Online Model Swapping for Architectural Simulation

Patrick Lavin
Georgia Tech, CSE
Atlanta, GA, USA

plavin3@gatech.edu

Jeftrey Young

Georgia Tech, CS

Atlanta, GA, USA
jyoung9@gatech.edu

Abstract

As systems and applications grow more complex, detailed computer
architecture simulation takes an ever increasing amount of time.
Longer simulation times result in slower design iterations which
then force architects to use simpler models, such as spreadsheets,
when they want to iterate quickly on a design. Simple models are
not easy to work with though, as architects must rely on intuition to
choose representative models, and the path from the simple models
to a detailed hardware simulation is not always clear.

In this work, we present a method of bridging the gap between
simple and detailed simulation by monitoring simulation behavior
online and automatically swapping out detailed models with simpler
statistical approximations. We demonstrate the potential of our
methodology by implementing it in the open-source simulator
SVE-Cachesim to swap out the level one data cache (L1D) within
a memory hierarchy. This proof of concept demonstrates that our
technique can train simple models to match real program behavior
in the L1D and can swap them in without destructive side-effects
for the performance of downstream models. Our models introduce
only 8% error in the overall cycle count, while being used for over
90% of the simulation and using models that require two to eight
times less computation per cache access.

CCS Concepts

+ Computer systems organization — Architectures; « Com-
puting methodologies — Modeling methodologies; Discrete-
event simulation.

Keywords

Architectural simulation, Statistical simulation, Cache modeling,
Model swapping, Phase detection

ACM Reference Format:

Patrick Lavin, Jeffrey Young, Richard Vuduc, and Jonathan Beard. 2021.
Online Model Swapping for Architectural Simulation. In Computing Frontiers
Conference (CF "21), May 11-13, 2021, Virtual Conference, Italy. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3457388.3458670

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CF 21, May 11-13, 2021, Virtual Conference, Italy

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8404-9/21/05...$15.00
https://doi.org/10.1145/3457388.3458670

Richard Vuduc

Georgia Tech, CSE

Atlanta, GA, USA
richie@cc.gatech.edu

Jonathan Beard
Arm Research
Austin, TX, USA
jonathan.beard@arm.com

1 Introduction

With traditional lithography-scaling slowing and Dennard scaling
effectively ending [7, 9, 18], performance increases will come in-
creasingly from specialization and scaling ever upward and outward.
Rapid prototyping tools that enable system architects to determine
the best composition of algorithm, architecture, and scale are critical
to enabling the development of next-generation systems. Computer
architecture modeling today is largely accomplished through dis-
crete event simulation, therefore the time to model a system is
roughly proportional to the number and detail of the components
modeled. To assess a given architectural configuration, modelers
set up a simulation with a fixed architectural topology. Each model
within this topology is typically fixed within the simulation infras-
tructure for the duration of simulation. However, applications are
not fixed, and they typically have rich variation in activity from one
point in time to the next, with some phases of relatively stable be-
havior. We intend to exploit this variation by dynamically swapping
from complex to simple models for these phases of stable behavior.
Detecting when, where, and how to select simpler models while
ensuring equivalent model fidelity is the primary contribution of
this work.

Phase
Detection

Other C(‘)mponems
(Optional)
¥

Model Swapper

E Base Model Alternate

[Models

Model Evaluation [*+*| Swa'ppl'ng
Criteria

A

Other Colmponents
(Optional)

v

Figure 1: A diagram of the model swapping components.
Dashed lines represent components that should already ex-
istin a simulation and solid lines represent components cov-
ered in this work. In this diagram, Other Components means
other simulation components that will remain intact and
not be swapped out.

https://doi.org/10.1145/3457388.3458670
https://doi.org/10.1145/3457388.3458670

CF ’21, May 11-13, 2021, Virtual Conference, Italy

Computer architecture simulation (simply simulation from here
on out for brevity) is a critical tool for determining how to shape
future architecture. Simulation is largely synonymous with dis-
crete event simulation of a computer system-on-chip [1], with each
sub-component of the simulator representing some module within
the target architecture. Early simulators, such as SimpleScalar [2],
modeled every function or component of the system in some level
of detail. This practice was fine for the age in which they lived,
however simulation of a modern multi-core system-on-chip with a
framework such as SimpleScalar would take an inordinate amount
of time. More recent simulators such as gem5 [4] adopt a method
known as “sim-points” [25] in order to speed simulation by adopt-
ing a statistical approximation for the behavior of entire phases
across an entire simulation. While this approach speeds simulation,
it is offline, requiring architects to generate the sim-points for a
program before simulating it, and it doesn’t give architects the
choice of which components are modeled in detail, and which are
approximated. Our approach enables automated, online migration
to simpler models during a single run of the simulator.

Modern computer architects have a myriad of computer simu-
lation frameworks to choose from (e.g. [4, 14, 20, 22]). This work
will apply to many of them, assuming that simulator framework
is “plug-able” (e.g. [22]), that is, the simulator modules themselves
have a defined interface. We assume that the plugin mechanism
defines any state transfer between plugin modules and that state
transfer only occurs at module boundaries through defined inter-
faces or ports (i.e., no global state). Within this framework, model
swapping is trivially possible, that is the reader can surely imag-
ine changing out components by re-connecting input and output
ports as is depicted in Figure 1. This oversimplification glosses over
necessary breakage of this pure model (e.g. synchronization prim-
itives must exist, and often have state), but it provides a basis to
build on. With this definition of a plug-able framework, we next
need to decide how to swap modules while respecting the spatial
and temporal output that downstream models expect. Our work
examines swapping in the L1D so that we can examine such effects.
Given the importance of the memory system to so many applica-
tions, improvements here also have the potential to greatly speed
up simulations.

