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ABSTRACT

Nearly 1.35 million people are killed in automobile accidents every
year, and nearly half of all individuals involved in these accidents
were not wearing their seatbelt at the time of the crash. This lack
of safety precaution occurs in spite of the numerous safety sensors
and warning indicators embedded within modern vehicles. This
presents a clear need for more effective methods of encouraging
consistent seatbelt use. To that end, this work leverages wearable
technology and activity recognition techniques to detect when
individuals have buckled their seatbelt. To develop such a system,
we collected smartwatch data from 26 different users. From this
data, we identified trends which inspired the development of novel
features. Using these features, we trained models to identify the
motion of fastening a seatbelt in real-time. This model serves as the
basis for future work in which systems can provide personalized
and effective interventions to ensure seatbelt use.
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1 INTRODUCTION

Automobile accidents remain one of the leading causes of death in
the United States, especially for Americans under 60 [7, 9]. Nearly
half of Americans who died in car crashes in 2014 were not wearing
a seatbelt at the time of the crash [1]. This statistic exists despite
research that has shown that seatbelt use reduces the risk of fatal
and serious injuries from car crashes by approximately 45% and 50%
respectively [2] and widespread detection and warning systems
designed specifically to enforce seatbelt use in cars. According to
statistics published by the Centers for Disease Control and Preven-
tion (CDC), young adults are the least likely age group to wear a
seatbelt [8, 31], and men are less likely to wear their seatbelt than
women [31]. Clearly, existing seatbelt warning systems leave room
for improvement in their encouragement of safe user behavior.

Commonly, automotive safety systems vie for the driver’s atten-
tion using an audible tone or visual indicator on the dashboard [36].
These warnings are triggered by sensors integrated within the
vehicle [37] (often within the buckle [3] itself). However, the ef-
fectiveness and coverage of these safety systems is limited. The
standard design has these systems centered around the driver with
sensors only in the front seats and warning indicators only visible
to the driver. Furthermore, these systems can be circumvented fairly
easily. For example, drivers or passengers may leave their seatbelts
always buckled across their seats, sitting on top of the belt while
riding in the car. In other words, these safety systems are vehicle-
centric and ironically require cooperative behavior from a user who
refuses to cooperate with safety guidelines.

This work explores a human-centered paradigm for seatbelt
monitoring. Current interventions are broad and static, operating
with a standard procedure regardless of the identity of the pas-
senger. There is no precedent for altering interventions based on
the behavior of individual passengers. A human-centered seatbelt
safety system would function independently of the vehicle as it is
built around specific users. Notably, such a system would always
remain in effect, regardless of what vehicle the user may be riding
in or what seat they may be sitting in. Furthermore, a user’s record
would not be contaminated by other people driving their vehicle.
This system would also allow for personalized intervention tactics
to ensure greater seatbelt compliance. For instance, knowledge of
a user’s tendencies could inform a plan for improvement, and the
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system could intervene in ways that the user has historically been
more receptive to.

In this work, we develop the groundwork for a personalized,
context-aware seatbelt monitoring system, proposing a human-
centric activity recognition methodology for detecting whether a
user has buckled their seatbelt. Activity recognition, or the recogni-
tion of physical activities from sensor data, has achieved consider-
able success in promoting healthy user behavior. For example, many
health-related applications which monitor self-care activities (such
as eating habits) [20, 21, 33] and intervene to correct undesirable
behaviors [5, 10] depend on activity recognition. These systems
commonly rely on wearable sensors, e.g., accelerometers [10], and
machine learning classifiers [12]. Building upon this body of work,
we found that the motion of buckling a seatbelt can be distinguished
from other common activities with similar motions using algo-
rithms built on features commonly found in activity recognition
literature and based on patterns observable in the raw data.

2 RELATED WORK

Activity recognition systems generally fall into two categories:
vision-based recognition and wearable inertial sensor-based recog-
nition. In this work we follow the latter approach as it better suits
the nature of the problem.

A number of studies have utilized wearable inertial sensor data
to achieve human activity recognition. Early work explored the use
of a variety of different sensors attached to various locations on
the body [21, 22, 25, 27, 32]. These other types of sensors included
barometers, gyroscopes, heart rate sensors, humidity sensors, light
sensors, microphones, and thermometers. Lester et al. [21] noted
that not all of these sensors were necessary to successfully classify
user activities and demonstrated similar precision and recall using
a sensor subset of accelerometers, microphones, and barometers. In
each of these experiments, sensors were arranged in custom-built
arrays which were intrusive and impractical for widespread use.
Two notable exceptions were Maurer et al. [22] and Gy6rbiré et
al. [15] who used senors built into early versions of smartwatches
to recognize common human activities.

