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Abstract

Microphase separation in a binary blend of oppositely charged polymers can in

principle be stabilized electrostatically, without the need for connected block polymer

architectures. This provides a route to control microstructure via parameters such as

polymer charge density, salt concentration and dielectric constant. Here, we use equi-

librium self-consistent field theory to study the phase behavior of such a binary blend,

with or without counterions and added salt, and show that it exhibits the canonical

ordered phases of a diblock copolymer melt. We demonstrate how differences in the

charge density and the dielectric constant of the two polymers affect phase behavior

in this system. In particular, we find that the phase windows for sphere phases are

dramatically affected, and that the Frank-Kasper phases σ and A15 can be stabilized

when the minority component has a higher dielectric constant than the surrounding

matrix. Since the domain length scale in this system is determined electrostatically

and is not subject to chain-stretching limitations imposed by block architectures, our
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results suggest a possible route to large-unit-cell complex-sphere phases. These predic-

tions will be most easily tested in oppositely charged polymeric ionic liquids, where the

bulky and de-localized charges should aid equilibration in a solvent-free environment.

Introduction

The widespread interest in inhomogeneous multi-component polymeric systems has been

largely motivated by the ability to combine components with different desirable properties

into one material. Thermoplastic elastomers are perhaps the most well-known example of

this: they leverage block architectures, and combine a glassy block with a rubbery block

to achieve a material with simultaneous toughness and elasticity.1 In such materials, the

block connectivity prevents the often immiscible components from macrophase separating,

leading to ordered micro-structures whose symmetry and length-scale are determined by

architectural properties such as the number and sequence of blocks and their molecular

weights. In recent years, ion-containing polymeric components have drawn much attention

as a way to further modify the structural properties of the material and introduce new

functionalities; this has led to a growing interest in polyelectrolyte complexes,2,3 salt-doped

polymers,4–7 ionomers8,9 and polymeric ionic liquids10–13 (PILs) as a route to grant the

material high ionic conductivity, stimuli-responsiveness, magnetic or optical properties, etc.

The incorporation of ions into polymeric systems is also known to strongly affect the

phase behavior, through the electrostatic interactions of the ionic components with each

other as well as with the other (polar and non-polar) components. This is challenging from

a theory and modeling standpoint, as it introduces the need to consider a range of related

electrostatic phenomena such as local dielectric response, ion solvation, van der Waals in-

teractions, electrostatic screening, and ion correlation effects. Most theories to date have

fallen short of accounting for all of these in a self-consistent manner. Despite the theoretical

challenges, such systems present an opportunity for manipulation of phase behavior by ex-

ploring ‘electrostatic’ axes (i.e. changing charge densities, dielectric constants, salt content,
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etc.) without the need to change molecular architecture. For example, in a salt-doped block

copolymer where the components have different dielectric constants, the thermodynamic

preference of ions to be solvated by the higher-dielectric component leads to a driving force

for phase separation that can be exploited to access different morphologies by changing salt-

loading. Such a strategy can stabilize phases that would normally be difficult or impossible

to access by varying the temperature or polymeric composition alone.4 A notable recent

illustration is the stabilization, by salt-doping, of a giant unit-cell C15 Laves phase in an

A/B/AB ternary blend.14

Significant theoretical efforts have been undertaken to predict how the incorporation of

ions affects the phase behavior of polymers, with varying degrees of success. For salt-doped

polymers that are otherwise charge-neutral, most of these efforts have used variants of poly-

mer self-consistent field theory (SCFT) in which the critical ion-solvation effects are inserted

by supplementing the usual SCFT Hamiltonian with a solvation energy term based on the

Born solvation approximation.15–19 Indeed, a mean-field treatment of electrostatics (in effect

equivalent to Poisson-Boltzmann theory) is by itself insufficient to capture the effects of ion

solvation on phase behavior, which are understood to require field fluctuations.20,21 Simi-

larly, there are a wide range of related systems containing charged polymeric components,

in which the relevant electrostatic effects arise from charge correlations, and lead to phase

behavior that is dramatically different from any charge-neutral polymeric counterpart. Ex-

amples include polyelectrolyte and copolyelectrolyte solutions, in which charge correlations

can drive the formation of disordered and structured “complex coacervates”. Theoretical

treatments of these cases necessitate either including fluctuation effects explicitly (by con-

ducting field-theoretic22,23 or particle-based24,25 simulations) or implicitly (by conducting

hybrid simulations that couple the computationally-convenient SCFT with another theory,

such as liquid state theory, that can embed the correlation/fluctuation effects).26–29

It has been noted by a number of researchers30–35 that it is possible in principle to exploit

electrostatic interactions in charged polymer blends or solutions, in order to electrostatically
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stabilize microphases. Essentially, the immiscibility of the components drives phase sepa-

ration, but the accumulation of charge in the resulting domains prohibits their unbounded

growth (due to a diverging electrostatic energy cost for the charge separation) and thus pre-

vents macrophase separation, leading to ordered microphases instead. This intriguing idea,

which has received relatively little attention, provides an alternative to the paradigm of using

block architectures to achieve micro-structures, and the symmetry and length-scale of the

resulting morphologies are determined electrostatically and can be decoupled from the ar-

chitectural properties of the polymers. It is important to note that if the counterions present

in the system localize and charge-neutralize the respective domains, the phase separation

is not accompanied by net charge accumulation and macrophase separation is once again

permitted. Such a system will possess a Lifshitz point, the location of which will depend on

parameters such as counterion/salt concentration.

Borue and Erukhimovich30 were the first to point out this notion of electrostatically-

stabilized microphase separation: they applied the random phase approximation (RPA) to a

polyelectrolyte solution and showed that, under certain conditions of solvent quality and salt

concentration, microphases with domains rich and poor in polyelectrolyte were stabilized.

Later, Dobrynin and Erukhimovich31 extended this idea to a melt of weakly charged and

uncharged immiscible polymers, and computed mean-field (RPA) and fluctuation-corrected

phase diagrams using the Brazovskii-Fredrickson-Helfand36,37 (BFH) approach. More re-

cently, Rumyantsev and co-workers have extended these ideas to solutions32,33 and melts34,35

of immiscible oppositely-charged polyelectrolytes, considered ion-binding and dielectric asym-

metry effects,32 and explored the analogy between this class of charged polymer system and

the canonical diblock copolymer, in particular regarding their phase behavior, domain spac-

ing and fluctuation effects.34,35 However, much of this work has relied on analytical approxi-

mations that invoke weak or strong segregation assumptions, and are limited to considering

the simplest ordered phases such as body-centered cubic spheres (BCC), hexagonally-packed

cylinders (C), and lamellar (L) phases. The only calculations that go beyond these approx-
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imations (such as the dissipative particle dynamics simulations of Ref. 34) mainly served to

verify the analytical predictions, and a comprehensive phase diagram for this type of system

has not been computed to date.