Our primary contributions, to be detailed within this work, are
summarized by the following: 1) We present a proof of concept
for online model swapping within an architectural simulation. 2)
We demonstrate multiple statistical models that can approximate
a functional cycle-accurate model 3) We detail a model selection
methodology that can be used for online model selection.

2 Online Model Swapping

The scope of an idea like model swapping is quite broad and needs
to be narrowed down before we can make headway with an imple-
mentation. Let us first take a high-level look at the four components
of our scheme, which, in general, are answers to the four following
challenges:

e How do we find sections of execution that are simple
enough to model? Our goal of replacing components of
a simulation with easy-to-compute statistical models relies
on us breaking up the computation into chunks which are

Lavin et al.

easier to model than the program as a whole. This will be
addressed by Phase Detection.

e What do we swap in place of the base, detailed model?
We need to choose statistical models to provide to our model
swapping algorithm. Criteria for such models will be ad-
dressed in Alternative Models.

e How do we evaluate alternative models? As we will have
multiple statistical models available to us at simulation time,
we must identify criteria for ranking the relative perfor-
mance of the models. Things like model speed and perfor-
mance must be compared. The question of evaluating models
will be addressed in Model Evaluation.

e How do we decide to swap out a model? At simulation
time, we need criteria for deciding when it will be beneficial
to swap out the base model for one we have trained ourselves.
Deciding to swap the models means considering the criteria
previously mentioned and deciding if it will be worth it
to make the swap. Making the decision between models is
covered in Model Swapping.

We will answer these four questions in the following subsections.

Phase
Identified .
Swapping

riteria Not Met

Criteria Met, Training Fail

Model Selected

Figure 2: A state diagram for the abstract model swapping al-
gorithm. State transitions happen upon interval end, as de-
fined by the Phase Detector. Alternate models are trained
per-phase, and once swapping criteria have been met, that
phase will move into the Swap state, where a single alternate
model is chosen for that phase for the rest of the simulation.
If training seems too hard for a phase, or takes too long, a
GiveUp state can be entered, so that we can stop spending
computational resources on a phase deemed too complex.

2.1 Phase Detection

In order to train simple statistical models to predict behavior, we
need to break up the computation into chunks which themselves
exhibit simple behavior, at least for the component we want to swap
out. This can be accomplished with the help of phase detection[15],
which, as the name implies, detects phases within a program. Phases
represent portions of the program that display similar characteris-
tics, such as having a consistent number or branch misses or the
same set of instruction pointers. Many algorithms exist in this field,

Online Model Swapping for Architectural Simulation

but we will only use one in this work, which is laid out in Section 3.1.
Abstractly, it is important for whatever phase detector that is cho-
sen to be able to identify a phase identifier (ID) for the most recent
interval, and for it to share that ID with the other components of
the simulation, so that they know what phase has just run, and can
use that info to pick models.

2.2 Alternative Models

An obvious need for model swapping is to have multiple models to
choose from. The only requirement for these models is that they
statistically approximate the original base model responses given
a time series of inputs. For instance, a cache model that predicts
a miss at time T sends a response to a downstream cache level
(e.g. the level two data cache). If the model receives any sort of
coherence traffic that needs a response, the model must support
this too.

2.3 Model Evaluation

Various criteria exist for choosing between different statistical mod-
els based on things like model size and the number of required
sample points. For this work, we highlight the four parameters that
need to be considered in any model selection methodology:

e Accuracy - the statistical model should accurately represent
the behavior of the base model it is replacing,

e Side Effects - the statistical model should not disturb the
statistics of other parts of the simulation,

o Model Size - the model should ideally be smaller than the
base model given that memory access is likely dominant in
the simulation,

o Model Complexity - the statistical models should ideally re-
quire less time to perform prediction than the base model.

These four criteria will enable us to limit the choice of models
thereby giving us a method of choosing one online during simula-
tion.

2.4 Model Swapping

The final part part of any model swapping is the algorithm that
decides when it is time to stop training a statistical model and to
swap one in. This process is depicted in a state diagram in Figure 2.
This algorithm is run per-phase, and the transitions between states
occur on interval boundaries.

To instantiate such an algorithm, all of the other components
described so far must be in place, and swapping criteria must be
defined so that this algorithm can eventually terminate. Optionally,
a time limit can be set so that training is permitted to fail, at which
point the swapping algorithm gives up on trying to train a model
for that particular phase.

3 Proof of Concept: Swapping the L1 Data
Cache

Now that we’ve explained all the components of our model swap-
ping methodology, it’s time for us to implement it. To accomplish
this, we implement model swapping for the L1 data cache (L1D).
We choose the L1D specifically because it is central to many sim-
ulations, and changes to this model have real consequences for

CF ’21, May 11-13, 2021, Virtual Conference, Italy

downstream models consuming its output. In this section, we’ll
discuss the phase detection, alternate models, and model swapping
algorithm that we have chosen, and in Section 4, we’ll discuss how
well our method works.

3.1 Phase Detection

In order to reduce the degrees of freedom for our proof of concept,
we opt for a simple solution to the phase detection problem, based
on working sets, which was first described in [10]. We define an
interval as a continuous block of 10,000 instructions. In our case,
instructions consist of only memory references, as this is the infor-
mation that will be available to the memory hierarchy. For each
interval, the instruction pointers are hashed into a bit-vector, which
serves as the signature for that interval. We can compare interval
signatures with a simple similarity metric, and if we have enough
consecutive similar intervals, we will classify this as a phase, and
begin training models to fit that phase.

We have included the parameters (such as the signature size and
minimum number of similar signatures required to declare a new
phase) as well as pseudo-code for this phase detection algorithm in
Appendix A. While simple, this algorithm faithfully reproduces the
known phases for the program. Thus, we deem it suitable for our
proof of concept.