Further research has demonstrated that collecting data from only
a few biaxial or triaxial accelerometers is sufficient to recognize
many activities [10, 13, 15, 29, 30, 32, 34]. One notable study was
done by Bao & Intille [4] who placed biaxial accelerometers on the
upper arm, wrist, hip, thigh, and ankle to recognize 20 common
activities. From this study they found that accelerometers placed
on the thigh, hip, and ankle were the best indicators for activities
that had some form of ambulation or posture, while accelerometers
placed on the wrist and arm were the best indicators for activities
that involved mostly the upper body.

Recent work has focused on off-the-shelf products such as smart-
phones [6, 19] and smartwatches [14, 33, 35], building off of these
conclusions that accelerometers placed at the locus of the activity’s
movement provides the best basis for recognizing these activities.
Furthermore, commercially available devices are more practical for
daily wear, are more likely to be worn by eventual users as they
offer other functionality, and do not have the social stigma that may
be associated with the use of a prototype system [21]. These studies
have focused on recognizing a wide range of mostly health-related
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activities [10, 18, 27] such as meal tracking [25, 33, 35], monitoring
cleanliness (e.g., brushing teeth, showering) [11, 14, 21, 30], and
exercise encouragement [5, 23, 24, 28]. This work builds upon this
body of work and uses smartwatch accelerometer data and machine
learning techniques to detect the action of putting on a seatbelt, an
activity which, to our knowledge, has not yet been recognized in
literature.

3 METHODOLOGY

3.1 System Implementation

In this work we collected accelerometer data from a wrist-worn
smartwatch. Using accelerometer data from the wrist is well es-
tablished in the literature, especially for activities concentrated
in the upper body and arms [4, 14, 18, 33]. We specifically used a
Pebble smartwatch, which possesses a 4G 3-axis accelerometer [26].
Accelerometer data was sampled at a rate of 25 Hz. The Pebble
smartwatch is no longer commercially available; however, this study
is not dependent specifically on this particular smartwatch, rather it
simply requires a wrist-worn device containing an accelerometer. It
has been used in a number of other activity recognition studies [11,
33].

3.2 Data Collection

The motion of buckling a seatbelt generally consists of an arm-
raising motion (wherein the user reaches up and grabs the seatbelt)
followed by an arm-lowering motion (wherein the user brings the
seatbelt back down and buckles it in). More specifically there are
generally three different ways in which individuals buckle their
seatbelt:

(1) Reaching up with their left hand and bringing the seatbelt
all the way down to buckle it.

(2) Reaching up with their right hand and bringing the seatbelt
all the way down to buckle it.

(3) Reaching up with their left hand, transferring the seatbelt
from their left hand to their right hand, and fastening the
buckle with their right hand.

This realization added a degree of complexity to our study,
especially considering that only one wrist is being monitored by
sensors. To provide data samples as uniform as possible, the user
was directed to wear the Pebble watch on whichever arm they used
to perform the initial upward reach, as this arm is most important
in performing the characteristic arm-raising/arm-lowering motion.
Furthermore, it was important that our algorithm was tested against
a number of “control” activities, or activities whose motions are
similar to that of buckling a seatbelt, as those are the activities most
likely to generate false positives in a real-world system. These other
activities consisted of:

Removing something from a shirt pocket.

Putting a phone in a pants pocket after sending a text.
Putting a phone in a pants pocket after ending a phone call.
Putting on a backpack.

Taking off glasses/sunglasses.

Putting on a jacket.

Reaching up and touching one’s face or adjusting hair.
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Figure 1: The average F-measure of IBk, Multilayer Perceptron, and Random Forest when trained on data with rolling average

window sizes w = 1...15.

We conducted three separate data collection sessions, collecting
accelerometer data from a total of 26 unique participants over the
course of these sessions.

3.2.1 Controlled Study. We conducted a controlled study first to
obtain an initial understanding of the activity. Users buckled their
seatbelt ten times, then performed each of the seven control actions
five times. Data was collected from twelve participants during this
portion of the study.

3.2.2  In-the-wild Study. Following this study, we conducted a sec-
ond study in which participants wore the watch for an hour and
half. This session provided “ambient" data, ensuring that a de-
ployed version of this system would not classify every action a
user performed as one of the six labeled activities done during the
controlled study. Participants were asked to buckle their seatbelts
at least ten times during the period, but were otherwise free to go
about their day. Common activities participants performed included
walking, standing, opening doors, and getting in and out of a vehicle.
Fourteen participants participated in this study, six of whom had
participated in the first study.

3.2.3 Test Data. Activity data from an six additional individuals
served as test data for our algorithms. These individuals were not a
part of either the controlled or in-the-wild studies. These individuals
received the same instructions as those who participated in the in-
the-wild study.

