∫
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with similar results for the Dy component. Hence it follows that

Eh ≤ E∗
h ≤ 3Eh

and so E∗
h is an equivalent energy norm.

Remark. The methods developed in the current paper deal exclusively with Cartesian grids but they can be extended to 
unstructured grids. The two ingredients that require some modification are the divergence-free reconstruction step and the 
multi-dimensional Riemann solver. The reconstruction on unstructured grids can be performed using the methods in [10], 
while multi-dimensional Riemann solvers on unstructured grids have been developed in previous works [10], [11], [12], and 
such ideas can be applied to the Maxwell’s equations also.

7. Numerical results

Our numerical scheme belongs to the class of so called RKDG methods where a DG/FR scheme is used for spatial 
discretization and the resulting system of ODE are solved using a Runge-Kutta scheme. For degrees k = 0, 1, 2, we use the 
first, second and third order strong stability preserving RK schemes [43], [44], respectively, while for k = 3 and k = 4 we use 
the 5-stage, 4-th order strong stability preserving RK scheme [45], [46] or the classical fourth order RK scheme. The time 
step is computed from the CFL number which is defined as

CFL = max

{
max

c
t


x
,max

c
t


y

}

where c = 1√
με

is the speed of light, and the inner maximum is taken over the whole mesh. The CFL numbers have been 
derived in Balsara & Käppeli [15] using Fourier stability analysis. For the second, third and fourth order schemes, we use 
CFL numbers of 0.25, 0.16 and 0.21 respectively, while for the fifth order scheme, we use usual CFL number for DG schemes 
given by CFL = 1/(2 ∗ 4 + 1) = 0.11, since stability analysis is not available for this case.

We will measure the error in the solution using L1 and L2 norms. These norms are defined as follows for vector and 
scalar functions

‖D‖L1 = 1

|�|
∫
�

‖D‖dxdy, ‖D‖L2 =
⎛
⎝ 1

|�|
∫
�

‖D‖2dxdy
⎞
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1
2

, ‖D‖ =
√
D2

x + D2
y

‖Bz‖L1 =
∫
�

|Bz|dxdy, ‖Bz‖L2 =
⎛
⎝∫

�

B2
zdxdy

⎞
⎠

1
2

and the integrals are computed using a tensor product of (k + 2)-point Gauss-Legendre quadrature. Note that we measure 
the error norm of the solution polynomials relative to the reference or exact solutions and not just the error in the cell 
average value. In particular, the error in D is measured based on the reconstructed field inside the cells.
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Table 1
Plane wave test, degree=1: convergence of error.
Nx × Ny ‖Dh − D‖L1 Ord ‖Dh − D‖L2 Ord ‖Bh

z − Bz‖L1 Ord ‖Bh
z − Bz‖L2 Ord

16× 16 9.5684e-05 — 1.0646e-04 — 3.6205e-02 — 4.1073e-02 —
32 × 32 1.7320e-05 2.47 1.9014e-05 2.49 6.6895e-03 2.44 7.4826e-03 2.46
64 × 64 3.7425e-06 2.21 4.0522e-06 2.23 1.4458e-03 2.21 1.6167e-03 2.21
128 × 128 8.9361e-07 2.07 9.6327e-07 2.07 3.4400e-04 2.07 3.8629e-04 2.07

Table 2
Plane wave test, degree=2: convergence of error.
Nx × Ny ‖Dh − D‖L1 Ord ‖Dh − D‖L2 Ord ‖Bh

z − Bz‖L1 Ord ‖Bh
z − Bz‖L2 Ord

16× 16 3.0156e-05 — 3.3378e-05 — 1.1640e-02 — 1.2951e-02 —
32× 32 3.6268e-06 3.06 4.0113e-06 3.06 1.4044e-03 3.05 1.5605e-03 3.05
64 × 64 4.4793e-07 3.02 4.9534e-07 3.02 1.7378e-04 3.01 1.9310e-04 3.01
128 × 128 5.5780e-08 3.01 6.1684e-08 3.01 2.1671e-05 3.00 2.4074e-05 3.00

Table 3
Plane wave test, degree=3: convergence of error.
Nx × Ny ‖Dh − D‖L1 Ord ‖Dh − D‖L2 Ord ‖Bh

z − Bz‖L1 Ord ‖Bh
z − Bz‖L2 Ord

16× 16 3.0557e-07 — 3.5095e-07 — 1.9458e-04 — 2.5101e-04 —
32× 32 1.1040e-08 4.79 1.3428e-08 4.71 1.1275e-05 4.11 1.4590e-05 4.10
64 × 64 5.0469e-10 4.45 6.1548e-10 4.45 6.7924e-07 4.05 8.9228e-07 4.03
128 × 128 2.6834e-11 4.23 3.3945e-11 4.18 4.1802e-08 4.02 5.5449e-08 4.01

Table 4
Plane wave test, degree=4: convergence of error.
Nx × Ny ‖Dh − D‖L1 Ord ‖Dh − D‖L2 Ord ‖Bh

z − Bz‖L1 Ord ‖Bh
z − Bz‖L2 Ord

8× 8 2.4982e-07 — 2.8435e-07 — 2.5514e-04 — 3.2612e-04 —
16× 16 6.3357e-09 5.30 7.2655e-09 5.29 6.4340e-06 5.31 8.5532e-06 5.25
32 × 32 1.7113e-10 5.21 2.0807e-10 5.13 1.9021e-07 5.08 2.5521e-07 5.07
64 × 64 5.1213e-12 5.06 6.4133e-12 5.02 5.9026e-09 5.01 7.9601e-09 5.00
128 × 128 1.5949e-13 5.00 2.0054e-13 5.00 1.8412e-10 5.00 2.4890e-10 5.00