3.2 Alternate Cache Models

We need a selection of models to use in place of the L1D cache
when we swap out the base model. In this work, we present three
simple models. As we are working to replace a cache, the behavior
we need to replace is that of the hit check where we ask a cache
whether or not it has a line in residence. Thus, a cache model needs
to take information about a request (such as the instruction pointer
and whether it is a read or a write) and use this to predict whether
the access is a hit or a miss.

RH RM WH WM

RH RM WH WM

RH |04 (04]0.1]0.1 RH |05 (0.5 RH |05 (05

RM|03(0.1(03(0.1 RM [0.75]0.25 RM |0.75(0.25

WH|0.10.1]0.1]0.7 WH| 0.5 |05 ‘WH (0.125/0.875

WM|04]03(02|0.1 WM|0.57)0.43 WM| .67 | .33

e

Figure 3: Markov-Chain Based Models: Our Markov-chain
based models restrict the transition probabilities based on
information regarding the next access. If the next access is a
read, we will only allow the model to predict a transition to
a ReadHit (RH) or ReadMiss (RM) state. This image depicts
the 4-state Markov model, but the 8-state model works sim-
ilarly.

3.2.1 Fixed Hit Rate The first and most basic model is the Fixed
Hit Rate Cache Model, also referred to as the Fixed Rate Cache Model.
In this model, we count the number of hits and misses during a
phase’s execution, and calculate a hit rate for the phase. When using

CF ’21, May 11-13, 2021, Virtual Conference, Italy

Table 1: Model Complexity

Size (Bytes) Hit Check | Training (com-
(comparisons) | parisons)
Base 8192 16 16
Fixed Rate | 16 1 1
Markov 4 | 384 1 O(N?)
Markov 8 | 1536 2 O(N?)

this model for prediction, we generate a random number uniformly
spaced between zero and one, and check whether that number is
below the hit rate or not. If it is, we say the access is a hit, otherwise,
we classify it as a miss, and pass it along to the L2.

3.2.2 4-State Markov Model The fixed rate model is simple, which
likely means it won’t be able to represent the behavior of most
real programs. To add information on access history to our predic-
tion, we use a Markov-chain based model. Our first Markov model
includes four states, ReadHit, ReadMiss, WriteHit, and WriteMiss.
During training, we learn the transition probabilities from one state
to the next. During prediction, we generate a uniform random num-
ber and move to the state indicated by the transition probability.
However, we have one caveat: if the next request to the cache is a
read, we do not want our Markov model to predict that we move to
a WriteHit or WriteMiss state. Thus, during prediction, we restrict
the model to moving to states corresponding to the current cache
access. This behavior is depicted in Figure 3, and the pseudo-code
is shown in Appendix B.

3.2.3 8-State Markov Model While the 4-State Markov model adds
some history, neither it nor the Fixed Hit Rate model capture one of
the most important performance features of a cache, namely spatial
and temporal locality. To remedy this, we have an 8-state Markov-
chain model that adds a small amount of locality information. It has
the same states as the above 4-state Markov model, but it has both
Near and Far versions of each of the four states. A Near state is
defined as cache access occurring on the same cache line as the last
one, and a Far access as anything else. Note that to be consistent,
we used 64B as the boundary for a cache line, which means two
cache lines are Near for the L1 model and one cache line is near
for the L2 model. Similar to the 4-state model, we must restrict the
states we allow the model to transition to during prediction based
on both whether or not the next access is a read or a write, and
also whether the access is considered Near or Far. This means that
prediction is only able to transition to one of two states, so the
entire prediction takes only two comparisons (one to determine if
the access is near or far, and one to determine if it is a hit or a miss).

3.3 Model Evaluation Criteria

As mentioned in section 2.3, we have identified four areas to evalu-
ate models on. For a cache component, we have defined them as
follows:

3.3.1 Accuracy For our purposes, accuracy is defined as the per-
centage of hits correctly predicted. This is measured during simula-
tion by training the statistical models as soon as we have any data
on the phase (i.e., as soon as it is identified by the phase analysis

Lavin et al.

component), and running the partially trained models alongside
the base model until we have a good idea of the accuracy.

3.3.2 Side Effects In the cache, the most important side effect to
consider is the locality of the references that miss in the L1D, as
these are the ones that go to the L2. Many metrics for locality
are computationally intensive, and since our goal is to speed up
simulation, we have chosen a simple proxy for locality, the near
miss count. With near being defined as in the 8-state Markov model:
if two accesses are on the same cache line, they are considered
near, and otherwise classified as far. Thus, the metric is simply the
number of misses that are classified as near. We can compare this
with the number of near misses from the base model to get an idea
of the locality properties of the accesses going to L2.

3.3.3 Model Size Aside from metrics derived at runtime, there are
some static information we can use in model selection, the first of
which is the model size.

o The base model is a 32 KiB, 8-way set associative cache, with
4B words. This gives us 128 sets with 8 tags each, and stored
as 8 B integers. This is a total size of 8 KiB.

o The Fixed Hit Rate model requires storing an 8 B hit count,
and an 8 B hit rate, meaning the full size is only 16 B.

e The Markov models each require storing an N X N tran-
sition count matrix, and an N X N transition probability
matrix, where N is the number of states. They also memoize
the restricted transition matrices (depicted in Figure 3. This
amounts to another % matrices of size N X 2 which brings
the total cost to 3N2. Assuming that these are all stored with
8-byte values, we end up with 384 B for the 4-state Markov
model, and 1536 B for the 8-state model.

3.3.4 Model Complexity We measure model complexity as the
number of comparisons required to make a hit check. For the base
model, this takes 16 comparisons, as it does a linear search over the
tags present in the set, which is 8-way associative. Another search
will be needed for eviction. For the Fixed Hit Rate Model, a single
comparison is needed to see if the random number generated is
less than the hit rate.

