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ABSTRACT 
Nearly 1.35 million people are killed in automobile accidents every 
year, and nearly half of all individuals involved in these accidents 
were not wearing their seatbelt at the time of the crash. This lack 
of safety precaution occurs in spite of the numerous safety sensors 
and warning indicators embedded within modern vehicles. This 
presents a clear need for more efective methods of encouraging 
consistent seatbelt use. To that end, this work leverages wearable 
technology and activity recognition techniques to detect when 
individuals have buckled their seatbelt. To develop such a system, 
we collected smartwatch data from 26 diferent users. From this 
data, we identifed trends which inspired the development of novel 
features. Using these features, we trained models to identify the 
motion of fastening a seatbelt in real-time. This model serves as the 
basis for future work in which systems can provide personalized 
and efective interventions to ensure seatbelt use. 

CCS CONCEPTS 
• Computing methodologies → Machine learning algorithms; 
• Human-centered computing → Smartphones; Mobile devices; 
Mobile computing. 
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Human Activity Recognition, Wearable Technology, Automobile 
Safety, Seatbelt Use 
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1 INTRODUCTION 
Automobile accidents remain one of the leading causes of death in 
the United States, especially for Americans under 60 [7, 9]. Nearly 
half of Americans who died in car crashes in 2014 were not wearing 
a seatbelt at the time of the crash [1]. This statistic exists despite 
research that has shown that seatbelt use reduces the risk of fatal 
and serious injuries from car crashes by approximately 45% and 50% 
respectively [2] and widespread detection and warning systems 
designed specifcally to enforce seatbelt use in cars. According to 
statistics published by the Centers for Disease Control and Preven-
tion (CDC), young adults are the least likely age group to wear a 
seatbelt [8, 31], and men are less likely to wear their seatbelt than 
women [31]. Clearly, existing seatbelt warning systems leave room 
for improvement in their encouragement of safe user behavior. 

Commonly, automotive safety systems vie for the driver’s atten-
tion using an audible tone or visual indicator on the dashboard [36]. 
These warnings are triggered by sensors integrated within the 
vehicle [37] (often within the buckle [3] itself). However, the ef-
fectiveness and coverage of these safety systems is limited. The 
standard design has these systems centered around the driver with 
sensors only in the front seats and warning indicators only visible 
to the driver. Furthermore, these systems can be circumvented fairly 
easily. For example, drivers or passengers may leave their seatbelts 
always buckled across their seats, sitting on top of the belt while 
riding in the car. In other words, these safety systems are vehicle-
centric and ironically require cooperative behavior from a user who 
refuses to cooperate with safety guidelines. 

This work explores a human-centered paradigm for seatbelt 
monitoring. Current interventions are broad and static, operating 
with a standard procedure regardless of the identity of the pas-
senger. There is no precedent for altering interventions based on 
the behavior of individual passengers. A human-centered seatbelt 
safety system would function independently of the vehicle as it is 
built around specifc users. Notably, such a system would always 
remain in efect, regardless of what vehicle the user may be riding 
in or what seat they may be sitting in. Furthermore, a user’s record 
would not be contaminated by other people driving their vehicle. 
This system would also allow for personalized intervention tactics 
to ensure greater seatbelt compliance. For instance, knowledge of 
a user’s tendencies could inform a plan for improvement, and the 
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system could intervene in ways that the user has historically been 
more receptive to. 

In this work, we develop the groundwork for a personalized, 
context-aware seatbelt monitoring system, proposing a human-
centric activity recognition methodology for detecting whether a 
user has buckled their seatbelt. Activity recognition, or the recogni-
tion of physical activities from sensor data, has achieved consider-
able success in promoting healthy user behavior. For example, many 
health-related applications which monitor self-care activities (such 
as eating habits) [20, 21, 33] and intervene to correct undesirable 
behaviors [5, 10] depend on activity recognition. These systems 
commonly rely on wearable sensors, e.g., accelerometers [10], and 
machine learning classifers [12]. Building upon this body of work, 
we found that the motion of buckling a seatbelt can be distinguished 
from other common activities with similar motions using algo-
rithms built on features commonly found in activity recognition 
literature and based on patterns observable in the raw data. 