7.1. Plane wave propagation

This test case describes the propagation of a plane electromagnetic wave in vacuum. The purpose of this test case is to 
check the accuracy of our numerical method since we know the exact solution. The simulation is performed in a square 
domain of [−0.5, 0.5] × [−0.5, 0.5] m2 divided in 16, 32, 64 and 128 square cells in each direction with periodic boundary 
conditions. The simulation is conducted for a time duration of 3.5 ns. The initial condition of B and D field is specified 
from magnetic vector potential A(x, y, t) and electric vector potential C (x, y, t) and using the relationships B = ∇ × A and 
D = cε0∇ × C . The magnetic and electric vector potentials are given by

A(x, y, t) = 1

2π
sin[2π(x+ y − √

2ct)]ê y, C(x, y, t) = − 1

2π
√
2
sin[2π(x + y − √

2ct)]êz
The convergence of the error for different degree and grid sizes are shown in Tables 1-4. We observe that with degree k
solution on the faces, all the quantities converge at the rate of O (hk+1) under mesh refinement demonstrating that optimal 
accuracy is achieved by our method.

7.2. Compact Gaussian electromagnetic pulse incident on a refractive disk

This test case deals with scattering interaction of a compact electromagnetic pulse impinging upon a dielectric disc. 
Simulations are performed in a domain [−7.0, 7.0] ×[−7.0, 7.0] m2 upto the time 23.3 ns. A dielectric disc of radius 0.75 m 
is located at the center of the computational domain. The initial condition is given by B = ∇ × A and D = cε0∇ × C where 
the following magnetic and electric vector potential are used

A(x, y, t) = λ

2π
sin

[
2π(x+ y)

λ

]
e
− (x−a)2+(y−b)2

χ2 ê y,

C(x, y, t) = − λ

2π
√
2
sin

[
2π(x+ y)

λ

]
e
− (x−a)2+(y−b)2

χ2 êz
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Fig. 3. Compact Gaussian electromagnetic pulse incident on a refractive disk using 200 × 200 cells. Top row: initial condition, middle row: k = 3, bottom 
row: k = 4.

where wavelength of the electromagnetic beam λ = 1.5 m, χ = 1.5 m and (a, b) = (−2.5,−2.5) m. The relative permittivity 
is taken as

εr(x, y) = 5.0− 4.0 tanh

(√
x2 + y2 − 0.75

0.08

)

In Section 6 we focused on the conservation of electromagnetic energy, showing that the DG schemes for CED are indeed 
energy stable. The DG methods presented here do not seem to need non-linear limiters and that is a very desirable trait 
for this class of schemes. It is known that when DG methods can operate without invoking limiters, the higher order 
DG schemes can come close to the ideal solution of the PDE in the sense of conserving the energy. In practice, the use of 
Riemann solvers introduces some stabilization and some dissipation but in higher order DG schemes, the level of dissipation 
is very small [1].

The conservation of electromagnetic energy, which depends quadratically on the primal variables that are evolved, is 
not guaranteed in numerical CED schemes. This is true for FDTD, FVTD and also for the DGTD schemes for CED designed 
here. In [15], it was shown that the electromagnetic energy is, nevertheless, conserved extremely well by higher order DGTD 
schemes. However, [15] showed this for electromagnetic radiation that is propagating in a vacuum. It is, therefore, interesting 
to try and quantify how well the electromagnetic energy is conserved on the mesh when electromagnetic radiation interacts 
with spatially varying dielectric properties in materials. To make this demonstration, we solve the problem of a compact 
Gaussian electromagnetic pulse incident on a dielectric disk on meshes with 100 ×100, 200 ×200, 400 ×400 and 800 ×800
zones. Some sample results are shown in Fig. 3 on a mesh of 200 × 200 cells using the fourth and fifth order schemes. We 
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Fig. 4. Compact Gaussian electromagnetic pulse incident on a refractive disk. Evolution of total energy as a function of time. (a) 100 × 100 mesh, (b) 
200 × 200 mesh, (c) 400 × 400, and (d) 800 × 800 mesh. The legends indicate the polynomial degree.

Table 5
Compact Gaussian electromagnetic pulse incident on a refractive disk. Error convergence for degree k = 1 under mesh refinement.

Nx × Ny ‖Dh − D‖L1 Ord ‖Dh − D‖L2 Ord ‖Bh
z − Bz‖L1 Ord ‖Bh

z − Bz‖L2 Ord

100× 100 8.7117e-05 — 5.7716e-04 — 2.4173e-02 — 9.1668e-02 —
200× 200 4.1169e-05 1.08 3.6468e-04 0.66 1.0302e-02 1.23 5.5462e-02 0.72
400× 400 8.9100e-06 2.21 8.6861e-05 2.07 2.1341e-03 2.27 1.2224e-02 2.18
800× 800 1.2956e-06 2.78 1.1942e-05 2.86 3.2063e-04 2.73 1.6685e-03 2.87

then plot the electromagnetic energy as a function of time. Because periodic boundary conditions were used, we hope that 
the more accurate DGTD schemes will conserve electromagnetic energy.

