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ABSTRACT:

Polymer formulations possessing mesostructures or phase coexistence are challenging to simulate using
atomistic particle-explicit approaches due to the disparate time and length scales, while the predictive
capability of field-based simulations is hampered by the need to specify interactions at a coarser scale
(e.g., x-parameters). To overcome the weaknesses of both, we introduce a bottom-up coarse-graining
methodology that leverages all-atom molecular dynamics to molecularly inform coarser field-theoretic
models. Specifically, we use relative-entropy coarse-graining to parameterize particle models that are
directly and analytically transformable into statistical field theories. We demonstrate the predictive
capability of this approach by reproducing experimental aqueous polyethylene oxide (PEO) cloud-point
curves with no parameters fit to experimental data. This synergistic approach to multiscale polymer
simulations opens the door to de-novo exploration of phase behavior across a wide variety of polymer
solution and melt formulations.
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Complex polymer formulations are the basis for a vast range of important materials and products
including paints, coatings, adhesives, cleaning and personal care products, elastomers, and plastics. To
accelerate product design, improved methods for predictive modeling are greatly needed, specifically for
sweeping the large, multivariate design space (polymer molecular weight, composition, architecture, and
chemistry; solvent chemistry; solution composition; processing temperature; etc.) to explore resultant
equilibrium structures and phases.! Characteristic of these systems are mesoscale structures spanning
nanometer to micrometer length scales and long relaxation time scales associated with polymer diffusion
and phase coarsening, reaching seconds, minutes, and even hours. While first principles and atomic-
resolution particle simulations such as ab-initio molecular dynamics (MD) and classical atomistic MD
methods are attractive for their predictive capabilities, they cannot access such large length and time
scales and, consequently, have limited direct utility in formulation design.

Many efforts have instead turned to bottom-up coarse-graining strategies that map high-resolution
atomistic models to coarser, effective “bead” models, sacrificing molecular detail for computational
efficiency but retaining a connection to the underlying chemistry. There are many bottom-up, coarse-
graining strategies including Boltzmann inversion,”” force-matching,' and relative entropy coarse-

graining,™® among others,” '

with work demonstrating their applicability to a variety of soft matter
classes that span small and large molecules alike.”"''® However, the so-developed coarse-grained models
are typically sampled using particle-based approaches (e.g., MD), which, despite the coarsening,
inherently struggle to equilibrate systems at significantly larger times, such as those associated with large
polymers capable of microphase or macrophase structuring on ~1 pum scales. Furthermore, rigorous phase
coexistence calculations are challenging and very often practically impossible even with coarse-grained
particle representations due to the high computational cost of inserting (or deleting) macromolecules into
(or from) dense phases."’

As an alternative to particle-based coarse-grained (CG) models, an equilibrium field-theoretic
representation of the identical CG model circumvents the aforementioned challenges of constrained
particle degrees of freedom by instead framing the model using auxiliary potential fields.'"' Field
theories are particularly efficient when Angstrom scale features (e.g., liquid structuring) do not need to be
resolved, instead capturing structural features in the nm range and above. Moreover, the number of
polymers appears as a simple parameter in a field representation, so the computational expense becomes
nearly independent of density. For this reason, field-theoretic simulations become much more efficient
than particle MD at high polymer molecular-weight and/or high densities. Additionally, with a field
representation molecular insertions (or deletions) involve simply changing a parameter in the field-
theoretic model, enabling efficient and accurate Gibbs Ensemble Monte Carlo (GEMC) phase
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coexistence calculations even for macromolecules. Contrarily, GEMC utilizing a particle
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representation requires the development of complex schemes (e.g., configurational-bias or continuous
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fractional component” Monte Carlo techniques, among many others ) to obtain reasonable

acceptance for macromolecules of any appreciable size, particularly for liquid-liquid coexistence;*® this is

also the case even when “soft”-core interactions, like those found in dissipative particle dynamics, are

utilized.”!

