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SUMMARY  
We have developed a linear 3-D gravity inversion method capable of modelling complex 
geological regions such as subduction margins. Our procedure inverts satellite gravity to 
determine the best-fitting differential densities of spatially discretized subsurface prisms in 
a least-squares sense. We use a Bayesian approach to incorporate both data error and prior 
constraints based on seismic reflection and refraction data. Based on these data, Gaussian 
priors are applied to the appropriate model parameters as absolute equality constraints. To 
stabilize the inversion and provide relative equality constraints on the parameters, we utilize a 
combination of first and second order Tikhonov regularization, which enforces smoothness in 
the horizontal direction between seismically constrained regions, while allowing for sharper 
contacts in the vertical. We apply this method to the nascent Puysegur Trench, south of New 
Zealand, where oceanic lithosphere of the Australian Plate has underthrust Puysegur Ridge and 
Solander Basin on the Pacific Plate since the Miocene. These models provide insight into the 
density contrasts, Moho depth, and crustal thickness in the region. The final model has a mean 
standard deviation on the model parameters of about 17 kg m–3, and a mean absolute error on 
the predicted gravity of about 3.9 mGal, demonstrating the success of this method for even 
complex density distributions like those present at subduction zones. The posterior density 
distribution versus seismic velocity is diagnostic of compositional and structural changes and 
shows a thin sliver of oceanic crust emplaced between the nascent thrust and the strike slip 
Puysegur Fault. However, the northern end of the Puysegur Ridge, at the Snares Zone, is 
predominantly buoyant continental crust, despite its subsidence with respect to the rest of the 
ridge. These features highlight the mechanical changes unfolding during subduction initiation. 

Key words: Gravity anomalies and Earth structure; New Zealand; Inverse theory; Statistical 
methods; Subduction zone processes. 

 
 
 

1 I NTRO D U C T I O N   

Inverse methods have become increasingly popular for addressing 
a number of problems in earth science, particularly for subsurface 
mapping. Gravity inversion, for determining either the densities or 
depths of bodies of known density in the Earth, has been an es- 
tablished method of mapping the Earth’s heterogeneities for some 
time, though often with emphasis on the non-linear approach. In 
non-linear gravity inversion, the densities and density contrasts of 
the subsurface bodies are assumed to be known and one solves for 
the geometry of the source, usually in terms of depth to a partic- 
ular interface. These inversions include either methods operating 
in the spatial domain (Medeiros & Silva 1996; Prutkin & Casten 
2009; Camacho et al. 2011) or those operating in the wavenumber 
domain (Parker 1972; Oldenburg 1974; Parker 1995; Chappell & 
Kusznir 2008; Cowie & Kusznir 2012; Bai et al. 2014). However, 

 
despite the Fourier method being one of the classical approaches to 
gravity inversion, wavenumber methods are often less effective in 
recovering a fully 3-D solution with multiple sources and complex 
geometry (Bear et al. 1995; Geng et al. 2019). 

With the linear method, the unknowns are the densities of a dis- 
cretized array of subsurface rectangular prisms and iteration is not 
required in order to reach model convergence, except in the case 
of testing variations in model regularization or other constraints. 
Solving for the 3-D density distribution also indirectly solves for 
the depth to key interfaces, such as the Moho, because we can inter- 
pret such boundaries from sharp transitions in density. While linear 
gravity inversion is an established method (Bear et al. 1995; Li & 
Oldenburg 1998; Silva et al. 2001; Silva Dias et al. 2009; Barnoud 
et al. 2016; Welford et al. 2018; Geng et al. 2019), many of the 
studies using it only do so for relatively simple geological geome- 
tries, such as a single sedimentary basin, mafic intrusion or volcanic 
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feature (Medeiros & Silva 1996; Silva et al. 2001; Barnoud et al. 
2016). Successful application of this method to crustal scale studies 
and tectonic margins, with variable approaches to the implementa- 
tion, also exist (Welford et al. 2010, 2018; Geng et al. 2019), but 
few have applied this method to subduction zones. Subduction mar- 
gins posses a complicated juxtaposition of structure and rock types 
and significant and sometimes sharp lateral variations in density, as 
opposed to passive continental margins, which often exhibit a more 
gradual change in structure and rock type that is more easily handled 
by smoothed inversions. We construct a 3-D linear gravity inver- 
sion for an active subduction zone, demonstrating the successful 
application of this method to more complex density distributions 
and bolstering the validity of this method and its use in tectonic 
applications. 

Inversion has the advantage of providing statistical feedback on 
solution quality. Specifically, within a Bayesian framework, the ob- 
jective is to determine the posterior distribution of a set of parame- 
ters given prior distributions and likelihood functions that describe 
how the data relate to those unknown parameters (Tarantola 2005; 
Aster et al. 2013; De La Varga & Wellmann 2016; Wellmann et al. 
2018). The Bayesian approach is particularly useful for geophysical 
inverse problems, which are in principle ill-posed because they are 
inherently non-unique. For example, gravity data cannot distinguish 
between a narrow density anomaly at depth or a wider source near 
the surface (Li & Oldenburg 1998; Welford et al. 2018; Geng et al. 
2019). Consequently, one must introduce constraints and a priori 
information in order to transform them into well-posed problems. 
With the Bayesian formulation, we can account for both error in 
the data and error in our prior information to reduce how that error 
may be carried over into the final model, and we can quantify the 
error on our final solution via the covariance and resolution op- 
erators. The Bayesian approach we use here offers improvements 
over traditional gravity inversion and modelling techniques, where 
one usually removes the effect of the topography and the Moho and 
analyses the residual. Such an approach requires assuming constant 
layer densities when in fact those densities are often unknowns, 
and it requires assuming a known Moho depth that has to manually 
and iteratively be adjusted by the user. This makes it difficult to 
fully incorporate lateral changes in density. The Bayesian approach 
is more flexible and capable of handling complex 3-D geometries 
because it allows us to constrain where the boundary is most likely 
to be based on seismic data and what the densities are most likely to 
be, while allowing both to vary in accord with the gravity data, the 
final boundary location being dependent on the differential density. 
As such, we are able to draw conclusions about the 3-D density 
distribution in a tectonic setting that would otherwise not be as 
apparent with traditional forward or inverse gravity methods that 
require harder constraints or restrictions. 

There are a number of common constraints widely used in grav- 
ity inversion, including inequality constraints, which specify the 
lower and upper bounds of parameter estimates; absolute proxim- 
ity constraints, which specify that model parameters must be close 
to a specified value, based on geological information at particular 
points; and relative equality constraints, which specify that the spa- 
tial variation of the model parameter values must be smooth (Silva 
et al. 2001). Absolute proximity constraints are rarely used alone 
because there is often not enough prior information available to con- 
strain all model parameters. An exception would be the minimum 
Euclidean norm, or similarly zeroth order Tikhonov regularization, 
which requires all parameter estimates to be as close as possible to 
null values. This type of regularization is biased towards a solution 
with minimum density and tends to concentrate mass anomalies 

toward the surface, which is not entirely physical or useful for our 
interpretation of the subsurface. 