In this work, we relax many of the previously made approximations and construct a field-

theoretic model for a blend of oppositely-charged polymers, with associated counterions, that

is suitable for full self-consistent field theory (SCFT) calculations, or even fully-fluctuating

field-theoretic simulations (FTS) if fluctuation effects are of interest. The model accounts

for the effects of dielectric contrast, using a polarizable field theory framework,21,38–42 as well

as the concomitant ion solvation effects. Since the phenomenon that we are interested in

(electrostatically-stabilized microphase separation) is caused by the formation of domains

that have non-zero net charge, a mean-field (SCFT) treatment of the electrostatics is in

fact an appropriate starting point. This is in contrast to many other phenomena of interest

involving charged polymers, such as the aforementioned polyelectrolyte coacervation, for

which the phases of interest are charge-neutral and thus incorrectly attributed by mean-field

theory to have zero electrostatic energy. Here, we apply SCFT to the model, which allows

us to conveniently map the phase behavior, and we present the first comprehensive phase

diagrams for this system. In addition to the simple phases BCC, C and L, we consider the

double gyroid phase (G), face-centered cubic (FCC) spheres, and the Frank-Kasper phases

σ and A15. In addition to computing the phase diagram for the electrostatically-symmetric

case (equal and opposite charge densities, with zero dielectric contrast), we also consider

how asymmetries in the charge densities and dielectric constants affect the phase behavior in

this system. The ion solvation effects, which are important when there is dielectric contrast

between domains, are treated here by Taylor expanding the Born solvation energy in powers

of the dielectric contrast, and showing that they can be embedded in the form of χ parameters

between the counterions and the polymers. Our SCFT results indicate that electrostatic

asymmetries have the biggest effect on the spherical phases, and in the case of dielectric

asymmetry, can be used to stabilize Frank-Kasper phases, providing a new potential route
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to such exotic phases in multi-component polymeric systems.

Theory and Methods

Molecular model

We consider an incompressible melt containing nA polycations of species A, and nB polyan-

ions of species B, which for simplicity we model as continuous Gaussian chains having the

same degree of polymerization N and statistical segment length b. The polymer charge den-

sities are σA ≥ 0 and σB ≤ 0, and the system also contains n+ and n− small-molecule cations

and anions, respectively, which include the (monovalent) counterions and any excess salt.

Note here that the charge on each polymer (QA/B = σA/BN) is uniformly smeared along

the backbone. We will primarily be concerned here with the salt-free ‘stoichiometric’ case in

which each chain of either species is accompanied by a set of charge-neutralizing monovalent

counterions, such that n− = nA |σA|N and n+ = nB |σB|N , but our model can also accom-

modate excess salt and the removal of counterions, subject to the overall electroneutrality

constraint N (nAσA + nBσB) + n+ − n− = 0. The average total number density of polymer

segments and small-molecule ions in the system is thus ρ0 = (nAN + nBN + n+ + n−)V −1,

where V is the system volume. The canonical partition function can be written as

Zc =
1

nA!nB!n+!n−!λ
3(nAN+nBN+n++n−)
T

∫ nA,nB∏
i,j=1

DriDrj
n+,n−∏
k,l=1

drkdrl exp (−βU0 − βU1 − βUc)

× δ [ρ̌A(r) + ρ̌B(r) + ρ̌+(r) + ρ̌−(r)− ρ0] , (1)

where λT is the thermal wavelength, and the ρ̌ are smeared microscopic density operators

given by

ρ̌A/B(r) =

nA/B∑
i=1

∫ N

0

dsΓ(r− ri(s)) (2)

6
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for the polymer densities, and

ρ̌+/−(r) =

n+/−∑
i=1

Γ(r− ri) (3)

for the small-molecule cation and anion densities. Note that these smeared density operators

have the usual delta functions replaced by normalized Gaussians Γ(r) = (2πa2)
−3/2

exp (−r2/2a2),

where we fix the smearing range to be a/Rg = 0.2, Rg = b
√
N/6 being the ideal-chain radius

of gyration for the polymers. The smearing of densities in this model is a strategy for ren-

dering the resulting field theory ultraviolet-convergent.20,43 Although in this work we study

the model using SCFT, which does not require a UV-convergent model, we nonetheless use a

smeared model in order to facilitate future studies of the same model using fully-fluctuating

FTS (which does require UV-convergence).44

The bonded interaction energy U0 in eq 1, for the continuous Gaussian chain model, is

given by

βU0 =

nA+nB∑
i=1

3

2b2

∫ N

0

ds

∣∣∣∣dri(s)ds

∣∣∣∣2 . (4)

The non-bonded interaction energies in the model include a set of Flory-Huggins interactions,

which may be written in the general form

βU1 =
1

2ρ0

∫
dr
∑
i,j

χij ρ̌i(r)ρ̌j(r), (5)

and the Coulomb interaction is

βUc =
lB
2

∫
dr

∫
dr′

ρ̌c(r)ρ̌c(r
′)

|r− r′|
. (6)

Here lB = βe2

4πε0ε
is the Bjerrum length, and ρ̌c(r) is the smeared microscopic charge density,

which can in general contain contributions not just from monopole charges, but also from

permanent or induced dipoles in order to embed composition-dependent, inhomogeneous

dielectric properties.21,38,40 Finally, the delta functional term in eq 1 enforces an incompress-

7

Page 7 of 40

ACS Paragon Plus Environment

Submitted to Macromolecules

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



ibility constraint.

An important feature of our model is the incorporation of dielectric asymmetry effects.

For simplicity, we will assume that all components have the same dielectric constant ε, except

species A which can have a higher dielectric constant εA = ε + ∆ε. We can adjust εA by

assigning a polarizability αA to monomers of species A, as in recent work.21,39,41 However,

even in such a ‘polarizable’ field theory, the mean-field approximation (equivalent to Poisson-

Boltzmann theory) misses the important effect of the ion solvation energies, which are a

component of the ion self-energies and do not arise in the absence of charge fluctuations.20

Thus, in the mean-field (SCFT) approximation of the model just introduced, the ion solvation

effects will not manifest. To address this, we re-insert ion solvation effects into our model

using the well-established Born solvation approximation:15–19

βUb =
l
(0)
B

2

∫
dr

1

ε(r)

(
ρ̌+(r)

a+

+
ρ̌−(r)

a−

)
, (7)

where ε(r) = εAφ̌A(r) + εBφ̌B(r) + ε+φ̌+(r) + ε−φ̌−(r) = ε + ∆εφ̌A(r) is the local dielectric

function, φ̌j(r) = ρ−1
0 ρ̌j(r) is the volume fraction of species j, a+ and a− are the radii of

the small-molecule ions, and l(0)
B is the vacuum Bjerrum length.45 This expression, however,

is not suitable for the Hubbard-Stratonovich transformation that we use to construct our

field theories, for which interaction energies must be quadratic in the composition variables.