Fig. 4a shows the energy evolution as a function of time on a 100 × 100 zone mesh from second, third, fourth and fifth 
order DGTD schemes. From Fig. 4a we see that only the fifth order scheme does a superlative job of energy conservation, 
with the fourth order scheme performing very well. Fig. 4b shows the same information as Fig. 4a, but this time on a 
200 × 200 zone mesh. We see now that both the fourth and fifth order schemes show superlative energy conservation. 
Fig. 4c shows the same information as Figs. 4a and 4b, but this time on a 400 × 400 zone mesh. We now see that even the 
third order DGTD scheme has very good energy conservation properties. This trend continues in Fig. 4d which shows the 
energy plots for the 800 × 800 mesh.

Because Fig. 4 shows all the data, including the data from the second order DGTD scheme, it is not possible to fully 
appreciate how well the higher order DGTD schemes conserve energy. For that reason, Fig. 5 shows the energy evolution as 
a function of time for the second, third, fourth and fifth order schemes when a sequence of mesh resolutions are used for 
the same problem. The vertical scale in Figs. 5 show the extraordinarily good ability of the higher order DGTD schemes to 
conserve electromagnetic energy.

Tables 5-8 show the accuracy of the second, third, fourth and fifth order schemes for the Gaussian pulse problem. We see 
that the schemes reach their designed order of accuracy on relatively coarse meshes; which shows that our DG formulation 
is not just asymptotically very accurate but it also offers an accuracy advantage on poorly resolved meshes. This is especially 
significant because we allowed for an order of magnitude variation in the permittivity and did nothing special to treat that 
variation in permittivity. By comparing Tables 7 and 8 to Tables 5 and 6 we see that the highest order schemes have reached 
their design order of accuracy on the coarsest meshes, which brings out another importance of very high order, globally 
constraint-preserving DG schemes for CED.
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Fig. 5. Compact Gaussian electromagnetic pulse incident on a refractive disk. Evolution of total energy as a function of time for degree (a) k = 1, (b) k = 2, 
(c) k = 3, (d) k = 4. The legends indicate the mesh sizes.

Table 6
Compact Gaussian electromagnetic pulse incident on a refractive disk. Error convergence for degree k = 2 under mesh refinement.

Nx × Ny ‖Dh − D‖L1 Ord ‖Dh − D‖L2 Ord ‖Bh
z − Bz‖L1 Ord ‖Bh

z − Bz‖L2 Ord

100× 100 6.1017e-05 — 4.9501e-04 — 1.5650e-02 — 7.8412e-02 —
200× 200 1.9119e-05 1.67 2.0730e-04 1.26 4.4152e-03 1.83 3.5235e-02 1.15
400× 400 2.5029e-06 2.93 2.6761e-05 2.95 5.9512e-04 2.89 4.8243e-03 2.87
800× 800 2.7078e-07 3.21 2.8929e-06 3.21 6.4388e-05 3.21 5.1386e-04 3.23

Table 7
Compact Gaussian electromagnetic pulse incident on a refractive disk. Error convergence for degree k = 3 under mesh refinement.

Nx × Ny ‖Dh − D‖L1 Ord ‖Dh − D‖L2 Ord ‖Bh
z − Bz‖L1 Ord ‖Bh

z − Bz‖L2 Ord

100× 100 2.1628e-05 — 2.0508e-04 — 5.1752e-03 — 3.2412e-02 —
200× 200 1.0561e-06 4.36 1.2522e-05 4.03 2.2929e-04 4.50 2.0243e-03 4.00
400× 400 4.3566e-08 4.60 4.7222e-07 4.73 1.0537e-05 4.44 8.8197e-05 4.52
800× 800 1.8547e-09 4.55 1.6639e-08 4.83 5.3238e-07 4.31 4.4683e-06 4.30

Table 8
Compact Gaussian electromagnetic pulse incident on a refractive disk. Error convergence for degree k = 4 under mesh refinement.

Nx × Ny ‖Dh − D‖L1 Ord ‖Dh − D‖L2 Ord ‖Bh
z − Bz‖L1 Ord ‖Bh

z − Bz‖L2 Ord

100× 100 4.0374e-06 — 3.8018e-05 — 8.9893e-04 — 5.3665e-03 —
200× 200 6.5567e-08 5.94 6.2380e-07 5.93 2.1939e-05 5.36 2.7262e-04 4.30
400× 400 2.4957e-09 4.72 1.7238e-08 5.18 9.1588e-07 4.58 7.8449e-06 5.12

7.3. Refraction of a compact electromagnetic beam by a dielectric slab

This test case describes the refraction of an electromagnetic beam by a two dimensional dielectric slab that spans over 
a domain [−5.0, 8.0] × [−2.5, 7.0] μm2. The domain is divided into 650 × 475 cells and has a constant permeability μ0

and the permittivity is given by ε(x, y) = 1.625ε0 + 0.625ε0 tanh(108x) so as to model a dielectric slab where the per-
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Fig. 6. Refraction of a compact electromagnetic beam by a dielectric slab on a mesh of 650 ×475 cells. Top row: initial condition, middle row: k = 3, bottom 
row: k = 4.

mittivity changes from ε = 2.25ε0 for x ≥ 0 to ε0 for x < 0. The magnetic and electric vector potential of the incident 
electromagnetic beam are given by,

A(x, y, t) = λ

8π
sin[2π(x + y − √

2ct)]
[
1− tanh

(
(x− a) + (y − b) − √

2ct

0.1λ

)]
[
1− tanh

( |y − x| − √
2d√

2δ

)]
ê y (13)

C(x, y, t) = − λ

8π
√
2
sin[2π(x+ y − √

2ct)]
[
1− tanh

(
(x− a) + (y − b) − √

2ct

0.1λ

)]
[
1− tanh

( |y − x| − √
2d√

2δ

)]
êz (14)

where wavelength of the incident beam λ = 0.5 μm and other geometrical parameters are taken to be d = 2.5λ, δ = 0.5λ
and (a, b) = (−3.0λ, −3.0λ). The impinging beam of radiation is incident on the surface of the dielectric slab at an angle of 
45◦ . The simulation was run to a time of 4.0 × 10−14 s. Fig. 6 shows the initial condition and the solution at the final time 
obtained from fourth and fifth order schemes. This problem, involving the refraction of a beam of radiation, was presented 
in Balsara et al. [20], [13]. Fig. 6 shows our results for DGTD schemes at fourth and fifth orders. Despite the use of high 
order DG schemes with rapidly varying dielectric properties, we never needed to use limiters in this problem. We see that 
our results are very consistent with the reference solution presented in those papers.