Minimum structure inversion, however, is a commonly used 
method (Last & Kubik 1983; Li & Oldenburg 1998; Farquharson 
2008), utilized by codes such as GRAV3D (Li & Oldenburg 1998). 
To overcome the inherent insensitivity of gravity to depth and thus 
the tendency for the inversion to concentrate mass near the sur- 
face, these methods often apply a depth weighting (Li & Oldenburg 
1998). Applying absolute proximity constraints and inequality con- 
straints to specific regions of the model, however, overcomes the 
need for a depth weighting (Welford et al. 2018; Geng et al. 2019). 
While traditional inverse methods do allow for the adjustment of 
smoothing parameters, bounds on densities and variable weighting, 
they usually do so under hard constraints on predefined bound- 
aries where the density is allowed to vary but the geometry of the 
boundary remains unchanged (Li & Oldenburg 1998; Welford et al. 
2018). In contrast, the probabilistic approach offers more flexibil- 
ity. Previous comparisons between such probabilistic methods and 
approaches such as those used by GRAV3D (Welford et al. 2018) 
highlight these distinctions as well, and we refer the reader to these 
sources for a more in depth comparison. These comparisons show 
that while each method has its advantages and disadvantages, a 
probabilistic approach using sparse seismic Moho constraints may 
not always lead to better results, particularly when there are sig- 
nificant lateral variations in crustal thickness and composition, as 
it tends to concentrate more unreasonable densities into different 
parts of the model to compensate (Welford et al. 2018). In contrast 
to previous applications of this probabilistic method (Barnoud et al. 
2016; Welford et al. 2018; Geng et al. 2019), our approach directly 
incorporates constraints on the interface depths and on composition 
via the mapping of seismic velocities to density, not only at the lo- 
cations of sparse depth to Moho constraints from seismic lines, but 
interpolated throughout the model domain and weighted according 
to the spatial extent of the prior data. We also propagate the error 
on the seismic velocities into the density prior to ensure that the 
densities obtained vary within a range that is consistent with the 
error in the seismic velocities and that the seismic data does not too 
strongly dominate the final model obtained by the inversion, such 
that it remains predominantly resolved by the gravity. Moreover, 
the Bayesian approach allows us to directly evaluate the error and 
statistical validity of our results in a way that does not assume the 
seismic data is the full truth. 

Due to the non-uniqueness of gravity, however, even with abso- 
lute proximity constraints, some sort of smoothing or stabilizing 
functional is needed to produce a meaningful solution. This can 
come in the form of relative equality constraints such as either first 
or second order Tikhonov regularization, which spatially minimizes 
the first or second derivative of the physical property, respectively. 
Relative equality constraints by themselves have a tendency to pro- 
duce a blurred but still valuable model of the density anomalies 
(Portniaguine & Zhdanov 1999; Silva et al. 2001). However, when 
combined with absolute equality constraints, this inversion tech- 
nique is often able to produce accurate representations of the source 
geometry and density (Medeiros & Silva 1996; Silva et al. 2001). 
As such, our method uses a combination of absolute and relative 
equality constraints in the form of Gaussian priors based on exist- 
ing geophysical data and a combination of first and second order 
Tikhonov regularization. 

There is distinction in the literature between traditional regular- 
ization methods and proper Bayesian approaches to inverse prob- 
lems. Traditionally, regularization modifies the function relating 
the data to the source of its signal, in an effort to eliminate the 
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unstable problem by replacing it with a similar stable one. This 
often involves a penalty on the inversion that guarantees a unique 
solution (Calvetti & Somersalo 2018). The Bayesian approach, on 

 
allows one to use the exact function relating the data to its source 
and offers the flexibility of obtaining multiple reasonable solutions, 
as the final posterior model is in fact a probability distribution. 
However, the non-uniqueness of gravity inversion in particular re- 
quires some form of regularization. The regularization method that 
best bridges the classical deterministic theory and the Bayesian ap- 
proach is Tikhonov regularization because instead of modifying the 
model function, it solves a minimization problem (Calvetti & Som- 
ersalo 2018). In that sense, Tikhonov regularization is essentially 
a smoothness prior and can be implemented within a probabilistic 
framework, allowing the inversion problem to remain Bayesian even 
though it involves regularization. 

 
 

2 M E T H O DS   
 

2.1 Calculation of forward gravity 

We model the subsurface density and structure of a defined region 
and its associated effect on the gravity by discretizing the subsur- 
face into a finite number of rectangular blocks. The gravitational 
attraction of each rectangular prism is calculated and then summed 
to compute the gravity field. The gravitational attraction of a homo- 
geneous right rectangular prism relative to an observation point on 
the surface is given as in Turcotte & Schubert (2014) as 

is: 
 

F (m) = (d − g (m))2. (3) 
 

 
For a linear model such as that given in eq. (2), the model derivative 
is independent of the model parameters, and our prediction can be 
written directly as Gm. The Gauss–Newton solution of the model 
parameters that minimizes the least-squares misfit in eq. (3) is thus: 

m = (GT G)−1GT (d). (4) 

The data d are the observed gravity anomaly values, and the model 
parameters to be estimated are the differential densities of each 
discretized block in the subsurface. 

We accommodate data errors and prior constraints on the model 
parameters in the inversion via a Bayesian approach. Bayes theorem 
states that the probability of the model parameters, given the data, is 
proportional to the product of (1) the probability of producing those 
data with the model and (2) the probability of the model itself. 

P(m|d) ∝ P(d|m) P(m). (5) 

P(m) is a prior that we use to restrict the model parameters to certain 
values given our existing geological knowledge. 

In including the data error in the least-squares solution, we make 
the key simplifying assumption that the data are independent. In 
the case of gravity, we are incorporating the relative attraction of 
both adjacent and distal blocks of mass, and if the data are gridded 
with some form of interpolation, then they are arguably not truly 
independent. However, given the complexity of the problem and its 
physical geometry, the interdependence of the data is difficult to 

∆g = Г∆ρ μijk [∆zk arctan 
i =1  j =1  k=1 

∆xi ∆yi  
∆zk  Rijk 

quantify and the simplifying assumption that the data are indepen- 
dent is sufficient to perform the inversion. We assume each data 
point can be represented by a Gaussian distribution with known 

−∆xi ln(Rijk + ∆yj ) − ∆yj ln(Rijk + ∆xi )], (1) 

where ∆xi = (xi − xp), ∆yj = (yj − yp), ∆zk = (zk − zp) and μijk = ( 

 

error such that we can define a new least-squares misfit: 

1     
d − g (m)

 2
 

of the measurement point, and xi, yj and zk are the coordinates of 
the corners of the prism, where (i, j, k) (1, 2). Rijk is the distance 
from the measurement point to a corner at xi, yj, zk and is given by 
Rijk = (∆x 2 + ∆y2 + ∆z2)1/2. 

where we are now minimizing the difference between the known 
and predicted gravity, given the error in the gravity data. From 
Bayes Theorem, minimizing this new misfit F(m) is equivalent to 
maximizing P(m d). To incorporate the data error into the model 

i j k | The sum defines the geometry of the prism relative to the ob- 
servation point and can be extended to the case of multiple prisms, 
such that each prism in the domain has a single geometry coeffi- 
cient for each gravity observation point. We invert gravity data at N 
observation points to obtain the best-fitting estimate of the densities 
of M subsurface prisms, or M model parameters. Eq. (1) then results 
in an N M matrix G that describes the geometry of each prism 
relative to each observation point times Г. The gravity anomaly 
at any observation point due to the combined attraction of all the 
prisms is the product of this matrix and Δρ, which is an M 1 
vector containing the differential density of each prism, expressed 
as 

