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ABSTRACT
Nearly half of people prescribed medication to treat chronic or
short-term conditions do not take their medicine as prescribed. This
leads to worse treatment outcomes, higher hospital admission rates,
increased healthcare costs, and increased morbidity and mortality
rates. While some instances of medication non-adherence are a
result of problems with the treatment plan or barriers caused by the
health care provider, many are instances caused by patient-related
factors such as forgetting, running out of medication, and not under-
standing the required dosages. This presents a clear need for patient-
centered systems that can reliably increase medication adherence.
To that end, in this work we describe an activity recognition system
capable of recognizing when individuals take medication in an
unconstrained, real-world environment. Our methodology uses a
modified version of the Bagging ensemble method to suit unbal-
anced data and a classifier trained on the prediction probabilities of
the Bagging classifier to identify when individuals took medication
during a full-day study. Using this methodology we are able to
recognize when individuals took medication with an F-measure of
0.77. Our system is a first step towards developing personal health
interfaces that are capable of providing personalized medication
adherence interventions.
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• Applied computing → Health care information systems; •
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1 INTRODUCTION
One of the most common treatments for chronic conditions is the
long-term use of medication. However, medication non-adherence
remains a significant and widespread issue, as an estimated 50%
of patients do not take their medication as prescribed [40]. These
patients are subject to worsening clinical symptoms and outcomes,
increased hospitalization readmission rates, and increased mortality
rates [25, 39]. More specifically, medication non-adherence has
been linked to a more than 2-fold increase in subsequent car-
diovascular events in patients with coronary heart disease [20],
increased hospitalization rates and total Medicare spending in
patients with COPD [46], decreased glycemic control in patients
with diabetes [10], and depression and lower quality of life in pa-
tients with Parkinson’s disease [21]. Overall, medication adherence
has become a significant strain on the healthcare industry, as an
estimated $100 to $300 billion is spent annually in the United States
on dealing with the consequences of this issue [25].

Given the prevalence and significance of medication
non-adherence, researchers have proposed a variety of interven-
tions in an effort to improve adherence rates. Many have proposed
intervening through the use of electronic medication packaging or
the integration of electronic devices into medical containers such
as pill bottles, pillboxes, and blister packs [11]. One study found
that the use of electronic prescriptions over paper prescriptions
improved adherence [48], while studies that have allowed patients
to track their blood pressure found mixed results when evaluating
its effect on medication adherence [45]. One of the more common
strategies in recent years has been the development of mobile
applications [15, 36]. The most trustworthy apps according to
pharmacists are Mango Health, MyMeds Medication Management,
MediSafe Medication Management, and Dosecast Medication Re-
minder [49]. Most of these solutions are broad strokes in which
opportunities for personalization remain limited, ultimately limit-
ing their utility. To make these interfaces more convenient for their
users and further advance over traditional methods, the next step
is to make these interfaces intelligent and capable of automatically
logging the users’ behavior.

Human activity recognition (HAR), or the recognition of human
activities through the analysis of wearable inertial or ambient
sensor data, offers a means of facilitating personalized medication
adherence interventions. Combining knowledge of the prescription
with detection of how and when patients take their medication
could feasibly power proactive health management interfaces that
are able to provide timely, personalized interventions. This type
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of interface could be integrated into daily routines in a helpful
and non-disruptive manner, borrowing from and improving on the
interfaces and user experiences of widely popular fitness trackers
and smartwatches [15, 36]. In recent years, activity recognition
researchers have made significant strides towards demonstrating
that advanced activity recognition techniques can also be used to
power such interfaces by recognizing andmonitoring a wide variety
of daily self-care activities (commonly referred to as Activities of
Daily Living (ADLs)) [6, 14, 30]; in this work we aim to extend this
body of work to include the accurate real-time recognition of the
action of taking medication.

To achieve this we seek to address one of the larger outstanding
research questions in the field of activity recognition applied to the
activity of taking medication: Can we develop an activity recogni-
tion system capable of recognizing ADLs in an unconstrained, real-
world environment? This task is challenging due to the inherent
data skew of activities of interest to out-of-scope activities, e.g., the
action of taking medication typically takes a few seconds, which
is a tiny fraction of an entire day. Traditional methods for dealing
with unbalanced classes result in suboptimal models in this domain
as they generally boost the recall of the minority class at the cost of
the classification precision. To address this we introduce portfolio
classification, which uses the probabilities generated by a baseline
classifier to improve performance, combined with a modified ver-
sion of bagging in which we sample the classes independently to
recognize the activity of taking medication in real-time.