Constructing a statistical field theory representation of a CG particle model involves the use of
auxiliary potential fields to decouple non-bonded interactions in the model. Bonded interactions are
embedded in single-chain propagator objects that track the statistics of single molecules subjected to the
non-bonded auxiliary potential fields. Strategies for building field-theoretic models for broad classes of

soft-matter systems have been detailed,'® and such models have been the basis for a vast number of
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analytical and computational studies spanning block copolymer assembly, polymeric emulsions,
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polyelectrolyte complexation, supramolecular assembly, polymer nanocomposites and
colloidal interactions,”” among others. An important practical limitation of field-theoretic representations
is that they embed the emergent interactions of the underlying CG particle model and to date have relied
upon phenomenological parameters with non-obvious connections to chemical details — most notably,
Flory y-parameters. This drawback has severely restricted their role as a predictive tool when

encountering new chemistries.

field
(mesoscale)

particle (coarse)

exact

ol mapping
particle

(all-atom)

S, codrse-
graining

Figure 1. Relative-entropy coarse-graining serves as the bridge between the all-atom and the CG particle
representations, while the latter is analytically converted to a field representation mathematically identical to the
CG particle representation.

Here we introduce a new methodology that combines the strengths of both all-atom (AA)
simulations and field theory, enabling truly predictive, bottom-up modeling of complex, large-scale
systems while maintaining a direct connection to the underlying chemical design space, Figure 1. We
overcome the phenomenological nature of field-theoretic models by obtaining chemically-informed
parameters from small-scale, full-resolution, AA simulations. To bridge these methods, we use relative-

entropy, Sye;, coarse-graining, a bottom-up approach that minimizes the information loss between a
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reference microscopic configurational probability distribution, ... (R), and that of the CG distribution,

$#cc(R): Srer = [ dR 1o (R) In[@ye F(R)/$#cq (R)]. The details of S,; coarse-graining are discussed in
the SI and have been reviewed in ref 6.
We adopt a CG force field, consisting of a harmonic bonding potential
BU,(R) = k(R — R,)? 1
where k and R, are the bond stiffness and length, respectively, § = (kgT) ™!, and nonbonded terms

involving pairwise, repulsive Gaussian potentials often used in polymer field theory®®

BUqy (R) = vaye—Rz/‘méy 2
where v,, and aéy = (aé + a}z,) /2 are the characteristic strength and range of the interaction between

bead species a and y, respectively. This functional form produces a microscopic model for n, polymer

molecules, each with N monomers, in a solvent of ng molecules, that is readily written as a density-
explicit statistical field theory'® with a canonical partition function, Z., proportional to a functional

integral over species density fields, p, and auxiliary potential fields, w, conjugate to the species densities
Zc(np;ns; v, T) "'wapo e~ Hlpw] 3

Field configurations are weighted by the complex-valued, effective Hamiltonian, H
Hlp,w] =

gfdrfdr’ pT(MU(r — ' Dp(") — [ driw” (r)p(r) — nyInQy[iw,| — nsinQg[iws]
where U is a matrix of the through-space, non-bonded pair-interactions, and @, (Q;) is the single chain
(solvent molecule) partition function. The details of transforming from a particle to a density-explicit field
representation is provided in the Supporting Information (SI).

We demonstrate this new methodology by calculating the temperature—composition, cloud-point
curves of aqueous poly(ethylene oxide) (PEO, -CH; end-capped) solutions, one of the widest studied and
industrially deployed water-soluble, synthetic polymer chemistries. We show in Figure 2 the cloud-point
curves for aqueous poly(ethylene glycol) (PEG, -OH end-capped) solutions measured from experiments
by Bae et al.®' and Saeki et al.”?, and note their closed-loop characteristic that are attributable to complex,
temperature-dependent, ether-water interactions. At low temperatures outside the loops, PEG remains
soluble, while at intermediate temperatures the ether-water hydrogen bonding weakens, leading to
immiscibility and separation into polymer-rich and -lean phases. Finally, at higher temperatures the
entropy of mixing favors reentrant homogenization. End-group chemistry does not affect the phase
behavior of high-molecular weight chains>* but does control the rate at which the loops close up with

molecular weight. Dormidontova analyzed experimental data, finding the critical chain length of PEO to
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be ~30 monomers, 20 lower than PEG (~50) with the difference dropping off inversely with chain

length; notably, the critical temperature is essentially unaffected by the end-group chemistry.”’
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Figure 2. The experimentally measured, closed-loop, temperature-weight fraction cloud-point curves for aqueous
PEG measured at varying degrees-of-polymerization (DOP) by Bae et al.®' and Saeki et al.*

A number of studies have sought to interpret the closed-loop nature of the PEO cloud-point

