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One of the primary driving factors in building energy performance is occupant behavioral dynamics. As a
result, the layout of building occupant workstations is likely to influence energy consumption. In this
paper, we introduce methods for relating lighting zone energy to zone-level occupant dynamics, simulat-
ing energy consumption of a lighting system based on this relationship, and optimizing the layouts of
buildings. The optimization makes use of both a clustering-based approach and a genetic algorithm,
and it aims to reduce energy consumption. We find in a case study that nonhomogeneous behavior
(i.e., high diversity) among occupant schedules positively correlates with the energy consumption of a
highly controllable lighting system. We additionally find through data-driven simulation that the naïve
clustering-based optimization and the genetic algorithm (which makes use of the energy simulation
engine) produce layouts that reduce energy consumption by roughly 5% compared to the existing layout
of a real office space comprised of 151 occupants. Overall, this study demonstrates the merits of utilizing
low-cost dynamic design of existing building layouts as a means to reduce energy usage. Our work pro-
vides an additional path to reach our sustainable energy goals in the built environment through new non-
capital-intensive interventions.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

The energy performance of buildings is largely driven by the
operation of their energy-intensive systems. In commercial office
buildings, the most energy-intensive systems are those that pro-
vide comfortable thermal and visual environments (i.e., heating,
cooling, and lighting systems). The operation of these systems crit-
ically depends on the subjective experience of building occupants
when they are using a building’s spaces. As a result, there is no
need to heat, cool, or light spaces that are not used at a particular
point in time. These thermal and lighting systems are often con-
trolled by zone, and in the case that even one occupant enters a
zone, the systems must typically service the entire zone. This
shared feature of building system operation contributes heavily
to inefficiency [1], but it also creates the opportunity to optimize
the design and management of building spaces and save energy
through the individualization of building spaces. In this work, we
investigate the optimization of layouts in existing buildings in
response to data on occupant use of space. We define the layout
as the assignment of occupants to the existing workstations in
the building. The flexibility in determining which occupants sit at
which workstations forms the possible design space for layout
optimization.

Let us consider a hypothetical example of an office building
with 4 teams, 4 members per team, and 4 shared rooms/zones.
Let us assume, for the purposes of this example, that this office
building houses a global call center, whereby one member of each
team must be present in the office to make calls at any given time.
All 4 teams have decided to operate on the following schedule: the
first team member works from 12 am to 6 am, the second from
6 am to 12 pm, the third from 12 pm to 6 pm, and the fourth from
6 pm to 12 am. If the office is arranged such that each team occu-
pies its own room/zone, there will be one person in each room at
all times. In other words, all 4 rooms will have exactly 1 occupant
in the room at all times. We refer to this situation as an example of
high occupant diversity within each building zone, where diversity
is a term used to describe the differences in activities or schedules.
As a result of this diversity, the heating, cooling, and lighting sys-
tems for all four rooms will operate at all times. We could instead
arrange the layout such that each occupant shares a room with
their fellow shift-workers (e.g., all 12 am to 6 am workers share
a room). In this case, only one room, the occupied room, will need
to be supplied with heating, cooling, and lighting throughout the
day. The operation time of these systems would therefore be
reduced by 75% compared to the first scenario.
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While this is an extreme example, the underlying dynamics
apply to all buildings with shared spaces. In reality, the complexi-
ties and subtleties of occupant schedules, particularly in large
office buildings, make it difficult to discern shared patterns of
behavior. The decisions of creating building layouts, therefore, typ-
ically involve functional or hierarchical structures of organizations.
In this paper, we investigate the possibility of optimizing layouts
based on occupants’ use of spaces.

Past research into building energy efficiency has focused on
both building design as well as building operation. A large body
of work has focused recently on the impact of occupant behavior
on energy-intensive operation of building systems. Furthermore,
researchers have investigated the role of design optimization,
including through an occupant-centric lens, in reducing building
energy consumption. Below, we discuss key findings from previous
research and motivate the work presented in this paper.

1.1. Building design and energy efficiency

It is well known that the design of buildings has a large impact
on their future operation, including energy efficiency [2]. When
considering energy in building design, architects and engineers
generally consider physical building parameters including orienta-
tion, materiality, fenestration, and choice of heating, cooling, and
lighting systems [3–5]. The design process also considers, in addi-
tion to these physical characteristics of individual components, the
impacts of layout on occupant behavior through the architectural
programming process. This programming is often driven by
intended building use (e.g., meeting rooms or workspaces in an
office building). While this design process is typically regarded in
terms of our subjective experience of the building, past research
has shown that these choices for building layouts can influence
the energy consumption of the building [1]. For example, locating
parts of a home that are more often used in the morning on the
eastern side of the house could reduce the amount of heating, cool-
ing, and lighting required for those spaces.

An advantage of considering the layout of the building in the
context of energy efficiency is that layouts are often flexible, espe-
cially compared to other design considerations such as orientation
and materiality. This is especially important due to the fact that
our use of buildings evolves over time. Buildings originally
intended for one purpose are often repurposed to suit changing
needs, leading to different patterns of space utilization and render-
ing some physical design considerations obsolete. Moreover, as
buildings lifespans are on the order of 40–100 years [6], it is
expected that the majority of energy consumption from the build-
ing sector will come from existing buildings rather than new con-
struction for many upcoming years—years that are critical to our
sustainable energy goals [2]. This importance of the existing build-
ing stock in addressing energy challenges suggests the need for
new and innovative ways to reconsider the energy-intensive attri-
butes of existing building design. New design methods that focus
on building layouts are a promising means of addressing these
challenges.

1.2. The role of the occupant in energy efficiency

As discussed above, building layouts are often driven by
intended use. Research has shown that the actual use of spaces
by building occupants, while extremely impactful to building
energy consumption, is very difficult to model and understand
[7–9]. For example, a seminal study showed that changes in occu-
pant behavior can cause two-to-one discrepancies in actual versus
expected energy consumption [10]. Both occupant actions (e.g.,
interactions with building systems through thermostats, windows,
etc.) as well as their passive use of space are important to energy
2

consumption [11]. This latter notion, passive space use, largely
drives energy consumption in buildings that have systems that
are able to respond (e.g., turn off or reduce service) based on occu-
pancy information. These responsive systems are increasing in
prevalence as energy codes and regulations are driving wider
adoption of energy-efficient technologies in the building sector
[12].

