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ABSTRACT: 19 
 20 
Polymer formulations possessing mesostructures or phase coexistence are challenging to simulate using 21 
atomistic particle-explicit approaches due to the disparate time and length scales, while the predictive 22 
capability of field-based simulations is hampered by the need to specify interactions at a coarser scale 23 
(e.g., 𝜒-parameters). To overcome the weaknesses of both, we introduce a bottom-up coarse-graining 24 
methodology that leverages all-atom molecular dynamics to molecularly inform coarser field-theoretic 25 
models. Specifically, we use relative-entropy coarse-graining to parameterize particle models that are 26 
directly and analytically transformable into statistical field theories. We demonstrate the predictive 27 
capability of this approach by reproducing experimental aqueous polyethylene oxide (PEO) cloud-point 28 
curves with no parameters fit to experimental data. This synergistic approach to multiscale polymer 29 
simulations opens the door to de-novo exploration of phase behavior across a wide variety of polymer 30 
solution and melt formulations.  31 
 32 
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Complex polymer formulations are the basis for a vast range of important materials and products 38 

including paints, coatings, adhesives, cleaning and personal care products, elastomers, and plastics. To 39 

accelerate product design, improved methods for predictive modeling are greatly needed, specifically for 40 

sweeping the large, multivariate design space (polymer molecular weight, composition, architecture, and 41 

chemistry; solvent chemistry; solution composition; processing temperature; etc.) to explore resultant 42 

equilibrium structures and phases.1 Characteristic of these systems are mesoscale structures spanning 43 

nanometer to micrometer length scales and long relaxation time scales associated with polymer diffusion 44 

and phase coarsening, reaching seconds, minutes, and even hours. While first principles and atomic-45 

resolution particle simulations such as ab-initio molecular dynamics (MD) and classical atomistic MD 46 

methods are attractive for their predictive capabilities, they cannot access such large length and time 47 

scales and, consequently, have limited direct utility in formulation design.  48 

Many efforts have instead turned to bottom-up coarse-graining strategies that map high-resolution 49 

atomistic models to coarser, effective “bead” models, sacrificing molecular detail for computational 50 

efficiency but retaining a connection to the underlying chemistry. There are many bottom-up, coarse-51 

graining strategies including Boltzmann inversion,2,3 force-matching,4 and relative entropy coarse-52 

graining,5,6 among others,7–10 with work demonstrating their applicability to a variety of soft matter 53 

classes that span small and large molecules alike.7,11–16 However, the so-developed coarse-grained models 54 

are typically sampled using particle-based approaches (e.g., MD), which, despite the coarsening, 55 

inherently struggle to equilibrate systems at significantly larger times, such as those associated with large 56 

polymers capable of microphase or macrophase structuring on ~1 μm scales. Furthermore, rigorous phase 57 

coexistence calculations are challenging and very often practically impossible even with coarse-grained 58 

particle representations due to the high computational cost of inserting (or deleting) macromolecules into 59 

(or from) dense phases.17  60 

As an alternative to particle-based coarse-grained (CG) models, an equilibrium field-theoretic 61 

representation of the identical CG model circumvents the aforementioned challenges of constrained 62 

particle degrees of freedom by instead framing the model using auxiliary potential fields.18,19 Field 63 

theories are particularly efficient when Angstrom scale features (e.g., liquid structuring) do not need to be 64 

resolved, instead capturing structural features in the nm range and above. Moreover, the number of 65 

polymers appears as a simple parameter in a field representation, so the computational expense becomes 66 

nearly independent of density. For this reason, field-theoretic simulations become much more efficient 67 

than particle MD at high polymer molecular-weight and/or high densities. Additionally,  with a field 68 

representation  molecular insertions (or deletions) involve simply changing a parameter in the field-69 

theoretic model,  enabling efficient and accurate Gibbs Ensemble Monte Carlo (GEMC) phase 70 

coexistence calculations even for macromolecules.20,21 Contrarily, GEMC utilizing a particle 71 
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representation requires the development of complex schemes (e.g., configurational-bias22–24 or continuous 72 

fractional component25 Monte Carlo techniques, among many others24,26,27) to obtain reasonable 73 

acceptance for macromolecules of any appreciable size, particularly for liquid-liquid coexistence;28 this is 74 

also the case even when “soft”-core interactions, like those found in dissipative particle dynamics, are 75 

utilized.29–31  76 

Constructing a statistical field theory representation of a CG particle model involves the use of 77 