7.4. Total internal reflection of a compact electromagnetic beam by a dielectric slab

This test case is designed to simulate total internal reflection of an electromagnetic beam by a dielectric slab which has a 
constant permeability of μ0 and the permittivity is given by ε(x, y, z) = 2.5ε0 −1.5ε0 tanh(4.0 ×108x). Across the dielectric 
slab, the permittivity changes from ε = 4.0ε0 for x ≤ 0 to ε0 for x > 0 which implies that the refractive index is 2 for the 
dielectric slab. Therefore, following Snell’s law, the critical angle for internal reflection in this dielectric slab is 30◦ .
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Fig. 7. Total internal reflection of a compact electromagnetic beam by a dielectric slab on a mesh of 350 × 425 cells. Top row: initial condition, middle row: 
k = 3, bottom row: k = 4.

The simulation is performed in a domain [−6.0, 1.0] ×[−2.5, 6.0] μm2 of such a dielectric slab divided in 350 ×425 cells 
over a duration of 5.0 ×10−14 s. The initial conditions are similar to the previous case. However, for this problem, we chose 
λ = 0.3 μm, d = 2.5λ, δ = 0.5λ and (a, b) = (−3.0λ, −3.0λ). Fig. 7 shows the initial condition and the final solution obtained 
using the fourth and fifth order schemes. This problem, involving the total internal reflection of a beam of radiation, was 
presented in Balsara et al. [20], [13]. Fig. 7 shows our results for DGTD schemes at fourth and fifth orders. As in the previous 
test problem, we found that despite the use of high order DG schemes with rapidly varying dielectric properties, we never 
needed to use limiters in this problem. We see that our results are very consistent with the reference solution presented in 
those papers.

7.5. Compact Gaussian electromagnetic pulse incident on a rectangular block with discontinuous material properties

All the test cases presented until now assumed a continuous distribution of the material properties though the changes in 
the properties were quite sharp due to the tanh distribution. However, in order to test the algorithm for truly discontinuous 



A. Hazra et al. / Journal of Computational Physics 394 (2019) 298–328 319
Fig. 8. Compact Gaussian electromagnetic pulse incident on a refractive square block using 224 × 224 cells. Top row: initial condition, middle row: k = 3, 
bottom row: k = 4.

material properties, we modify the test case of section 7.2 and replace the disc with a square of size [−0.75, 0.75] ×
[−0.75, 0.75] m2, inside which the relative permeability is 10 while outside the square, it is one. The remaining parameters 
including the initial conditions, which are shown at the top of Fig. 8, remain same as in section 7.2. The results of the 
computations at fourth and fifth orders on a mesh of 224 × 224 zones are shown in second and third rows of Fig. 8 from 
the fourth and fifth order schemes.

We see from Fig. 8 that the results from multiple schemes look identical. The use of a sharp discontinuity is made 
possible by our use of the one-dimensional and multi-dimensional Riemann solvers that are documented in Appendix C. 
Those Riemann solvers are designed so as to permit discontinuous permittivities and permeabilities at zone boundaries 
and zone corners. In fact, we chose the square in this test problem because it has material discontinuities at its faces and 
corners. The fact that different schemes, at different orders, show identical results in moderately well-resolved simulations 
gives us further assurance that the methods we have designed are robust in the presence of material discontinuities.

7.6. Constraint satisfaction in numerical simulations

The scheme we propose is by construction divergence-free since the divergence-free reconstruction step explicitly ensures 
this property. In order to verify the constraint preservation property by the numerical scheme in actual computations, we 
measure some norm of the divergence for the fourth (k = 3) and fifth (k = 4) order schemes. The first norm is the usual 
L1 norm of the divergence over the whole computational domain. The divergence is a polynomial of degree k and has the 
form in any cell C given by
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Fig. 9. Divergence norms as a function of time. (a) plane wave, (b) gaussian pulse (c) refraction test and (d) total internal reflection test.

div(D) = 1

h

N(k)−1∑
i=0

dCi �i(ξ,η)

where we have assumed that 
x = 
y = h. By construction of the numerical scheme, each coefficient dCi must be zero; 
however this may not be exactly zero in a numerical computation with a computer and we can at best expect it to be of 
the order of machine precision. In some test cases, the mesh size h is very small, say of the order of 10−6 and in this case, 
we cannot expect the divergence to be small due to limitations of machine precision. The L1 norm of the divergence in such 
cases may not be of the order of machine precision. We hence measure a second divergence norm by

‖div(D)‖∞ = max
C

max
i

|dCi |
and refer to this as maximum norm. Fig. 9 shows the time evolution of these two norms for four test cases. We observe 
that the maximum norm is always within machine precision while the L1 norm can exhibit larger values in case (c) and (d) 
for which the mesh size h is very small.