Due to the way the Markov models restrict the states they can
move to, we actually only need a single comparison for the 4-state
model The 8-state model needs an additional comparison, to check
if the current address is near or far. This was explained in depth in
Section 3.2.2. The numbers for the model size and complexity are
also listed in Table 1.

3.3.5 Model Score We compile the above into a length-4 vector
representing the model’s performance on the phase. The first num-
ber is the model accuracy, which of course is a number between
zero and one. The second value is count of near misses predicted
by the statistical model, divided by the number of near misses that
the base model emitted. The third number is the size of the model
as a fraction of base model, and the final number is the number of
comparisons required as a fraction of the base model. The score,
then, is the distance of this vector from the ideal, which would be,
[1,1,0,0]. A lower score will indicate a superior ranking.

Online Model Swapping for Architectural Simulation

3.4 Model Swapping

In Figure 1, we showed an abstract picture of what model training
and swapping should look like. For this work, due to the simplicity
of the models chosen, we have used a reduced version of that
diagram for our algorithm. We simply train for two intervals, and do
not make use of a GiveUp state. We found that this time period was
long enough for the learned parameters in our models to stabilize,
and that the resulting accuracy was reasonable for the total run.

Now that we’ve seen the components of our simulation, it is time
we take a look at how well this methodology works. In our tests,
the time spent with the base model is five intervals per phase to
identify, plus two intervals per phase to train, plus the number of
any uncategorized phases. This means that for the results presented
in Section 4, the swapped models are used for over 90% of the
simulation.

4 Results
4.1 Methodology

4.1.1 Simulator Our technique for model swapping was imple-
mented in SVE-Cachesim, which is an in-order, Python-based cache
simulator developed for [8]. While a simple model such as this
ignores some parts of the cache system, such as the effects of pre-
fetching, by focusing on a component in the middle of the system,
the L1D, we were able to study the downstream effects introduced
by our models.

4.1.2 Simulated System The system under examination is the a
3-level cache hierarchy 4B words and 8 words per line in the L1D
and 16 words per line in the L2 and L3. It has a 16 KiB 8-way set
associative L1D, a 256 KiB 8-way set associative L2, and a 1 MiB
32-way set associative L3. All levels use a least recently used re-
placement policy. Computational cores are not modeled in this
work; we merely take the memory addresses from the trace and
send them to the L1 cache.

4.1.3 Trace To test our phase-analysis methodology, we used a
micro-benchmark called Meabo!. Meabo allows us to run a program
with pre-identified phases, which makes it easy for us to visually
confirm that our phase analysis is working. We chose three phases
from Meabo, Phase 1: Floating-point & integer computations with
good data locality, Phase 4: Vector addition, and Phase 10: Random
memory accesses. These were chosen as we expected them to vary
in their utilization of the cache hierarchy.

We made a few changes to the code, which are intended as
markers to ensure that we have correctly identified each specific
phase. First, we added a loop to Meabo so that all phases will be run
three times instead of just once, and second, we added a marker
phase between each phase so we can see which phases represent
computation and which belong to other program artifacts artifacts,
such as data initialization.

The trace is collected by running Meabo with a single thread
on an Intel Xeon Haswell E52690-v3 and capturing all memory
references with DynamoRIO memtrace [6]. The trace is roughly
three million references long.

!https://github.com/ARM-software/meabo

CF ’21, May 11-13, 2021, Virtual Conference, Italy

4.1.4 Model Training As mentioned in Section 3.4, we use a simple
model swapping criterion in this paper: one or more models are
trained for the first two intervals in a phase, and then the best one
is selected. We observed that the training parameters for all of our
selected models stabilized quickly, and thus we did not need to train
for more time. We do not use a criteria to declare training a failure
in this work.

—1 = e e e “ e .

0 200 400 600 800
Interval number (Interval = 10k inst)

Phase Number (-1 is uncategorized)

Figure 4: Meabo phases: Here we have plotted the interval
number of the program along with its corresponding iden-
tifier assigned to it through phase detection. These images
shows our marker phase, phase one, being run after every
Meabo computational phase, phases two, three, and four.

4.2 Phase Analysis

First, we should examine that our phase analysis code is working
as intended. In Figure 4, we plot the phase identifier (id) for every
interval in the simulation. At the end of every interval, which are
each 10,000 instructions, the phase detector will attempt to identify
the interval by comparing the signature to those it has encountered
previously. If it is successful, an id is assigned, otherwise the interval
is labeled as (-1).

The trace we collected ran each Meabo kernel three times. Look-
ing at Figure 4, it is clear then that phases two, three, and four must
be the phases from Meabo, and that phase one must be our marker
phase that runs between Meabo computational phases. For the rest
of the paper, we will refer to these phases by the number assigned
to them by our phase detection algorithm, but we will include a
description of the computation (e.g. High Locality, Vector Add,
Random, etc.) so that it will be clear to which we refer.

Now that we’ve demonstrated empirically that our phase detec-
tion methodology is sound, and capable of driving our online model
selection process. We can now evaluate how accurate each model
is.

4.3 Prediction Accuracy

We would like to compare the accuracy of the each model we have
chosen so that we can get an idea of how they measure up against
each other. In Figure 5, we measure the accuracy of each model for
each phase. Accuracy is defined as the number of properly classified
accesses, which means the number of accesses correctly predicted

CF ’21, May 11-13, 2021, Virtual Conference, Italy

1.0-
,"“~ . eMarkov 8
’~~ R ; .s ’ ‘
08- °.’ . ‘. .’ .’ gFixed Rate
- e ~. . ‘
30.6- ~ 9
e v
S >
= © kel
S -
02- 73 I =] S
= © =) 0 G
= = T > o
0.0 — T T T T
0 1 2 3 4
Phase

Figure 5: Accuracy per phase: We run our simulation but re-
strict it to using a single alternate model (as opposed to let-
ting the simulation choose between them), so that we can
view their relative performance. We average the accuracy
over 10 runs. These values are also shown in Table 4, along
with the standard deviation in Table 5, which was too small
to plot.

to be hits or misses, divided by the total number of accesses to the
L1D. We consider the truth to be the standard cache model running
with no model swapping.