6570 3 statistical fluid theory

curves using analytical treatments, including pseudo-Flory-Huggins theories,
for potentials of variable range (SAFT-VR),”" and atomistic MD simulations coupled to thermodynamic
modeling;”* however, these efforts relied on fit parameter(s) from experimental data. In contrast, the
present approach requires no fit parameters using experimental data, instead informing the field-theoretic
model entirely from AA simulations. Specifically, we use the second-generation General Amber Force
Field (GAFF2)™>™ for PEO and the 4-site, Optimal Point Charge (OPC)” water model, for which we
earlier found remarkably good agreement with experimental PEO conformations and temperature-
composition-density behavior (see the SI).76

To parameterize field models, we collect reference AA MD trajectories for both neat water and
neat PEO chains (20mers) at 25 °C and 1 atm, and for mixtures, at temperatures spanning 25-600 °C
using small-scale (n,, = 10,000 and n, = 20) AA simulations for 50mers at 0.20 polymer weight
fraction. To remain faithful to the experimental PEO cloud-point measurement protocol, we equilibrate
the mixtures at 25 °C and 1 atm (NPT), then fix the volume from the NPT equilibration at 25 °C during
the production runs at elevated temperatures and, presumably, pressures, i.e., NVT;” further details of the
AA simulations are provided in the SI.

To convert the reference AA trajectories to field-theoretic interaction parameters, we first start
with pure species and then later determine mixture parameters. We map the AA trajectories onto the CG

model’s configuration space using a center-of-mass mapping for each water molecule and for each PEO

monomer (-CH,-O-CH,-). Prior to S,.,; optimization, we also determine the range of the nonbonded

5
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interactions from the cube-root of the CG sites’ specific volumes from analysis of the neat water and PEO

. . _.1/3 _ _ .1/3
reference simulations: a,,, = 1,,” = 0.312 nm and a,, = v

p = 0.375 nm, which also determines

Ay = \/ 0.5(a%,, + alz,p) = 0.345 nm. While not unique, we find these choices for the coarse-grained

mapping and non-bonded interaction potential ranges suppress the local liquid structure (Figure 3, right),
which we do not seek to resolve with the field representation. S,.; coarse-graining in the NPT-ensemble
(Peg = 113 kgT/nm’ and T = 25 °C) yields the neat water-water and PEO-PEO interactions (v, =
0.100 & vy, = 0.430) and the PEO bond strength and length (k = 593 nm? and R, = 0.324 nm), while
reproducing the AA models’ neat solution densities well: p,, = 1.02 and p,, = 1.10 g/em® (2% and 1.2%
deviations from the AA model, respectively). Setting Pc; to 113 kgT/nm’ results in a CG water model
~3.0 times more compressible (1.26 X 10™* bar™') than the AA water model (4.53 x 1075 bar) at 25
°C, while increasing P further to 287 ksT/nm’ better matches the compressibility of water it minimally
affects the phase-coexistence results (see SI for details). We use the CG pressure (Pcs) to control the
overall strength of the interactions (specifying Pg; sets an energy scale); this approach has been used
previously to generate entire families of CG models.”” For simplicity, only the cross-interaction, Vpw (T),
is varied when coarse-graining the mixtures across temperature, Figure 3 (left), while the like interactions
and bonding parameters are held fixed; this restriction could be easily relaxed in future work to allow
temperature dependence in all parameters. We find a four-parameter function, similar to forms used to fit
x-parameter data as a function of temperature,” interpolates the resultant Vpw (T) data well, Figure 3

(left, solid, red line).
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Figure 3. (left) The S, coarse-graining produces a complex, nonmonotonic temperature dependence of the
PEO-water, v, (T), interaction. The error bars for 25, 50 and 300 °C, represent 2 standard errors estimated from
repeating the coarse-graining at least four times on the same all-atom (AA) reference trajectory. The solid red line
is the fit from a four-parameter model to interpolate between the data points: v, (T) = A+ B/(T + 273) +
C/(T +273)2+D/(T +273)% (refer to the SI for the coefficients); the shaded region represents 90%
confidence intervals on the fit. (right) The AA and CG radial distribution functions (AA O,y — Oy qter and
mapped onto CG configuration space) and the fU,,, (R) interaction at N = 50, w,, = 0.20, and T = 50 °C (see
SI for 600 °C) . The CG model seeks to resolve only long length-scale physics and not short-length scale, liquid
structuring still apparent even in the already coarsened (mapped), AA system.