2 RELATED WORK 
Activity recognition systems generally fall into two categories: 
vision-based recognition and wearable inertial sensor-based recog-
nition. In this work we follow the latter approach as it better suits 
the nature of the problem. 

A number of studies have utilized wearable inertial sensor data 
to achieve human activity recognition. Early work explored the use 
of a variety of diferent sensors attached to various locations on 
the body [21, 22, 25, 27, 32]. These other types of sensors included 
barometers, gyroscopes, heart rate sensors, humidity sensors, light 
sensors, microphones, and thermometers. Lester et al. [21] noted 
that not all of these sensors were necessary to successfully classify 
user activities and demonstrated similar precision and recall using 
a sensor subset of accelerometers, microphones, and barometers. In 
each of these experiments, sensors were arranged in custom-built 
arrays which were intrusive and impractical for widespread use. 
Two notable exceptions were Maurer et al. [22] and Győrbíró et 
al. [15] who used senors built into early versions of smartwatches 
to recognize common human activities. 

Further research has demonstrated that collecting data from only 
a few biaxial or triaxial accelerometers is sufcient to recognize 
many activities [10, 13, 15, 29, 30, 32, 34]. One notable study was 
done by Bao & Intille [4] who placed biaxial accelerometers on the 
upper arm, wrist, hip, thigh, and ankle to recognize 20 common 
activities. From this study they found that accelerometers placed 
on the thigh, hip, and ankle were the best indicators for activities 
that had some form of ambulation or posture, while accelerometers 
placed on the wrist and arm were the best indicators for activities 
that involved mostly the upper body. 

Recent work has focused on of-the-shelf products such as smart-
phones [6, 19] and smartwatches [14, 33, 35], building of of these 
conclusions that accelerometers placed at the locus of the activity’s 
movement provides the best basis for recognizing these activities. 
Furthermore, commercially available devices are more practical for 
daily wear, are more likely to be worn by eventual users as they 
ofer other functionality, and do not have the social stigma that may 
be associated with the use of a prototype system [21]. These studies 
have focused on recognizing a wide range of mostly health-related 
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activities [10, 18, 27] such as meal tracking [25, 33, 35], monitoring 
cleanliness (e.g., brushing teeth, showering) [11, 14, 21, 30], and 
exercise encouragement [5, 23, 24, 28]. This work builds upon this 
body of work and uses smartwatch accelerometer data and machine 
learning techniques to detect the action of putting on a seatbelt, an 
activity which, to our knowledge, has not yet been recognized in 
literature. 

3 METHODOLOGY 

3.1 System Implementation 
In this work we collected accelerometer data from a wrist-worn 
smartwatch. Using accelerometer data from the wrist is well es-
tablished in the literature, especially for activities concentrated 
in the upper body and arms [4, 14, 18, 33]. We specifcally used a 
Pebble smartwatch, which possesses a 4G 3-axis accelerometer [26]. 
Accelerometer data was sampled at a rate of 25 Hz. The Pebble 
smartwatch is no longer commercially available; however, this study 
is not dependent specifcally on this particular smartwatch, rather it 
simply requires a wrist-worn device containing an accelerometer. It 
has been used in a number of other activity recognition studies [11, 
33]. 

3.2 Data Collection 
The motion of buckling a seatbelt generally consists of an arm-
raising motion (wherein the user reaches up and grabs the seatbelt) 
followed by an arm-lowering motion (wherein the user brings the 
seatbelt back down and buckles it in). More specifcally there are 
generally three diferent ways in which individuals buckle their 
seatbelt: 

(1) Reaching up with their left hand and bringing the seatbelt 
all the way down to buckle it. 

(2) Reaching up with their right hand and bringing the seatbelt 
all the way down to buckle it. 

(3) Reaching up with their left hand, transferring the seatbelt 
from their left hand to their right hand, and fastening the 
buckle with their right hand. 