This plot shows us that the 8-State Markov model is the best for
all but the marker phase, Phase 1. The marker phase is essentially
all read hits, and thus trivial to predict. The gaps between the model
performance on the Meabo phases (Phases 2, 3, and 4) give us hints
as to what type of information is important for modeling each
phase. In phase 2, the tiny gap between Markov 4 and the Fixed
Hit Rate model shows us that knowledge of whether the access
was read or write (and whether the last access was read or write) is
not important, at least not on its own. This information, however,
is useful in both Phases 3 and 4. As we see from the performance
of the 8-state Markov model, even the relatively small amount of
locality information is enough to achieve 90% accuracy in Phases 2
and 4.

While promising, this data is an aggregate over the entire run,
with multiple runs of each phase aggregated together. We will break
this data down to examine it further.

4.4 Prediction Accuracy Over Time

While it is useful to look at data aggregated per-phase, it leaves us
unable to ask question about how the accuracy changes over time,
particularly at phase boundaries. Figure 6 displays the accuracy
per-interval, as opposed to the per-phase data we looked at the in
the last section.

From the data for Phases 1, 2, and 4, it is clear that the accuracy
does change over time. If we reference the phase id plot in Figure 4,
we can see that these drops in accuracy occur when phases are
re-entered. This is perhaps the opposite of the expected behavior -
we would expect accuracy to drop at the end of a phase, because the
phase detector will not be able to tell the model swapping algorithm
that a phase has ended until it identifies an interval that is not a
part of the phase. Thus that one interval will have been run with

Lavin et al.

Table 2: Model Scores (lower is better)

l ‘ Phase 0 | Phase 1 ‘ Phase 2 ‘ Phase 3 ‘ Phase 4

Fixed Rate | 0.6875 0.0626 | 0.6035 0.9273 0.5188
Markov 4 | 0.6519 0.0781 0.6070 0.7479 0.3842
Markov 8 | 0.5802 | 0.2253 0.3313 | 0.6659 | 0.2668

a model trained for a different phase. However, as we only see
2 spikes on Phase 2, it must be that this is happening on phase
re-entry, not phase exit. It is likely that phases exhibit different
memory behavior upon re-entry, such as a higher number of cache
misses. This behavior is likely not captured by our models that are
trained on data from several intervals into a phase.

On the other hand, it is quite promising that these lines appear
to be flat. This means that the accuracy is not getting worse as
time passes. In other words, deleterious state doesn’t accumulate
or compound over time.

Now that we have looked at how the models work in regards
to the L1D statistics, we should take a look at how the rest of the
simulation is affected.

4.5 Locality of Misses

In Figure 7 we have plotted the reuse distance histograms for the
cache accesses that miss in the L1D cache and thus go to the L2
cache, which has not been swapped out for a simpler model. It will
be important that these match the base model so that we do not
disturb the L2 behavior too much. Across the top of the plot is the
reuse data for the base cache. These are the shapes that we would
like our statistical models to learn.

The locality of phases 0 and 1, program initialization and the
marker phase, seem difficult to capture with our models. Phase 0
has a large spike that no models capture, and phase 1 is particularly
hard for the Fixed Rate Model. Thankfully, these do not take up a
large percentage of the simulation. Moving to the Meabo phases,
we see that the 8-State Markov model shows a strong ability to
mimic the reuse distances of the base model, especially compared
to the other two models. In Phase 2, both the Fixed Hit Rate and the
4-State Markov produce large spikes in the histogram that should
not be there, whereas the 8-State Markov model does not. In Phase
3, the 8-State model seems to do best at reproducing the right side
of the distribution, while they all seem to have trouble with the
left. And finally, in Phase 4, it again seems that the 8-State model is
best at reproducing the qualitative properties of the reuse distance
distribution.

The takeaway here is that in cases where the locality of the
references going to the L2 does not matter, for instance in some
phase with a very high L1D hit rate or a phase where L2 and L3
stats are not important to the simulation designer, it may be alright
to use a model like the Fixed Hit Rate or 4-State Markov model.
However, in cases where the spatial and temporal locality matters,
as is typically the case, the 8-State Markov model will work best
(out of the models we have to select from).

Now that we have examined how the individual models perform,
we should examine how they are ranked.

Online Model Swapping for Architectural Simulation

CF ’21, May 11-13, 2021, Virtual Conference, Italy

Phase 0 Phase 1 Phase 2 Phase 3 Phase 4
1.0- M
- arkov 8
0.8- I I ’ | l I - Fixed HR
W ——— - 4
- x =< v = v Y
30.6-
© | 2RI S WS
3
1)
& 0.4-
0.2-
Initialization Marker High Locality Vector Add Random
0 25 50 0 50 100 0 100 200 0 50 100

Interval nimher

Figure 6: Accuracy per interval: We can view the accuracy that each model achieves on each interval of the trace. In actuality,
the trace moves from phase to phase, but for this plot, we show each execution of each phase as a single line, to demonstrate
what happens to the accuracy of each model as time moves on. We observe that that accuracy does not deteriorate over time,
but that there are dips in accuracy occurring upon phase re-entry. For example, Phase 2 has two reentry points (as shown in
Figure 4), and we see corresponding dips when accuracy is plotted sequentially here