2 RELATEDWORK
2.1 Activity Recognition for Taking Medication
Activity recognition techniques have been used to recognize a
wide variety of activities, most commonly leveraging wearable
inertial sensors in the form of accelerometers, gyroscopes, and/or
microphones and machine learning techniques to recognize am-
bulation activities [6, 29, 44], fitness activities [35, 37], and other
ADLs [14, 30, 50]. There has been a considerable amount of atten-
tion paid specifically to taking medication by activity recognition
researchers given the prevalence and consequences of medication
non-adherence [40]. It’s worth noting that most of these approaches
have looked at the physical motion of taking medication, rather
than the overarching ADL of taking medication (one exception
is Dernbach et al. [16] where subjects retrieved and sorted out
medication doses for a week). Many of these studies have used
sensor data collected from smartphones and smartwatches [18, 23,
26, 27, 34, 52]. Kalantarian et al. in particular has explored the idea
of using wearable technology frommultiple perspectives, analyzing
the different ways people take medications [27], using smartwatch-
based detection [26] and using a wearable neck sensor [28]. Several
studies have taken alternative approaches, developing systems
not worn by the individual. A study by Aldeer et al. [3] placed
accelerometers in the bottle and cap to differentiate users, while
several studies have used the Microsoft Kinect to detect the motion
of taking medication [12, 38]. Recent works have leveraged using
distributed computing [18, 34] and have sought to integrate systems
into a smart home environment [4].

2.2 Improving Classifier Performance
As classification tasks are one of the most common real-world
applications of machine learning, a significant amount of emphasis
has been placed on both developing better-performing algorithms
and augmenting existing algorithms to reduce their error. Solutions
focusing on the latter are diverse: even within the field of HAR,
techniques range from rules based on domain knowledge, ensemble
learning, and other semi-supervised techniques [1]. Using domain
knowledge, researchers have determined the relevant features for
HAR algorithms [27] or applied domain-specific rules to post-
process the classified sensor data [14]. The use of domain knowledge
is even more common in ambient sensing approaches to HAR [13].

Researchers have explored a number of different ensemble learn-
ing techniques. These include Co-training [22, 32, 47], a Genetic
Algorithm-based Classifier Ensemble Optimization Method [17], a
Hierarchical Weighted Classifier [5], Multi-view Stacking [19], and
Voting [42, 43]. Other semi-supervised techniques include further
training algorithms after deployment [33], and combining Multiple
Eigenspaces with Support Vector Machines [24].

To our knowledge, no study has sought to recognize the activity
of taking medication in an unconstrained, real-world environment
using data collected from an in-the-wild user study. Furthermore,
ensemble learning techniques have not been applied extensively to
the activity of taking medication.

3 DESIGN MOTIVATION
Human activity recognition of ADLs is integral to developing
applications for proactive health management. However, current
research in this field generally focuses on the ability to distinguish
a large number of activities only in the context of the activities
within the dataset. In other words, there has been little focus
on recognizing activities in in-the-wild settings where rejecting
unknown activities is central to a system’s success. This task is
challenging due to the inherent data skew of activities of interest
to out-of-scope activities. Traditional methods for dealing with
unbalanced classes result in suboptimal models in this domain as
they generally boost the recall of the minority class at the cost of the
classification precision. In contrast to an unbalanced recognition
task such as spam detection where false positives, i.e., false alarms,
are preferable to false negatives, i.e., misses, a system that claims
a user performed the “take medication” activity multiple times is
worse than a system that misses when the user tookmedication. The
former creates garbage data which results in additional problems
for the user and their healthcare provider when reading the logs
of the recognition system; the latter does not perform its intended
purpose but at least does not make the problem worse. In scenarios
where that minority class is not notably distinct from the majority
class, e.g., the activity of taking medication when compared to
many other activities performed throughout one’s average day, this
data skew becomes a serious barrier. Many samples of the class
of interest will be ambiguous. Training a model on such data and
expecting it to learn the minority class is asking the model to make
a suboptimal choice. As such, training such amodel on classification
error will result in a model that favors the majority class.