auxiliary potential fields to decouple non-bonded interactions in the model. Bonded interactions are 78 

embedded in single-chain propagator objects that track the statistics of single molecules subjected to the 79 

non-bonded auxiliary potential fields. Strategies for building field-theoretic models for broad classes of 80 

soft-matter systems have been detailed,18 and such models have been the basis for a vast number of 81 

analytical and computational studies spanning block copolymer assembly,32–39 polymeric emulsions,40–44 82 

polyelectrolyte complexation,20,45–50 supramolecular assembly,51–54 polymer nanocomposites55,56 and 83 

colloidal interactions,57 among others. An important practical limitation of field-theoretic representations 84 

is that they embed the emergent interactions of the underlying CG particle model and to date have relied 85 

upon phenomenological parameters with non-obvious connections to chemical details – most notably, 86 

Flory 𝜒-parameters. This drawback has severely restricted their role as a predictive tool when 87 

encountering new chemistries.   88 

Here we introduce a new methodology that combines the strengths of both all-atom (AA) 89 

simulations and field theory, enabling truly predictive, bottom-up modeling of complex, large-scale 90 

systems while maintaining a direct connection to the underlying chemical design space, Figure 1. We 91 

overcome the phenomenological nature of field-theoretic models by obtaining chemically-informed 92 

parameters from small-scale, full-resolution, AA simulations. To bridge these methods, we use relative-93 

entropy, 𝑆𝑟𝑒𝑙, coarse-graining, a bottom-up approach that minimizes the information loss between a 94 

 
Figure 1. Relative-entropy coarse-graining serves as the bridge between the all-atom and the CG particle 
representations, while the latter is analytically converted to a field representation mathematically identical to the 
CG particle representation.  
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reference microscopic configurational probability distribution, ℘𝑟𝑒𝑓(𝑹), and that of the CG distribution, 95 

℘𝐶𝐺(𝑹): 𝑆𝑟𝑒𝑙 = ∫ 𝑑𝑹 ℘𝑟𝑒𝑓(𝑹) ln[℘𝑟𝑒𝑓(𝑹) ℘𝐶𝐺(𝑹)⁄ ]. The details of 𝑆𝑟𝑒𝑙 coarse-graining are discussed in 96 

the SI and have been reviewed in ref 6. 97 

We adopt a CG force field, consisting of a harmonic bonding potential  98 

𝛽𝑈𝑏(𝑅) = 𝑘(𝑅 − 𝑅𝑜)2  1 

where 𝑘 and 𝑅𝑜 are the bond stiffness and length, respectively, 𝛽 = (𝑘𝐵𝑇)−1, and nonbonded terms 99 

involving pairwise, repulsive Gaussian potentials often used in polymer field theory58–60 100 

𝛽𝑈𝛼𝛾(𝑹) = 𝑣𝛼𝛾𝑒−𝑹2/4𝑎𝛼𝛾
2    2 

where 𝑣𝛼𝛾 and 𝑎𝛼𝛾
2 = (𝑎𝛼

2 + 𝑎𝛾
2)/2 are the characteristic strength and range of the interaction between 101 

bead species 𝛼 and 𝛾, respectively. This functional form produces a microscopic model for 𝑛𝑝 polymer 102 

molecules, each with 𝑁 monomers, in a solvent of 𝑛𝑠 molecules, that is readily written as a density-103 

explicit statistical field theory18 with a canonical partition function, 𝑍𝑐, proportional to a functional 104 

integral over species density fields, 𝝆, and auxiliary potential fields, 𝒘, conjugate to the species densities 105 

𝑍𝑐(𝑛𝑝, 𝑛𝑠, 𝑉, 𝑇) ~ ∫ 𝐷𝒘 ∫ 𝐷𝝆 𝑒−𝐻[𝝆,𝒘] 3 

Field configurations are weighted by the complex-valued, effective Hamiltonian, 𝐻 106 

𝐻[𝝆, 𝒘] =  
𝛽

2
∫ 𝑑𝒓 ∫ 𝑑𝒓′ 𝝆𝑇(𝒓)𝐔(|𝒓 − 𝒓′|)𝝆(𝒓′) − ∫ 𝑑𝒓 𝑖𝒘𝑇(𝒓)𝝆(𝒓) − 𝑛𝑝𝑙𝑛𝑄𝑝[𝑖𝑤𝑝] − 𝑛𝑠𝑙𝑛𝑄𝑠[𝑖𝑤𝑠]  4 

where 𝐔 is a matrix of the through-space, non-bonded pair-interactions, and 𝑄𝑝 (𝑄𝑠) is the single chain 107 