1.3. Optimizing buildings for energy efficiency

As both design and occupant behavior are key factors that affect
the energy efficiency of buildings, researchers have sought to
leverage optimization of building design and operation as a tool
to improve energy performance. These optimization approaches
have generally focused either on building design pre-
construction or operation of heating, cooling, and lighting systems
post-construction. Design optimization is typically considered in
the context of new construction [3]. Such research has largely
focused on physical building parameters in the early stages of
design [3,13]. However, because of the coupled effects of occupant
behavior and building design on building performance, researchers
have noted that occupant-related uncertainty can hinder confi-
dence in early-stage design decisions supported by such optimiza-
tions [14]. These coupled dynamics have driven researchers to
focus more on the operational phase of building—and particularly
the importance of building occupants—as a means of improving
energy efficiency [12].

Researchers have therefore developed data-driven tools that
optimize control of energy-intensive systems in existing buildings,
finding that optimizing control of systems through an occupant
lens can enable large reductions in energy consumption, ranging
from 15 to 70% depending on the types of systems analyzed [15–
17]. Recently, researchers have found that an important compo-
nent of such control optimization strategies is the explicit consid-
eration of occupant comfort, which improves the subjective
experience of the occupants but can reduce the energy savings pos-
sible [18]. This research shows the promise of introducing sustain-
able energy savings in existing buildings by controlling building
systems optimally. However, this research also considers the
dynamics of occupant behavior as given. To take full advantage
of controllable building systems, there remains the opportunity
not only to optimize how systems respond to building space use,
but also to optimize how people themselves use spaces—an aspect
we consider in this paper through the building layout.

The previous research discussed in this section has shown that
we can optimize building designs before construction and optimize
building controls after construction. However, the dynamic behav-
ior of building occupants—behavior that enables research into
building controls—can also enable new research into building
design features that remain flexible once the building is erected.
As discussed above, a focus on building layouts may offer a means
for addressing energy gaps in design through a naturally occupant-
focused lens. A key research gap, therefore, is the integration of
design optimization with important characteristics of dynamic
occupant behavior. While optimization of physical building param-
eters before construction will remain a promising area of inquiry,
there is a need to be able to dynamically examine aspects of build-
ing design once its key operational parameter, the building occu-
pant, enters the picture.

Some emerging research at the intersection of building design,
operation, and occupant experience concerns optimal utilization
of designed spaces. For example, the paradigm of activity-based
workspaces (ABW) seeks to provide occupants with different
spaces for different tasks, as opposed to the more traditional para-
digm of individual desk assignment [19]. Recent work has shown
that computational approaches can leverage the ABW paradigm
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to optimize energy and space use efficiency [20]. Along similar
lines, researchers have considered the notion of ‘‘green schedul-
ing,” whereby certain activities are scheduled for particular build-
ing zones or at particular times of the day in an effort to reduce
building system operation time, for example in the case of schedul-
ing course timetables in university buildings [21]. These
approaches explicitly consider the interaction between occupant
experience and building energy consumption, working toward an
occupant-centric building design and operation paradigm.
Research in these areas tends to focus on analysis of existing build-
ing layouts, but there also remains the opportunity to develop
methods for reimagining the layouts of existing buildings.

Recent research has investigated such dynamic optimization of
building layout designs in terms of organizational structure and
performance [22]. For example, Lather et al. [23] considered the
layout of hospitals based on organizational adjacencies among
healthcare departments, using a graph theoretical approach to
develop optimal layouts. Similarly, Lee et al. [24] defined a build-
ing’s operating efficiency in terms of occupants’ estimated walking
time as they carried out different activities, leveraging ant colony
optimization to develop building floor plans. However, the direct
optimization of building layouts to address the energy-efficient
operation of building systems remains an area for continual
research.

In this paper, our overarching research question is whether
building layouts can be optimized to reduce energy consumption
of energy-intensive systems by leveraging sensor data on occupant
activities. We first describe our previously introduced methods for
abstracting time series plug load data to states of occupant behav-
ior. We then discuss our methods of analyzing zone-level diversity
in occupant schedules, optimizing layouts, and simulating the
impacts of adopting an optimized layout. We introduce a real-
world case study, where we apply our methods to a floor of an
office building with 151 occupants.

2. Methodology and data collection

In this section, we describe our overall methodology for
developing a framework that enables the optimization of building
layouts—defined as the allocation of occupants to existing worksta-
tions—for energy savings (Fig. 1). We first leveraged ambient sen-
sor data collected from plug load energy sensors at the individual
desk level to describe occupants’ use of space over time. We term
this description the individual’s occupant schedule (Section 2.1).We
define a distance metric that can be used to describe the zone diver-
sity in occupant schedules over several individuals (Section 2.2).
This distance metric creates the ability to cluster occupants spa-
tially (i.e., create new layouts) in an effort to reduce this zone
diversity and therefore building energy consumption (Section 2.3).
Due to the extremely high dimensionality of the possible solution
space, we also introduce a genetic algorithm for creating occupant
layouts based on expected energy consumption (Section 2.4). For
Fig. 1. Outline of methodology. Section 2.1 covers inference of occupant schedules fro
optimization schemes, and 2.5 covers the data-driven surrogate model for energy simul
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evaluation of our layout optimization algorithms, we introduce a
data-driven surrogate model for simulating energy consumption
of a building’s lighting system based on occupant schedules (Sec-
tion 2.5). We describe the dataset used for analysis in Section 2.6.

2.1. Data collection and preprocessing: learning occupant schedules
from plug-load sensor data

Our analysis approach makes use of time series sensor data col-
lected from plug load sensors installed at individual desks in com-
mercial office buildings—data that provides insight into patterns of
space use. We note that other sources of individualized sensor data
that can describe individual patterns of space use could be adapted
as the underlying data. We define the time series energy data as Xi,

d where i is the occupant index (for all occupants 1,. . .,I) and d is the
day index (for all days 1,. . .,D). The total number of time steps is
D � T, where D is the number of days and T is the number of time
steps during the day (i.e., if we collect data at 15-minute intervals,
T = 96). Each entry in the data matrix, Xi,d can be represented as a
vector {x1,. . .,xT}. We leveraged the method introduced in Sonta
et al. [25] to map the raw data to abstracted states of occupant
activities: Xi,d ? Si,d. This mapping, based on variational Bayesian
inference with a Gaussian Mixture Model (VB-GMM), was used
to cluster the time series data into discrete states. For each obser-
vation xt, we introduced a latent variable, zi comprising a 1-of-K
binary vector with elements zt,k for k = 1,. . .,K, where K is the pos-
sible number of components that can be used to cluster the data.
Given the set of weights for each component k, which we refer to
as /, we can write the conditional distribution of Z as follows:

p Zj/ð Þ ¼
YT

t¼1

YK

k¼1
/

zt;k
k

The conditional distribution of the observed plug load data, X,
can therefore be written as follows, given the latent variables
and component weights:

p XjZ;l;Kð Þ ¼
YT

t¼1

YK

k¼1
N xt jlk;K

�1
k

� �ztk

where l is the set of component means and K is the set of compo-
nent precisions (defined as the inverse of the standard deviations).
Following standard Bayesian statistical practices, we introduced a
Dirichlet distribution over the mixing coefficients and a Gaussian-
Wishart prior over the mean and precision of each component.
One of the key outputs of fitting this model is the number of com-
ponents in / that are non-zero. The resulting non-zero distributions
were then used to cluster the data.