A solution to combat this problem lies in using randomness to
explore the data. In classification tasks, the two standout examples
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of using randomness as a core component of their algorithm design
are Random Forest [9] and Bagging [8]. Both of these methods train
multiple classifiers and aggregate the results to create a classifier
with lower variance and a lower chance of overfitting compared to
using a single classifier. Random Forest trains multiple classifiers
with all of the data but with random subsets of the features. Bagging,
i.e., bootstrap aggregating, involves sampling the training set with
replacement, i.e., bootstrapping, to create multiple classifiers on
varied subsets of the training data. However, the standard Bagging
technique relies on the assumption that each sampled subset will
be reasonably representative of the overall data distribution. When
applied directly to imbalanced datasets, Bagging will amplify the
individual classifier’s tendency to favor the majority class. To sum-
marize, Random Forest uses randomness during feature selection
for its internal classifiers, and Bagging uses randomness to select
the training data of its internal classifiers.

As the taking medication action is difficult to distinguish from
other activities performed throughout the day, Bagging has an edge
over Random Forest with respect to creating internal models that
can recognize the activity of taking medication. Taking samples
of the data functions similarly to undersampling in addressing the
data skew. But, Bagging does not work well with skewed data as it
inherently favors the majority class. This favoritism of the majority
class can be addressed with a simple modification: sample the
classes independently so that the data imbalance can be controlled
in each classifier within the aggregate Bagging classifier. As a result,
each classifier is guaranteed to be familiar with the class of interest.
Repeating this process k times results in a voting classifier where
each classifier has a different perspective of the universe.

4 DATA COLLECTION
4.1 System Implementation
A major component of wearable health monitoring design involves
the sensor type and placement. For a real-world system, the device
must not inconvenience the user or cause discomfort. With this in
mind, we selected smartwatches as the basis of our system to collect
3D accelerometer data in a unobtrusive fashion. Specifically, we
used Polar M600 smartwatches with a custom-built data collection
application that transmitted sensor data to Android smartphones
in real-time. The data collection interface is shown in Figure 1.
In addition to storing the data, the application was used to start
and stop the data collection process and to label each activity
performed. Participants could select from several pre-made buttons,
e.g., brushing teeth, drinking, eating, clapping, taking medication,
and washing hands, or write in a custom label, e.g., folding laundry.
Because people can perform the activity of taking medication with
both hands, the participants wore a watch on each wrist.

4.2 Activities
During the user study we asked the participant to label each activity
they performed. If the participant did not want to label an activity,
a default option of “nothing” was provided. We asked the partic-
ipants to label five activities of interest: brushing teeth, drinking,
eating, taking medication, and washing hands. These activities were
selected because they are ADLs and involve specific movements
of the hands and wrist. Brushing teeth and washing hands are

Figure 1: Smartphone and smartwatch interfaces for data
collection. Users can start and stop data collection by
selecting the sensors (in this study only data from the
Polar smartwatcheswas used).When performing an activity
users click the appropriate button to indicate what activity
they are doing. When they finish performing the activity
they could click the button again to indicate they had
finished. Green icons indicate the button is currently
selected. The watch interface simply indicates when data is
being collected.

both personal hygiene ADLs that are comprised of rapid, repetitive
movements. Conversely, eating, drinking, and taking medication
are all Basic or Instrumental ADLs that consist of specific, non-
repetitive movements.

Having these labels gives important information for recognizing
the activity of taking medication. For one thing, the activities of
eating and drinking are physically and contextually associated with
the activity of taking medication. The atomic actions of bringing
objects to one’s mouth are performed when eating, drinking, or
taking medication, and many medications require that people take
them with water and/or food. The other main benefit of having
additional labels than just the taking medication activity is having
context for the participant’s behavior during data analysis.

4.3 User Study
We recruited 9 participants (aged 18-30; 2 female, 7 male) for data
collection. Participants were asked to wear the smartwatches and
label their data for an entire day, i.e., from the time they got up in
the morning until the time they went to bed at night. This type of
study has the benefit of providing more realistic data; however, this
comes at the cost of potential noncompliance and noisier data. For
example, some participants completed the user study before the
evening and returned the watches after wearing them for only part
of their day. As shown in Table 1, the participants wore the watches
for anywhere from 3 to 34 hours, resulting in approximately 94
hours of total collected sensor data.
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On that note, participants were asked to integrate the activities
of interest into their day if they did not already have the habit of
doing them. This request does not make the data unnatural as all of
the activities are ones that people should perform on a daily basis to
stay clean and healthy. The only activity that is understandable that
a person may not perform regularly is the main activity of interest,
taking medication. As medication should not be taken for no reason,
participants were provided with a prescription bottle filled with
small candies, e.g., M&M’s, to serve as a placebo medication for
those who did not have any medications to take.