To map out the binodal boundaries, we use the field representation in conjunction with a Gibbs
ensemble approach” to accelerate the search for compositions that satisfy the equilibrium conditions,
namely equality of chemical potentials and pressure across the two phases at a fixed temperature.””*"** In
general, this can be done approximation-free using field-theoretic simulations, or, as done here as a proof-
of-concept, by making a mean-field approximation to the partition function in eqn. 3

BA(ny,ny,V,T) = —InZ ~ H[p*,w"] 5
where * denotes the mean-field configurations corresponding to a saddle point of H.'"® The precise mean-
field expressions and the binodal (spinodal) calculation details are provided in the SI. A subtlety inherent
to the cloud-point measurements is that the reported total density, p,, at a specific polymer weight
fraction, wy, is fixed at conditions of 1 atm and 25 °C, since the samples were sealed in a vial before
isochoric heating; thus, we set the total density accordingly, see Figure 4 (right) for p, (wy,).

The predicted PEO-water spinodal boundaries, Figure 4 (left), capture the experimental PEO-
water cloud-point curves semi-quantitatively, without any parameter refinement based on the
experimental cloud-point data while using a remarkably simple functional form for Ug., i.e., soft,
repulsive Gaussian nonbonded and harmonic bonding interactions. The curves form closed loops of
decreasing size with molecular weight and show a lower bound on PEO immiscibility at N~3, below
which solubility stems from the increased translational entropy of the shorter chains. At higher molecular
weights, the boundaries saturate on the polymer rich side to a weight fraction of ~0.53 (T~300 °C), near
that of the experiments, ~0.58 (T~195 °C). The accuracy is notable because at the elevated temperatures

the coarse-grained model is parameterized from a single reference composition (wp, = 0.20), with the like
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interactions held temperature independent from coarse-graining the neat solutions at 25 °C and 1 atm; we
also note that water’s experimental activity in PEO at 25 °C and 1 atm is well reproduced from coarse-
graining at this single composition and refer the interested reader to the SI for further details. The
identifiable minimum (or maximum) temperatures at a fixed molecular weight, below (above) which
phase separation does not occur, are also important signatures of the physical interactions. Their
prediction with the multiscale workflow emerges entirely from the nonmonotonic temperature
dependence of the PEO-water interaction (Figure 3). Notably, it appears to be necessary to capture the
temperature dependence of only this one parameter (vp,) at a single composition to produce the
characteristic closed-loop cloud-point curves. The temperature dependence of v, encapsulates the
complex, temperature-sensitive interplay between hydrogen-bonding (water-PEO and water-water) that

competes with the systems translational entropy in dictating the miscibility gap.
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Figure 4. (left) Aqueous PEO, spinodal boundaries at varying degrees-of-polymerization (DOP) calculated from
the field theory representation at the mean-field level. (right) The binodal with tie-lines (dashed) and spinodal
boundaries at fixed DOP (N = 15) and temperature (T = 200 °C) as function of initial polymer weight fraction
and the number density, p. The total number density, p,, of the solution at room temperature and pressure is also
overlaid (pure water ~33 waters/nm’ whereas pure PEO ~15 monomers/nm’). To construct the spinodal
boundaries (left) one would read off the polymer weight fractions at the intersection of the p, and spinodal curves
(right, green circles), and repeat at varying DOP and T.

The workflow admits two potential sources of error: (1) the accuracy of the AA force field for the
target properties (here, phase coexistence boundaries), and; (2) CG model construction (e.g., choice of the
mapping operator, the CG potential energy functional, and parameterization protocol) which directly
affects the CG model transferability (in temperature and composition) and its overall fidelity relative to
the underlying AA model. In other words, if the AA model were perfect and no loss of thermodynamic
information occurred during the relative entropy-optimization, un-approximated sampling of the CG

model would exactly replicate the self-assembly and thermodynamic properties of the AA model.
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Regarding (1), AA force fields are continually undergoing refinement to increase their accuracy, and as
this workflow is agnostic to the choice of the AA model, it is expected to only become more accurate with
the availability of next-generation AA force fields. Similarly, errors of type (2) are the subject of intensive
research in the bottom-up, coarse-graining community that we seek to altogether eliminate or
systematically control.*** While we do not endeavor to resolve both sources of error in this proof-of-
concept demonstration of the workflow, we do investigate their impact on our predicted PEO solution
miscibility. Specifically, we examine their influence on the temperature of maximum width, T,y,,, of the
cloud-point loops and on short-chain miscibility.