As discussed in Sonta et al. [25], we used a two-step process for
finding the number of components. If the initial clustering of the
data resulted in two components, we separated out the higher-
energy data and re-ran the clustering algorithm. Our rationale for
doing this is based on our domain knowledge of occupant behavior
and plug load data—the higher energy data has high variability and
is likely to represent multiple states of activity. Consistent with
m plug load data, 2.2 covers the zone diversity metric, 2.3 and 2.4 cover layout
ation.
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previous results, the model output was most commonly two
components for the initial clustering and two components for the
secondary clustering. We therefore applied this two-step two-
component clustering to the data in this study. The result was a
mapping X ? S, where sti;d 2 1;2;3f g.

These three activity states, due to their construction, reflect
intensity of energy use; we therefore refer to these states as
low energy, medium energy, and high energy. This intensity of
energy use creates the physical interpretation of each activity
state. For example, higher energy use values map to high energy
activity states, which correspond to occupants actively using
their workstations. Similarly, a medium energy activity state is
likely to signify that some equipment has entered a power-
saving mode without fully turning off. Past work has shown that
this mapping of the ambient plug load data to occupant activity
states constitutes an occupancy sensing strategy at least as accu-
rate as other state-of-the-art sensing strategies, such as infrared
sensors [25,26]. An added advantage of the activity state strat-
egy is that it offers additional information beyond presence/ab-
sence in that it describes the state of interaction with the
workstation (e.g., a high energy activity state suggests full inter-
action with the workstation equipment). We refer to these indi-
vidual time series of activity states as occupant schedules
hereafter.
2.2. Representing zone diversity of occupant schedules using Euclidean
distance

As discussed above, buildings provide energy-intensive services
by zones, and the spatial efficiency of providing these services
depends on occupant schedules. Therefore, a key question in
understanding the operation of these systems, from the perspec-
tive of spatial efficiency, concerns the similarities or differences
among the schedules of occupants within individual zones. We
term these similarities and differences as the diversity in occupant
schedules among occupants within a given space, and we opera-
tionalize this measure on time series data. Based on the work in
Yang et al. [1], we can define this diversity as the distance between
the vectors describing time series schedules for each occupant in
the zone. A range of distance metrics could be used, including
cosine similarity, Manhattan distance, Euclidean distance, etc. Fol-
lowing previous research practice [1], we used the Euclidean dis-
tance for this study but note that the specific distance choice did
not have a large impact on the analysis.

If our schedule data is structured as above—Si,t, where i is the
occupant index and t is the time index—we can compute Euclidean
distances between the schedules for any two occupants. For exam-
ple, the distance between occupant i and occupant j can be com-
puted as follows:
di;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

t¼0
Si;t � Sj;t
� �2r

Using this distance metric, we computed the distances between
all occupants in a zone, forming a distance matrix. Normalizing this
distance matrix by the total number of entries in the matrix (ex-
cept the diagonal, since occupants’ distance from themselves is
0), we have an average distance among all the occupant schedules
within the zone, which we define as the overall zone diversity. With
this metric, we compared the diversity of occupant schedules for
individual building zones to the actual energy consumption of
the building systems. We would expect higher zone diversity to
correlate with higher energy consumption, as was shown using
physics-based simulation in Yang et al. [1].
4

2.3. Optimizing layouts: Dimensionality reduction and occupant
clustering

2.3.1. Dimensionality reduction using truncated singular value
decomposition

Given occupant activity states and the notion of zone diversity
in occupant dynamics, our next objective was to create optimal
groupings of occupants in space—that is, to optimize a building’s
layout as a means to minimize energy use. Time series sensing gen-
erally produces many signals over time for each sensor deployed.
In our case, activity states are generally reported on the scale of
15 min, creating 96 signals per occupant per day, or up to 35,000
signals per year. Computation of distances between vectors of this
size suffers from the well-documented curse of dimensionality,
whereby distance functions lose their usefulness as the dimension
of the space increases [27]. We therefore employed a common
dimensionality reduction process known as Singular Value Decom-
position (SVD), a generalization of Primary Component Analysis, as
a means to reduce the dimensionality of our data. We note that the
zone diversity metric introduced above can be computed either for
the unreduced data or the reduced data—the definition holds for
both perspectives.

A common technique in recommendation algorithms and
dimensionality reduction, SVD allows the reduction in size of the
data while still capturing valuable features [28]. This dimensional-
ity reduction is done by projecting the data with a set of orthogonal
basis vectors representing the modes of variance in the system.
These vectors are often referred to as the ‘‘concept space”, as each
vector represents some abstract concept which captures the vari-
ance. Truncating the lower variance orthogonal vectors before
reconstruction yields a best approximation of the data in lower
dimensional space, and we can select the number of dimensions
depending on how much information we would like to retain dur-
ing reconstruction. We applied SVD to a transposed version of our
activity states: M = ST (where M has D � T time rows and I occu-
pant columns) Here, the number of rows is expected to be much
larger than the number of columns. The decomposition is as
follows:

M ¼ URVT

Here, U contains the eigenvectors of MMT, V contains the
eigenvectors of MTM, and R is a diagonal matrix containing the
singular values of M (R2 contains the eigenvalues of MTM). The
shapes of these matrices are determined by r = rank(M), where
in our case, r = I. Therefore, U has the shape (D � T, I). These
eigenvector matrices can be thought of as a rigid transformation
in high dimensional space, which aligns the data according to
the variance of the data. Thus the primary axis after the rotation
will be aligned with the axis of highest variance, the second axis
will be aligned with the second highest variance, etc. In practice,
the matrices U and V map the data to a concept space. The con-
cept space is defined by the shape of the primary eigenvectors in
the system, which typically will provide some kind of intuition as
to what is driving the variance. In occupant schedules, a concept
space might identify the time at which a person usually arrives at
the office to be a valuable indicator, or when they take their
lunch break.

Our purpose for using SVD was to project very high dimensional
occupant behavioral space to a much lower dimensional represen-
tation, permitting a richer and faster clustering process. After the
matrix was decomposed into U, V, and R, the original data matrix
M was projected into concept space via a rigid rotation from U:
R = UTM. The result of this projection was the condensing of the
state data into an I � I matrix R, where each column, previously
the length of the full time series, is now more densely represented,
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and the different columns correspond to the different occupants.
Because U is orthogonal, the removal of the least powerful vectors
prior to multiplication with M yielded a projection of the data into
the lower dimensional space with the least amount of lost value.
For example, for a d-dimensional representation of the data, such
that d + d0 = I, the least significant d0 eigenvectors/values in U are
removed and the resulting representation of the full dataset R0 will
have the dimension d � I. This approximates the replacement of
the smallest eigenvalues with a 0 term, which becomes redundant
in the reconstruction and can be truncated without losing value.