7.7. Computational complexity

To estimate the computational complexity of our numerical scheme, we performed simulations for the first two test 
cases: the propagation of plane electromagnetic wave in vacuum (section 7.1) and compact Gaussian pulse incident on 
a refractive disc (section 7.2). We conducted our simulations for different orders of accuracy taking values of polynomial 
degree k from 1 to 4. Fig. 10 show the plots of error as a function of computational time. The top and bottom row of the 
figure depicts the L2 error for the propagation of plane wave test case and incident compact Gaussian pulse on a refractive 
disc. On each row, the figure on the left and right show the results for D and Bz respectively.

Our time computation study shows that the computational complexity for our FR/DG based scheme increases by a factor 
of 9.03, 3.28 and 4.24 when we increase the order of polynomial from second to third, third to fourth and fourth to fifth 
order of accuracy respectively. However, we can observe from the figures related to the first test case that the curves for 
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Fig. 10. Error vs computational time for different orders of accuracy. 1) Top: Propagation of plane electromagnetic wave. 2) Bottom: Compact Gaussian pulse 
incident on a refractive. In both rows, the left figure shows |D − Dh | vs computational time and the right figure shows |Bz − Bh

z | vs computational time.

error vs computational time become steeper with increasing polynomial order. This shows that higher order schemes are 
more effective at causing the error to diminish with increasing resolution which indicates that to obtain a specific absolute 
accuracy, the numerical scheme takes much lower computational time with increasing order of degree polynomial.

The second case does not have a accurate analytical solution and the errors have been calculated using a base solution 
with respect to the fine grid of 1600 × 1600 zones. In this case also, we can observe a similar pattern of time complexity, 
with higher order schemes being more efficient since they achieve the same error level at smaller computational time than 
lower order method. In particular the fourth and fifth order schemes are more efficient than lower order methods. These 
results show that accuracy of the underlying method is crucial when one has to deliver a highly accurate solution strategy. 
This finding aligns very well with the analogous finding from Balsara et al. [13].

8. Summary and conclusions

In Balsara and Käppeli [15] globally constraint preserving DG schemes (up to fourth order) for CED had been presented 
and their von Neumann stability analysis had been carried out. The von Neumann analysis gave many insights as regards to 
the CFL condition and indicated that superlative propagation of electromagnetic radiation could be achieved. However, that 
paper did not explore the role of varying permittivity and permeability. That aspect of numerical CED has been explored 
here. Besides, since we have designed fifth order DG schemes in this paper, we are able to get a clearer view of all the 
ingredients of a globally constraint preserving DG scheme for CED at all orders.

Our DG schemes are novel because they can be viewed as retaining many of the best aspects of the FDTD schemes; 
while finding a pathway to higher order extensions. Our first conclusion is that at fourth and higher orders of accuracy, one 
has to evolve some zone-centered modes in addition to the face-centered modes.

It is also well-known that the best way to operate a DG scheme is to use it without reliance on limiters; if the physical 
problem and the system of equations permit this. We have carried out several tests where the permittivity varied by almost 
an order of magnitude. For all these tests, we were able to run the DG scheme without using limiters. In fact, we never had 
to use limiters for any of the problems that are presented in this paper. This leads us to our second important conclusion 
that DG schemes of the sort designed here do not seem to require limiting in order to stabilize them. Just the logic of the 
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Riemann solvers, along with the natural global constraint preservation that is in-built into the scheme, proved sufficient to 
keep our DG schemes stable at all orders.

All our DG schemes evolve the facial electric displacement and magnetic induction and their higher moments as the 
primal variables. Maxwell’s equations, without the presence of conductivity, ensure the conservation of electromagnetic 
energy. In our schemes we do not do anything special to conserve electromagnetic energy. However, the DG philosophy 
helps because it provides evolution for all the modes, ensuring that our DG schemes retain the spirit of the governing 
PDE, i.e. Maxwell’s equations. Our third conclusion is that the DG schemes developed here have excellent ability to conserve 
electromagnetic energy on the computational mesh even when permittivity and permeability vary strongly in space; as long 
as the conductivity is zero. This is especially true for the fourth and higher order DG schemes presented here.

The three conclusions establish DG schemes as strong performers for globally constraint-preserving CED with several 
very favorable properties.
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Appendix A. Divergence-free reconstruction at second and third order

The reconstruction at fourth order accuracy (k = 3) has been detailed in section 4. Using this we can obtain the 
divergence-free reconstruction at second and third orders as follows. At degree k = 1, the field D is approximated on 
the faces and inside the cell as

D±
x (η) = a±

0 + a±
1 φ1(η), D±

y (ξ) = b±
0 + b±

1 φ1(ξ)

Dx(ξ,η) = a00 + a10φ1(ξ) + a01φ1(η) + a20φ2(ξ) + a11φ1(ξ)φ1(η)

Dy(ξ,η) = b00 + b10φ1(ξ) + b01φ1(η) + b11φ1(ξ)φ1(η) + b02φ2(η)

At degree k = 2, the field D on the faces and inside the cell is approximated by

D±
x (η) = a±

0 + a±
1 φ1(η) + a±

2 φ2(η), D±
y (ξ) = b±

0 + b±
1 φ1(ξ) + b±

2 φ2(ξ)

Dx(ξ,η) = a00 + a10φ1(ξ) + a01φ1(η) + a20φ2(ξ) + a11φ1(ξ)φ1(η) + a02φ2(η)+
a30φ3(ξ) + a12φ1(ξ)φ2(η)

Dy(ξ,η) = b00 + b10φ1(ξ) + b01φ1(η) + b20φ2(ξ) + b11φ1(ξ)φ1(η) + b02φ2(η)+
b21φ2(ξ)φ1(η) + b03φ3(η)

The coefficients aij , bij in the cell solution can be obtained from the formulae in section 4 by setting those coefficients 
which do not appear above to zero. Note that at these orders, the face solution completely determines the divergence-free 
reconstruction inside the cells, unlike at fourth and fifth orders, where additional information in terms of ωi is required to 
complete the divergence-free reconstruction.