To render eq 7 in an appropriate form, we write ε(r) = ε
(
1 + ∆ε

ε
φ̌A(r)

)
and Taylor expand

ε−1(r) in powers of ∆ε
ε
φ̌A(r), keeping only the leading term. The Born solvation energy

becomes

βUb ≈
lB
2

∫
dr

(
ρ̌+(r)

a+

+
ρ̌−(r)

a−

)(
1− ∆ε

ε
φ̌A(r)

)
≈ lBn+

2a+

+
lBn−
2a−

− lB∆ε

2εa+ρ0

∫
dr ρ̌+(r)ρ̌A(r)− lB∆ε

2εa−ρ0

∫
dr ρ̌−(r)ρ̌A(r). (8)

The first two terms in eq 8 produce constant shifts in the chemical potential of the counterions
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and may be discarded. The remaining two terms, however, have the form of a Flory-Huggins

interaction and are now suitable for the Hubbard-Stratonovich transformation. We can

identify associated χ parameters as

χ+A = − lB∆ε

2εa+

, χ−A = − lB∆ε

2εa−
, (9)

the negative values indicating that ion solvation tends to draw counterions into higher-

dielectric A-rich domains, as expected. For these ion solvation χ parameters, we will assume

for simplicity that the ion radii for both counterions are the same, a+ = a− = ai, such

that χ+A = χ−A. For a reasonably bulky counterion such as TFSI (ai ≈ 0.5 nm), the ratio

lB/ai could be as small as ∼ 1 (for high-dielectric, e.g. aqueous, systems) or as large as

∼ 50 for low-dielectric systems at room temperature. Since we are envisioning a system

that is non-aqueous but with bulky counterions and a relatively large dielectric constant,

we set lB/ai = 6 in this work, somewhere in the intermediate range. For example, if the

dielectric contrast is εA/εB = 2, this leads to ion solvation parameters χ+A = χ−A = −3; of

course, these parameters could be much larger for more compact ions (such as Li+). When

we account for the solvation χ parameters, the matrix χij in eq 5 has only two un-equal

nonzero elements, corresponding to interactions either between A and B (χAB) or between

A and the counterions (χ±A).

Field-theoretic model and self-consistent field theory (SCFT)

We can now apply the standard field theory transformation,46 and introduce a set of auxiliary

fields that mediate the non-bonded interactions in the model. Following the procedure in

Ref. 47, we use the incompressibility constraint to eliminate ρ−(r) from the interaction

energies in eq 5, resulting in a reduced 3×3 contact interaction matrix that has one redundant

(zero-eigenvalue) normal mode. After diagonalizing this matrix and performing the Hubbard-

Stratonovich transformation, the resulting field-theoretic canonical partition function takes

9
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the form

Zc = Z0

∫
Dw+

∫
Dw1

∫
Dw2

∫
Dϕ e−H[w+,w1,w2,ϕ], (10)

where w+ enforces local incompressibility, w1 and w2 are the non-redundant exchange-

mapped47 chemical potential fields responsible for the contact (χij) interactions, and ϕ is

the electrostatic potential field. The pre-factor Z0 contains the ideal gas terms from eq 1,

and normalization factors from the Hubbard-Stratonovich transforms. The Hamiltonian

H[w+, w1, w2, ϕ] is given by

H[w+, w1, w2, ϕ] =
ρ0

2

2∑
i=1

1

|µi|

∫
drw2

i (r) + ρ0

2∑
i=1

ξi
µi

ΦiAχ−A

∫
drwi(r)

− iρ0

∫
drw+(r) +

1

8πlB

∫
dr |∇ϕ|2

− nA lnQA[ΩA]− nB lnQB[ΩB]− n+ lnQ+[Ω+]− n− lnQ−[Ω−], (11)

where µi and Φij are the ith eigenvalue and eigenvector of the reduced contact interaction

matrix, and ξi takes the value 1 or i for corresponding eigenvalues µi < 0 or µi > 0,

respectively. The Q[Ω] terms are the single-molecule partition functions. These include

single-chain partition functions QA/B[ΩA/B]:

QA/B[ΩA/B] =
1

V

∫
dr qA/B(r, N ; [ΩA/B]), (12)

where qA/B(r, s; [ΩA/B]) is the single-chain propagator that satisfies the following modified

diffusion equation
∂

∂s
qA/B(r, s) =

[
b2

6
∇2 − ΩA/B(r)

]
qA/B(r, s), (13)

subject to the initial condition qA/B(r, 0) = 1, and which is solved for s in the range 0–N .

The ΩA/B(r) is a species-dependent auxiliary potential field that contains contributions from

10
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the various w and ϕ fields

ΩA/B(r) = iw̄+(r) +
2∑
i=1

ξiΦiA/Bw̄i(r) +
αA/B
2lB

|∇ϕ̄|2 + iσA/Bϕ̄(r), (14)

where the overbar on the fields indicates that they have been smeared via convolution with

the Gaussian function Γ(r). The αA is an excess polarizability volume that generates the

additional contribution ∆ε to εA, and we set αB = 0 since the reference dielectric constant ε

already accounts for the polarizabilities of the other components. The counterion partition

functions are given by

Q±[Ω±] =
1

V

∫
dr exp [−Ω±(r)] , (15)

where the counterion auxiliary potential fields are

Ω+(r) = iw̄+(r) +
2∑
i=1

ξiΦi+w̄i(r) + iϕ̄(r), (16)

Ω−(r) = iw̄+(r)− iϕ̄(r). (17)

In SCFT46,48,49 we assume that the functional integral comprising the partition function

in eq 10 is dominated by a single set of field configurations {w∗+(r), w∗1(r), w∗2(r), ϕ∗(r)}.