Table 3: Percent Change in Cache Stats (10 Runs)

| | LiHits [L2Hits [L3Hits [[Cycles |

| Base | 7.69e+06 [7.78e+05 | 2.53e+05 [| 1.37e+08 |
Fixed Hit Rate | -0.07% 54.11% -71.11% -27.91%
Markov 4 -0.37% 46.10% -52.14% -23.13%
Markov 8 -0.19% 12.13% -4.18% -7.59%
ALL 0.07% 10.12% -4.65% -7.99%

4.6 Model Selection

We described our model selection criteria in Section 3.3. In Table 2
we see which models actually won out, based on the criteria of
accuracy, locality, complexity, and size. Due to the ability of the 8-
state Markov model to represent locality, as well as its high accuracy,
we see that it wins for the all but one phase. However, due to the
simplicity of phase 1 and the size of the Fixed Hit Rate model,
the 8-state model loses here. Thus, during a run of the simulation
where the simulator is allowed to choose the best ranking model,
the 8-state Markov model is always chosen except in phase 1. In
subsequent sections, we refer to this as ALL, as the simulator trains
all 3 models and chooses the best for each phase.

4.7 Overall Simulation Statistics

In the last section, we saw that due to the performance of the 8-State
Markov model, it is chosen by the model selection algorithm for
every phase except for the marker phase, Phase 1. In this section,
we’ll look at how the overall simulation statistics change when
using each model, including the ALL model, as just described. This
data is in Table 3.

First off, we see that every model is able to accurately match the
hit count of the L1D cache. This is expected, as each model need
only produce the same number of hit and misses as the base model.
This is obviously the case of the Fixed Hit Rate model. This is also
expected of the Markov models, as we expect them to spend the
same amount of time in each state as the training data, so they
are expected to produce the proper number of hits and misses.

It is good, however, to know that our slightly modified Markov
model, which is able to restrict the state it moves to in order to
predict locality, does not break this behavior. As we move to look
at the rest of the stats, things start looking grim for the Fixed Hit
Rate and 4-State Markov models. These models do not encode any
locality information, and thus the stream of misses that go to the L2
have far different locality properties than the base detailed model.
Thankfully, it seems easy enough to correct for this. The 8-State
Markov model greatly reduces the error in the L2, and L3 hit counts,
and correspondingly the total number of execution cycles as well.

As for the simulation where we automatically selected models,
ALL, the stats are not too different from the 8-State Markov model.
This is to be expected, as we saw in Section 4.6, the 8-State Markov
model is chosen for every phase except for Phase 1, which was
trivial to predict. While this choice does introduce extra error, it
will be up to future simulation designers to decide if error like this
is acceptable for their purposes. The fact that the Fixed Rate Model
was used at all, and did not disturb overall simulation statistics too
much should be seen as a win.

Overall, our accuracy in cache hits and simulation cycles indi-
cate that this model swapping methodology has merit, and shows
promise for speeding up larger simulations.

5 Related Work

The topic of how to choose between models is a well studied topic
with an established body of literature [13, 16, 26]. Our work builds
on these classic works by using known modeling techniques such as
the Markov model [11]. A model selection survey by [21] describes
more recent methods of model selection, in which they describe a
posterior predictive criteria method related to our distance metric.
We differ in that we used summarized criteria in the selection
process as well as raw model performance.

As model validation is closely related to model selection, our
work is loosely related to empirical response surface evaluation [5].
Our work, instead of relying on complex multi-dimensional, time-
series surfaces, uses a summary statistic over each phase which
is compared to an ideal using a distance metric (§ 2). Multiple

CF ’21, May 11-13, 2021, Virtual Conference, Italy

Base

Fixed HR

Markov 4

Markov 8

FEFFE
13

Phase 0 Phase 1

(LT

Phase 2

Lavin et al.

1944
s

Phase 3 Phase 4

Figure 7: Reuse distance histograms: We calculate the reuse distance for every access to the L2 cache and plot this for a single
run of the simulator. We cut the x-axis at reuse distance = 500 and the y-axis at count = 125,000 as this contains the overwhelm-
ing majority of the volume of the chart. Log y-axis. This shows us that the 8-state Markov model is able to model the locality
properties of the base cache much better than the other two statistical models.

related fields from Operations Research [17] and agriculture [12]
rely on model validation, typically through physical or empirical
observation. Model validation and simulation [23, 24] are often
discussed in terms of model cost (e.g. execution time) and model
confidence (i.e., does the model work). We differ from the model
validation described by [24] in that due to our intended automated
approach, we rely almost exclusively on “scoring” vs. other more
intensive approaches. Our thesis here is that we can constrain the
impact of error by modeling behavior by phase.

While prior works provided the building blocks to enable our
online model swapping proof-of-concept, we believe we are the first
to demonstrate all such features combined, that is: phase detection,
model selection, and model swapping.

6 Conclusions and Future Work

This work demonstrates the potential for online model swapping to
speed up simulation while minimizing loss in accuracy. Our proof of
concept shows that simple statistical models can faithfully represent
phases of execution based on the realistic kernels in Meabo. As
Figure 8 shows for the Meabo kernels, we can provide computer
architects a new tool to quickly explore trade-offs between accuracy
and the size or complexity costs of different models. We are excited
by this result, but further work is yet to be done:

e Swapping criteria and more statistical models We have
preliminary data for a subset of the applications in the PAR-
SEC benchmark suite [3] that show the potential for this
technique to apply to more datasets than just Meabo. Our
models achieve greater than 90% accuracy in predicting L1D
hits on many of the phases, but produce overall cycle errors
in the range of 15% to 35%. We believe this will be reme-
died by a combination of (1) choosing not to swap models in
low accuracy phases and (2) the addition of more statistical
models, such as [19].

o SST Integration This project was inspired by a desire to
speed up simulations using the Structural Simulation Toolkit
(SST) [22]. As such, an important next step will be the imple-
menting our work there. This will allow our methodology to
be used in more realistic simulations that include prefetching
and cache coherency, and bring this work to a wide audience.

e More components We used the L1D as a starting point for
us to explore model swapping. However, we designed the
methodology so that it would be general enough to apply
to other components in a simulation. We aim to swap out
components such as other parts of the cache, parts of the
network, or even pieces of the core model.