(solvent molecule) partition function. The details of transforming from a particle to a density-explicit field 108 

representation is provided in the Supporting Information (SI). 109 

We demonstrate this new methodology by calculating the temperature–composition, cloud-point 110 

curves of aqueous poly(ethylene oxide) (PEO, -CH3 end-capped) solutions, one of the widest studied and 111 

industrially deployed water-soluble, synthetic polymer chemistries. We show in Figure 2 the cloud-point 112 

curves for aqueous poly(ethylene glycol) (PEG, -OH end-capped) solutions measured from experiments 113 

by Bae et al.61 and Saeki et al.62, and note their closed-loop characteristic that are attributable to complex, 114 

temperature-dependent, ether-water interactions. At low temperatures outside the loops, PEG remains 115 

soluble, while at intermediate temperatures the ether-water hydrogen bonding weakens, leading to 116 

immiscibility and separation into polymer-rich and -lean phases. Finally, at higher temperatures the 117 

entropy of mixing favors reentrant homogenization. End-group chemistry does not affect the phase 118 

behavior of high-molecular weight chains63,64 but does control the rate at which the loops close up with 119 

molecular weight. Dormidontova analyzed experimental data, finding the critical chain length of PEO to 120 
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be ~30 monomers, 20 lower than PEG (~50) with the difference dropping off inversely with chain 121 

length; notably, the critical temperature is essentially unaffected by the end-group chemistry.65 122 

 123 

A number of studies have sought to interpret the closed-loop nature of the PEO cloud-point 124 

curves using analytical treatments, including pseudo-Flory-Huggins theories,65–70 a statistical fluid theory 125 

for potentials of variable range (SAFT-VR),71 and atomistic MD simulations coupled to thermodynamic 126 

modeling;72 however, these efforts relied on fit parameter(s) from experimental data.  In contrast, the 127 

present approach requires no fit parameters using experimental data, instead informing the field-theoretic 128 

model entirely from AA simulations. Specifically, we use the second-generation General Amber Force 129 

Field (GAFF2)73,74 for PEO and the 4-site, Optimal Point Charge (OPC)75 water model, for which we 130 

earlier found remarkably good agreement with experimental PEO conformations and temperature-131 

composition-density behavior (see the SI).76 132 

To parameterize field models, we collect reference AA MD trajectories for both neat water and 133 

neat PEO chains (20mers) at 25 °C and 1 atm, and for mixtures, at temperatures spanning 25-600 °C 134 

using small-scale (𝑛𝑤 = 10,000 and 𝑛𝑝 = 20) AA simulations for 50mers at 0.20 polymer weight 135 

fraction. To remain faithful to the experimental PEO cloud-point measurement protocol, we equilibrate 136 

the mixtures at 25 °C and 1 atm (NPT), then fix the volume from the NPT equilibration at 25 °C during 137 

the production runs at elevated temperatures and, presumably, pressures, i.e., NVT;72 further details of the 138 

AA simulations are provided in the SI. 139 

To convert the reference AA trajectories to field-theoretic interaction parameters, we first start 140 

with pure species and then later determine mixture parameters. We map the AA trajectories onto the CG 141 

model’s configuration space using a center-of-mass mapping for each water molecule and for each PEO 142 

monomer (-CH2-O-CH2-). Prior to 𝑆𝑟𝑒𝑙  optimization, we also determine the range of the nonbonded 143 

  
Figure 2. The experimentally measured, closed-loop, temperature-weight fraction cloud-point curves for aqueous 
PEG measured at varying degrees-of-polymerization (DOP) by Bae et al.61 and Saeki et al.62  

immiscible 

miscible 

miscible 
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interactions from the cube-root of the CG sites’ specific volumes from analysis of the neat water and PEO 144 

reference simulations: 𝑎𝑤𝑤 = 𝑣𝑤
1/3

= 0.312 nm and 𝑎𝑝𝑝 = 𝑣𝑝
1/3

= 0.375 nm, which also determines 145 

𝑎𝑝𝑤 = √0.5(𝑎𝑤𝑤
2 + 𝑎𝑝𝑝

2 ) = 0.345 nm. While not unique, we find these choices for the coarse-grained 146 

mapping and non-bonded interaction potential ranges suppress the local liquid structure (Figure 3, right), 147 

which we do not seek to resolve with the field representation. 𝑆𝑟𝑒𝑙 coarse-graining in the NPT-ensemble 148 