3.3 Data Processing

Raw accelerometer data was filtered using a rolling average function
shown in Equation 1 where i is a particular data point on axis p that
is centered in a window of size w. We trained three classifiers—IBk,
Multilayer Perceptron, and Random Forest—on each of the different
values of w; the average performance of the three classifiers for
each value of w can be seen in Figure 1. From this analysis we used
a rolling average filter with a window size of 2.

il
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Figure 2: A plot of filtered accelerometer data for one in-
stance of buckling. The first “third” of the data corresponds
to the period where the user lifts their arm to grab the
buckle. The second “third” corresponds to the period where
the user searches and grabs the buckle. The third “third”
corresponds to the period where the user lowers their arm
to fasten the buckle.

Data was segmented into 6 second windows with a 4 second
overlap. This window size was determined empirically to ensure
that the entire activity is captured within a single window. Within
each of these windows we extracted features to detect the three
actions that compose the activity of buckling a seatbelt: raising
the arm, grabbing the buckle, and lowering the arm. A depiction
of this pattern can be seen in Figure 2. It’s important to note that
because the user wore the watch on the arm that they used to grab
the seatbelt, this general structure holds regardless of how the user
buckled their seatbelt.

3.4 Features

The features we extracted from this processed data are shown
in Table 1. Features A-H have been used extensively in previous
activity recognition studies [12]. Features I-L were derived based
on patterns observed in the raw data.

Features I and J were derived based on the observation that
certain axes appear very close in value during certain sections of the
window. Features K and L were derived based on the observations
that when individuals raised their hand there was a large difference
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Table 1: Features extracted from filtered accelerometer data. In the feature equations A represents an axis.

#  Feature Name Equation Symbol

(A) Average LI a4 HXs By s HZ

(B) Standard Deviation crfx 0x,0Y, 07

(C) Minimum min(A) Xmin> Ymin> Zmin
(D) Maximum max(A) Xmax> Ymax, Zmax
(E) Product Lyn  ayay XXY,XXZYXZ
(F) Correlation ::11;52 PXYs PXZ> PYZ
(G) Variance % Zﬁ\il(ai - pa)? 0)2(’ U%p U%
(H) Covariance L3N (a1i — par)(azi — paz) OXY,0XZ,0YZ
()  Average Difference between Axes % Xhiati—az; X-Y,X-2,Y-Z
(J) Average Absolute difference between Axes % 2 lai — azil IX-Y|,|X-2Z|,|Y - Z|
(K) Difference between X-Y absolute difference % 2 = yil = lyi — zil X -Y|-|Y-2Z|

and the Y-Z absolute difference
(L) Absolute Difference between X-Y absolute % 2 xi = yil = lyi — zill X -Y|-1Y-Z||

difference and the Y-Z absolute difference

between the X and Y axes and a small difference between the Y
and Z axes and when individuals lowered their hand there was a
small difference between the X and Y axes and a large difference
between the Y and Z axes. Each feature was extracted four times:
once over the first third of the window, once over the second third
of the window, once over the third third of the window, and once
over the whole window. Features A-J were extracted for each axis
or for each pair of axes. In total 128 features were extracted from
the filtered, windowed sensor data.

Table 2: Subset of features extracted from filtered accelerom-
eter data

Window Region | Features

Arm Raising 0)2(, XY
Grabbing Buckle | Xmin, Ymins Zmin> Xmax> Ymax> X —Y,
Y - Z|, 0)2(, (rf,, G%,O'X,pyz
Lowering Arm YXZ, oxy
Full Window Zmin, [X =Y, [Y = Z|, 0%, 0%, 02,
0Z, PXY> PXZ> PYZ

To improve the generalization and classification performance
of classifying buckling vs. not buckling activities, we performed

feature subset selection using the data from both the controlled
and in-the-wild studies. We choose to use the Correlation-based
Feature Selection (CFS) subset evaluation tool in the WEKA Data
Mining Tool Kit [16]. This tool evaluates each feature in our set on
the basis of their ability to predict the class as well as on the basis
of redundancy with other features. This evaluation technique will
generate a smaller subset of features that have a high correlation
with the class but low inter-correlation [17]. Of our 128 features,
CFS Subset Evaluation selected 26. These features are shown in
Table 2.