Appendix B. Divergence-free reconstruction at fifth order

Let us start by assuming a form for the electric displacement using BDFM polynomial. Hence we take Dx ∈ P5 \ {η5} and 
Dy ∈ P5 \ {ξ5} which is the form of a BDFM polynomial [23]. The components of the vector field can be written in terms of 
the orthogonal basis functions as follows

Dx(ξ,η) = a00 + a10φ1(ξ) + a01φ1(η) + a20φ2(ξ) + a11φ1(ξ)φ1(η) + a02φ2(η)+
a30φ3(ξ) + a21φ2(ξ)φ1(η) + a12φ1(ξ)φ2(η) + a03φ3(η) + a40φ4(ξ)+
a31φ3(ξ)φ1(η) + a22φ2(ξ)φ2(η) + a13φ1(ξ)φ3(η) + a04φ4(η) + a50φ5(ξ)+
a41φ4(ξ)φ1(η) + a32φ3(ξ)φ2(η) + a23φ2(ξ)φ3(η) + a14φ1(ξ)φ4(η)

Dy(ξ,η) = b00 + b10φ1(ξ) + b01φ1(η) + b20φ2(ξ) + b11φ1(ξ)φ1(η) + b02φ2(η)+
b30φ3(ξ) + b21φ2(ξ)φ1(η) + b12φ1(ξ)φ2(η) + b03φ3(η) + b31φ3(ξ)φ1(η)+
b22φ2(ξ)φ2(η) + b13φ1(ξ)φ3(η) + b04φ4(η) + b40φ4(ξ) + b05φ5(η)+
b41φ4(ξ)φ1(η) + b32φ3(ξ)φ2(η) + b23φ2(ξ)φ3(η) + b14φ1(ξ)φ4(η)
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which has a total of 40 coefficients. By matching the above polynomial to the solution on the faces, we obtain the following 
set of 20 equations.

a00 ± 1
2a10 + 1

6a20 ± 1
20a30 + 1

70a40 ± 1
252a50 = a±

0

a01 ± 1
2a11 + 1

6a21 ± 1
20a31 + 1

70a41 = a±
1

a02 ± 1
2a12 + 1

6a22 ± 1
20a32 = a±

2

a03 ± 1
2a13 + 1

6a23 = a±
3

a04 ± 1
2a14 = a±

4

b00 ± 1
2b01 + 1

6b02 ± 1
20b03 + 1

70b04 ± 1
252b05 = b±

0

b10 ± 1
2b11 + 1

6b12 ± 1
20b13 + 1

70b14 = b±
1

b20 ± 1
2b21 + 1

6b22 ± 1
20b23 = b±

2

b30 ± 1
2b31 + 1

6b32 = b±
3

b40 ± 1
2b41 = b±

4

Setting the divergence to zero yields the following set of 15 equations

(a10 + 1
10a30 + 1

126a50)
y + (b01 + 1
10b03 + 1

126b05)
x = 0

(2a20 + 6
35a40)
y + (b11 + b13/10)
x) = 0

(a11 + a31/10)
y + (2b02 + 6
35b04)
x = 0

(3a30 + 5
21a50)
y + (b21 + 1

10b23)
x = 0

(2a21 + 6
35a41)
y + (2b12 + 6

35b14)
x = 0

(a12 + 1
10a32)
y + (3b03 + 5

21b05)
x = 0

4a40
y + b31
x = 0

3a31
y + 2b22
x = 0

2a22
y + 3b13
x = 0

a13
y + 4b04
x = 0

5a50
y + b41
x = 0

4a41
y + 2b32
x = 0

3a32
y + 3b23
x = 0

2a23
y + 4b14
x = 0

a14
y + 5b05
x = 0

The first equation in the above set of equations is redundant as it is included in the other equations due to the divergence-
free constraint (6). Ignoring this equation, we can solve for some of the coefficients in terms of the face solution as follows.

a00 = 1
2 (a−

0 + a+
0 ) + 1

12 (b+
1 − b−

1 ) 
x

y

a10 =a+
0 − a−

0 + 1
30 (b+

2 − b−
2 ) 
x


y

a20 = − 1
2 (b+

1 − b−
1 ) 
x


y + 3
140 (b+

3 − b−
3 ) 
x


y

a30 = − 1
3 (b+

2 − b−
2 ) 
x


y + 1
63 (b+

4 − b−
4 ) 
x


y

a40 = − 1
4 (b+

3 − b−
3 ) 
x


y

a50 = − 1
5 (b+

4 − b−
4 ) 
x


y

a04 = 1
2 (a−

4 + a+
4 )

a13 =a+
3 − a−

3

a14 =a+
4 − a−

4

b00 = 1
2 (b−

0 + b+
0 ) + 1

12 (a+
1 − a−

1 )

y

x

b01 =b+
0 − b−

0 + 1
30 (a+

2 − a−
2 )


y

x

b02 = − 1
2 (a+

1 − a−
1 )


y

x + 3

140 (a+
3 − a−

3 )

y

x

b03 = − 1
3 (a+

2 − a−
2 )