∆g = GΔρ. (2) 

 
2.2 Linear least-squares inversion 

We adopt the method for linear least-squares inversion as given in 
Aster et al. (2013) and Tarantola (2005). For N data points and M 
model parameters, where gi(m) is the model prediction of the ith 
datum (the ∆ has been omitted for clarity), the least-squares misfit 

parameter solution, we define a diagonal and symmetric weight 
matrix Cd with the data variance on the diagonal. The solution 
becomes: 

m = (GT Cd−1G)−1GT Cd−1d. (7) 

 
2.3 Tikhonov regularization 

Linear least squares, even when using the generalized inverse or 
the truncated generalized inverse to handle small singular values, is 
often insufficient for many inverse problems due to non-uniqueness 
and instability, especially for high-dimensional problems. Thus, a 
form of regularization must be applied. We use a combination of first 
and second order Tikhonov regularization, which stabilizes the in- 
version and acts as a relative equality constraint on the values of the 
model parameters. First order Tikhonov regularization minimizes 
the square of the first spatial derivative of the model parameters 
(i.e. the gradient), thus serving to flatten the solution. Second order 
Tikhonov minimizes the square of the second spatial derivative of 
the model parameters (i.e. the curvature) and hence smooths the 
solution. Zeroth order Tikhonov, on the other hand, favors models 

1) ( 1) ( 1) . ∆ρ is the density contrast of the prism, and Г is 
the universal gravitational constant. xp, yp and zp are the coordinates 

i =1 the other hand, by modelling the solution as a random variable, 
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that are small and is identical to applying a Gaussian prior with a 
mean of zero and minimizing the square of the model parameter 
values themselves. 

As Tikhonov regularization is equivalent to applying a prior that 
enforces either small values, flatness, or smoothness, we can derive 
the regularized solution by adjusting the misfit equation to reflect 
the additional minimization of the model parameters or their first or 
second derivatives. 

F (m) = 
1 

(d − Gm)T C −1(d − Gm) 
 

 

where 

L = α2LxT Lx + β2LyT Ly + ζ 2LzT Lz + b2BxT Bx + b2ByT By, 
(12) 

b is the weight of the first order Tikhonov regularization applied 
to the boundary condition. Bx and By are the regularization matri- 
ces that apply the boundary conditions in the x and y directions, 
respectively. 

2 d 
2.4 Priors 2 T 

+λ (Lm) (Lm), (8) 

L is either the identity matrix, a first derivative finite difference 
operator, or a second derivative finite difference operator for zeroth, 
first, or second order Tikhonov regularization, respectively. λ is 
a constant controlling the strength of the regularization. As the 
misfit remains exactly quadratic with the addition of the Tikhonov 
regularization term, the inverse problem remains linear, and the 
weighted and regularized linear least-squares solution becomes 

Meaningful solutions consistent with existing geological knowledge 
are obtained by applying absolute equality constraints as Gaussian 
priors. In this approach, each parameter is forced to be close to a 
mean value but is allowed to vary within a specified range. Different 
regions of the model domain can have different priors depending 
on (1) what we suspect the densities of the rocks in those areas are 
and (2) how confident we are in those values based on their location 
relative to the other data we have. The prior on each parameter is 
given by the Gaussian probability density function 

m = (GT Cd−1G + λ2LT L)−1GT Cd−1d. (9)  
P(mk ) 

1 
= 

σp
√

2π 

 
exp( 

1 
— 

2σ 2 
(mk − μp )2), 

 
(13) 

For 3-D models, first and second order Tikhonov are implemented 
using the sums of the finite-difference approximations to the first 
or second derivatives in each direction, respectively. Because the 
discretization of the grid can be different in the x, y and z directions, 
we apply three different regularizations, with associated constants 
α for the x-, β for the y- and ζ for the z-direction. The derivation of 
the Tikhonov regularization matrices is given in Appendix A. For 
three-dimensions, the weighted Tikhonov regularized solution is 

m = (GT Cd−1G + α2LxT Lx + β2LyT Ly + ζ 2LzT Lz)−1 

where mk is the estimated model parameter value, μp is the expected 
value of that model parameter based on our prior information and 
σp is the standard deviation of the prior for that parameter. 

As with the data error and Tikhonov regularization, we define a 
new misfit by adding the exponential component of the Gaussian 
prior to the existing misfit: 

F (m) = 
1 

(d − Gm)T C −1(d − Gm) + α2(Lm)T (Lm) 

1 T −1 
 

(GT Cd−1d). (10) + 
2 

(μp − m) Cp  (μp − m). (14) 

 
Without a flatness constraint in the far-field, abrupt density 

changes at the edges of the model domain result in a classical 
gravity edge effect. Consequently, to ensure mathematical stability, 
we impose an infinite edge boundary condition, which allows the 
gravity to smoothly continue off the edges of the model area. We 
accomplish this condition by padding the domain with edge prisms 
that are sufficiently long that they extend far beyond the edge of 
the gravity grid (on the order of 1000 km for the regional problem 
with which we test the method). We also enforce this condition 
during the inversion by using first order Tikhonov regularization 
with a strong regularization coefficient to minimize the difference 
between the edge parameters and the adjacent values so that their 
predicted densities are the same. Thus, we apply different orders 
and strengths of Tikhonov regularization to the edges and the in- 
terior of the model simultaneously. The interior of the model has 
second order Tikhonov imposed in the horizontal directions to allow 
for smooth continuity of density bodies in the subsurface, and first 
order Tikhonov is applied in the vertical direction, as it is better 
equipped to allow for sharp contacts between layers of rock, while 
strong first order is applied on the boundary. 

As before, this variable order Tikhonov regularization can be 
achieved by redefining the misfit equation, where separate L ma- 
trices apply different weights to different sets of model parameters 
and different directions. The full Tikhonov regularized solution, 
with boundary conditions applied, is 

 
m = (GT Cd−1G + L)−1(GT Cd−1d), (11) 

Defining the prior covariance operator Cp as an M M diagonal 
matrix with the variance of the prior on the diagonal, we arrive at 
the final data weighted, Tikhonov regularized solution with prior 
constraints 

m = (GT Cd−1G + L + Cp−1)−1(GT Cd−1d + Cp−1μp),         (15) 

where L is defined as in eq. (12). This is the final solution vector used 
in our inversion. The row or column number of the elements along 
the diagonal of Cp correspond to the index number of that model 
parameter. Likewise, μp is an M 1 vector for which each element 
corresponds to the density of single prism. To apply different priors 
to different model parameters, one need only use the coordinates 
of the model parameter centroids within the desired region to find 
the appropriate model parameter index and apply a value to that 
element. If an element on the diagonal of Cp−1 is zero, then no prior 
is applied to that model parameter. 