4 RESULTS

To establish an upper bound on the expected performance, we
trained classifiers using the data from the controlled and in-the-wild
studies. This was done in WEKA using stratified cross validation.
The selected algorithms include representatives from commonly
used classes of machine learning algorithms: probabilistic classi-
fiers (Naive Bayes), tree-based classifiers (J48), neural networks
(Multilayer Perceptron), support vector machines (SMO), k-nearest
neighbor classifiers (IBk), and ensemble methods (Random Forest).
We used the ZeroR (Zero Rule) classifier to obtain the baseline
performance. If the system cannot outperform a model that only
selects the most probable label, then this performance indicates an
issue with the architecture design and/or feature set. The perfor-
mance of these algorithms was evaluated using the F1-score metric
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Table 3: Classifier F1-scores for Phase II advanced testing
with CFS feature reduction.

l Classifier [ Activity [ F1-score ‘

Buckling 0.755

Bk Not Buckling | 0.931
Jas Buckling 0.673
Not Buckling | 0.920

. Buckling 0.789
Multilayer Perceptron Not Buckling | 0.947
Buckling 0.725

Naive Bayes

Not Buckling | 0.911
Buckling 0.795
Not Buckling | 0.950

Random Forest

Buckling 0.681
SMO Not Buckling | 0.928
ZeroR Buckling 0.000

Not Buckling | 0.889

to avoid the accuracy paradox. As the activity of not-buckling was
significantly more common than buckling one’s seatbelt both in
our dataset and real-world , the accuracy metric would be inflated
and be a poor representation of the model’s actual performance.
The formula for the F1-score is given in Equation 2.

Precision - Recall
Fl-score =2 | ——————m—
Precision + Recall 2

The results on the training data can be seen in Table 3. The best
performing classifier was Random Forest with the highest individ-
ual F1-scores on both the buckling and not buckling activities. The
precision of this classifier is relatively high as evidenced by the 0.95
F1-score on the not-buckling activity, indicating that the model
is not mistaking other daily activities from the in-the-wild study
as buckling. However, the recall of the buckling activity could be
improved based on the 0.795 F1-score.

Finally we trained a model on the entirety of the training data
and evaluated it on the testing data. These results can be seen
in Table 4. In contrast to the performance on the training data,
the best performing model was SMO. Notably when applying our
methodology to unseen data there were only small decreases to
the individual F1-scores for both the buckling and not buckling
activities.

5 DISCUSSION AND FUTURE WORK

In this work we demonstrated that it is possible to recognize when
individuals buckle their seatbelt using smartwatch accelerometer
data, a simple set of features from prior literature and based on
observable patterns in the data, and standard machine learning
algorithms. It is worth noting that although we collected “ambient”
data through our in-the-wild study design, these studies were not
representative of “real-life” usage patterns. In the future, we plan
on evaluating and retraining our algorithms on data representative
of participants natural driving habits. To further improve upon the
performance of the algorithms developed in this work, algorithms
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Table 4: Classifier F1-scores for Phase II verification testing.

l Classifier ‘ Activity ‘ F1-score ‘
Bk Buckling ‘ 0.707
Not Buckling | 0.900
Jas Buckling 0.690
Not Buckling | 0.899
. Buckling 0.756
Multilayer Perceptron Not Buckling | 0.927
. Buckling 0.583
Naive Bayes Not Buckling | 0.788
Buckling 0.722
Random Forest Not Buckling | 0.919
Buckling 0.781
SMO Not Buckling | 0.939
Buckling 0.000
ZeroR Not Buckling | 0.889

trained on this data could also ostensibly take advantage of contex-
tual information such as the time of day and the user’s calendar
(e.g., putting on a seatbelt might look different if an individual is
running late to a meeting) as well as other sensors such as the GPS
in the user’s phone.

One key limitation of our study was the requirement of having
participants wear the smartwatch on the hand they buckled their
seatbelt with. This requirement likely made participants especially
aware of being studied during data collection and is not ultimately
practical for real-world deployment of the system. Future work
can address this limitation in a couple ways. First, studies could
look at the movement of the other hand during seatbelt buckling
(e.g., finding and holding the buckle) and add this to the overall
classifier to ensure that it is robust enough to recognize the activity
regardless of which wrist the smartwatch is worn on. Second, future
studies could look at hardware solutions. If interfaces leveraging
algorithms to recognize this and other activities were designed
for non-wearable devices such as tablets or smartphones, a simple,
lightweight band or bracelet functioning primarily as a wearable
sensor (similar to several commercially available fitness trackers)
could be practically worn on either wrist.

Future studies should explore how to track seatbelt safety over
time and the design of interfaces to present this data to users. This
information could be used as an indicator of how safe a driver is,
e.g., a rate of whether or not the individual wore their seatbelt while
in a vehicle. Such data could be used by insurance companies to
reward drivers who practice proper driving safety, although future
studies should examine the privacy concerns associated with this
use case before widespread adoption of this idea occurs. Beyond
that, encouraging higher rates of seatbelt-compliance among in-
dividuals will likely require the development of novel interfaces
and intervention techniques to make the individual aware of their
habits. Such interfaces would need to be evaluated in a long-term
user study to determine if the interventions improve the user’s
seatbelt safety practices. The interface should ideally increase the
rate of how often the user wears a seatbelt and not serve as a
potential source of distraction if they are driving the vehicle. That
said, the algorithm presented in this work serves as the first step
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towards designing effective human-centric, lifestyle-compatible
seatbelt safety systems.
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