This realization added a degree of complexity to our study, 
especially considering that only one wrist is being monitored by 
sensors. To provide data samples as uniform as possible, the user 
was directed to wear the Pebble watch on whichever arm they used 
to perform the initial upward reach, as this arm is most important 
in performing the characteristic arm-raising/arm-lowering motion. 
Furthermore, it was important that our algorithm was tested against 
a number of “control” activities, or activities whose motions are 
similar to that of buckling a seatbelt, as those are the activities most 
likely to generate false positives in a real-world system. These other 
activities consisted of: 

• Removing something from a shirt pocket. 
• Putting a phone in a pants pocket after sending a text. 
• Putting a phone in a pants pocket after ending a phone call. 
• Putting on a backpack. 
• Taking of glasses/sunglasses. 
• Putting on a jacket. 
• Reaching up and touching one’s face or adjusting hair. 
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Figure 1: The average F-measure of IBk, Multilayer Perceptron, and Random Forest when trained on data with rolling average 
window sizes w = 1 . . . 15. 

We conducted three separate data collection sessions, collecting 
accelerometer data from a total of 26 unique participants over the 
course of these sessions. 

3.2.1 Controlled Study. We conducted a controlled study frst to 
obtain an initial understanding of the activity. Users buckled their 
seatbelt ten times, then performed each of the seven control actions 
fve times. Data was collected from twelve participants during this 
portion of the study. 

3.2.2 In-the-wild Study. Following this study, we conducted a sec-
ond study in which participants wore the watch for an hour and 
half. This session provided “ambient" data, ensuring that a de-
ployed version of this system would not classify every action a 
user performed as one of the six labeled activities done during the 
controlled study. Participants were asked to buckle their seatbelts 
at least ten times during the period, but were otherwise free to go 
about their day. Common activities participants performed included 
walking, standing, opening doors, and getting in and out of a vehicle. 
Fourteen participants participated in this study, six of whom had 
participated in the frst study. 

3.2.3 Test Data. Activity data from an six additional individuals 
served as test data for our algorithms. These individuals were not a 
part of either the controlled or in-the-wild studies. These individuals 
received the same instructions as those who participated in the in-
the-wild study. 

3.3 Data Processing 
Raw accelerometer data was fltered using a rolling average function 
shown in Equation 1 where i is a particular data point on axis p that 
is centered in a window of size w . We trained three classifers—IBk, 
Multilayer Perceptron, and Random Forest—on each of the diferent 
values of w ; the average performance of the three classifers for 
each value of w can be seen in Figure 1. From this analysis we used 
a rolling average flter with a window size of 2. 

i+ ⌊ w −1Õ2 ⌋1′ p = pj (1)i w 
j=i−⌈ w −1 ⌉2 

Figure 2: A plot of fltered accelerometer data for one in-
stance of buckling. The frst “third” of the data corresponds 
to the period where the user lifts their arm to grab the 
buckle. The second “third” corresponds to the period where 
the user searches and grabs the buckle. The third “third” 
corresponds to the period where the user lowers their arm 
to fasten the buckle. 

Data was segmented into 6 second windows with a 4 second 
overlap. This window size was determined empirically to ensure 
that the entire activity is captured within a single window. Within 
each of these windows we extracted features to detect the three 
actions that compose the activity of buckling a seatbelt: raising 
the arm, grabbing the buckle, and lowering the arm. A depiction 
of this pattern can be seen in Figure 2. It’s important to note that 
because the user wore the watch on the arm that they used to grab 
the seatbelt, this general structure holds regardless of how the user 
buckled their seatbelt. 

3.4 Features 
The features we extracted from this processed data are shown 
in Table 1. Features A–H have been used extensively in previous 
activity recognition studies [12]. Features I–L were derived based 
on patterns observed in the raw data. 

Features I and J were derived based on the observation that 
certain axes appear very close in value during certain sections of the 
window. Features K and L were derived based on the observations 
that when individuals raised their hand there was a large diference 
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Table 1: Features extracted from fltered accelerometer data. In the feature equations A represents an axis. 