 

2.5 Quantifying error 

A key advantage of a Bayesian approach is that it allows us to statis- 
tically evaluate the solution, via the posterior covariance matrix C of 
the model parameters and the resolution matrix R. The covariance 
matrix is defined as the inverse of the Hessian: 

C = (GT Cd−1G + L + Cp−1)−1. (16) 

Here the values of m estimated by the inversion are the centre-points 
of the posterior Gaussian, and the diagonal values of the covariance 
matrix C are their associated variances. 
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The resolution matrix is determined from the covariance matrix 
(Tarantola 2005): 

R = I − CCp−1, (17) 

where I is the identity matrix. If the resolution matrix equals the 
identity matrix, the model is fully resolved by the data. This par- 
ticular formulation of the resolution operator primarily allows us 
to distinguish between those parameters that are resolved by inver- 
sion of the gravity data and those that are resolved by the prior. 
Mathematically, this can be written as: 

tr (I) = tr (R) + tr (CCp−1) (18) 

meaning the total number of model parameters is the sum of the 
number of parameters resolved by the data and the number of pa- 
rameters resolved by the prior information (Tarantola 2005). Higher 
resolution (values closer to 1) means those parameter values have 
mostly been determined by the inversion—in other words, we have 
learned something from the gravity that we did not know a priori. 
On the other hand, low resolution (values closer to 0) means the val- 
ues of those parameters are almost entirely attributed to the prior. 
This is the case for regions of the model where the prior is very 
strong, that is a very small prior variance. 

Ultimately, solution quality is based on the mean absolute error of 
the gravity and the mean standard deviation of the model parameters 
as determined from the diagonal of the covariance matrix, as well as 
visual inspection of the model to determine its geological reason- 
ability. Even with relative and absolute equality constraints, gravity 
inversion remains non-unique and there are a number of model so- 
lutions that could fit the data. It is possible to obtain a solution that 
minimizes the misfit as required but that still appears geologically 
unreasonable and must be disregarded as the most likely poste- 
rior distribution of densities. However, the regularization and priors 
ensure enough stability in the model that with the appropriate regu- 
larization parameters α, β and ζ , the model obtained is geologically 
sound and in line with our standing geophysical knowledge. 

 
 

3 S Y N T H E T I C  T E S T S   

Estimating optimal regularization parameters is difficult for gravity 
inversion. We use an iterative technique on a series of synthetic tests 
to determine α and ζ values that produce (1) the best fit between 
the predicted and observed gravity and (2) the most geologically 
reasonable solution, which for the synthetic models, is a nearly 
complete recovery of the known density distribution. We conduct 
these synthetic tests on a simplified lower resolution model of a sub- 
duction system. In all synthetic tests, we construct a density model, 
compute the forward gravity as given by eq. (1) and add Gaussian 
noise to the gravity using a similar standard deviation to that of the 
data set we will later use (about 1.7 mGal). We invert this gravity 
for a range of Tikhonov regularization parameters and orders, with 
or without priors on specific sets of model parameters, while at- 
tempting to recover the known density distribution and judging the 
stability of the inversion. 

The performance of the inversion when used with first and second 
order Tikhonov is tested using a simplified synthetic 3-D model of 
a subduction zone (depicted in representative cross-sections in the 
bottom row of Figs 1 and 2). We test various combinations of the 
horizontal regularization coefficient α and the vertical regulariza- 
tion coefficient ζ for the cases of only first order Tikhonov, only 
second order Tikhonov, and a combination of second order in the 
horizontal and first order in the vertical. For each of these cases, we 

test four additional classes of constraints: no priors, priors enforced 
only on parameters within the water column, priors enforced only 
on parameters within the water and crustal layers, and priors on all 
parameters, including the mantle. The prism size is about 17.5 km in 
the x-direction, 22.5 km in the y-direction, and increases from about 
206 to 2060 m from shallow to deeper depths in the z-direction. The 
α and ζ values tested range from 10−3 to 108. There are a total 
of 10, 648 model parameters and 22, 500 data points, yielding an 
overdetermined system. The synthetic density model is constructed 
with a seawater density of 1027 kg m–3, oceanic crustal density of 
2900 kg m–3, sediment density of 2300 kg m–3, continental crustal 
density of 2700 kg m–3 and mantle density of 3300 kg m–3. We de- 
fine differential density, ∆ρ, by subtracting the lateral average of 
each layer from the true density of each prism in that layer. The prior 
densities, when applied, match those differential densities. The stan- 
dard deviation of the priors, when applied, are 5 kg m–3 for seawater, 
80 kg m–3 for the sedimentary and crustal rocks and 100 kg m–3 for 
the mantle. 

The results for these synthetic tests are summarized in Figs S1– 
S4, which show gridded results for each combination of α and ζ 
in panels corresponding to the order(s) of Tikhonov regularization 
used (panel rows) and the set of priors used (panel columns). Grey 
regions demarcate α and ζ combinations where the regularization 
strength is too low to produce stable results. The minimum of each 
test for both the mean absolute error (MAE) on the gravity and the 
MAE on the model parameters is plotted in each of these figures 
as well. Fig. S1 depicts the MAE between the true gravity field 
of the synthetic model and the gravity predicted by the recovered 
density distribution. Changes in the gravity misfit are much more 
dependent on the order of regularization than they are on the pres- 
ence of a prior. For first order Tikhonov alone, the misfit increases 
dramatically above α values of 104 because the model becomes too 
flat to correctly reproduce the shorter wavelength variations in the 
gravity field. For second order Tikhonov, stability is achieved at ζ 
values of 102 in cases with limited priors, above which the gravity 
error remains reasonably low until α values of about 107. For the 
combination of first and second order Tikhonov, the error remains 
reasonably low until an α value of 107 and between ζ values of 
10−1 and 103. The lowest error on the gravity amongst all the tests 
is about 1.29 mGal, which is less than the noise level of 1.7 mGal, 
and occurs for the case of first order Tikhonov with no priors for α 
100 and ζ 10−1. The lowest gravity error occurs for the case of no 
priors because without priors the model is allowed to take whatever 
shape it must, subject to the smoothness constraint, to fit the data, 
again highlighting the inherent non-uniqueness of the gravity. 

However, to achieve a geologically reasonable model, priors must 
be applied. For the case of enforcing a prior on all parameters, the 
minimum gravity error is still only 1.36 mGal, so the fit to the 
gravity data is not compromised by adding priors, while the fit to 
the true density model is dramatically improved. Fig. S2 illustrates 
the MAE between the predicted model parameter values and the 
true model parameter values of the known density model. For most 
combinations of different regularization orders and priors, too small 
of an α or ζ value and the regularization is not strong enough to 
provide a smooth and continuous density distribution, yielding non- 
physical fluctuations in the density values (Figs 1 and 2, columns 
1 and 2). Alternative cross sections with results using different 
regularization strengths are shown in supplementary Figs S5 and 
S6. For α values that are too large, the solution smooths over any 
density variations almost entirely. For cases with no priors or limited 
priors, the misfit decreases with increasing ζ , but for cases with more 
priors, the misfit begins to increase again with larger ζ values after 
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Figure 1. Representative cross-section in the x-direction of the synthetic inversion results for α, ζ combinations that produce some of the lowest errors for 
their respective order of Tikhonov regularization, as determined by comparing the test results depicted in Figs S1–S4. Row 1: gravity profiles for each of the 
three cases depicted in the panels below. Dark blue line: true gravity produced by the synthetic model, with noise; gray line: gravity from inversion using only 

first order Tikhonov; light blue line: gravity from inversion using only second order Tikhonov; orange line: gravity from inversion using second order Tikhonov 
in the horizontal and first order in the vertical. Row 2: cross-sections of the density model recovered from using only first order Tikhonov with α 101 and ζ 