(𝑃𝐶𝐺 = 113 kBT/nm3 and 𝑇 = 25 °C) yields the neat water-water and PEO-PEO interactions (𝑣𝑤𝑤 =149 

0.100  & 𝑣𝑝𝑝 =  0.430) and the PEO bond strength and length (𝑘 = 593 nm-2 and 𝑅𝑜 = 0.324 nm), while 150 

reproducing the AA models’ neat solution densities well: 𝜌𝑤 = 1.02 and 𝜌𝑝 = 1.10 g/cm3 (2% and 1.2% 151 

deviations from the AA model, respectively). Setting 𝑃𝐶𝐺 to 113 kBT/nm3 results in a CG water model 152 

~3.0 times more compressible (1.26 × 10−4 bar-1) than the AA water model (4.53 × 10−5 bar-1) at 25 153 

°C, while increasing 𝑃𝐶𝐺 further to 287 kBT/nm3 better matches the compressibility of water it minimally 154 

affects the phase-coexistence results (see SI for details). We use the CG pressure (𝑃𝐶𝐺) to control the 155 

overall strength of the interactions (specifying 𝑃𝐶𝐺 sets an energy scale); this approach has been used 156 

previously to generate entire families of CG models.77 For simplicity, only the cross-interaction, 𝑣𝑝𝑤(𝑇), 157 

is varied when coarse-graining the mixtures across temperature, Figure 3 (left), while the like interactions 158 

and bonding parameters are held fixed; this restriction could be easily relaxed in future work to allow 159 

temperature dependence in all parameters. We find a four-parameter function, similar to forms used to fit 160 

𝜒-parameter data as a function of temperature,78 interpolates the resultant 𝑣𝑝𝑤(𝑇) data well, Figure 3 161 

(left, solid, red line).  162 

 163 
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To map out the binodal boundaries, we use the field representation in conjunction with a Gibbs 164 

ensemble approach79 to accelerate the search for compositions that satisfy the equilibrium conditions, 165 

namely equality of chemical potentials and pressure across the two phases at a fixed temperature.20,21,46 In 166 

general, this can be done approximation-free using field-theoretic simulations, or, as done here as a proof-167 

of-concept, by making a mean-field approximation to the partition function in eqn. 3   168 

𝛽𝐴(𝑛𝑝, 𝑛𝑤 , 𝑉, 𝑇) = − ln 𝑍 ≈ 𝐻[𝝆∗, 𝒘∗]  5 

where * denotes the mean-field configurations corresponding to a saddle point of 𝐻.18 The precise mean-169 

field expressions and the binodal (spinodal) calculation details are provided in the SI. A subtlety inherent 170 

to the cloud-point measurements is that the reported total density, 𝜌𝑜, at a specific polymer weight 171 

fraction, 𝑤𝑝, is fixed at conditions of 1 atm and 25 °C, since the samples were sealed in a vial before 172 

isochoric heating; thus, we set the total density accordingly, see Figure 4 (right) for 𝜌𝑜(𝑤𝑝). 173 

The predicted PEO-water spinodal boundaries, Figure 4 (left), capture the experimental PEO-174 

water cloud-point curves semi-quantitatively, without any parameter refinement based on the 175 

experimental cloud-point data while using a remarkably simple functional form for 𝑈𝐶𝐺, i.e., soft, 176 

repulsive Gaussian nonbonded and harmonic bonding interactions. The curves form closed loops of 177 

decreasing size with molecular weight and show a lower bound on PEO immiscibility at 𝑁~3, below 178 

which solubility stems from the increased translational entropy of the shorter chains. At higher molecular 179 

weights, the boundaries saturate on the polymer rich side to a weight fraction of ~0.53 (𝑇~300 °C), near 180 

that of the experiments, ~0.58 (𝑇~195 °C). The accuracy is notable because at the elevated temperatures 181 

the coarse-grained model is parameterized from a single reference composition (𝑤𝑝 = 0.20), with the like 182 

 
Figure 3. (left) The 𝑆𝑟𝑒𝑙  coarse-graining produces a complex, nonmonotonic temperature dependence of the 
PEO-water, 𝑣𝑝𝑤(𝑇), interaction. The error bars for 25, 50 and 300 °C, represent 2 standard errors estimated from 
repeating the coarse-graining at least four times on the same all-atom (AA) reference trajectory. The solid red line 
is the fit from a four-parameter model to interpolate between the data points: 𝑣𝑝𝑤(𝑇) = 𝐴 + 𝐵/(𝑇 + 273) +