# Feature Name Equation Symbol 

(A) 

(B) 

(C) 

(D) 

(E) 

(F) 

(G) 

(H) 

(I) 

(J) 

(K) 

(L) 

Average 

Standard Deviation 

Minimum 

Maximum 

Product 

Correlation 

Variance 

Covariance 

Average Diference between Axes 

Average Absolute diference between Axes 

Diference between X-Y absolute diference 
and the Y-Z absolute diference 

Absolute Diference between X-Y absolute 
diference and the Y-Z absolute diference 

1 Ín 
n i=1 ai q 

σ 2 
A 

min(A) 

max(A) 

1 Ín 
n i=1 a1i a2i 

σA1A2 
σA1σA2 

1 ÍN 
=1(ai − µA)2 

n i 

1 ÍN 
=1(a1i − µA1)(a2i − µA2)n i 

1 Ín 
n i=1 a1i − a2i 

1 Ín 
n i=1 |a1i − a2i | 

1 Ín 
=1 |xi − yi | − |yi − zi |n i 

1 Ín 
=1 | |xi − yi | − |yi − zi | | n i 

µX , µY , µZ 

σX , σY , σZ 

xmin, ymin, zmin 

xmax, ymax, zmax 

X × Y , X × Z , Y × Z 

ρX Y , ρX Z , ρY Z 

σ 2 
X , σ 2 

Y , σ 2 
Z 

σX Y , σX Z , σY Z 

X − Y , X − Z , Y − Z 

|X − Y |, |X − Z |, |Y − Z | 

|X − Y | − |Y − Z | 

| |X − Y | − |Y − Z | | 

between the X and Y axes and a small diference between the Y 
and Z axes and when individuals lowered their hand there was a 
small diference between the X and Y axes and a large diference 
between the Y and Z axes. Each feature was extracted four times: 
once over the frst third of the window, once over the second third 
of the window, once over the third third of the window, and once 
over the whole window. Features A–J were extracted for each axis 
or for each pair of axes. In total 128 features were extracted from 
the fltered, windowed sensor data. 

Table 2: Subset of features extracted from fltered accelerom-
eter data 

Window Region Features 

σ 2Arm Raising X , ρXY 

Grabbing Buckle xmin,ymin, zmin, xmax,ymax, X −Y ,
2 2 2|Y − Z |, σX , σY , σZ ,σX ,ρYZ 

Lowering Arm Y × Z , σXY 

2 2 2Full Window zmin, |X − Y |, |Y − Z |, σX , σY , σZ , 
σZ , ρXY , ρXZ , ρYZ 

To improve the generalization and classifcation performance 
of classifying buckling vs. not buckling activities, we performed 

feature subset selection using the data from both the controlled 
and in-the-wild studies. We choose to use the Correlation-based 
Feature Selection (CFS) subset evaluation tool in the WEKA Data 
Mining Tool Kit [16]. This tool evaluates each feature in our set on 
the basis of their ability to predict the class as well as on the basis 
of redundancy with other features. This evaluation technique will 
generate a smaller subset of features that have a high correlation 
with the class but low inter-correlation [17]. Of our 128 features, 
CFS Subset Evaluation selected 26. These features are shown in 
Table 2. 

4 RESULTS 
To establish an upper bound on the expected performance, we 
trained classifers using the data from the controlled and in-the-wild 
studies. This was done in WEKA using stratifed cross validation. 
The selected algorithms include representatives from commonly 
used classes of machine learning algorithms: probabilistic classi-
fers (Naive Bayes), tree-based classifers (J48), neural networks 
(Multilayer Perceptron), support vector machines (SMO), k-nearest 
neighbor classifers (IBk), and ensemble methods (Random Forest). 
We used the ZeroR (Zero Rule) classifer to obtain the baseline 
performance. If the system cannot outperform a model that only 
selects the most probable label, then this performance indicates an 
issue with the architecture design and/or feature set. The perfor-
mance of these algorithms was evaluated using the F1-score metric 
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Table 3: Classifer F1-scores for Phase II advanced testing Table 4: Classifer F1-scores for Phase II verifcation testing. 
with CFS feature reduction. 