About 96% of the collected data was labelled “nothing” or “un-
known,” about 3% of the data was labeled a different ADL, and
approximately 0.29% of the collected data was labelled “taking
medication.” Participants varied in the number of times they took
medication throughout the study from 1 to 14 times; the amount
of “taking medication” samples compared to the total number of
samples from each participant varied from 0.08% to 0.91%. The
distribution of activities across the participants is given in Table 1.

Table 1: Distribution of Activities Across Participants

Participant Data Size (Hrs.) % Taking Medication # Times
P1 6.42 0.0008 1
P2 5.84 0.0035 1
P3 7.71 0.0034 2
P4 3.03 0.0066 2
P5 34.30 0.0014 5
P6 13.32 0.0030 6
P7 8.98 0.0016 2
P8 6.24 0.0039 6
P9 7.97 0.0091 14

Total 93.81 0.0028 39

5 BASELINE MODEL
To recognize when participants took medication we developed a
baselinemodel following a traditional activity recognition approach.
We extracted a total of 106 features from sliding windows of data,
which were fed into a modified controlled Bagging classifier. Hy-
perparameter tuning was done using nested leave-one-subject-out
cross-validation (LOSO CV) and the Tree-structured Parzen Estima-
tor (TPE) algorithm which selects parameters for testing based on
the performance of previously selected parameters. This algorithm
often produces better results than other methods [7]. Based off the
performance of various window sizes from 500ms to 5000ms and
overlap percentages from 0% to 75% during hyperparameter tuning,
the window size was set to 1000ms and the windows overlap by 75%.
This window size is small enough to detect the activity of taking
medication and the relatively high overlap percentage is useful for
detecting atomic actions.

The classifier for the system used a cross-validation-based voting
technique. After splitting the data into the training set and the
evaluation set, the training set was split into k folds. Each of the k
models were trained with a different fold held out as a development
test set. The averages of the prediction probabilities for each class
across the k models were used to determine the final prediction
probabilities and the resulting prediction.

5.1 Features
The features we extracted from segmented accelerometer data are
shown in Table 2. These features have either been used previously
in activity recognition studies [14, 31] or were adopted from other
domains such as audio analysis in the case of features (O)–(Q) (Eqs. 1
to 3) [51] and eye-tracking in the case of feature (S) (Eq. 4) [2]. Defini-
tions for Features (A)–(N) and (R) match those used in prior activity
recognition literature [14, 31]. Features (A)–(Q) were calculated for
each axis of the accelerometer for each hand and features (R) and (S)
were calculated for each hand, bringing the total number of features
to 106 ((17 features ∗ 3 axes ∗ 2 hands) + (2 features ∗ 2 hands)).

In Eqs. 1 to 3, Xi (k) represents the amplitude of the kth bin of
the DFT spectrum. Feature (S) was estimated using the Minkowski-
Bouligand box-counting method shown in Eq. 4 where D is the
fractal dimension and N (ϵ) is the number of boxes of length ϵ
required to cover the accelerometer path A.

C =

∑N
k=1 kX (k)∑N
k=1 X (k)

(1)

S =

√√√∑N
k=1(k −C)2X (k)∑N

k=1 X (k)
(2)

arg min
SR

SR∑
k=1

X (k) ≥ 0.85
∑
k

X (k) (3)

D(A) := lim
ϵ→0

logN (ϵ)

log(1/ϵ)
(4)

5.2 Controlled Bagging
As described in Section 3, controlled Bagging is a modification on
the Bagging ensemble machine learning model to enable recogni-
tion of rare classes. When training a controlled Bagging model, the
training data is split into two subsets based on whether the samples
belong to the minority class of interest or not. For each interior
classifier, training data for each subset is sampled independently
and then merged into a single training set to train the classifier
as usual. If desired, the class of interest subset can be used in its
entirety. The majority class is sampled based off the size of the
class of interest subset multiplied by the algorithm parameter skew.
Skew determines how rare the class of interest appears to each
interior classifier; in other words, skew controls the undersampling
rate of the majority class. The prediction probabilities of each inte-
rior classifier are aggregated to determine the Bagging classifier’s
prediction probabilities. Figure 2 depicts how the skew parameter
affects performance on the test set within each fold during training.
These F1-scores represent the performance of a single classifier
on unseen data. Controlling the data skew between 2% and 10%
results in improvements over the baseline of the majority classifier’s
performance, 0.5.