𝐶/(𝑇 + 273)2 + 𝐷/(𝑇 + 273)3 (refer to the SI for the coefficients); the shaded region represents 90% 
confidence intervals on the fit. (right) The AA and CG radial distribution functions (AA 𝑂𝑒𝑜 − 𝑂𝑤𝑎𝑡𝑒𝑟  and 
mapped onto CG configuration space) and the 𝛽𝑈𝑝𝑤(𝑹) interaction at 𝑁 = 50, 𝑤𝑝 = 0.20, and 𝑇 = 50 °C (see 
SI for 600 °C) . The CG model seeks to resolve only long length-scale physics and not short-length scale, liquid 
structuring still apparent even in the already coarsened (mapped), AA system.  

𝒂𝒑𝒘 

T = 50 C 

liquid structuring 
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interactions held temperature independent from coarse-graining the neat solutions at 25 °C and 1 atm; we 183 

also note that water’s experimental activity in PEO at 25 °C and 1 atm is well reproduced from coarse-184 

graining at this single composition and refer the interested reader to the SI for further details. The 185 

identifiable minimum (or maximum) temperatures at a fixed molecular weight, below (above) which 186 

phase separation does not occur, are also important signatures of the physical interactions. Their 187 

prediction with the multiscale workflow emerges entirely from the nonmonotonic temperature 188 

dependence of the PEO-water interaction (Figure 3). Notably, it appears to be necessary to capture the 189 

temperature dependence of only this one parameter (𝑣𝑝𝑤) at a single composition to produce the 190 

characteristic closed-loop cloud-point curves. The temperature dependence of 𝑣𝑝𝑤 encapsulates the 191 

complex, temperature-sensitive interplay between hydrogen-bonding (water-PEO and water-water) that 192 

competes with the systems translational entropy in dictating the miscibility gap. 193 

 194 

  195 

The workflow admits two potential sources of error: (1) the accuracy of the AA force field for the 196 

target properties (here, phase coexistence boundaries), and; (2) CG model construction (e.g., choice of the 197 

mapping operator, the CG potential energy functional, and parameterization protocol) which directly 198 

affects the CG model transferability (in temperature and composition) and its overall fidelity relative to 199 

the underlying AA model. In other words, if the AA model were perfect and no loss of thermodynamic 200 

information occurred during the relative entropy-optimization, un-approximated sampling of the CG 201 

model would exactly replicate the self-assembly and thermodynamic properties of the AA model. 202 

 
Figure 4. (left) Aqueous PEO, spinodal boundaries at varying degrees-of-polymerization (DOP) calculated from 
the field theory representation at the mean-field level. (right) The binodal with tie-lines (dashed) and spinodal 
boundaries at fixed DOP (𝑁 = 15) and temperature (𝑇 = 200 oC) as function of initial polymer weight fraction 
and the number density, 𝜌. The total number density, 𝜌𝑜, of the solution at room temperature and pressure is also 
overlaid (pure water ~33 waters/nm3 whereas pure PEO ~15  monomers/nm3). To construct the spinodal 
boundaries (left) one would read off the polymer weight fractions at the intersection of the 𝜌𝑜 and spinodal curves 
(right, green circles), and repeat at varying DOP and 𝑇. 

immiscible 

miscible 

increasing 
DOP N=15  

T=200 °C 
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Regarding (1), AA force fields are continually undergoing refinement to increase their accuracy, and as 203 

this workflow is agnostic to the choice of the AA model, it is expected to only become more accurate with 204 

the availability of next-generation AA force fields. Similarly, errors of type (2) are the subject of intensive 205 

research in the bottom-up, coarse-graining community that we seek to altogether eliminate or 206 

systematically control.80–82 While we do not endeavor to resolve both sources of error in this proof-of-207 

concept demonstration of the workflow, we do investigate their impact on our predicted PEO solution 208 

miscibility. Specifically, we examine their influence on the temperature of maximum width, 𝑇𝑚𝑤, of the 209 

cloud-point loops and on short-chain miscibility.  210 

We find that 𝑇𝑚𝑤 is a strong function of the assigned atomic fixed charges of PEO in the AA 211 

model and that the CG model is sensitive to these fine interaction details. We examine the dependence of 212 