2.3.2. Stochastic constrained expectation maximization occupant
clustering

With this relatively low-dimensional representation of our
activity data S, data-driven clustering of the occupants according
to their activity states becomes more feasible. Here, we intro-
duce a novel clustering algorithm based on the data representa-
tion R0. The objective of the clustering algorithm is to minimize
the zone diversity metric from Section 2.2 for the occupants
within a building zone. Our problem setting has the real-world
constraint that each of the building zones retain their same size
at the end of the clustering routine to preserve the same overall
occupant spatial density, preventing the use of standard cluster-
ing algorithms such as k-means. The intuition behind our novel
approach is to minimize the zone diversity metric by spatially
swapping occupants with other occupants that reduce zone
diversity. By doing so, we can expect to reduce lighting con-
sumption according to the relationship we have established
between these metrics.

The mechanics of the algorithm are depicted in Fig. 2. First, we
chose, with replacement, a random occupant/desk, which is associ-
ated with a building zone. We note that building zones do not all
need to be the same size as depicted in Fig. 2. We then simulated
a ‘‘swap” between this occupant and all occupants in the other
zones of the building. The resulting swap was the shift which
had the greatest overall drop in zone diversity, which includes
the null action of the occupant swapping with itself. We repeated
this process until an iteration limit was reached. We note that
alternative stopping criteria could be used, such stopping when-
ever the improvement after iterating is below a certain threshold.
In our algorithm, however, the null action of the occupant swap-
ping with itself would have the effect of no improvement. For ease
of implementation, the iteration limit approach offers simplicity
along with flexibility to handle such edge cases.

2.4. Optimizing layouts: Genetic algorithm

Our problem statement, to optimize building layout in order to
reduce the energy consumption of building systems, has an extre-
mely large solution space. If there are I occupants in a building and
n possible zones to assign them to (of equal size m = I/n), then the
number of possible assignments can be computed as follows:
Fig. 2. Occupant clus
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groups ¼ I!
m!ð Þn � n!

For example, with 50 occupants and 5 zones, the number of
possible assignments is on the order of 1029. In addition to the
large solution space associated with our problem, the effects of
reassigning occupants would be expected to be highly nonlinear.
When optimizing in these circumstances, genetic algorithms have
been shown to perform well [29–31]. We therefore implemented a
custom genetic algorithm to assign occupants to desks and opti-
mize building layouts, as described below.

Genetic algorithms belong to the class of evolutionary algo-
rithms for optimization, originally inspired by the process of natu-
ral selection. The process begins by creating an initial set of design
points—in our case, building layouts. Each building layout x in the
initial population P was defined by the grouping of occupants to
the zones of a building. A fitness function was used to evaluate
the fitness of each design point f(x). For this fitness function, we
leveraged a data-driven surrogate simulation engine that can be
used to predict building energy consumption based on occupant
schedules and other time series information, as discussed below
in Section 2.5. Once each design point was evaluated, a certain
number of designs were selected to create a new generation of
designs. In our case, we selected the B best performing layouts,
and, in order to maintain diversity in the population, we also
selected R random layouts. Among the best layouts and randomly
selected layouts, two layouts were chosen at a time and recom-
bined c times to form the layouts in the next generation. The first
step in recombination was crossover, whereby for each desk loca-
tion in each zone, the occupant selected to occupy that desk was a
random selection of the two occupants in the original two designs.
The next step was mutation, which occured for each new individ-
ual with probability m. If mutation did occur, a random desk in
each zone was swapped with a random desk from a random other
zone. Crossover is meant to preserve the high-performing features
that exist in the best-performing layouts in the previous genera-
tion; mutation is meant to introduce randomness so that the algo-
rithm does not get stuck in a local minimum. Once a completely
new generation was created from the previous generation, through
crossover and mutation, the process repeated for G generations.
The parameters, therefore, that must be chosen to run the genetic
algorithm are the fitness function f, the population size |P|, the
number of best performing layouts |B| and the number of ran-
domly chosen layouts |R|, the number of new layouts c created
for each chosen pair, the mutation probability m, and the number
of generations G. Fig. 3 shows a visual representation of the
algorithm.
2.5. Simulating lighting energy consumption based on building layouts

There are several viable simulation models for evaluating the
expected energy consumption of different building layouts. These
tering algorithm.



Fig. 3. Genetic algorithm adapted for building layout optimization.
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models fall into two main categories: physics-based thermody-
namic models (e.g., EnergyPlus [32]) and data-driven ‘‘surrogate”
models [33]. Thermodynamic models have been shown to be par-
ticularly helpful when evaluating energy consumption from heat-
ing and cooling systems, though recently mixed models and
data-driven surrogate models have become more prevalent. How-
ever, because our analysis focused on lighting systems with direct
control through occupancy sensors (as explained below), the ther-
modynamic models are more complex than necessary for this task.
Additionally, the time required for their analysis is prohibitive for
running our genetic algorithm optimization. Therefore, we sought
to develop a data-driven surrogate model that utilizes machine
learning to predict lighting energy consumption based on occupant
schedules as well as standard time series features (e.g., time of day,
day of week, etc.). We chose to test multiple linear regression
(MLR), support vector regression (SVR), random forests (RF), and
artificial neural networks (ANN) to determine the most robust sur-
rogate model for our purpose.

The 7 specific features we used for prediction of energy con-
sumption were as follows:

� s1, s2, s3: number of occupants in each of the three energy states
as defined above in Section 2.1.

� Hour of day (0–23)
� Day of week (0–6)
� Weekday/weekend indicator (0 or 1)
� Zone number (0–number of zones)

Both the day of week and weekday/weekend indicator were
included as features. Since these features are correlated with one
another, the MLR model may be impacted by multicollinearity.
We note that for the MLR model, this collinearity does not impact
6

the power of prediction, but may make any hypothesis testing on
the importance of features less reliable. The zone number was
included to enable the model to adapt to zone-specific operational
tendencies. For example, many lighting systems include daylight
sensors, whereby the artificial lighting levels are lowered if enough
daylight is present. This modulation would be expected to vary
throughout the day for each zone, depending on orientation and
other factors.

We implemented each potential surrogate model, described
briefly here, using the scikit-learn package in Python [34].