The controlled Bagging algorithm is written as a user-defined
classifier in Python. Preprocessing steps and the base classifier
leverage the scikit-learn packages [41]. We performed subset selec-
tion to reduce dimensionalality and improve generalization to the
test set. Subset evaluation metrics tested include χ2, classification
F1 score, and mutual information. χ2 ultimately produced the best
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Table 2: Features Used in Primary Model

# Feature Name
(A) Average Jerk (K) Standard Deviation of Number of Peaks
(B) Average Height (L) Number of Valleys
(C) Standard Deviation Height (M) Average Number of Valleys
(D) Energy (N) Standard Deviation of Number of Valleys
(E) Entropy (O) Spectral Centroid
(F) Average Acceleration (P) Spectral Spread
(G) Standard Deviation Acceleration (Q) Spectral Rolloff (<85%)
(H) Root-Mean-Squared (RMS) Acceleration (R) Axis Overlap
(I) Number of Peaks (S) Fractal Dimension
(J) Average Number of Peaks

Figure 2: The impact of skew parameter on the classifier’s performance on each fold’s test set. These skewparameters represent
a controlled data distribution for the “taking medication” class in the training data of 50%, 20%, 10%, 5%, 2%, and 1%.

performing models. To synergize with the χ2 subset selection, we
used min-max scaling as a preprocessing step the data for the model.
Decision trees are used as the base classifier within the bagging
classifier due to its simple and lightweight design. Each Bagging
classifier uses 100 decision trees with the entropy criterion and a
minimum of two samples per leaf to improve generalization.

5.3 Results
5.3.1 Baseline. To establish a baseline of performance more mean-
ingful than the majority classifier’s performance on this dataset,
we trained a model only on a specific user’s data for each of the 9
participants. The evaluation set for each of these models comprises
of a stratified random 10% of that user’s data, i.e., 10% of their “taking
medication” samples and 10% of the majority “nothing” class. As
shown in Table 3, the performance varies across the participants
correlating with the percentage of that user’s data being the “taking
medication” activity.

Table 3: Baseline Performance: User-Specific Models

Participant Macro F1-Score
P1 0.726
P2 0.565
P3 0.892
P4 0.705
P5 0.691
P6 0.745
P7 0.758
P8 0.685
P9 0.845

Average 0.735

5.3.2 User-Dependent Model. Our primary model is trained in a
user-dependent fashion, i.e., data from each user appears in both
the training and evaluation sets. The evaluation set for each of
these models comprises of a stratified random 10% of each user’s
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data, i.e., 10% of their “taking medication” samples and 10% of the
majority “nothing” class. This model does not improve over the
established baseline with a macro-F1 score of 0.721 as shown in
Table 4. Performance on each participant’s data provided for the
sake of comparison to the baseline; some user’s individual perfor-
mances improved while others worsened. This outcome implies
that people perform the activity of “taking medication” differently,
creating confusion within the multi-user model.

Table 4: User-Dependent
Model

Participant Macro F1-Score
P1 0.718
P2 0.604
P3 0.682
P4 0.602
P5 0.642
P6 0.666
P7 0.787
P8 0.687
P9 0.838

Overall 0.721

Table 5: User-Adaptive
Model

Participant Macro F1-Score
P1 0.595
P2 0.786
P3 0.695
P4 0.579
P5 0.636
P6 0.811
P7 0.602
P8 0.812
P9 0.730

Average 0.693

5.3.3 User-Adaptive Model. Because the “taking medication” classi-
fiers did not generalize well to unseen users, we additionally trained
classifiers that tune the user-dependent classifier to a specific user.
As the Bagging classifier uses voting to determine its final predic-
tion probabilities, combining the personalized recognition into the
model is simple: a model trained only on one specific user also
votes in the final classifier. As shown in Table 5, this model is worse
than the sum of its parts.