These configurations satisfy the so-called saddle-point equations

δH

δw∗i (r)

∣∣∣∣
{w∗},ϕ∗

= 0,

δH

δw∗+(r)

∣∣∣∣
{w∗},ϕ∗

= 0,

δH

δϕ∗(r)

∣∣∣∣
{w∗},ϕ∗

= 0. (18)

Within the saddle-point approximation, the partition function simplifies to

Zc ≈ Z0 e
−H[w∗

+(r),w∗
1(r),w∗

2(r),ϕ∗(r)], (19)

11
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and the free energy is given by

βF = − lnZ0 +H[w∗+(r), w∗1(r), w∗2(r), ϕ∗(r)], (20)

where the term involving Z0 is a reference (ideal-gas) free energy. We solve for the saddle-

point configurations (eq 18) within a single unit cell of the relevant microphase using a

pseudo-spectral steepest-descent scheme, with a semi-implicit Seidel scheme for field updates

and a variable-cell method to locate the zero-stress cell tensor, following a large body of work

by some of us.46,47,50,51 The single-chain propagators are resolved using a contour resolution of

∆τ = ∆s
N

= 0.01, and the number of grid points along each spatial dimension is in the range

M = 32–64, which is adjusted according to the convergence requirements of the simulation

in question, based on the size of the unit cell (some regions of the phase diagram exhibit

dilating unit cells and thus require a larger number of spatial grid points). The spatial grids

for 1-, 2- and 3-dimensional phases are M , M2 and M3, respectively, with the exception of

the σ phase, which uses a 2M × 2M ×M grid. The relaxation of fields and stresses are

carried out to within tolerances of 10−5 and 10−4, applied to the L2-norm of the residuals of

the fields and the stress tensor, respectively.

Results

Electrostatically-stabilized microphase separation

Since this system can exhibit either macro- or microphase separation, it is important to begin

by establishing the conditions favorable to each. Generally speaking, the system’s tendency

to macro- or microphase separate is determined by a competition between electrostatics and

counterion entropy; that is, whether or not the counterions give up their entropy in order to

charge-neutralize the phase-separating domains. If they do not, the resulting domains accu-

mulate charge as they grow and macrophase separation is accompanied by a diverging elec-

12

Page 12 of 40

ACS Paragon Plus Environment

Submitted to Macromolecules

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



trostatic energy cost and is thus prohibited, leading instead to the formation of microphases.

In the counterion-free system, microphases are therefore guaranteed unless, trivially, the

polymers are themselves charge-neutral (corresponding to the conventional macrophase sep-

arating binary homopolymer blend). In the presence of counterions, a large electrostatic

strength (i.e. large lB) will favor charge-neutralization and thus macrophase separation, as

will the addition of excess counterions/salt. Conversely, the removal of counterions from the

system, relative to the stoichiometric case, will favor microphase separation, as will a large

bulk dielectric constant (or small lB).

Initially, we explore the role of the electrostatic parameters in this system using the

random phase approximation (RPA),52 the details of which are provided in the Appendix.

In the RPA, we expand the Hamiltonian in powers of the fields, and truncate at quadratic

order. The partition function of the resulting field theory is Gaussian and may be solved

analytically. Here we compute the structure factor S(RPA)
AA (k), and use it to compute the

spinodal (where S(RPA)
AA (k) becomes singular), as well as the boundary between micro- and

macrophase separating regions (i.e., the boundary between k∗ 6= 0 and k∗ = 0 where k∗ is

the critical wavevector for which S(RPA)
AA (k) is a maximum).

Figure 1a demonstrates how the electrostatic strength and the counterion concentration

affect the transition from micro- to macrophase separation. For simplicity, we initially con-

sider a symmetric blend, with equal and opposite charge densities (σA = −σB = σ), equal

volume fractions (φA = φB = φp/2, where φp is the total polymer volume fraction) and

equal dielectric constants (εA = εB = ε). The electrostatic strength can be described us-

ing the parameter γ = 4πlBρ0b
2/6; this is a dimensionless group that naturally emerges in

our RPA analysis. Figure 1a plots the value γt at the transition as a function of the re-

duced counterion volume fraction parameter φi/σφp (here φi is the total volume fraction of

small-molecule ions, and we note that φi/σφp = 1 corresponds to the salt-free stoichiometric

case and is denoted by the grey dashed line). There is a weak (and relatively unimportant)

dependence of γt on χABN , which indicates that whether micro- or macrophase separation
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is favored is mostly determined by the other (electrostatic) parameters γ and φi/σφp. The

various colors in Figure 1 correspond to different charge densities, and suggest that it may

be easier to access the region of microphase separation (which we are interested in here) by

considering systems with lower charge density. Figure 1a suggests that values of γ . 1 are

probably required to remain in the microphase-separating regime, unless the removal of a

significant proportion of counterions can be achieved experimentally. Since the parameter γ

depends on dielectric constant, temperature, density and the statistical segment length, it

could vary significantly from system to system, but values of O(1) should be achievable in

high-dielectric-constant PILs. We note in particular that a number of measurements53,54 of

PILs have indicated that very high static dielectric constants (ε ≈ 50–100) are possible.
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Figure 1: a) Microphase (µΦ) to macrophase (2Φ) separation transition γt versus counterion
volume fraction φi/σφp, for high (σ = 1, red), medium (σ = 0.5, black) and low (σ = 0.25,
blue) charge densities. b) Critical value of χABN versus the electrostatic strength γ, for the
counterion free case (φi/σφp = 0), the stoichiometric blend (φi/σφp = 1), and a system with
excess counterions (φi/σφp = 2). a) and b) use a = 0.2Rg, and N = 100.

In Figure 1b, we plot the critical value (χABN)c, for the onset of phase separation,

as a function of electrostatic strength γ, for the counterion free system (solid line), the

stoichiometric blend (long dashes), and a system with excess counterions/salt (short dashes).

In all cases, (χABN)c increases significantly with electrostatic strength γ, reflecting the

large driving force to phase separate that is required in order to overcome the electrostatic
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preference for the uniform phase. We also note that for all three cases the macrophase

separation regime lies off the range of the axes, meaning that these transitions are to ordered

(and due to the symmetry, lamellar) microphases. Also, in all three cases, the addition of

counterions increases (χABN)c when γ is small, but decreases (χABN)c when γ is large.

The former is due to dilution21,55 (since the counterions occupy volume fraction φi and

their dilution of the polymers is the dominant effect when the electrostatic interactions are

weak), while the latter is due to electrostatic screening, wherein the counterions screen the

electrostatic interaction between the polyions, making the system phase separate more easily

(recall that the electrostatic interaction between polyions favors mixing, i.e. the disordered

phase). The results in Figure 1b also indicate that if the charge density on the polymers

is high, rather large values of χABN are required in order to phase separate. Synthetically

this would require either high-χ backbones or large molecular weights, which might prove

undesirable, and so lower charge densities are preferred for the experimental realization of

this system.

Phase behavior of the electrostatically symmetric system

Having broadly established the criteria for microphase separation in our model, we now

turn to SCFT to examine the phase behavior in greater detail. We restrict ourselves to the

microphase separating regime where the most interesting features appear. Throughout, we

fix the counterion compositions to their stoichiometric values (φ+/σBφB = 1, φ−/σAφA = 1),

and for simplicity we begin by considering the symmetric (σA = −σB = 0.5, ∆ε = 0) case.