y

x + 1

63 (a+
4 − a−

4 )

y

x

b04 = − 1
4 (a+

3 − a−
3 )


y

x

b05 = − 1
5 (a+

4 − a−
4 )


y

x

b40 = 1
2 (b−

4 + b+
4 )

b31 =b+
3 − b−

3

b41 =b+
4 − b−

4
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The remaining coefficients satisfy the following equations

a01 + 1
6a21 + 1

70a41 = 1
2 (a+

1 + a−
1 )

a03 + 1
6a23 = 1

2 (a+
3 + a−

3 )

a02 + 1
6a22 = 1

2 (a+
2 + a−

2 )

a12 + 1
10a32 = a+

2 − a−
2

a11 + 1
10a31 = a+

1 − a−
1

b10 + 1
6b12 + 1

70b14 = 1
2 (b+

1 + b−
1 )

b20 + 1
6b22 = 1

2 (b+
2 + b−

2 )

b30 + 1
6b32 = 1

2 (b+
3 + b−

3 )

b21 + 1
10b23 = b+

2 − b−
2

b11 + 1
10b13 = b+

1 − b−
1

(2a21 + 6
35a41)
y + (2b12 + 6

35b14)
x = 0

3a31
y + 2b22
x = 0

2a22
y + 3b13
x = 0

4a41
y + 2b32
x = 0

3a32
y + 3b23
x = 0

2a23
y + 4b14
x = 0

We have more unknowns than equations, so we have to make some further assumptions on the remaining coefficient. Let 
set all the coefficients at degree five to zero since they are not required to get fifth order accuracy, i.e.,

a41 = a32 = b23 = b14 = a23 = b32 = 0

and we can immediately obtain the solution for the following coefficients

a03 = 1
2 (a+

3 + a−
3 ), a12 = a+

2 − a−
2 , b30 = 1

2 (b+
3 + b−

3 ), b21 = b+
2 − b−

2

The remaining equations and unknowns can be broken into two sets of equations. The first set is of the form

a01 + 1

6
a21 = 1

2
(a−

1 + a+
1 ) =: r1

b10 + 1

6
b12 = 1

2
(b−

1 + b+
1 ) =: r2

b12
x+ a21
y = 0

Here we have four unknowns but only three equations. We can solve these equations by introducing the additional variable 
b10 − a01 = ω1 and the solution is same as in the fourth order case given in section 4.

We are now left with the following set of four equations

a11 + 1

10
a31 = (a+

1 − a−
1 ) =: r3 a02 + 1

6
a22 = 1

2 (a+
2 + a−

2 ) =: r5 (15)

b20 + 1

6
b22 = 1

2 (b+
2 + b−

2 ) =: r4 b11 + 1

10
b13 = (b+

1 − b−
1 ) =: r6 (16)

but there are six unknown coefficients. All of these coefficients are at or below degree four and have to be retained for 
fifth order accuracy. We need additional information to solve for all the coefficients and we introduce the following two 
equations

b20 − a11 = ω2, b11 − a02 = ω3

Then we can solve for all the remaining unknown coefficients to obtain the following solution

a11 = 1

2+ 5
y

x

(
5r3


y


x
+ 2r4 − 2ω2

)
a02 = 1

5+ 2
y

x

(
2r5


y


x
+ 5r6 − 5ω3

)

a31 = 10(r3 − a11) a22 = 6(r5 − a02)

b20 = ω2 + a11 b11 = ω3 + a02

b22 = 6(r4 − b20) b13 = 10(r6 − b11)

This completely specifies the reconstructed field inside the cell. The evolution equations for ω2, ω3 are explained in sec-
tion 5.3.
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Appendix C. Numerical fluxes

The fluxes in the conservative form of the 2-D Maxwell’s equations (4) have the form F = AxU , G = AyU where the 
matrices Ax , Ay may depend on the spatial coordinate due to varying material properties and are given by

Ax =
⎡
⎣0 0 0
0 0 1/μ
0 1/ε 0

⎤
⎦ , Ay =

⎡
⎣ 0 0 −1/μ

0 0 0
−1/ε 0 0

⎤
⎦

For any unit vector n = (nx, ny), the matrix

An = Axnx + Ayny =
⎡
⎣ 0 0 −ny/μ

0 0 nx/μ
−ny/ε nx/ε 0

⎤
⎦

has real eigenvalues given by {−c, 0, +c} where c = 1/
√

εμ, and a complete set of eigenvectors given by⎡
⎣+√

εny

−√
εnx√
μ

⎤
⎦ ,

⎡
⎣nx

ny

0

⎤
⎦ ,

⎡
⎣−√

εny

+√
εnx√
μ

⎤
⎦

C.1. Solution of the 1-D Riemann problem

Consider the two states U L , U R separated across an interface with normal vector n which points from L to R , and such 
that D L · n = DR · n, i.e., the normal component of D is continuous. The flux in the direction n is

Fn = Fnx + Gny =
⎡
⎢⎣

−ny
μ Bz

+nx
μ Bz

1
ε (Dynx − Dxny)

⎤
⎥⎦

Let the intermediate states be denoted by U ∗ , U ∗∗ . Then the jump conditions across the three waves are
1) Across the −cL wave

− ny

μL
(B∗

z − BL
z ) = −cL(D

∗
x − DL

x) (17)

+ nx

μL
(B∗

z − BL
z ) = −cL(D

∗
y − DL

y) (18)

1

εL
[(D∗

ynx − D∗
xny) − (DL

ynx − DL
xny)] = −cL(B

∗
z − BL

z ) (19)