10−1 for the cases of no priors, priors only on the ocean water parameters, priors on the ocean and crustal parameters, and priors on all parameters. Row 3: 
cross-sections of the density model recovered from using only second order Tikhonov with α 106 and ζ 103 for each of the different prior cases. Row 4: 
cross-sections of the density model recovered from using a combination of first and second order Tikhonov with α 105 and ζ 100 for each of the different 
prior cases. Row 5: cross-section of true synthetic density model for comparison. 

 
achieving its minimum. However, the misfit decreases overall as 
we apply more priors throughout the model domain, starting with 
the ocean. Though the results from applying a prior only to the 
ocean do not look dramatically improved over the case of no priors, 
in practice, the prior on the ocean is one of the most important 
constraints because it is the most certain. It eliminates any need 
for the model to determine where the seafloor is and forces the 
inversion to put higher densities in the crust and mantle where they 
belong. This is evident in the cross-sections in Figs 1 and 2. The 
minimum absolute error on the model parameters amongst all tests 
is approximately 10.1 kg m–3 and occurs when using priors on all 
parameters and α 101, α 104 and α 104, and ζ 10−3, ζ 
101 and ζ 10−1 for first, second, and combination-first-and-second 
Tikhonov, respectively. 

Comparing the MAE of the model parameters, given the known 
density distribution, to the standard deviation of the model parame- 
ters as determined from the diagonal of the covariance matrix (Fig. 
S3) allows us to determine how the covariance matrix reflects un- 
certainty in the presence of a priori model constraints. For all cases 
except that of second order Tikhonov with no priors, the posterior 

standard deviation on the model parameters decreases with increas- 
ing α and ζ and is consistently lowest for the case where priors are 
enforced on all model parameters. For the α and ζ values where 
the MAE on the model parameters was lowest (red square in Fig. 
S2, lower right-hand panel), the mean posterior standard deviation 
on the model parameters is comparatively 56.3 kg m–3, a value that, 
while higher, is still reasonably within a range necessary to distin- 
guish one rock layer from another. The standard deviation from the 
covariance matrix continuously decreases with increasing regular- 
ization, while the MAE starts to increase after some minimum when 
priors are applied, because unlike with the MAE, the minimization 
in the gradient or curvature between the model parameters enforced 
by the Tikhonov regularization tends to dominate the definition of 
the covariance matrix. As the weight of regularization increases, the 
Tikhonov component of the misfit equation (eq. 14) is reduced, and 
as such, the posterior covariance is reduced as well. Too large of 
an α or ζ value can cause oversmoothing of the model parameters, 
and as such the standard deviation of the posterior solution is not 
always as accurate an estimator of the error on the model param- 
eters away from the ‘correct’ density distribution as the MAE is. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/223/3/1899/5902856 by U

nitversity of Texas Libraries user on 17 D
ecem

ber 2020 



Bayesian 3-D linear gravity inversion 1905 
 

 

= = 
= = 

= 
= 

− 

 

 
 

    
 

  
 

Figure 2. Representative cross-section in the y-direction of the synthetic inversion results for α and ζ combinations that produced some of the lowest errors 
for their respective order of Tikhonov regularization, as determined by comparing the test results depicted in Figs S1–S4. Row 1: gravity profiles for each of 
the three cases depicted in the panels below. Dark blue line: true gravity produced by the synthetic model, with noise; gray line: gravity from inversion using 
only first order Tikhonov; light blue line: gravity from inversion using only second order Tikhonov; orange line: gravity from inversion using second order 
Tikhonov in the horizontal and first order in the vertical. Row 2: cross-sections of the density model recovered from using only first order Tikhonov with α 
101 and ζ 10−1 for the cases of no priors, priors only on the ocean water parameters, priors on the ocean and crustal parameters, and priors on all parameters. 
Row 3: cross-sections of the density model recovered from using only second order Tikhonov with α 106 and ζ 103 for each of the different prior cases. 
Row 4: cross-sections of the density model recovered from using a combination of first and second order Tikhonov with α 105 and ζ 100 for each of the 
different prior cases. Row 5: cross-section of true synthetic density model for comparison. 

 

However, because we do not know the correct density distribution 
in a study with real data, as we do in the synthetic tests, we can 
only use the α and ζ combination of the minimum MAE from the 
synthetic models as a proxy for what the ideal regularization coef- 
ficients must be in order to produce the best geological model. The 
covariance matrix still provides information on how well the model 
parameters are estimated, but we should expect errors as high as 
around 50 60 kg m–3 to be indicative of a good model because we 
do not want to fully minimize the Tikhonov component. 

We can also use the resolution matrix R to quantify how much we 
have actually learned about the subsurface density structure from 
inverting the gravity data, as opposed to what we already knew from 
our prior. The mean resolution of all the model parameters for each 
of the tests is depicted for each combination of α and ζ in Fig. S4. 
The resolution should be interpreted as the fraction of that model 
parameter estimate that can be attributed to the inversion of the 
gravity data itself, as opposed to the prior. Resolution values close 
to 1 mean the model is well resolved by the gravity, not the prior. 
Hence, the tests for the case of no priors have a resolution of 1 be- 
cause those models are resolved entirely by the gravity. Resolution 
values close to 0 mean the model is mostly resolved by the prior 

information alone and not the gravity: that is the gravity inversion 
did not tell us anything we did not already know from the prior. In 
this way, a resolution of 0 does not necessarily mean the values of 
the model parameters are wrong in a geological sense, just that the 
inversion was not useful. In some regions of the model, such as the 
ocean layer, where we know the density, it is desirable to have low 
resolution values because we want these regions to be entirely con- 
strained by the prior and not affected by the inversion. As such there 
is a clear relationship between the MAE on the model parameters 
and the resolution: lower σp (i.e. a stronger prior) correlates with 
lower resolution and hence lower MAE on the model parameters. 
Going from the case of no priors to that of priors on all parameters, 
we can clearly see that the dependence on the prior increases for 
a greater number of α, ζ combinations as expected (Fig. S4). We 
can also see that the more or the stronger priors we apply, the less 
regularization is needed to produce a stable and reasonable model 
(Fig. S5). 

Ideally, we are trying to obtain a model that both best fits the 
gravity and matches the prior data and so we neither want a model 
that is entirely determined by the gravity nor entirely determined 
by the prior. Thus, a very high resolution is not necessarily ideal. 
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Rather, we would expect resolution to increase with distance from 
the locations where we have prior constraints, exhibiting a spatial 
dependence. Therefore, a mean resolution somewhere in the middle 
may be considered reasonable, which is consistent with α and ζ val- 
ues in the range of 104  5  106 and 10−1  101, respectively (Fig. 
S4), as well as the best α and ζ values as determined by the MAE on 
the model parameters (Fig. S2). As an example, representative cross 
sections of the 3-D model results, using α 101 and ζ   10−1 for 
first order, α    106 and ζ     103 for second order and α    105 and 
ζ 100 for combination first and second order, are shown in Figs 1 
and 2. Similarly, representative cross-sections of the 3-D model do- 
main using α and ζ values that produced the lowest MAE on the 
model parameters for each of the different combinations of regular- 
ization order and priors are shown in Figs S5 and S6. The top panel 
shows the predicted gravity profile produced by each of the models 
against the true gravity calculated from the known density model. 
The subsequent three rows depict the resulting models for first, sec- 
ond and combination first and second order Tikhonov, respectively. 
The bottom panel illustrates the corresponding cross-section of the 
true synthetic density model that we are trying to recover in each 
of these inversions, for comparison. Different α, ζ pairs are ideal 
for different orders of Tikhonov regularization. Higher regulariza- 
tion constants are needed for second order Tikhonov; those same 
coefficients would, on the other hand, oversmooth the first order 
models. 