� Multiple linear regression. The simplest model, MLR seeks to pre-

dict energy consumption (bY ) as a linear combination of the

model features (X): bY = bX + e, where b is a vector of parameters
and e is the error term. The fitting of the parameters involves
minimization of the error term.

� Support vector regression. The model produced by SVR relies on a
small subset of the training data known as support vectors.
Errors within the bounds created by the support vectors (within
margin e) are ignored. Fitting an SVR model involves the follow-
ing optimization:
min
1
2
kwk2 þ C

Xn

i¼1
fi � f�i
� �

subject to the following constraints:

yi �wT/ xð Þ � b � e� fi

wT/ xð Þ þ b� yi � e� f�i

f �ð Þ
i � 0
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where w is the set of feature weights fi and f�i are the residuals
beyond e and u is a kernel function that is often nonlinear such
as the Gaussian radial basis function. The SVR model has been
previously applied to building energy prediction tasks with suc-
cess [35].

� Random forests. The RF regression model is an extension of the
decision tree model in regression form, in which the overall
model aggregates (generally through averaging) the result from
many independently fit trees. Each tree constitutes a series of
decisions on the features (e.g., time of day is less than or greater
than 6 am), and once the full series of decisions are made, a final
value is chosen. RF models have successfully been applied to
energy prediction in various settings [36,37].

� Artificial neural network. An ANN is an interconnected group of
nodes, in which each node produces a signal according to the
data it receives. ANN architecture generally involves an input
layer (which receives the features), one or more hidden layers,
and an output layer (which produces a prediction). These net-
works are fit using backpropagation. They have been widely
used for energy prediction tasks [37,38].

Each of the four models can be evaluated by splitting the data
into a training set and a test set, and then performing 5-fold cross
validation on the training set for model development. In this work,
the initial split into training and test sets preserved the time series
attribute of the data: the first 80% of the data, in terms of time,
were used as the training set and the second 20% were used for
testing. We preserved the time series attribute of the data in order
to test the ability of the models to predict future events and also to
enable time series visualization of the performance of each model.
Once each of the four models was evaluated, we tuned the hyper-
parameters of the high-performing models. This hyperparameter
tuning was again performed using 5-fold cross validation on the
training set.

For the MLR, ANN, and SVR (non-tree-based) models, one-hot
encoding was used for the day of week and zone number features,
bringing the total number of features up to 23 features. Addition-
ally, for these models, the hour of day feature was decomposed
using sine and cosine transformations, to preserve the cyclical nat-
ure of the hour features (i.e., hour 23 is close to 0). Furthermore,
the ‘‘state count” features (number of occupants in each energy
state) were transformed using a sigmoid function. The intuition
behind this transformation is that there are diminishing effects
Fig. 4. Total zone energy consumption vs. number of occupants in state 3. The
plateau indicates that once a small number of occupants are in the zone, the
addition of more occupants does not further increase energy consumption.
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of having more than one occupant present in the zone (as shown
in Fig. 4). This phenomenon occurs due to the fact that the lights
only need to sense one occupant in order for all lights within a
zone to turn on. Finally, the features were scaled to range between
0 and 1. Each of these steps were found to enhance the perfor-
mance of the non-tree-based predictive models. These additional
feature scaling steps were not used for the tree-based RF regressor,
as the decisions are invariant to the scaling.
2.6. Empirical data

We installed plug load energy sensors at each desk on a single
floor or a large commercial office building in Redwood City, CA.
The floor comprises 164 desks, of which 151 were occupied. The
data collection period started August 1, 2019 and ended February
29, 2020. During the data collection period, the building operated
under flexible standard work hours (i.e., most occupant activity
occurred between the hours of 7 am and 7 pm, but with flexibility
in terms of when occupants chose to use the building). Each occu-
pant was assigned to their own workstation, which did not change
during the study period. Occupants generally conducted standard
office work, consisting of individual work at workstations as well
as meetings with other occupants within and outside the study
building. The sensors are Zooz SmartPlugs that communicate to a
Samsung SmartThings hub through Z-Wave technology. The plug
load sensors reported power consumption values any time the
power consumption varied by more than 0.1 W. Consistent with
previous work [25], we aggregated the power consumption to
15-minute intervals, as modeling space use at this time frequency
has been shown to limit noise while providing useful information
in terms of building operation. As described above in Section 2.1,
we mapped the raw plug load data to energy states describing
occupant schedules.

The office building is equipped with a lighting system that oper-
ates based on occupancy sensors, daylighting sensors, and sched-
ules. The lighting zones are controlled by occupancy sensors
across the building floor. If any lighting fixture within a zone
senses motion over the past 20 min (10 min on weekends), all fix-
tures within that zone turn on. Eleven of the lighting zones service
all workspaces (the others service other small shared spaces such
as meeting rooms, corridors, etc.), and all lighting zones that ser-
vice workstations use the same fixtures. We restricted our analysis
to the 11 zones that service workspaces, as we were interested in
characterizing energy consumption in places where individual
schedules can be modeled according to our data. The lighting
energy data is available at 1-hour intervals for the full duration
of the study.

Due to persistent sensor outages at the beginning of data collec-
tion, our analysis began with data on October 1, 2019. In addition,
due to a temporary shutdown of organizational activities over the
New Year, we discarded data from December 16, 2019 to January 4,
2020. We therefore restricted our analysis to 132 full days of sen-
sor and lighting energy data.
3. Results

3.1. Increased zone diversity correlates with increased energy
consumption

For each day over the data collection period, and for each of the
11 lighting zones in the building, we computed the zone diversity,
as discussed above in Section 2.2. We also computed the average
energy consumption across lighting fixtures within a zone. We
then completed a regression analysis for the relationship between
zone diversity and energy consumption, as shown in Table 1. We



Table 1
Results of regression between lighting energy consumption and zone diversity across the 11 zones in the test building.

Zone Number of Workstations Coefficient (Standard Deviation) t-statistic p-value R2

0 16 422.5(78.29) 5.396 <0.001 0.165
1 16 492.4(52.64) 9.354 <0.001 0.354
2 10 828.2(106.7) 7.762 <0.001 0.288
3 10 532.4(80.00) 6.655 <0.001 0.288
4 20 527.9(35.33) 14.944 <0.001 0.627
5 6 749.6(126.3) 5.934 <0.001 0.253
6 16 514.3(40.78) 12.611 <0.001 0.288
7 16 989.2(51.83) 19.087 <0.001 0.666
8 22 177.6(39.70) 4.472 <0.001 0.117
9 22 486.9(20.94) 23.256 <0.001 0.757
10 10 97.1(60.90) 4.878 <0.001 0.157
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found that for each zone, there was a positive relationship between
zone diversity and energy consumption. We computed the t-
statistic for the regression coefficient, and we found that the p-
value for the t-statistic was significant at the 0.001 level for all
zones. While the positive relationship is clear, both the slope of
the relationship and strength of that relationship in terms of the
R2 value varied across zones. We note that each zone has a differ-
ent size in terms of number of workstations within the zone, but
we found that the differences in relationship strength do not seem
to depend on this zone size. In Fig. 5a, we show the data along with
the regression lines and 95% confidence intervals for each zone,
and we show in Fig. 5b and c the individual regressions for the
zones with the largest and smallest regression coefficients, respec-
tively: Zone 7 and Zone 10. We note that this result serves as val-
idation of the hypothesized relationship between occupant
schedules and energy consumption. In addition, it serves as moti-
vation for optimizing building layouts in order to reduce this diver-
sity and therefore save energy.