We find that T,,, is a strong function of the assigned atomic fixed charges of PEO in the AA
model and that the CG model is sensitive to these fine interaction details. We examine the dependence of
Tmw on the fixed charges using both a semi-empirical quantum calculation (AM1-BCC) with RESP
charge fitting and by systematically scaling down the DFT assigned charges by just 5%. The AM1-BCC
charge model yields a less polar PEO molecule and a larger vy, (a lower solvent quality). Similarly,
scaling down the B3LYP-obtained charges by just 5% increases vy, (by 7% at T = 300 °C) resulting in
larger loop diameters. Remarkably, this 5% decrease shifts the location of T, by 80 °C (from ~310 to
~230 °C), much nearer the experimentally observed value of ~195 °C (see SI for details). The
dependence of miscibility on the atomic charges is expected, because these directly modulate the strength
of hydrogen-bonding in the AA model, with a less polar PEO ether-backbone entailing a weaker
hydrogen-bond with water, a larger v,,, and phase separation at lower (higher) temperatures.
Furthermore, the sensitivity to the AA force field is not unprecedented;”’ for example, in a
dodecane/ethanol system a 1 kJ/mol difference in the transfer free energy (considered small during AA
force field development) shifts the coexistence boundary by 50 °C.*** Indeed, our CG model correctly
captures trends in miscibility reflecting the changing solvent quality of the AA reference model-induced
by changing PEO’s atomic charges.

The second clear quantitative difference is immiscibility of shorter chains than is observed in
experiments. By conducting a limited number of direct phase coexistence MD simulations of the AA
(CG) model for low molecular-weight PEO solutions, we find evidence of phase separation for chains as
short as ~6-10 (~4) monomers, whereas experimental data indicate full miscibility for N < 30 (see SI
for details).”” Thus, we attribute a large portion—possibly the majority—of the difference in short chain
miscibility to the AA reference model and not to the CG model construction.

In general, we expect the workflow’s predictive accuracy to improve over time with
methodological improvements from parallel lines of work. Starting at the bottom, higher resolution
models are increasingly accurate as continued efforts focus on constructing improved classical AA force

fields (e.g., polarizable or three-body force fields)"***", and as higher-level, ab-initio methods become
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feasible at larger scales. Additionally, fidelity of the coarse-grained model to the AA reference model
could be enhanced by considering: (1) more sophisticated functional forms for CG interactions, such as
allowing for more complicated nonbonded interactions (e.g., repulsive, and attractive components) by
representing each interaction using a Gaussian basis set, introducing arbitrary functional forms for
bonding potentials (e.g., tabulated splines), or incorporating charges or polarization on the CG-sites; (2) a
more systematic choice for the mapping between AA and CG representations, M(7), and of the length-

scale(s) to resolve;*™ ™

(3) the use of constraints during the S,,; minimization to better match target
properties (e.g., Kirkwood-Buff Integrals’ or Ry) from the AA model or—when available—experimental
data,” and; (4) the choice of the ensemble to coarse-grain in, e.g., NPT, NVT or ensembles with external
biasing potentials.””*>%

In summary, we present here a broadly applicable, systematic bottom-up coarse-graining
methodology utilizing all-atom simulations to molecularly-inform field-theoretic models that are well-
suited to studying the mesoscopic, equilibrium properties of complex, polymeric solutions. Notably, our
molecularly-informed functionals derive directly from the underlying CG particle model, not requiring
the specification of basis functionals that support both expected and unanticipated mesoscale structure
and thermodynamics; this is in contrast to the approach outlined by Invernizzi, et al. that inherently
requires just such an a-priori specification for the phenomenological Hamiltonian functional.”” We
demonstrate the workflow’s potential by constructing and parameterizing a molecularly-informed field
theory for aqueous PEO, followed by a prediction for the solution’s temperature-composition miscibility
that directly connects the underlying polyether chemistry and hydrogen-bonding to macroscopic phase
behavior. This multiscale approach is generalizable and readily extendable to a wide variety of
industrially relevant soft-matter classes: multicomponent, charged, polarizable, macromolecular systems

that can be spatially heterogenous at nanometer to micron length-scales, e.g., emulsions, complex

coacervates, surfactant-micelle assemblies, polymer alloys, and block copolymers.
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