For these combinations of α and ζ , the accuracy of the result- 
ing density models changes drastically across the different applied 
priors. However, the gravity signal for each model is essentially 
the same and matches the true gravity well, with an MAE of only 
about 1.3–1.4 mGal for each case, demonstrating the effective non- 
uniqueness of the gravity (Figs 1 and 2, Row 1). Thus, priors are 
necessary to improve the model. When priors are applied to all pa- 
rameters, all three regularization options recover the known density 
model, though at higher values of α, combination first and second 
order Tikhonov is better at recovering the density distribution. Ulti- 
mately, the recovered model is more sensitive to changes in ζ than 
in α, and for low values of α, first order regularization appears suffi- 
cient. However, across all tests, the combination of first and second 
order Tikhonov consistently produced the most stable results and 
was the most successful at recovering the known density distribu- 
tion. Moreover, increasing the resolution of the subsurface model 
(i.e. adding more model parameters) tends to require increasing the 
regularization strength, so the combination first and second order 
Tikhonov is more stable for larger models, as first order becomes 
too strong, flattening out the model completely, at large α values. 

Even without any priors, some semblance of the structure is 
recovered for the example in Fig. S5 when using first order regular- 
ization, though with such high α values, structure is better recovered 
when using the first and second order combination. For first and sec- 
ond order, there is often an unrealistic degree of fluctuation in the 
density values for the case of no priors and priors only on the ocean 
(Figs 1 and 2). Ultimately, different combinations of the α and ζ val- 
ues can yield similarly satisfactory models, but based on the above 
results for the MAE on the gravity and model parameters and the 
covariance and resolution matrices, and considering the increase in 
model resolution for the regional study, using a combination of first 
and second order Tikhonov with α 10 5 or α   106 and ζ   100 
with priors of varying certainty on all parameters produces the best 
results. These are the values that will be applied to the subsequent 
regional case study of the Puysegur region offshore southern New 
Zealand. 

4 A PPL ICAT  ION T O T HE PUY S EGUR 
RE GI O N   

Gravity inversion of an active tectonic margin is challenging be- 
cause of the complicated structures and source geometries and the 
sharp lateral changes in density across the boundary. Those very 
compositional contrasts across and along such an active margin 
play a large role in governing the tectonic processes taking place. 
Because dynamic processes often dominate the gravity field and 
influence local topography, gravity modelling at these locations can 
shed light on important aspects of subduction (Toth & Gurnis 1998; 
Krien & Fleitout 2008). The Puysegur subduction zone is an at- 
tractive test case for subduction initiation in particular because of 
its young age and the transition from developed subduction in the 
north to incipient underthrusting in the south (Gurnis et al. 2004, 
2019). As such, the margin provides a progressive snapshot of the 
subduction initiation process along strike. Puysegur also exhibits 
unusual gravity anomalies, the origin of which can inform us about 
the regional dynamics and motivates detailed study of Puysegur 
with a gravity inversion. 

 
 

4.1 Regional setting 

The Puysegur-Fiordland subduction zone lies at the northern end 
of the Macquarie Ridge Complex (MRC) and the southern tip of 
South Island, New Zealand. Present day plate motion is predom- 
inantly dextral strike-slip, with highly oblique subduction of the 
Australian Plate (AUS) northeastwards beneath the Pacific Plate 
(PAC) at the Puysegur Ridge and Fiordland (Fig. 3a; Sutherland 
1995; DeMets et al. 2010). The Puysegur margin has evolved from 
a spreading ridge into a subduction zone. Spreading along the PAC- 
AUS margin began approximately 45 Ma, then became increasingly 
oblique as the AUS-PAC Euler pole migrated to the southeast during 
the Miocene, eventually rotating into a strike-slip plate boundary 
(Sutherland 1995; Lebrun et al. 2003). This evolution is evident in 
the curvilinear fracture zones that merge along the MRC and are 
prominent in the gravity field and bathymetry. Oblique convergence 
led to subduction beneath the Fiordland boundary starting around 
16–10 Ma, beneath the northern extent of the Puysegur segment 
about 11–8 Ma, and beneath the southernmost extent of the Puyse- 
gur Ridge within the last several million years (Lebrun et al. 2003; 
Sutherland et al. 2006). 

The crustal structure and tectonics related to the above kinematic 
history were investigated in detail with seismic reflection, seismic 
refraction, and bathymetric mapping during the recent South Island 
Subduction Initiation Experiment (SISIE, Gurnis et al. 2019). Puy- 
segur has the advantage of being a small subduction zone with a 
well known plate kinematic history before and during subduction 
initiation, making it accessible for studying the process of subduc- 
tion initiation and for constructing a regional gravity inverse model 
at a relatively high resolution. 

The margin possesses distinctive, high amplitude gravity anoma- 
lies, which as of yet have poorly constrained structural and compo- 
sitional interpretations and which have implications for the dynamic 
processes taking place in the region. The MRC is characterized by 
long and narrow bathymetric and gravitational highs and lows along 
strike (Fig. 3b). The southern part of Puysegur Ridge is character- 
ized by a 100 to 150 mGal gravity high adjacent to the –100 to –150 
mGal gravity low of the trench. In contrast, a significant approx- 
imately –150 mGal gravity low exists over the northern Puysegur 
Ridge—a region known as the Snares Zone (Fig. 3; Gurnis et al. 
2019). This region is of particular interest in our gravity inversion 
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Figure 3. (a) Puysegur survey area, outlined by the black rectangle. The 
Macquarie Ridge Complex is the long, narrow gravity high/low feature 
running between the Australian (AUS) and Pacific (PAC) plates from the 
Hjort Trench (HT) in the south to the Puysegur Trench (PT) in the north. eTR 
is the extinct Tasman Ridge. Base map is free-air gravity (Sandwell et al. 
2019). (b) Bathymetry of Puysegur region from the NIWA grid (Mitchell 
et al. 2012). Solid blue lines are MCS lines. Triangles represent the locations 
of OBS. SISIE-1 and SISIE-2 are combined OBS and MCS lines. Black 
dashed line outlines the Snares Zone (SZ) bathymetric low. RR: Resolution 
Ridge; Sol: Solander Island; PB: Puysegur Bank; PR: Puysegur Ridge; and 
PT: Puysegur Trench. Red arrows are the modern relative plate motion 
(DeMets et al. 2010) of the AUS plate with respect to the PAC. (c) Satellite 
free-air gravity for the Puysegur study region from the Sandwell et al. (2019) 
global marine gravity grid, v. 29.1. Labels, seismic lines, and plate motion 
vectors are the same as in (a) and (b). The grid of black dots are the locations 
of the gravity data points used in the inversion. 

 
because it has subsided with respect to the rest of Puysegur Ridge 
by nearly 2 km (Collot et al. 1995). If composed of buoyant crust, 
this subsidence has implications for the subduction initiation pro- 
cess and the force balance on the system. In addition to addressing 
questions about these anomalies, gravity modelling can help stitch 
together the information obtained seismically to provide a more 
complete 3-D picture of the structures and rock types in the region. 