We set a low electrostatic strength of γ = 1.5 × 10−2, deep within the microphase region.

We note that this small value of γ is probably somewhat lower than achievable experimental

values of γ, but it ensures (in general) reasonable domain sizes, so that the SCFT calculations

do not become too computationally expensive due to requiring a large number of spatial grid

points. We expect our conclusions about the phase behavior at low γ to transfer also to higher

values of γ, and that the main effect of increasing γ should be to shift the phase envelope to
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larger values of χABN (as indicated in Figure 1b) and to globally change the domain sizes

of the microphases.

In Figure 2a, we present the phase diagram for this system, which exhibits regions of

stability for the lamellar (L), cylindrical (C), gyroid (G), body-centered cubic (BCC) and

face-centered cubic (FCC) sphere phases. This largely resembles the phase diagram of the

diblock copolymer, which is expected and is essentially in agreement with previous work,35

although we note that here we have relaxed several approximations that have been made

previously (such as the weak segregation assumption, and neglect of counterions as well

as neglect of more complicated phases such as gyroid). We also plot the RPA spinodal in

Figure 2 (dotted line), which is clearly in agreement with our SCFT results at the critical

point and provides additional confidence that our SCFT results are correct. Note that

on the composition axis we combine the volume fraction of the polymer species A and its

corresponding counterion volume fraction (in this case, the anion), so that the axis sweeps

from 0 to 1 as in a traditional diblock copolymer or binary blend phase diagram (we will use

this composition axis convention throughout).

Figure 2b shows the free energies, relative to BCC, of FCC, C, and the Frank-Kasper

(FK) phases σ and A15, for χABN = 34 (solid lines) and χABN = 50 (dashed lines). Since in

traditional block copolymers some source of asymmetry (such as conformational asymmetry)

is typically required to stabilize σ and A15,56,57 it is not surprising that these phases do not

appear to have regions of stability for the electrostatically-symmetric blend. At first glance,

the appearance of a transition from the disordered phase (DIS) to FCC at large χABN (seen

in Figure 2a) would seem to merely reaffirm the analogy with the diblock copolymer, which

also exhibits that feature. However, in the diblock copolymer the FCC window remains

narrow as χABN is increased, but in the charged polymer blend we observe a significant

widening of the FCC window, and Figure 2b shows that at high enough χABN (in this case,

at χABN = 50) the BCC stability window has vanished entirely and a direct FCC − C

transition is seen.
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Figure 2: a) SCFT phase diagram of binary blends of electrostatically-symmetric (σA =
−σB = 0.5, εA = εB) polymers. The system contains the stoichiometric counterion compo-
sitions, and uses γ = 1.5× 10−2, a = 0.2Rg, and N = 100. The RPA spinodal is shown as a
dotted line. b) Relative free energies βF −βFBCC of FCC (red), C (orange), A15 (blue) and
σ (green), at χABN = 34 (solid lines/filled symbols) and χABN = 50 (dashed lines/hollow
symbols).
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Figure 3: Domain spacing of spherical phases BCC (black) and FCC (red) versus compo-
sition φA + φ− at χABN = 50 in the electrostatically-symmetric blend, showing unit cell
dilation at small compositions of A. The inset density plots show examples of φA(r) for
converged BCC unit cells at φA + φ− = 0.0075, 0.01 and 0.02.
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Another interesting feature of the spherical phases appears at high χABN : at or near

the order-disorder transition (ODT), the unit cells dilate dramatically. This is demonstrated

in Figure 3, which shows the dependence of domain spacing on the composition for BCC

and FCC phases at χABN = 50. Below φA + φ− = 0.02, the domain spacings increase

rapidly to well above D = 10Rg, meaning that it becomes difficult to accurately resolve

the ODT when χABN is large. For this reason, we cut off the SCFT phase diagram in

Figure 2a at χABN = 34. The insets in Figure 3 show snapshots of the species A density

in the converged BCC unit cells, which show that as the unit cell dilates, the spherical

domains do not change in size significantly but become further apart as the volume fraction

is reduced. Such dilation would be strongly disfavored in a diblock copolymer due to the

free energy penalty of stretching the chains to such an extreme. Here there is no such chain-

stretching requirement, which appears to allow these dilated unit cells and a phase envelope

that may extend to very small values of φA+φ− as χABN is increased. These features suggest

the possibility of an unbinding transition in this region, although the numerical difficulty

in resolving and tracking the structures make it difficult to be conclusive. In any case,

these swollen structures are probably susceptible to thermal fluctuations, so a fluctuation-

corrected phase diagram, computed via FTS,58 could reveal that these regions are truncated

and replaced with unstructured DIS or a disordered spherical micelle phase.

Effects of electrostatic asymmetry

Next, we consider the effects of electrostatic asymmetries, such as charge asymmetry (σA 6=

−σB) and dielectric asymmetry (εA 6= εB). The reasons to consider this are two-fold: i)

practically speaking, any experimental realization of the charged polymer blend will not be

precisely symmetric either in terms of charge densities or dielectric constants, so it is useful to

understand how inevitable electrostatic asymmetries might affect the phase behavior, and ii)

to the degree that such asymmetries do affect the phase behavior, it could then be desirable

to exploit these effects to manipulate the phase behavior in an experimentally facile way
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(e.g. by adjusting charge densities or by adding excess salt). In fact, the charge physics

that leads to microphase separation in these systems does not even require that the two

polymer species have opposite charge densities, since the same effect can be achieved by a

polycation-polycation or polyanion-polyanion blend as long as the two polyions have different

charge densities (recall that the counterions will maintain overall charge neutrality of the

system). Even a blend of a polyion with a charge-neutral polymer should in principle be able

to exhibit microphases as long as the counterions are willing to pervade the charge-neutral

polymer domains,31 although this may be difficult to achieve in practice, due to e.g. ion

solvation effects, unless the charge-neutral polymer has a rather high dielectric constant.

In light of this, we will now explore the effects of introducing asymmetry in the polymer

charge densities. In order to facilitate a meaningful comparison with the charge-symmetric

case described above, we will adjust charge densities in such a way that the total number of

backbone-tethered ions, and thus the total number of counterions, remains fixed. In other

words, we will adjust σA and σB while satisfying the constraint |σA|+ |σB| = 1; the degree of

charge asymmetry can thus be described by σA + σB, which is zero for a charge-symmetric

system and non-zero otherwise as long as σA ≥ 0 and σB ≤ 0, as is the case here, or vice

versa.