6 SECONDARY MODEL
6.1 Portfolio Classification
In this work we introduce the concept of portfolios, on top of which
we calculate simple heuristics to reduce the error produced by
baseline classification algorithms. We define a portfolio as follows:
given a set of activities A = {A1, ...,AN } the baseline algorithm

generates a set of probabilities or portfolio PA′ = {pA1 , ...,pAN }

for each class A′ where pA is the average probability of predicting
class A for class A′ and

∑N
i=1 pAi = 1 for each portfolio. When

used in k-fold cross-validation, portfolios for each class A′ are
unioned together to create a new portfolio of dimensionality k ∗

N . In addition, the standard deviations for each portfolio σA′ =

{σA1 , ...,σAN } are collected to track the range of the prediction
probabilities of each class on each class. In this work we look at a set
of activities that are generally associated with similar contexts and
movements of the hands and wrist, as these are the activities that
systems would have trouble distinguishing in real world scenarios.
We base our analysis on the intuition that not onlywill the portfolios
of these classes feature high probabilities for the other gesturally-
similar classes but also that misclassifications will come in the form
of common portfolios.

6.1.1 Portfolio Classification Methodology. The secondary model
learns to predict the class label based off the probabilities that it
belongs to each of the possible labels generated by the first model.
Methods for doing this task can be broadly grouped into three
categories: portfolio-based, ranking, and classification methods.

Portfolio-based methods use the prediction probabilities from
the first model to determine the predicted label on the test data by
treating the average prediction probability of each label for each
class as a portfolio. Labels are selected based on which portfolio
they have the highest similarity with or least distance from. Three
metrics were used to measure portfolio similarity: Cosine Similarity
(Eq. 5), Manhattan Distance (Eq. 6), and Weighted T-Score (Eq. 7).
Cosine similarity finds the most similar portfolio to the sample’s
prediction probabilities by treating the probabilities and the port-
folio as vectors and finding the portfolio whose angle with the
probabilities has the highest cosine. Manhattan distance finds the
most similar portfolio by finding the one with the smallest sum of
the absolute difference of the probabilities for each label. Weighted
T-score uses the portfolio’s mean and standard deviation for its own
label to calculate a T-score for the sample’s prediction probability
for that class. The similarity measure is the sample’s prediction
probability for that class divided by the T-score.

arg max
A′

N∑
i=1

Si ∗ PA′,i√∑N
i=1 S

2
i

√∑N
i=1 P

2
A′,i

(5)

arg min
A′

N∑
i=1

|Si − PA′,i | (6)

arg max
A′

SA′ ∗ σA′,A′

|SA′ − PA′,A′ |
(7)

Ranking methods compare the order of the probabilities of each
label sorted descendingly instead of comparing the exact values.
This type of approach helps recognize samples with inflated “noth-
ing” probabilities or shifts in label probabilities that could cause
confusion between the portfolios. These ranking methods must
also take the prediction probability for the label into account to
prevent false positives for labels with low probability that happen
to produce the same ranking profile. Two metrics were used to
determine the ranking similarity: Thresholded Jaccard Similarity
(Eq. 8) and Weighted Jaccard Similarity (Eq. 9). Jaccard similarity
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measures the size of the intersection of two sets over the union of
those two sets. In this case, the Jaccard similarity is calculated using
the top-k, e.g., top-4, predictions of the ranking profile for each class
and the sample’s ranked label probabilities. Thresholded Jaccard
similarity is a piecewise function based on the sample’s prediction
probability of the class in question. If the probability passes the
threshold determined by the mean prediction probability of that
class for its own label and the respective standard deviation of that
probability, then that label will use the Jaccard similarity of the
sample with that class as its metric. Otherwise, that label is given
a zero as its metric due to its lack of probability-based similarity
to the class. We tested a range of threshold values based on the
mean label probability plus or minus the standard deviation and
found the mean minus half a standard deviation granted the best
balance of precision and recall overall. Weighted Jaccard similarity
is Jaccard similarity multiplied by the prediction probability for the
label.

arg max
A′

{ rank (S ) ∪ rank (PA′ )

rank (S ) ∩ rank (PA′ )
if SA′ > PA′,A′ −

σA′,A′

2
0 otherwise

(8)

arg max
A′

SA′ ∗
rank(S) ∪ rank(PA′)

rank(S) ∩ rank(PA′)
(9)

Classification-based methods simply involve training a classifier
using the portfolios as features. The logic behind this is learning
what combinations of probabilities from each classifier are seen for
each class. As a result, common misclassifications can be identified
and corrected. Classifiers used include decision trees, multilayer
perceptrons, support vector machines, and random forest.

6.2 Results
The best-performing secondary classifier methods are presented
on the user-specific and user-dependent models from Section 5:
support vector machine (SVM), multilayer perceptron (MLP), cosine
similarity, and Manhattan distance.