4.2 Prior geophysical constraints 

Prior constraints on a gravity inversion can come from a number of 
geophysical data, including seismic, bathymetric, borehole data and 
more. For the investigation of the Puysegur subduction system, we 
utilize bathymetric and seismic data collected from the SISIE marine 
geophysical expedition (Gurnis et al. 2019; Shuck et al. submitted), 
as well as sediment thickness estimates from the NOAA sediment 
thickness database (Straume et al. 2019), to constrain the gravity 
inversion. These data include the regional NIWA bathymetry grid 
(Mitchell et al. 2012), horizons picked from seismic reflection pro- 
files, and seismic velocity models constructed from ocean bottom 
seismometer (OBS) seismic refraction analysis (Gurnis et al. 2019; 
Shuck et al. submitted). The NIWA grid is based only on shiptrack 
multibeam data and not calculated from the gravity like the global 
bathymetry data sets. This ensures the prior remains independent of 
the gravity data. 

The seismic velocity models were constructed using a tomo- 
graphic inversion of marine seismic refraction data gathered during 
the SISIE cruise. A total of 43 short-period OBSs were deployed 
on two east–west transects across the Puysegur Trench (Fig. 3a). 
The wide-angle seismic data records show reflected and refracted 
arrivals that help constrain the seismic velocities, depth to base- 
ment and Moho of both the Australian and Pacific Plates. We 
correlated arrival times between neighboring stations to identify 
refracted and reflected phases and checked the reciprocity on oppo- 
site source–receiver pairs. The average maximum source–receiver 
offset at which we observed seismic refractions was 80 km. We as- 
signed traveltime uncertainties between 40 and 150 ms to account 
for noise on wide-angle data. We applied a regularized tomographic 
inversion of the wide-angle traveltimes to image the seismic ve- 
locities of the crust and uppermost mantle along the two transects 
(Van Avendonk et al. 2004). The resulting seismic velocity models 
for SISIE-1 and SISIE-2 have an rms data misfit of 90 and 80 ms, 
respectively, which is comparable to the assigned data errors. 

The 2-D seismic velocity images along SISIE-1 and SISIE-2 
show the nature of the oceanic crust of the incoming AUS Plate and 
the crustal structure of the overriding Puysegur Ridge and Solander 
Basin (Fig. 4). In the deeper parts of the basin, the top of basement 
was constrained by wide-angle seismic refractions. However, we 
determined the depth to basement from multichannel seismic re- 
flection images (Shuck et al. submitted) where the sediment cover 
was thin. We were able to determine the Moho depth outboard of the 
trench on the AUS Plate and beneath the Solander Basin. However, 
the thickness of Puysegur Ridge is not well resolved from the OBS 
refraction data alone because the observed wide-angle refractions 
did not turn to such depths near the plate boundary. The gravity 
model can thus help constrain the thickness of the crust at the ridge. 
Nevertheless, Moho depths as determined from the seismic velocity 
models (deeper bold gray line in Fig. 4) are included in our prior. 
Like the other horizons, the Moho is not a ‘hard’ constraint but 
rather a probabilistic constraint on where the top of mantle is most 
likely to be. This flexibility is a reflection of the fact that there is 
uncertainty in the seismic data, and the Bayesian method means we 
do not have to take it completely at face value. The seismic veloci- 
ties along SISIE-1 and SISIE-2 (Fig. 4) confirm that relatively thin 
oceanic crust of the AUS Plate has higher seismic velocities than 
the rifted continental crust of the PAC Plate (Gurnis et al. 2019). 
Consequently, there should be a substantial density contrast across 
the margin that should be evident in the gravity. The composition of 
Puysegur Ridge appears predominantly continental as well, though 
this is questionable and a point of interest for the gravity inversion. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/223/3/1899/5902856 by U

nitversity of Texas Libraries user on 17 D
ecem

ber 2020 



1908 E. Hightower, M. Gurnis and H. Van Avendonk 
 

 

 
 

Figure 4. Seismic velocity models used in the prior. (a, c) Seismic velocity profiles for OBS lines SISIE-2 and SISIE-1, respectively. Grey lines are the 
sediment-basement contact and Moho interpretations. White dots are the locations of OBS. Dark shaded area is where the model has unreliable resolution. (b, 
d) Standard deviation of the seismic velocities based on seismic ray tracing for OBS lines SISIE-2 and SISIE-1, respectively. Black regions indicate areas with 
unreliable velocities. White dots are the locations of OBS and their corresponding numbers. 

 

Based on the seismic velocities, we can constrain the thickness 
of the incoming AUS Plate to be about 7 km, with isolated pockets 
of sediment, usually less than 500 m in thickness. Due to the spatial 
resolution of the gravity model, sediment on the AUS Plate usually 
does not appear in the model except in places where it is relatively 
thick. The seismic reflection profiles reveal that sediment thickness 
in the Solander Basin is as thick as 6 km in places, averaging about 
2–3 km for the majority of the basin (Shuck et al. submitted). 
Between our seismic lines, we also constrain the top of basement 
using the NOAA global sediment thickness database (Straume et al. 
2019). The Snares Zone on the northern end of Puysegur Ridge is 
filled with up to 1 km of sediment, and both the layering observed 
in the seismic reflection profiles and the low seismic velocities 
on the western half of Puysegur Ridge suggest it is composed of 
deformed sediments, more than 10 km in width and 3 km in depth. 
However, below about 5.5 km depth, the seismic reflection data 
are inconclusive as to whether the accretionary wedge consists of 
sedimentary rock or crystalline basement (Gurnis et al. 2019); the 
gravity inversion can shed light on the compositions of these rocks. 

The decollement between the overriding and subducting plates is 
visible on the seismic reflection images from SISIE-1 and SISIE-2 
(Gurnis et al. 2019; Shuck et al. submitted). This horizon is used 
to constrain the top of the slab in the prior. The vertical, strike-slip 

Puysegur fault that cuts through the middle of the Snares Zone also 
appears to be present in the seismic reflection profiles (Shuck et al. 
submitted). While this fault is not included in the prior information 
directly, its presence could explain potential density differences 
observed in the final model. 

We invert the Sandwell et al. (2019) global 1 min marine gravity 
grid, v. 29.1, for the region within the black grid in Fig. 3(b), which 
for the Puysegur region has a standard error of about 1.7–2 mGal 
(Sandwell et al. 2013, 2019). We include horizons that represent 
the seafloor, the sediment-basement contact, and the interpreted 
Moho from the velocity models (Fig. 4). Seismic velocities along 
the profile lines were converted to density using the empirical Nafe- 
Drake equation (Ludwig et al. 1970; Brocher 2005). Those densities 
were then extrapolated from the 2-D SISIE transects to each model 
parameter using a 3-D interpolation scheme. Likewise, surfaces for 
the horizons are interpolated from the scattered data points of the 
2-D seismic data and the basement as determined from sediment 
thickness. For certain regions of the model, the prisms that fall 
between certain surfaces are assigned a specific prior. For example, 
prisms that fall between the AUS basement and Moho are given a 
prior oceanic crustal density of 2900 kg m–3 and prisms below the 
interpreted seismic Moho on the PAC Plate are assigned a prior 
density of 3300 kg m–3, as the estimated seismic velocity in the 
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degree to which the solution values are the result of the prior data 
or the gravity inversion itself can be visualized in the resolution 
matrix. The majority of the model domain is determined by gravity 
data and thus not overly biased by the prior information, except in 
places where we want it to be, such as in the ocean layer. 