3.2. Lighting energy simulation is driven by occupant schedule data

We tested the four models described above in Section 2.5 by
performing 5-fold cross validation on the training set. We found
that, before tuning of hyperparameters, the ANN performed the
best in terms of mean squared error (MSE) and explained variance
(R2), and the RF model performed the best in terms of mean abso-
Fig. 5. Relationship between zone diversity metric and energy consumption along with
different zones, (b) zone with the largest regression coefficient (Zone 7), and (c) zone w
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lute error (MAE) (Table 2). Because the squared error terms, MSE
and R2, exaggerate the importance of larger errors, we can infer
that the RF model occasionally produced larger errors, while the
ANN model produced a higher baseline of error values. While the
ANN model took the longest time to train, it required less compu-
tation time to produce a prediction than the RF model. Based on
these results, we chose the ANN and RF models for additional
hyperparameter tuning.

Our hyperparameter tuning for both models also involved 5-
fold cross-validation on the training set. For the ANN model, we
tuned the hidden layer sizes, activation function, solver, and learn-
ing rate. We performed a grid search on these hyperparameters
and found the best parameters to be a single hidden layer of size
100, the tanh activation function, the Adam solver, and a learning
rate of 0.01.

For the RF model, we tuned the number of trees, minimum
number of samples to produce a split in the tree, the minimum
number of samples per leaf, the maximum depth of the tree, and
whether the bootstrap methodology was used in model training.
We found the best parameters to be 200 trees, minimum split size
of 50, minimum samples per leaf of 2, maximum depth of 300, and
use of bootstrap in model training.

We found that our tuned RF model outperformed our tuned
ANN, with an MAE of 6.27, MSE of 87.1, and R2 of 0.715 as esti-
mated through cross validation. We also note that while hyperpa-
rameter tuning did improve the performance of each model, in
regression fits and confidence intervals for (a) all zones—with colors representing
ith the smallest regression coefficient (Zone 10).



Table 2
Model results on 5-fold cross-validation.

Model Mean Absolute Error (MAE) Mean Squared Error (MSE) Explained Variance
(R2)

Time for Training (s) Time for Prediction (s)

Multiple Linear
Regression

9.55 141 0.534 0.0311 0.00198

Support Vector Regression 7.13 118 0.614 30.9 4.38
Random Forest Regression 6.11 98.2 0.678 2.82 0.0983
Artificial Neural Network 6.29 88.7 0.710 54.8 0.0105

Fig. 6. Example predicted (using tuned RF model) vs. actual energy consumption
data for the first seven days of data in the test set for zone 1.

Fig. 7. Feature importance for final tuned random forest regression model.
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both cases the improvement was very small. This high perfor-
mance ‘‘out of the box” could enable wide adoption of similar sur-
rogate models for the purposes of simulating energy consumption
based on occupancy data.

Final results for the ANN and RF model, on both cross-validation
and the test set, are shown in Table 3. Because the ultimate goal of
our model is to be able to predict total energy consumption, as a
result of features on the scale of 15 min, we also tested the perfor-
mance of the ANN and RF models on a more aggregate level. We
summed predicted and actual energy consumption to daily values
and computed the R2 metric on this aggregate level. As expected,
both models benefited, in terms of their error rates, from this
aggregation. However, the RF model benefited even further than
the ANN. In Fig. 6, we show the predicted energy consumption (us-
ing the tuned RF model) vs. actual energy consumption data for the
first seven days of data in the test set for zone 1. As this time-series
plot shows, the large ‘‘jumps” in energy consumption (i.e., from
low values to high values and vice versa) generally matched
between the predicted and actual data, with these jumps likely dri-
ven by changes in occupancy. Much of the error seems to have
resulted from small differences rather than large mischaracteriza-
tions by the model.

An additional strength of the RF model is its interpretability.
Each split in a tree involves a decision on one of the features, which
do not need to be scaled or one-hot encoded. As a result, the impor-
tance of each feature can be easily quantified and visualized. For
the final RF model, we found the most important features to be
time of day, and number of occupants in state 3 (Fig. 7). This
importance of the occupant feature underscores the notion that
the lighting system operation is driven by occupant behavior,
and therefore there exists opportunity to save energy by adapting
the layout of the building to the behavior of occupants.

We note that the time for prediction using the RF model was
roughly one order of magnitude above the time for prediction
using the ANN model. In our case, these times were sufficiently
small such that the difference between using them was inconse-
quential to our analysis. However, in situations with particularly
high computing costs, the ANN model, while slightly less accurate,
could be used to improve computational costs. With that said, the
RF model will always maintain a much higher level of
interpretability.
Table 3
Model results after hyperparameter tuning on both 5-fold cross-validation and final test set.

Model Errors on CV Errors on Test Set

Mean Absolute
Error (MAE)

Mean Squared
Error (MSE)

Explained
Variance (R2)

Explained
Variance (R2) Hourly

Explained
Variance (R2) Daily

Tuned Random Forest Regression 6.27 87.1 0.715 0.740 0.834
Tuned Artificial Neural Network 6.28 88.5 0.710 0.734 0.817
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3.3. Optimizing layouts reduces energy consumption according to
simulations

In this section, we show the results of our clustering-based and
genetic algorithm optimization methods on two examples: a syn-
thetic example that demonstrates the underlying mechanics of
the optimization routines and the surrogate simulation model, as
well as the empirical data collected from the office building in Red-
wood City.

3.3.1. Synthetic example
Here, we introduce a simple example of an office building based

on the hypothetical example from the introduction, though
updated to be more representative of common office behavior.
Our purpose in showing this synthetic example is to demonstrate
the mechanics of the optimization methods in creating new build-
ing layouts based on occupant activities. In this synthetic example,
there are four different ‘‘archetypes” of occupant schedules. Each
archetype defines the following behaviors:

� Arrival. Time when occupant arrives at the building, transition-
ing from low energy state to a medium or high energy state.