The methods in this paper will serve as a starting point for future
work in model swapping. With the main components the technique

Online Model Swapping for Architectural Simulation

1.09 1 1 []
4
2
0.8 4
.|
@ 0.6
5 3
9}
v}
< 0.4+
(0]
© < ©
o > >
*21 37 = = 2
x © © ©
[= = oM
0.29% 4.69% 18.75% 100.00%

Model Size (% of Base Cache)

Figure 8: Accuracy as a function of model size: Here we vi-
sualize the trade-off between accuracy and model size, with
each simpler model giving us a broader range of perfor-
mance for the phases studied in this work. Our research en-
ables simulation designers to explore this space, and other
related spaces, for the purposes of faster iteration in design.

described here, and an implementation to serve as a starting point,
we know that further exploration will yield useful tools to accelerate
the architectural simulation.

Acknowledgements

This work used the Hive cluster, which is supported by the National
Science Foundation under grant number 1828187. This research was
supported in part through research cyberinfrastrucutre resources
and services provided by the Partnership for an Advanced Com-
puting Environment (PACE) at the Georgia Institute of Technology,
Atlanta, Georgia, USA.

Additionally, this work was partially supported by the National
Science Foundation under Grant No. 1710371, and was partially
completed while the first author was an intern at Arm Research.

References

[1] Ayaz Akram and Lina Sawalha. 2019. A survey of computer architecture simula-
tion techniques and tools. leee Access 7 (2019), 78120-78145.

[2] Todd Austin, Eric Larson, and Dan Ernst. 2002. SimpleScalar: An infrastructure
for computer system modeling. Computer 35, 2 (2002), 59-67.

[3] Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D. Dissertation.
Princeton University.

[4] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH computer architecture
news 39, 2 (2011), 1-7.

[5] George EP Box and Norman Richard Draper. 1987. Empirical model-building and
response surfaces. Vol. 424. Wiley New York.

[6] Derek L. Bruening and Saman Amarasinghe. 2004. Efficient, Transparent, and
Comprehensive Runtime Code Manipulation. Ph.D. Dissertation. MIT, USA.
AAI0807735.

[7] Andrew A Chien and Vijay Karamcheti. 2013. Moore’s law: The first ending and
a new beginning. Computer 46, 12 (2013), 48-53.

[8] Miguel Cruz, Daniel Ruiz, and Roxana Rusitoru. 2019. Asvie: A Timing-Agnostic
SVE Optimization Methodology. In 2019 IEEE/ACM International Workshop on
Programming and Performance Visualization Tools (ProTools). 9-16. https://doi.
org/10.1109/ProTools49597.2019.00007

CF ’21, May 11-13, 2021, Virtual Conference, Italy

—_

9] Robert HDennard, Fritz H Gaensslen, V Leo Rideout, Ernest Bassous, and Andre R

LeBlanc. 1974. Design of ion-implanted MOSFET’s with very small physical

dimensions. IEEE Journal of Solid-State Circuits 9, 5 (1974), 256—268.

Ashutosh S. Dhodapkar and James E. Smith. 2002. Managing Multi-Configuration

Hardware via Dynamic Working Set Analysis. In Proceedings of the 29th Annual

International Symposium on Computer Architecture (Anchorage, Alaska) (ISCA

’02). IEEE Computer Society, USA, 233-244.

Paul A Gagniuc. 2017. Markov chains: from theory to implementation and experi-

mentation. John Wiley & Sons.

[12] Hugh G Gauch Jr. 1988. Model selection and validation for yield trials with

interaction. Biometrics (1988), 705-715.

Mor Harchol-Balter. 2013. Performance modeling and design of computer systems:

queueing theory in action. Cambridge University Press.

[14] Wim Heirman, Trevor Carlson, and Lieven Eeckhout. 2012. Sniper: Scalable and

accurate parallel multi-core simulation. In 8th International Summer School on

Advanced Computer Architecture and Compilation for High-Performance and Em-

bedded Systems (ACACES-2012). High-Performance and Embedded Architecture

and Compilation Network of ?, 91-94.

Michael Hind, V. T. Rajan, and Peter F. Sweeney. 2003. Phase Shift Detection:

A Problem Classification. Technical Report. IBM Thomas J. Watson Research

Division.

Raj Jain. 1991. The art of computer systems performance analysis. Vol. 182. John

Wiley & Sons Chichester.

Maurice Landry, Jean-Louis Malouin, and Muhittin Oral. 1983. Model validation

in operations research. European Journal of Operational Research 14, 3 (1983),

207-220.

Gordon E Moore. 1965. Cramming more components onto integrated circuits.

Electronics 38, 8 (1965).

[19] K. O’Neal and P. Brisk. 2018. Predictive Modeling for CPU, GPU, and FPGA

Performance and Power Consumption: A Survey. In 2018 IEEE Computer Society

Annual Symposium on VLSI (ISVLSI). 763-768.

Avadh Patel, Furat Afram, Shunfei Chen, and Kanad Ghose. 2011. MARSSx86:

A Full System Simulator for x86 CPUs. In Design Automation Conference 2011

(DAC’11)

[21] Juho Piironen and Aki Vehtari. 2017. Comparison of Bayesian predictive methods
for model selection. Statistics and Computing 27, 3 (2017), 711-735.