Classifer Activity F1-score 

IBk 
Buckling 0.755 
Not Buckling 0.931 

J48 
Buckling 0.673 
Not Buckling 0.920 

Multilayer Perceptron 
Buckling 0.789 
Not Buckling 0.947 

Naive Bayes Buckling 0.725 
Not Buckling 0.911 

Random Forest Buckling 0.795 
Not Buckling 0.950 

SMO 
Buckling 0.681 
Not Buckling 0.928 

ZeroR 
Buckling 0.000 
Not Buckling 0.889 

Classifer Activity F1-score 

IBk 
Buckling 0.707 
Not Buckling 0.900 

J48 
Buckling 0.690 
Not Buckling 0.899 

Multilayer Perceptron 
Buckling 0.756 
Not Buckling 0.927 

Naive Bayes Buckling 0.583 
Not Buckling 0.788 

Random Forest Buckling 0.722 
Not Buckling 0.919 

SMO 
Buckling 0.781 
Not Buckling 0.939 

ZeroR 
Buckling 0.000 
Not Buckling 0.889 

to avoid the accuracy paradox. As the activity of not-buckling was 
signifcantly more common than buckling one’s seatbelt both in 
our dataset and real-world , the accuracy metric would be infated 
and be a poor representation of the model’s actual performance. 
The formula for the F1-score is given in Equation 2. � �

Precision · Recall 
F1-score = 2 

Precision + Recall (2) 

The results on the training data can be seen in Table 3. The best 
performing classifer was Random Forest with the highest individ-
ual F1-scores on both the buckling and not buckling activities. The 
precision of this classifer is relatively high as evidenced by the 0.95 
F1-score on the not-buckling activity, indicating that the model 
is not mistaking other daily activities from the in-the-wild study 
as buckling. However, the recall of the buckling activity could be 
improved based on the 0.795 F1-score. 

Finally we trained a model on the entirety of the training data 
and evaluated it on the testing data. These results can be seen 
in Table 4. In contrast to the performance on the training data, 
the best performing model was SMO. Notably when applying our 
methodology to unseen data there were only small decreases to 
the individual F1-scores for both the buckling and not buckling 
activities. 

5 DISCUSSION AND FUTURE WORK 
In this work we demonstrated that it is possible to recognize when 
individuals buckle their seatbelt using smartwatch accelerometer 
data, a simple set of features from prior literature and based on 
observable patterns in the data, and standard machine learning 
algorithms. It is worth noting that although we collected “ambient” 
data through our in-the-wild study design, these studies were not 
representative of “real-life” usage patterns. In the future, we plan 
on evaluating and retraining our algorithms on data representative 
of participants natural driving habits. To further improve upon the 
performance of the algorithms developed in this work, algorithms 

trained on this data could also ostensibly take advantage of contex-
tual information such as the time of day and the user’s calendar 
(e.g., putting on a seatbelt might look diferent if an individual is 
running late to a meeting) as well as other sensors such as the GPS 
in the user’s phone. 

One key limitation of our study was the requirement of having 
participants wear the smartwatch on the hand they buckled their 
seatbelt with. This requirement likely made participants especially 
aware of being studied during data collection and is not ultimately 
practical for real-world deployment of the system. Future work 
can address this limitation in a couple ways. First, studies could 
look at the movement of the other hand during seatbelt buckling 
(e.g., fnding and holding the buckle) and add this to the overall 
classifer to ensure that it is robust enough to recognize the activity 
regardless of which wrist the smartwatch is worn on. Second, future 
studies could look at hardware solutions. If interfaces leveraging 
algorithms to recognize this and other activities were designed 
for non-wearable devices such as tablets or smartphones, a simple, 
lightweight band or bracelet functioning primarily as a wearable 
sensor (similar to several commercially available ftness trackers) 
could be practically worn on either wrist. 

Future studies should explore how to track seatbelt safety over 
time and the design of interfaces to present this data to users. This 
information could be used as an indicator of how safe a driver is, 
e.g., a rate of whether or not the individual wore their seatbelt while 
in a vehicle. Such data could be used by insurance companies to 
reward drivers who practice proper driving safety, although future 
studies should examine the privacy concerns associated with this 
use case before widespread adoption of this idea occurs. Beyond 
that, encouraging higher rates of seatbelt-compliance among in-
dividuals will likely require the development of novel interfaces 
and intervention techniques to make the individual aware of their 
habits. Such interfaces would need to be evaluated in a long-term 
user study to determine if the interventions improve the user’s 
seatbelt safety practices. The interface should ideally increase the 
rate of how often the user wears a seatbelt and not serve as a 
potential source of distraction if they are driving the vehicle. That 
said, the algorithm presented in this work serves as the frst step 
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towards designing efective human-centric, lifestyle-compatible 
seatbelt safety systems. 
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