� Lunch. Time and length of occupant’s lunch, in which the occu-
pant transitions to a low energy state for the duration of lunch.
Table 4
Occupant archetypes used in the synthetic example.

Archetype Arrival Lunch

1 9 am 12 pm (1
2 9 am None
3 11 am 3 pm (1 h
4 7 am 11 pm (1

Fig. 8. Synthetic example occupant schedules and simulated energy c
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� Meeting(s). Time(s) and length(s) of the occupant’s meeting(s),
in which the occupant transitions to a low energy state for the
duration of the meeting(s).

� Departure. Time when occupant leaves the building, transition-
ing to a low energy state.

When the occupant is in a normal working state, between arri-
val and departure but not during lunch or a meeting, the occupant
randomly transitions between high and medium energy states.
This behavior models normal occupant behavior of taking short
breaks throughout the workday. The four specific occupant arche-
types used in this synthetic example are shown in Table 4.

The hypothetical building includes four rooms, with nine desks
per room. Each occupant follows one of the four archetypes and
there are exactly 9 of each archetype. We simulated energy con-
sumption for one day, leveraging the random forest model dis-
cussed above in Section 2.5. For simplicity, we assigned each
room to be the same zone number (0), which in the empirical
example, has roughly the same size of 9 occupants. We also
assumed the day was a Monday. We tested two different layouts
to show the effects of layout on energy consumption: a random
layout, and a layout in which all 9 occupants of each archetype
share a room. We found, leveraging the lighting energy surrogate
simulation model trained on real-world data, that the archetype-
Meetings Departure

h) 3 pm (1 h) 5 pm
None 4 pm

) 3 pm (1 h) 7 pm
h) 1 pm (2 h) 5 pm

onsumption for (a) random layout and (b) known optimal layout.
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based layout created a situation in which the lighting system was
able to respond to occupants’ use of the space (Fig. 8). The result
was significant energy savings of 22%.

We know by inspection that the optimal layout is the layout in
which the building is arranged by archetype. This a priori knowl-
edge of the system enables evaluation of the optimization routines
introduced in Sections 2.4 and 2.5. When we applied the
clustering-based optimizer to this example, we found that the opti-
mizer was able to arrive at the known optimal layout very quickly
(Fig. 9). The genetic algorithm, on the other hand, quickly found a
near-optimal solution, but was unable to reach the fully optimal
layout. This behavior of genetic algorithms—in which they come
close to optimality but have final convergence issues—is well doc-
umented [39]. However, this synthetic example is relatively sim-
ple. In a real-world office building, with much more variation in
occupant activities both in time and space, we would expect the
genetic algorithm to provide a sufficient solution, as previous work
has demonstrated that such methods can avoid local minima with
sufficient variation in input data [39].

3.3.2. Empirical case study
The synthetic example offers insight into the mechanics of the

optimizers developed in this work, but the overly simplistic nature
of that example limits claims that may be made about the extensi-
bility of our framework. We therefore leveraged the optimization
Fig. 9. Optimization convergence on synthetic example, in relation to a random layout a
algorithm. The same optimal layout produces the zone diversity value and energy value

Fig. 10. Simulated energy consumption (expressed as % change from
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algorithms and surrogate simulation model to optimize the layout
of the Redwood City office building introduced in Section 2.6. We
simulated energy consumption using the full dataset of 132 days
of occupant behavior. We started by estimating the energy con-
sumption of the lighting system from 100 random building layouts
as well as the existing building layout. We then applied the
clustering-based optimization routine to the data with varying
dimensionality (3, 5, 10, 30, 100, 151, and full dimensionality with-
out reduction), as well as the genetic algorithm. We ran each opti-
mizer 100 times to create 100 layouts and ultimately a distribution
of estimated energy consumption (Fig. 10). Overall, we found that
the existing layout performs slightly better than the random lay-
outs, but that further improvements on energy consumption could
be realized by optimizing the layouts for energy efficiency. Addi-
tionally, increasing the number of dimensions used in the cluster-
ing optimizer improved performance.

We also computed the zone diversity in occupant schedules as
introduced in Section 2.2. Here, the zone diversity metric was com-
puted for the entire 132 days, as opposed to daily in Section 2.2. In
general, we found that the zone diversity metric followed the pre-
dicted energy consumption (Fig. 11). However, we note that while
the layouts produced through the genetic algorithm were among
the best, the zone diversity metrics for the genetic algorithm lay-
outs were substantially higher than for the clustering-based
layouts.
nd the known optimal layout for (a) clustering-based optimization and (b) genetic
s shown in the figure.

the existing layout) for random and optimized building layouts.



Fig. 11. Change in zone diversity metric (expressed as % change from existing layout) for random and optimized building layouts.
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4. Discussion

Our results indicate the possibility for significant energy savings
of the lighting system through redistribution of occupants in space.
This energy savings is possible by leveraging the occupancy-
sensing feature of the lighting system. We note that while the
heating, cooling, and ventilation system was not modeled in our
case study due to data limitations, we would expect to find similar
results as long as the thermal system is able to reduce service dur-
ing periods without occupancy. The analysis of expected effects on
these additional building systems is a rich area for further work.

While optimization creates reductions in energy consumption
compared to the existing layout, it is interesting to note that the
existing layout has a smaller simulated energy consumption than
~90% of the random layouts. This is not altogether surprising, as
it indicates that behavior in the existing building is more aligned
than if each occupant behaved independently. This result may sug-
gest that people tend to adapt to the behavior of those around
them, as has been documented in previous social science research
[40]. This question of how people adapt their behavior to their sur-
roundings has potentially large implications for interpretations of
our results. Underlying our analysis is the assumption that individ-
ual behavior will not change when occupant layouts are changed.
We note that this assumption is a limitation of our model, and that
behavior can be expected to change in some way in response to
new desk assignment changes. The direction of the impact of these
behavioral changes on energy consumption is unclear. However,
our finding that the existing layout is more efficient than a random
layout suggests that people adapt their behavior to match those
around them. It is therefore possible that when we create layouts
in order to reduce within-zone diversity in behavior, occupants
may naturally choose to adapt their behavior and therefore further
reduce within-zone diversity. On the other hand, it may be possible
that occupants may choose to alter their behavior in other ways,
either by attempting to maintain social behaviors that precipitated
out of their previous setting, or perhaps by choosing to separate
themselves from the others in their new surroundings. We note
that the evidence from this paper seems to suggest that individu-
als, at least to some extent, tend to assimilate their behavior to
those around them.