[22] A.F.Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield, M. Weston,

R. Risen, J. Cook, P. Rosenfeld, E. Cooper-Balis, and B. Jacob. 2011. The Structural

Simulation Toolkit. SSIGMETRICS Perform. Eval. Rev. 38, 4 (March 2011), 37-42.

https://doi.org/10.1145/1964218.1964225

Robert G Sargent. 1979. Validation of simulation models. In Proceedings of the

11th conference on Winter simulation-Volume 2. IEEE Press, 497-503.

Robert G Sargent. 2005. Verification and validation of simulation models. In Pro-

ceedings of the 37th conference on Winter simulation. winter simulation conference,

130-143.

Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. 2002. Auto-

matically characterizing large scale program behavior. ACM SIGPLAN Notices 37,

10 (2002), 45-57.

William J Stewart. 2009. Probability, Markov Chains, Queues, and Simulation:

The Mathematical Basis of Performance Modeling. Princeton University Press,

Princeton, NJ.

[10

[11

=
&

[15

[16

(17

=
&

[20

~
&

[24

[25

[26

A Phase Detection Algorithm

A description of the phase detection algorithm that we use exists in
[10], but it does not include an implementation. We include pseudo-
code here to aid the reader in understanding the implementation.

threshold = 0.5

interval_len = 10000

sig_len = 1024

drop_btis =3

sig = new_bitvector(sig_len)

last_sig = new_bitvector(sig_len)

def diff(sigl, sig2):
tmpl = sigl * sig2
tmp2 = sigl | sig2
return popcount(tmpl1) / popcount(tmp2)

https://doi.org/10.1109/ProTools49597.2019.00007
https://doi.org/10.1109/ProTools49597.2019.00007
https://doi.org/10.1145/1964218.1964225

CF ’21, May 11-13, 2021, Virtual Conference, Italy

def hash(sig):
tmp = sig >> drop_bits

return builtin_hash(tmp) >> (64 - log2(sig_len))

def phase_detector(ip):
siglhash(ip)] =1
count += 1

If we are on an interval boundary, determine
the phase and notify listeners
if count % interval_len ==
if diff(sig, last_sig) < threshold:
stable += 1

if stable >= stable_min and phase == -1:

phase_table.append(sig)
self.phase = len(phase_table) - 1
else:
stable = @
phase -1

Check if we have entered a phase we
have seen before
if len(phase_table) > 0:
similar = []
for s in phase_table:
similar.append(diff(sig, s))
best = imax(similar)
if similar[best] < threshold:
phase = best

last_sig = sig
sig = new_bitvector(sig_len)

notify_listeners(phase)

Listing 1: The pseudo-code for our phase detector implemen-
tation. On every memory reference, the IP is shared with the

states

def predict(restrict):

tmp = counts[:, restrict]
tmp = normalize_rows(tmp)

pred = prefixsum_rows(tmp)

r = rand()

for i in range(len(restrict)):

if r < pred[last_state, i]:
next_state = restrict[i]

last_state = next_state

break

return next_state

Lavin et al.

Listing 2: The algorithm for prediction with the 4 state
Markov model. Care must be taken to only return a state
that corresponds to the incoming request. This is done with
the restrict parameter, which is used to restrict the states
that the model can move to. In practice, the restricted pre-
diction matrices are memoized if the counts matrix has not

changed.

C Accuracy Data

This data is plotted in Figure 5, and is included here for readers
curious about the variance between runs.

Table 4: Mean Per-Phase Accuracy (10 Runs)

‘ Phase 0 ‘ Phase 1 ‘ Phase 2 ‘ Phase 3 ‘ Phase 4 ‘

Fixed Rate | 0.67 0.99 0.70 0.53 0.74
Markov 4 | 0.68 0.98 0.71 0.62 0.82
Markov 8 | 0.73 0.98 0.88 0.69 0.93
All 0.73 0.99 0.88 0.69 0.93

phase_detector function, which updates a signature. At the
end of an interval, this signature is compared with the pre-

Table 5: Std.Dev. in Per-Phase Accuracy (10 Runs)

vious one to see if execution is stable.

B Markov Prediction Algorithm

This pseudo-code is corresponds to the algorithm depicted in Fig-

ure 3.

last_state # the last state

counts # (N x N) matrix where (i, j) is
the number of times state j followed
state i during training

The prediction function returns the next state
The restrict parameter is a tuple with allowed

‘ Phase 0 ‘ Phase 1 ‘ Phase 2 ‘ Phase 3 ‘ Phase 4 ‘

Fixed Rate | 0.0004 0.0000 0.0002 0.0003 0.0002
Markov 4 | 0.0004 0.0001 0.0002 0.0004 0.0001
Markov 8 | 0.0006 0.0001 0.0001 0.0005 0.0001
All 0.0005 0.0000 0.0002 0.0004 0.0001

	Abstract
	1 Introduction
	2 Online Model Swapping
	2.1 Phase Detection
	2.2 Alternative Models
	2.3 Model Evaluation
	2.4 Model Swapping

	3 Proof of Concept: Swapping the L1 Data Cache
	3.1 Phase Detection
	3.2 Alternate Cache Models
	3.3 Model Evaluation Criteria
	3.4 Model Swapping

	4 Results
	4.1 Methodology
	4.2 Phase Analysis
	4.3 Prediction Accuracy
	4.4 Prediction Accuracy Over Time
	4.5 Locality of Misses
	4.6 Model Selection
	4.7 Overall Simulation Statistics

	5 Related Work
	6 Conclusions and Future Work
	References
	A Phase Detection Algorithm
	B Markov Prediction Algorithm
	C Accuracy Data