𝑇𝑚𝑤 on the fixed charges using both a semi-empirical quantum calculation (AM1-BCC) with RESP 213 

charge fitting and by systematically scaling down the DFT assigned charges by just 5%. The AM1-BCC 214 

charge model yields a less polar PEO molecule and a larger 𝑣𝑝𝑤 (a lower solvent quality). Similarly, 215 

scaling down the B3LYP-obtained charges by just 5% increases 𝑣𝑝𝑤 (by 7% at 𝑇 = 300 °C) resulting in 216 

larger loop diameters. Remarkably, this 5% decrease shifts the location of 𝑇𝑚𝑤  by 80 °C (from ~310 to 217 

~230 °C), much nearer the experimentally observed value of ~195 °C (see SI for details). The 218 

dependence of miscibility on the atomic charges is expected, because these directly modulate the strength 219 

of hydrogen-bonding in the AA model, with a less polar PEO ether-backbone entailing a weaker 220 

hydrogen-bond with water, a larger 𝑣𝑝𝑤, and phase separation at lower (higher) temperatures. 221 

Furthermore, the sensitivity to the AA force field is not unprecedented;83 for example, in a 222 

dodecane/ethanol system a 1 kJ/mol difference in the transfer free energy (considered small during AA 223 

force field development) shifts the coexistence boundary by 50 oC.28,84 Indeed, our CG model correctly 224 

captures trends in miscibility reflecting the changing solvent quality of the AA reference model–induced 225 

by changing PEO’s atomic charges.   226 

The second clear quantitative difference is immiscibility of shorter chains than is observed in 227 

experiments. By conducting a limited number of direct phase coexistence MD simulations of the AA 228 

(CG) model for low molecular-weight PEO solutions, we  find evidence of phase separation for chains as 229 

short as ~6-10 (~4) monomers, whereas experimental data indicate full miscibility for 𝑁 <̃ 30 (see SI 230 

for details).65 Thus, we attribute a large portion–possibly the majority–of the difference in short chain 231 

miscibility to the AA reference model and not to the CG model construction. 232 

In general, we expect the workflow’s predictive accuracy to improve over time with 233 

methodological improvements from parallel lines of work. Starting at the bottom, higher resolution 234 

models are increasingly accurate as continued efforts focus on constructing improved classical AA force 235 

fields (e.g., polarizable or three-body force fields)74,85–87, and as higher-level, ab-initio methods become 236 
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feasible at larger scales. Additionally, fidelity of the coarse-grained model to the AA reference model 237 

could be enhanced by considering: (1) more sophisticated functional forms for CG interactions, such as 238 

allowing for more complicated nonbonded interactions (e.g., repulsive, and attractive components) by 239 

representing each interaction using a Gaussian basis set, introducing arbitrary functional forms for 240 

bonding potentials (e.g., tabulated splines), or incorporating charges or polarization on the CG-sites; (2) a 241 

more systematic choice for the mapping between AA and CG representations, 𝐌(𝒓), and of the length-242 

scale(s) to resolve;88–90 (3) the use of constraints during the 𝑆𝑟𝑒𝑙 minimization to better match target 243 

properties (e.g., Kirkwood-Buff Integrals91 or 𝑅𝑔) from the AA model or–when available–experimental 244 

data,92 and; (4) the choice of the ensemble to coarse-grain in, e.g., NPT, NVT or ensembles with external 245 

biasing potentials.77,82,93 246 

 In summary, we present here a broadly applicable, systematic bottom-up coarse-graining 247 

methodology utilizing all-atom simulations to molecularly-inform field-theoretic models that are well-248 

suited to studying the mesoscopic, equilibrium properties of complex, polymeric solutions. Notably, our 249 

molecularly-informed functionals derive directly from the underlying CG particle model, not requiring 250 

the specification of basis functionals that support both expected and unanticipated mesoscale structure 251 

and thermodynamics; this is in contrast to the approach outlined by Invernizzi, et al. that inherently 252 

requires just such an a-priori specification for the phenomenological Hamiltonian functional.93 We 253 

demonstrate the workflow’s potential by constructing and parameterizing a molecularly-informed field 254 

theory for aqueous PEO, followed by a prediction for the solution’s temperature-composition miscibility 255 

that directly connects the underlying polyether chemistry and hydrogen-bonding to macroscopic phase 256 

behavior. This multiscale approach is generalizable and readily extendable to a wide variety of 257 

industrially relevant soft-matter classes: multicomponent, charged, polarizable, macromolecular systems 258 

that can be spatially heterogenous at nanometer to micron length-scales, e.g., emulsions, complex 259 

coacervates, surfactant-micelle assemblies, polymer alloys, and block copolymers.  260 
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