2) Across the 0 wave

−ny

(
1

μR
B∗∗
z − 1

μL
B∗
z

)
= 0 (20)

+nx

(
1

μR
B∗∗
z − 1

μL
B∗
z

)
= 0 (21)

1

εR
(D∗∗

y nx − D∗∗
x ny) − 1

εL
(D∗

ynx − D∗
xny) = 0 (22)

3) Across the +cR wave

− ny

μR
(B∗∗

z − BR
z ) = +cR(D∗∗

x − DR
x ) (23)

+ nx

μR
(B∗∗

z − BR
z ) = +cR(D∗∗

y − DR
y ) (24)

1

εR
[(D∗∗

y nx − D∗∗
x ny) − (DR

ynx − DR
x ny)] = +cR(B∗∗

z − BR
z ) (25)

From (17), (18) we get D∗ · n = D L · n while (23), (24) yields D∗∗ · n = DR · n, and hence the normal component of D is 
continuous throughout the Riemann fan. From (20), (21) we get

1
B∗
z = 1

B∗∗
z (26)
μL μR
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Fig. 11. Left: Four states U RU , U LU , U LD , U RD come together at a vertex (gray dot) to form a 2D Riemann problem. Right: Assumed wave pattern at a 
later time, consisting of four intermediate states from the HLL solvers and a strongly interacting state in the middle.

while (22) shows that

1

εR
(D∗∗

y nx − D∗∗
x ny) = 1

εL
(D∗

ynx − D∗
xny)

From (25)-(19) and (26), we get

1

μL
B∗
z = 1

cLμL + cRμR

[
cL B

L
z + cR B

R
z −

(
1

εR
DR

τ − 1

εL
DL

τ

)]

where Dτ = Dynx − Dxny is the tangential component. From (19) we get

1

εL
D∗

τ = 1

εL
DL

τ − cL(B
∗
z − BL

z )

The numerical flux is given by

F̂n =
⎡
⎢⎣

− ny
μL

B∗
z

+ nx
μL

B∗
z

1
εL

D∗
τ

⎤
⎥⎦

From the above solution, we can extract the information required in the FR and DG schemes. For a vertical face (nx, ny) =
(1, 0) and the numerical fluxes are

Ĥz = 1

μL
B∗
z , Ê y = 1

εL
D∗

y

and on a horizontal face (nx, ny) = (0, 1)

Ĥz = 1

μL
B∗
z , Êx = 1

εL
D∗

x

C.2. Solution of the 2-D Riemann problem

The update of the normal component of D stored on the faces requires the knowledge of the magnetic field H̃z at the 
vertices. We need a unique value of this quantity in order to obtain a constraint preserving scheme. On a 2-D Cartesian 
mesh, at each vertex of the mesh, we have four states that come together to define a 2-D Riemann problem as shown 
in Fig. 11. We denote these four states by U RU , U LU , U LD , U RD which correspond to right-upper, left-upper, left-down 
and right-down states respectively. Here we present a modified formulation based on [7] taking discontinuous material 
properties into account.

One-dimensional Riemann problem solutions develop between each pair of states and they interact with each other at 
the vertex which results in the strongly-interacting state as shown in the right of Fig. 11. This strongly-interacting state is 
the unique, new element in a multidimensional Riemann problem. In this wave model, the extremal speeds are chosen as 
follows

cL = −max(cLU , cLD) cR = +max(cRU , cRD)

cU = +max(cLU , cRU ) cD = −max(cLD , cRD)
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As can be seen in the right side of Fig. 11, we have four resolved 1D HLL state U ∗
U , U ∗

D , U ∗
R , U ∗

L . Each one of these states is 
obtained by applying one-dimensional HLL Riemann solver with a pair of corresponding incoming states. For example, U ∗

U
is obtained from U LU and U RU states and is given by

U ∗
U = cRU RU − cLU LU + F LU − F RU

cR − cL

with similar expressions for the other states. Using the resolved states U ∗
U , etc., we can simply apply the formula G∗

U =
G(U ∗

U ) to obtain the flux through the upper y-boundary of the multidimensional wave model. Similarly, we can obtain 
G∗

D , F ∗
L, F ∗

R from the corresponding resolved states and they are as follows

G∗
U =

⎡
⎢⎣− 1

μ̄U
B∗,U
z

0
− 1

ε̄U
D∗,U

x

⎤
⎥⎦ , G∗

D =
⎡
⎢⎣− 1

μ̄D
B∗,D
z

0
− 1

ε̄D
D∗,D

x

⎤
⎥⎦ , F ∗

R =
⎡
⎢⎣

0
1

μ̄R
B∗,R
z

1
ε̄R

D∗,R
y

⎤
⎥⎦ , F ∗

L =
⎡
⎢⎣

0
1
μ̄L

B∗,L
z

1
ε̄L

D∗,L
y

⎤
⎥⎦

where ¯(·) denotes the material property averaged by two associated incoming regions, for example, ¯(·)U = 1
2

( ¯(·)U L + ¯(·)U R
)
. 

The strongly-interacting state U ∗ can be obtained using the following formula (see eq. (12) in [7]):

U ∗ = −1

2

(
1

cR − cL

(
(F ∗

R − cRU
∗
R) − (F ∗

L − cLU
∗
L)
)+ 1

cU − cD

(
(G∗

U − cUU
∗
U ) − (G∗

D − cDU
∗
D)
))

we can calculate the resolved vertex flux H̃z from the 2D resolved state U ∗ using B
∗
z

μ̄ where μ̄ = 1
4 (μDL +μDR +μU L +μU R).
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