A key finding from this work is that the reduction in energy con-
sumption from both the clustering-based optimization (when
enough dimensions are used) and the genetic algorithm is roughly
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the same (Fig. 10). This is particularly interesting because the
clustering-based optimization procedure does not include any
information about the surrogate model used for predicting energy
consumption, whereas the genetic algorithm uses that model as
feedback during its execution. We argue that one can reasonably
view the genetic algorithm as closer to a ‘‘best-case scenario” for
predicted energy consumption, given its explicit use of simulation
as a feedback mechanism during optimization. Our finding that
clustering (once enough dimensions are used to represent the
data) performs just as well demonstrates the strength of the naïve
clustering-based approach. When only a small number of dimen-
sions are used for clustering, the optimization does result in energy
reduction, though the effect is smaller. It is therefore important to
ensure that enough dimensions are used for representation of the
occupancy data.

The effect of clustering on the within-zone occupant diversity
metric is clear: substantial diversity can be reduced by clustering
occupants according to their schedules. The genetic algorithm also
reduces this zone diversity, but to a significantly smaller degree
(Fig. 11). This finding suggests that there are other factors beyond
zone diversity that are addressed during execution of the genetic
algorithm. We unfortunately cannot interpret what these factors
are, but they could involve unique aspects of the lighting system’s
operation. It is also possible that the genetic algorithm is optimiz-
ing for uncertainty in the random forest surrogate simulation
model, which could be a limitation of that approach.

We found that the clustering-based optimization performs
about as well as the genetic algorithm. The genetic algorithm is
only executable when a simulation engine is available, which
makes the clustering-based approach more practical in situations
when only occupancy data are available. We note, however, that
if a simulation model is available, the genetic algorithm can be
seeded with the layouts obtained through clustering. In our case
study, the clustering-based layouts form a distribution with regard
to simulated energy consumption (Fig. 10). In a preliminary analy-
sis, we found that seeding the genetic algorithm with 50
clustering-based layouts and 50 random layouts created new lay-
outs that performed as well as the best layouts from the clustering
(the layouts furthest to the left on the distribution in Fig. 10).
Therefore, this ensemble approach may be useful in reducing
uncertainty around the expected outcomes from either approach.

As discussed in Section 1.3, optimization of building design and
system control can create significant energy saving opportunities
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in buildings. For example, Krioukov et al. [15] found that occupant-
driven control of lighting systems can lead to 50–70% energy sav-
ings. These strategies are critical for making use of controllable
building systems and achieving energy efficiency. In some ways,
these strategies can be seen as the ‘‘low hanging fruit” of optimal
building performance (e.g., turning the lights off when no occu-
pants are present). The research we present is this paper takes
these strategies one step further: our methodology is not just
about optimizing building system operation using information
about occupant dynamics, but also optimizing characteristics of
those occupants—the layout of workstations—to take full advan-
tage of building systems. The approach we introduce can be con-
sidered in tandem with the more traditional approaches of
controlling energy-intensive building systems, and it has the added
benefit of not requiring expensive upgrades to building automation
systems in order to achieve additional energy savings. Further-
more, the approach we introduce can also be integrated with other
characteristics of building design, such as thermal comfort or orga-
nizational success, both of which can be tied to building layout
[41,42].

The ultimate goal of the design optimization in this paper is to
reduce energy consumption, a goal that is important for reaching
our sustainable energy goals and reducing costs for organizations.
However, it is essential to note that there are other goals for the
success of the building and organization that should be considered
as well. Chief among these goals is productivity—perhaps the ulti-
mate purpose of commercial office buildings—which is difficult to
define and varies among different organization. Numerous factors
have been shown to influence productivity, including occupant
thermal comfort [43], organizational cohesion, and others. The
benefit of the occupant-driven optimization-based design
approach we introduce here is that there is a natural extension
to include other objectives (such as those discussed above) through
a multi-objective optimization. We specifically note that to address
organizational cohesion and collaboration, the approach of space
syntax analysis [42,44] may yield viable optimization objectives.
Other graph theoretical approaches that are designed to leverage
organizational needs [23] could also complement the approach
we introduce here. The integration of occupant-centric design for
energy with design for organizational outcomes will be a rich area
of future research investigations.

In practice, any theoretical improvements—whether for energy
performance or organizational performance—that depend on mak-
ing changes to buildings’ physical layouts or seating arrangements
may elicit hesitation on the part of the building manager. We note,
however, that such spatial reorganizations are not uncommon in
many modern workplaces, and some workplaces may be trending
toward changing seating arrangements more frequently [45,46]. As
offices begin to realize the potential collaborative benefits of mak-
ing such changes, the framework presented in this paper can be a
means to integrate the energy perspective into organizational
design. We believe that one of the strengths of this research is that
it sheds light on the power of investigating characteristics of build-
ing layouts—aspects of building design and management that may
be too often overlooked. In other words, once building and organi-
zation managers better understand how layouts impact energy
consumption and the workplace experience, they may be more
willing to make changes. If the occupant arrangement is viewed
as an energy-saving investment, it may be seen as a less-
expensive alternative to other investments.

One limitation of this work is that not all buildings use fixed
workstations for their employees. As discussed in Section 1 above,
some offices use activity-based workplace (ABW) design that
allows workers to choose different locations for different tasks.
As office dynamics change in response to workplace norms, post-
Covid-19 worker and management preferences, and other factors,
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different approaches to office spatial management will work best
for different offices. We note, however, that fixed workstation seat-
ing arrangements continue to be most common in existing build-
ings. Furthermore, as more flexible spatial strategies grow in
prevalence, the specific optimization routines can evolve in tan-
dem. For example, a more general term describing overall
‘‘space-use diversity” rather than ‘‘individual occupant zone diver-
sity” could be used to evaluate the space-use patterns of a flexible
office, and this information could be used to adjust aspects of office
design specific to flexible offices, such as the amount of each type
of space and its location in the building.

5. Conclusion

In this paper, we explored the relationship between occupant
behavioral dynamics and energy consumption from energy-
intensive building systems. We introduced (1) a zone diversity
metric adapted from the literature for comparison with empirical
building energy data, (2) a clustering-based building layout opti-
mization methodology made possible through dimensionality
reduction, (3) a novel genetic algorithm for building layout opti-
mization, and (4) a data-driven surrogate simulation engine for
predicting lighting energy consumption from occupancy data. In
a case study, we found a significant relationship between building
occupant zone diversity and actual lighting energy consumption.
We also found that our layout optimization methods can be
expected to reduce lighting energy consumption by about 5% from
the existing layout and 6% from a random layout. Overall, we show
that reconsidering the design of layouts in existing buildings has
significant potential for realizing energy savings. Additionally, the
approach of changing layouts to achieve energy efficiency also
enables the simultaneous consideration of other factors influence
by building layout, including organizational performance and ther-
mal comfort. These methods, when integrated with the many
objectives that drive building management, will be critical to
ensuring dynamic and lasting energy savings in buildings.
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