We expect that as the charge asymmetry is varied, the phase behavior will differ the most

from the charge-symmetric case for the largest deviations of σA + σB from zero. Thus in

Figure 4a we plot the SCFT phase diagram for the most charge-asymmetric case (σA+σB =

1), corresponding to σA = 1, σB = 0 so that polymer B is in fact charge neutral. The phase

diagram for the charge-symmetric system is also plotted, in grey, to facilitate comparison.

In order to isolate the effects of charge asymmetry, we assume that the dielectric constants

are the same (noting that it may be unlikely to have charge-neutral and charged polymers

with similar dielectric constants, and that we will explore dielectric contrast effects next).

Figure 4a shows that, relative to the charge-symmetric case, the critical point shifts to a lower

value of χABN (which is confirmed by RPA, also plotted) and larger compositions φA + φ−.
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Figure 4: a) SCFT phase diagram of the charge-asymmetric (σA = 1, σB = 0) binary blend.
The system contains the stoichiometric counterion compositions, and uses γ = 1.5 × 10−2,
a = 0.2Rg and N = 100. The RPA spinodal is shown as a dotted line, and the charge-
symmetric case is included in gray for comparison. b) Relative free energies βF − βFBCC of
FCC (red), C (orange), A15 (blue) and σ (green), for charge-asymmetric cases σA +σB = 1
(solid lines/filled symbols) and σA+σB = −1 (dashed lines/hollow symbols), at χABN = 50.
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The latter is mainly due to the fact that the higher charge density of polymer A necessitates

a higher volume fraction of associated counterions φ−. Indeed, the phase boundaries in this

system shift to the right in composition significantly, relative to the charge-symmetric case,

due to this effect.

Overall, other than these shifts in the phase envelope and phase boundaries, the phase

diagram in Figure 4 is not too different from the charge-symmetric case. The most striking

effect of charge asymmetry is to change which spherical phases are favored near the ODT.

Evidently, when the sphere-forming domains are rich in the charged polymer, the BCC

phase becomes favored over FCC, whereas if the sphere-forming domains are rich in the

charge-neutral polymer, the FCC phase is favored. In the σA + σB = 1 case, this produces

a strong preference, and a very wide phase window, for FCC on the right side of the phase

diagram, suggesting a possible route to stabilizing close-packed spheres experimentally in

these systems.

Since the main effect of charge asymmetry on the phase behavior seems to be to change

the relative stability of spherical phases, it is reasonable to ask whether these effects can

stabilize Frank-Kasper phases. To answer this question, we performed spot-checks on the

σ and A15 phases at χABN = 50, as in Figure 2b. The results are presented in Figure 4b,

where we examine both charge-asymmetric extremes σA+σB = 1 (solid lines, filled symbols)

and σA + σB = −1 (dashed lines, hollow symbols), corresponding effectively to the left and

right sides of the phase diagram in Figure 4a. However, our results indicate that charge-

asymmetry effects alone are not sufficient to stabilize the FK phases.

These “extreme” cases of charge asymmetry, where one of the polymers is charge neutral,

may not be a realistic or practical experimental target for reasons we have identified above.

However, the trends identified in Figure 4 transfer to (or rather, are a limiting case of) the

more realistic case in which one polyion has a high charge density and the other has a low

charge density. In Figure 5a, we explore the charge-asymmetry parameter σA + σB more

thoroughly, at fixed χABN = 34, and show that this is indeed the case. As σA +σB is varied
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from −1 to 1, σA is increasing from 0 to 1, and the order-order transition boundaries shift to

the right in accordance with the increase in φ− that is required to globally charge-neutralize

species A. The size of the phase stability windows do not change substantially, except for

the FCC and BCC phases. The overall phase diagram exhibits a point reflection symmetry

about the center (φA + φ−, σA + σB) = (0.5, 0), due to the inherent charge symmetry of

the Coulomb interaction. Consistent with our discussion above, FCC becomes stabilized

relative to BCC when the sphere-forming domains are rich in the polyion with the lower

charge density.

Next we will consider the effects of dielectric contrast. In order to isolate the dielectric

effects from the charge density effects, we return initially to the charge-symmetric case

σA + σB = 0. The polarizable field theory framework allows us to increase the component

dielectric constant εA by granting beads of polymer species A some polarizability αA. As

some of us have shown in a previous work,38 in mean-field theory the incorporation of

polarizabilities leads to the same linear constitutive law for the dielectric constant as has

been commonly used in the literature for many years. In particular, in the absence of density

smearing (a→ 0, Γ(r−r′)→ δ(r−r′)), the local mean-field dielectric constant for our system

is given by
ε(r)

ε
=
εA
ε
φA(r) + φB(r) + φ+(r) + φ−(r), (21)

where εA
ε

= 1 + 4πρ0αA, and αA is the excess polarizability volume of species A, which is the

parameter that we manipulate to control the ratio εA/εB.

The SCFT phase diagram in Figure 5b shows how dielectric contrast affects phase be-

havior in the charge-symmetric system at χABN = 34, with lB/ai = 6. Dielectric contrast

induces rather dramatic deflections in the phase boundaries, particularly the ODT and the

OOTs involving sphere phases. These deflections are primarily caused by the ion solvation

effects, which favor the disordered phase when the dielectric contrast is weak (causing the

phase envelope to retreat with increasing dielectric contrast) and favor ordered phases when

the dielectric contrast is strong (causing the phase envelope to advance with increasing di-
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Figure 5: a) SCFT phase diagram of binary blends of charged polymers, at χABN = 34, as a
function of charge-asymmetry σA + σB, for the zero dielectric contrast case. b) SCFT phase
diagram of binary blends of charged polymers, at χABN = 34, as a function of dielectric
contrast εA/εB, for the charge-symmetric case. c) Relative free energies βF−βFBCC of FCC
(red), C (orange), A15 (blue) and σ (green), for a system with combined charge asymmetry
(σA + σB = −1) and dielectric contrast (εA/εB = 2) at χABN = 34. OOTs are denoted
by dotted vertical lines. a)-c) contain the stoichiometric counterion compositions, and use
γ = 1.5× 10−2, a = 0.2Rg, and N = 100.
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electric contrast). These two distinct regimes of ion solvation thermodynamics were first

predicted and explained recently by Hou and Qin,18 who referred to them as “entropic” and

“solvation” regimes, respectively. In Figure 5b, the transition from the entropic regime to the

solvation regime can be located roughly as the value of εA/εB for which the phase envelope

goes from retreating to advancing (around εA/εB = 1.1).