6.3 User-Specific Models
With the introduction of an additional classification step after the
baseline model, the baseline performance needs to be updated in
turn. As shown in Table 6, using the SVM classifier to reclassify
samples based off the prediction probabilities of the controlled
Bagging classifier significantly improves performance.

6.4 User-Dependent Model
Using the secondary classifier decreased performance on the user-
dependent model as seen in Table 7. As it has more training data
at its disposal, the user-dependent model generally has higher
training performance than the user-specific models. As a result,
the prediction probabilities of the training data did not produce
patterns that generalized well to the evaluation data. This conclu-
sion is supported by the metrics of cosine similarity and Manhattan
distance performing better as these methods are less impacted by
the exact values of each probability.

Table 6: User-Specific Models

Participant SVM MLP Cosine Manhattan
P1 0.699 0.665 0.736 0.74
P2 0.857 0.611 0.563 0.56
P3 0.788 0.796 0.890 0.884
P4 0.646 0.555 0.699 0.67
P5 0.785 0.761 0.679 0.673
P6 0.777 0.739 0.724 0.714
P7 0.794 0.794 0.759 0.749
P8 0.785 0.823 0.685 0.678
P9 0.812 0.813 0.837 0.837

Average 0.771 0.729 0.730 0.723

Table 7: User-Dependent Model

Participant SVM MLP Cosine Manhattan
P1 0.498 0.498 0.698 0.694
P2 0.700 0.666 0.610 0.590
P3 0.655 0.677 0.683 0.661
P4 0.557 0.557 0.591 0.596
P5 0.650 0.605 0.639 0.634
P6 0.572 0.572 0.693 0.687
P7 0.602 0.646 0.773 0.757
P8 0.547 0.547 0.721 0.778
P9 0.658 0.658 0.842 0.838

Overall 0.604 0.603 0.719 0.710

6.5 User-Adaptive Model
Because the user-specific model is trained only on that one user’s
data and to learn how the primary classifier tended to misclassify
that specific user, the portfolios are calculated just on that user’s
data. With the secondary classifier, the user-adaptive model reached
and barely surpassed the performance of the baseline shown in
Table 6 with an average macro F1-score of 0.772.

Table 8: User-Adaptive Model

Participant SVM MLP Cosine Manhattan
P4 0.670 0.650 0.810 0.795
P1 0.808 0.833 0.608 0.605
P3 0.856 0.844 0.782 0.758
P5 0.654 0.608 0.647 0.647
P7 0.791 0.727 0.724 0.709
P6 0.759 0.827 0.707 0.683
P8 0.744 0.733 0.788 0.775
P2 0.843 0.843 0.722 0.710
P9 0.822 0.828 0.865 0.857

Average 0.772 0.766 0.739 0.727

7 DISCUSSION
7.1 Random Forest Results
In addition to Bagging, we tested the performance of the Random
Forest algorithm on this classification task. However, the results
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were lackluster, barely surpassing an F1-score of 0.6. Due to the
extreme data skew, the individual trees most likely favored the
majority class and were unable to garner enough votes for the
minority class “takingmedication” on those samples. These Random
Forest results and the realization of why regular Bagging had failed
led to the design of the controlled Bagging classifier proposed in
this work.

7.2 Interclass and Intraclass Variability
Unlike ambulation activities and other ADLs such as brushing
teeth and eating, the action of taking medication not only does not
feature characteristic repetitive motion but also inherently features
significant interclass and intraclass variability. Individuals can grab
a pill bottle with either hand and then remove the cap with the other
hand. The pill can then be dumped into the hand not holding the
bottle or the person can reach inside the bottle to grab a pill. They
can then put down the bottle to take the medication (sometimes
with a glass of water) or continue to hold the bottle while taking
the medication. The individual may switch which hand is holding
the bottle and replace the cap with the opposite hand they opened
it with. Furthermore, the individual may not take pills out of the
bottle directly at all and instead opt to use other containers such
as daily pillboxes or blister packs which have their own unique
interactions. This is all to say that each step can be performed
in multiple valid ways, and that these choices are not consistent
across users or even across different instances of taking medication
by the same individual. In our study participants were supplied
with a child-proof bottle filled with M&M’s to simulate the activity;
however, one participant took their own medication during the
study which came in a blister pack and a twisting child-proof bottle.
We did not instruct participants to take medication in any specific
way for this study.