The most striking feature of Figure 5b is the appearance of a narrow stability window for

the Frank-Kasper σ phase, which appears for values of dielectric contrast εA/εB & 1.5. Evi-

dently, if the dielectric constant of the sphere-forming domains is higher than the surrounding

matrix, there is a thermodynamic preference for spherical packings with Wigner-Seitz cells

(WSCs) that have a high sphericity—features that the Frank-Kasper phases are known to

possess. In order to explain why this occurs in this system, let us briefly review the usual

mechanism for stabilization of FK phases in block copolymers.56,59 When the minority do-

mains in a spherical phase are much smaller than the WSC, the WSC has little influence on

the shape of those domains. In this case a BCC or FCC phase can form highly spherical

minority domains in order to minimize the interfacial free energy, despite both phases having

relatively low-sphericity WSCs. If the minority domains become large enough relative to the

WSC, then they will be forced to deform and adopt its shape, and the sphericity of the

WSC will then directly determine the excess interfacial area. This will favor the WSCs with

higher sphericity: the FK phases. Conditions that stabilize FK phases are thus consistent

with those that enlarge discrete minority domains relative to their WSC - this is usually

achieved by stabilizing sphere phases, relative to the cylindrical or gyroid phases that typ-

ically intervene, at higher volume fractions of the minority component. Block copolymers

with conformational asymmetry or architectural frustration (e.g. miktoarm architectures),

which favor curvature of the interface toward the minority domains, are the conventional

strategy to accomplish this.51,56,57,59–61

In contrast to the usual block copolymer strategy to stabilize FK phases, in our system

the stabilization of σ, by increasing dielectric contrast, is achieved without (in general)
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Figure 6: a) Relative size and deformation of spheres in the BCC phase of the charge-
symmetric system at φA + φ− = 0.18, for zero (εA/εB = 1, red), medium (εA/εB = 1.5,
blue) and high (εA/εB = 2, green) dielectric contrast. Contour plots correspond to φA(r) =(
φ

(min)
A + φ

(max)
A

)
/2 for each case. The circle in the center (black) is shown to highlight

the asphericity of the larger domains. b) Lamellar phase density profiles φA(x) of the same
system at φA + φ− = 0.5. The corresponding counterion density profiles φi(x) are shown in
the inset. Unit cells are normalized in a) and b) in order to control for the change in domain
sizes.
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pushing the boundary of discrete-minority-domain phases to higher volume fractions. In

fact, as Figure 5b shows, the BCC-C (and σ-C) OOTs are shifting to slightly lower volume

fractions as εA/εB is increased. Yet, the stability of σ suggests that the minority component

having a higher dielectric constant than the surrounding matrix results in an enlargement

of the spherical domains relative to the unit cell. Indeed, in Figure 6a we demonstrate

that this is the case, using the BCC phase in the charge-symmetric system (at composition

φA + φ− = 0.18) as an example. The contour plots in Figure 6a correspond to φA(r) =(
φ

(min)
A + φ

(max)
A

)
/2, and thus delineate the surface of the spherical domains. We note here

that the unit cells for the three cases shown (εA/εB = 1, red; εA/εB = 1.5, blue; εA/εB = 2,

green) are not the same, so we normalize by the unit cell sizes in order to make a meaningful

statement about the sphere sizes relative to the WSC, so that the different cases can be

compared. Indeed, Figure 6a clearly shows that as the dielectric contrast is increased, not

only do the spheres enlarge relative to the WSC, but for the case with the largest dielectric

contrast the deformation of the spherical domains can be seen, as they are forced to adopt

the shape of the WSC.

The only way it is possible to achieve larger spherical domains without increasing the vol-

ume fraction of the minority component is if the composition of the minority (and majority)

domains is changing. To illustrate that this is the case, in Figure 6b we plot composi-

tion profiles φA(x) (and the counterion density φi(x) = ρ−1
0 (ρ+(x) + ρ−(x)) in the inset) in

the lamellar phase for the same system and the same values of εA/εB as in Figure 6a, but

with symmetric composition (φA + φ− = 0.5), over one lamellar period. For zero dielectric

contrast, the lamellar profile is symmetric, as it should be, but as the dielectric contrast

is increased the profiles become asymmetric, with the A-rich domains becoming larger (or

more ‘spread out’, with a lower interior volume fraction of A) and the B-rich domains be-

coming smaller. This is consistent with the idea that higher-dielectric minority domains

leads to the enlargement of the spheres relative to the unit cell that is required to stabilize

FK phases. The inset of Figure 6b suggests that the counterions are responsible for the
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change in domain compositions, as the preferential ion solvation drives them to localize into

the high-dielectric-constant domains, thus swelling them and leading to the enlargement of

spheres in Figure 6a. These results also suggest that on the other side of the phase diagram

in Figure 5b (i.e. for φA + φ− > 0.5) the case εA > εB is not likely to result in stabilization

of FK phases, as the minority domains would then have the lower dielectric constant, and

Figure 6b indicates that this would result in the shrinking, rather than enlargement, of the

minority domains relative to the WSC.

Finally, we briefly consider the effects of combining charge asymmetry and dielectric

contrast. In Figure 5c, we show the free energies of the sphere phases, as well as C, relative

to BCC, for a charge-asymmetric (σA + σB = −1) system that also has dielectric contrast

(εA/εB = 2) at χABN = 34, the same value of χABN as Figure 5b. In addition to the relative

free energies, Figure 5c shows the order-order transitions as vertical dotted lines. Here we

see that in addition to a region of stability for σ, we also obtain a narrow region of stability

for A15, which is not present at the same χABN in the charge-symmetric case of Figure 5b

and indicates that by combining these electrostatic asymmetries one can further manipulate

the phase behavior and stabilize, or help to stabilize, additional complex sphere phases.

Conclusions

In this work, we have comprehensively explored the phase behavior of a microphase-separating

immiscible charged polymer blend. Using the random phase approximation, we computed

the transition from micro- to macrophase separation for a symmetric blend with equal di-

electric constants and equal, but opposite, charge densities and showed how the system

microphase separates (rather than macrophase separates) when entropy drives the counteri-

ons to homogenize through the system, thus preventing them from locally charge-neutralizing

the phase-separating domains. The macrophase separation transition is thus determined pri-

marily by a competition between counterion entropy and the electrostatic strength (Bjerrum
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length). Our RPA results suggest that the proximity to the transition can be increased or

decreased by removing counterions (or lowering charge density), or adding salt (or increasing

charge density), respectively. Using self-consistent field theory, we then mapped the phase

behavior in the microphase separating regime. We found that the electrostatically symmetric

system exhibits the same ordered phases and a very similar phase diagram as the canonical

diblock copolymer. This is in agreement with previous work by other researchers,35 who

have explored how this arises from the analogous property that the electrostatic interactions

in the charged polymer blend and the block connectivity in a block copolymer both prohibit

separation of the A and B species on macroscopic scales. However, our SCFT results also

highlight key differences from the diblock copolymer, in particular the fact that the FCC

phase becomes entirely favored over BCC at large χABN in the charge-symmetric blend.

Next, we considered the effects of asymmetries in the polymer charge densities and dielec-

tric constants. The effects of charge asymmetry are mainly to change the relative stability

of FCC and BCC phases near the ODT, causing FCC to be favored even more than in the

charge-symmetric case, when the minority (sphere-forming) domains are rich in the polymer

with the lower charge density. The effects of dielectric contrast are more dramatic, and

we showed that they can stabilize the Frank-Kasper σ phase. Enlargement of the spherical

domains relative to the unit cell is critical to the stability of FK phases, and in this case

the preferential solvation of counterions in the higher-dielectric-constant domains leads to a

counterion localization-induced enlargement of spheres when the minority (sphere-forming)

component has a higher dielectric constant than the majority component. Distinct from how

FK phases are stabilized in more traditional block copolymers, in this system the sphere en-

largement is accomplished without the need to increase the overall volume fraction of the

minority component, and is accompanied by a change in the composition in the interior of

the spheres. Finally, we showed that by combining charge asymmetry with dielectric con-

trast, the A15 phase could be stabilized, in addition to σ. It would be interesting to leverage

what has been learned here to investigate whether or not stability windows for other FK
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phases (e.g. C14, C15) might be found as well in this system.

The electrostatically-stabilized microphase separation of charged but immiscible polymer

blends opens up new routes to achieving ordered phases in polymeric systems. These new

routes leverage the fact that the length scale and symmetry of the resulting microstructures

are primarily set by the electrostatic interactions rather than the molecular weight or block

fraction as in a block copolymer. One advantage of this approach to stabilizing ordered

phases is that the composition axis can be explored simply by mixing the two components

in different proportions, which does not require synthesizing new materials with a different

block fraction or architecture. In addition, the microstructure length-scale can in principle

be easily enlarged by adding excess salt to the system. Such electrostatic manipulation of

phase behavior could open a route to giant-unit-cell Frank-Kasper phases, bicontinuous mi-

croemulsions, or other phases with desirable properties such as photonic bandgaps, chirality,

high ionic conductivity, etc., the possibilities for which have presently not been explored

but which we hope to address in future work. However, there are probably synthetic chal-

lenges associated with finding the right backbone chemistries so that the requirements of

immiscibility, relatively high dielectric constants and bulky ionic moieties can be satisfied

and realized experimentally. Polymeric ionic liquids (PILs) seem like a natural candidate for

realizations of this idea, since their bulky ionic groups should allow them to be thermally

tractable and capable of equilibrating as non-aqueous (solvent-free) blends.

Appendix. Random Phase Approximation

We derive the RPA expression for the structure factor S
(RPA)
AA (k)

N
= 1

N
〈ρ̂A(k)ρ̂A(−k)〉RPA using

a compressible variant of our model, in which the incompressibility constraint is removed

and replaced by a Helfand compressibility interaction energy of the form

βUH =
ζ

2ρ0

∫
dr (ρ̌(r)− ρ0)2 (22)
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that penalizes fluctuations of the density away from the bulk average density ρ0. Note that

this compressible model will reduce to an incompressible model that is equivalent to the one

we consider above, in the limit ζ →∞. When evaluating our final RPA expressions for the

spinodal lines and micro- to macrophase separation transition lines in the Results section,

we set ζ = 105. Since the RPA results are only applied to the electrostatically-symmetric

system, we consider only the zero dielectric contrast case here.

We carry out RPA by constructing a density-explicit (rather than auxiliary)46 field-theory

representation of the model, which takes the general form

Zc = Z0

∫
DρADρBDρ+Dρ−DwADwBDw+Dw− e−H[{ρi},{wi}], (23)

noting that an explicit electrostatic field is not required in this representation because the

charge density may be written entirely in terms of the bead densities of the four components

(i.e. ρc(r) = σAρA(r)+σBρB(r)+z+ρ+(r)−z−ρ−(r)). This form of the field theory introduces

a density and chemical potential field for each component, resulting in a total of 8 fields. The

RPA procedure consists of expanding the Hamiltonian in powers of the fields, assuming weak

fluctuations about the homogeneous saddle-point, and truncating at second-order. S(RPA)
AA (k)

is then computed by integrating out the 7 fields other than ρA, leveraging Gaussian integral

identities. The calculation is straightforward, albeit tedious, and the result can be written

in the general form

N

S
(RPA)
AA

= ΩAA −
Ω2
A−

Ω−−
−

(
ΩA+ − ΩA−Ω+−

Ω−−

)2

Ω++ −
Ω2

+−
Ω−−

−

ΩAB − ΩA−ΩB−
Ω−−

−
(

ΩA+−
ΩA−Ω+−

Ω−−

)(
ΩB+−

Ω2
+−

Ω−−

)
Ω++−

Ω2
+−

Ω−−

2

ΩBB −
Ω2

B−
Ω−−
−

(
ΩB+−

ΩB−Ω+−
Ω−−

)2

Ω++−
Ω2

+−
Ω−−

, (24)
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where S(RPA)
AA and all of the functions Ωij have an implied wavevector-dependence that has

been omitted for brevity. The functions Ωij are given by

ΩAA(k) = ζN +
6γNσ2

A

k2
+

1

φAĝD(k)Γ̂2(k)
(25)

ΩAB(k) = ζN + χABN +
6γNσAσB

k2
(26)

ΩA+(k) = ζN +
6γNσAz+

k2
(27)

ΩA−(k) = ζN − 6γNσAz−
k2

(28)

ΩBB(k) = ζN +
6γNσ2

B

k2
+

1

φB ĝD(k)Γ̂2(k)
(29)

ΩB+(k) = ζN +
6γNσBz+

k2
(30)

ΩB−(k) = ζN − 6γNσBz−
k2

(31)

Ω++(k) = ζN +
6γNz2

+

k2
+

1

φ+Γ̂2(k)
(32)

Ω+−(k) = ζN − 6γNz+z−
k2

(33)

Ω−−(k) = ζN +
6γNz2

−

k2
+

1

φ−Γ̂2(k)
. (34)

Here, the wavevector k is in units of b−1, the ĝD(k) = 72
k4N2

(
e−k

2N/6 − 1 + k2N/6
)

is the

homopolymer Debye function for the polymers A and B, and the function Γ̂(k) = e−k
2a2/2

is the Fourier-transform of the Gaussian density-smearing function.
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