These variations suggest the possibility of breaking the activity
up into smaller atomic actions (e.g., picking up a pill bottle with
the left hand, picking up a pill bottle with the right hand) and
attempting to classify these. This is an approach other studies
have taken [12, 27, 38]; however, these studies collect data from a
controlled lab environment rather than a real-world setting. Indeed,
expecting participants to label their actions at this level of granular-
ity outside of a lab environment would likely result in inaccurate
and incomplete labels. A potential solution to this would be to use
some sort of clustering technique on taking medication data to
find atomic actions. To investigate the feasibility of this we ran
a clustering experiment (t-SNE on 10% of the windowed data) to
visualize the likelihood that this solution would work. This can be
seen in Figure 3. Looking at the visualization it becomes clear that
the activity of “taking medication” does not form distinct clusters.

8 LIMITATIONS
While our study was designed to provide us with more realistic data
than a study conducted in a laboratory would have, several aspects
of our design prevented us from collecting completely natural data.
One aspect was having participants take fake medication from a
provided pill bottle a number of times over the course of a single
data collection session. Future work should focus on training and
testing algorithms on data collected from a longitudinal study with

individuals taking their own medication as they normally would.
Additionally, in our study, participants wore two smartwatches,
likely making participants especially cognizant of being studied
during data collection and not a practical requirement for real-world
deployment of the system. Future work should certainly focus on de-
veloping algorithms based on sensor data from a single smartwatch
(although the issue of user preference for wristwatchwearingwould
be present); however, future work should also focus on designing
hardware and software that overcomes this limitation. For example,
if interfaces leveraging these algorithms were designed for non-
wearable devices such as tablets or smartphones, wearable devices
could forgo the screen and become comfortable, lightweight bands
or bracelets (as is the case for a number of fitness trackers). This
could overcome the impracticality inherent to requiring individuals
to wear a smartwatch on each wrist.

9 INTELLIGENT MEDICATION ADHERENCE
INTERFACES

Automatic detection of medication intake has the ability to change
the way medication adherence interfaces are designed in two dis-
tinct ways: automating medication management and personaliza-
tion. Researchers need to go beyond simply recognizing when
individuals take medication but also make intelligent decisions on
how to best utilize that information. More specifically, algorithms
will need to recognize individual-specific medication adherence and
non-adherence patterns and subsequently make decisions based on
recognition of those patterns to address the individual’s actions.

9.1 Automated Medication Management
The current paradigm for medication management largely depends
on honest and diligent tracking by individuals. Interfaces for this
allow users to perform actions such as create their own schedule,
log their medication intake, and set up reminders. However, as soon
as the individual stops manually supplying the application with
information, the interface becomes ineffectual. Our work; however,
could allow interfaces to automate much of this, raising the likeli-
hood that the interface remains effective at ensuring medication
adherence. By tracking medication intake habits over time, the
system could learn the individual’s schedule, intelligently remind
them to take their medication only if they have forgotten, and even
reliably inform caregivers and/or reassure family members that the
individual is taking their medication.

9.2 Personalization
Improvements to medication adherence interfaces could similarly
be made in the form of personalization. Systems could learn over
time what types of interventions and motivations work best for
different individuals; for some simple reminders could be enough,
while others might prefer a direct reminder from a family member
or caregiver. Gamification approaches could likely become more
nuanced. Furthermore, with knowledge of the individual’s prescrip-
tion and calendar, interfaces could provide timely suggestions on
when and where to pick up refills.
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Figure 3: Clustering results from a t-SNE nonlinear dimensionality reduction (perplexity=50, iterations=100000) on 10% of the
windowed data. Here “taking medication” is separated by participant, note how neither taking medication over all users and
taking medication by user does not cluster.

10 CONCLUSION
Medication non-adherence is a significant and widespread issue
that has a number of negative consequences including increased
hospital readmission rates, increased healthcare costs, and higher
morbidity and mortality rates. Addressing this issue will require
the development of flexible proactive health management systems
capable of providing timely personalized interventions. In this work
we present an activity recognition system capable of recognizing
the action of taking medication using accelerometer data collected
from a smartwatch. We present portfolio classification as a novel
methodology for analyzing the data for instances of taking med-
ication. We find that using a user-adaptive model we are able to
recognize when individuals took medication with an F-measure of
0.77. These results show that our system is capable of informing
interfaces designed specifically to increase the rate of medication
adherence.
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