Ultimately, the final model has 64 000 model parameters with 
a horizontal resolution of about 9 km and a vertically increasing 
resolution of about 110–1130 m. We invert 92 953 gravity data 
points from the marine gravity grid, using a horizontal second order 
Tikhonov regularization coefficient of 5 106 and a vertical first 
order Tikhonov regularization coefficient of 100. We include priors 
on all parameters, though with spatially varying standard deviation 
as described above. 

 
 
 
 
 
 
 
 

  
 

Figure 5. Variation of the standard deviation of the prior in 3-D space. 
Because the prior has a higher certainty along the trajectory of the seismic 
lines, the standard deviation is lowest along the survey lines, and increases 
exponentially away from the lines and their respective horizons and away 
from the seafloor. The ocean layer is essentially fixed by the bathymetry and 
thus has the lowest prior error. 

 

models falls below an acceptable resolution below about 15 km 
depth. Otherwise, the prior densities used are those obtained directly 
from the velocity conversion. 

For the prior, we have the highest degree of certainty on the den- 
sities of the prisms that lie along our seismic lines. We estimated 
the local standard deviation in the seismic velocity model with a 
forward ray tracing test. The uncertainty assigned to the model was 
the range in seismic velocity perturbations that would not raise 
the traveltime misfit more than 5 ms. These errors are for blocks 
of 10 km by 4 km. The lowest error is approximately 0.05 km s–1 
and the highest is approximately 0.35 km s–1. These standard devia- 
tions of the velocities are mapped into density using standard error 
propagation methods and the Nafe-Drake relationship. We 3-D in- 
terpolate these density errors to the locations of the prism centroids, 
which then serve as the starting values for the standard deviations 
on the prior. Certainty on the parameter values decreases from the 
initial value as we move away from the seismic lines, which we 
implement in the model by using a higher standard deviation far- 
ther from the lines, allowing the gravity to dominate the resulting 
density values in areas where we do not have seismic data. This is 
accomplished with a 3-D nearest neighbor algorithm that calculates 
the distance each prism centroid is from its closest data point. The 
standard deviation determined from propagation of error is then 
weighted via a smoothly varying functional—exponential decay of 
the increasing form—of nearest neighbor distance from the seismic 
and bathymetric data points. In this way, our prior includes both 
the error on the initial velocity model and the uncertainty due to 
spatial separation from our prior information. Horizontal slices of 
the spatially variable prior uncertainty mapped into 3-D space are 
shown in (Fig. 5). The Tikhonov regularization then ensures the 
model retains a smooth solution laterally, so values everywhere are 
to some degree constrained by those along the seismic lines. The 

4.3 Results 

We predict the gravity field from the final density model and com- 
pare it to the observed gravity, as well as the residual between the 
two (Fig. 6). The mean absolute error on the gravity produced from 
the final model is about 3.9 mGals, which is less than 2 per cent 
of the maximum anomaly in the study area (220 mGal). All the 
prominent features of the satellite gravity are well-recovered, in- 
cluding the prominent lows in the Snares Zone and the trench and 
the gravity high over the southern portion of Puysegur Ridge. Some 
of the finer features in the gravity are not fully recovered due to 
model resolution. The highest errors on the gravity, as shown by the 
residual, are mostly concentrated over areas with the largest gravity 
anomalies and where there is a sharp change in bathymetry, such 
as over the Puysegur Ridge and the edge of the Campbell Plateau. 
This is likely due to the trade-off between the regularization try- 
ing to smooth features laterally and the inversion trying to match 
these sharp changes in the gravity and bathymetry. Nevertheless, 
the highest error on the gravity is only 33.5 mGal, which on the 
scale of the major anomalies in the study area is still minor. 

The model results for the 3-D density distribution are presented 
in representative cross-sections in Figs 7, 8 and 9, with the prior 
density distribution and posterior standard deviation plotted for 
comparison. The resolution and covariance matrices also illustrate 
the 3-D distribution of error in the posterior model (Fig. 10). The full 
resolution matrix exhibits a sharp diagonal with elements close to 
one, demonstrating that the model parameters are well resolved by 
the inversion. Looking at only the diagonal components, on the other 
hand, where each element of the diagonal represents the resolution 
of a particular model parameter as determined by the gravity, gives 
us a better sense of how the resolution varies throughout the model 
domain. As each element is associated with a particular parameter, 
we can map the diagonal of R into 3-D space (Fig. 10a). This 3- 
D resolution illustrates which parameters are resolved mostly by 
the gravity and which are not. The resolution is almost zero in the 
ocean layer because those parameters are determined entirely by 
the prior and thus are not resolved by the gravity. The resolution 
of parameters along the seismic lines is also lower because these 
parameters are weighted more by the prior. The resolution matrix 
shows an increase in the degree to which parameters are resolved 
by the gravity with depth. 

However, barring the degree to which the parameters are deter- 
mined by the prior, there is a fall off in the certainty of the solution 
with depth, as evident from the posterior covariance matrix, the 
square root of the diagonal of which is also mapped into 3-D space 
and visualized in Fig. 10(b). This shows the spatial distribution of 
the standard deviation of the posterior estimate of m. The mean 
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Ridge. The inversion requires a low density body beneath the central 
and eastern portion of the Snares Zone, extending to about 18–20 km 
depth (Figs 7 and 9) and is mostly consistent with the prior velocity 
models. However, the western half of Puysegur Ridge, below about 
5.5 km depth, is consistently higher density than predicted from the 
velocity models. The southern cross section (Fig. 8), on the other 
hand, shows an elevated mantle beneath the Puysegur Ridge, more- 
so than suggested by the velocity prior. In all cases, we are mostly 
unable to resolve a slab structure, despite its presence in the prior. 

To get a broad sense of the density and crustal variations within 
the final model, as well as how they compare to the prior and 
the seismic velocities, we look at the posterior densities of each 
prism versus their respective Vp values used to determine the prior 
(Fig. 11). The points are colored by the block of the model in 
which they reside, as determined by interpolating surfaces between 
the horizons on the seismic reflection lines from the SISIE survey. 
Based on these surfaces, prisms are either in the sediments (gray 
points), the AUS Plate crust (blue points), or the PAC Plate crust 
(burnt orange points); prisms within the mantle are not shown for 
clarity. There is scatter even in the prior data points because only 
the prisms lying along the seismic lines were converted directly 
with the Nafe-Drake equation; the other prism densities are then 
3-D interpolated. The scatter is greatest within sedimentary units 
where rocks can vary over a relatively large range of densities and 
where there is substantial shallow structural complexity from the 
velocity models for the interpolation to accommodate. To more 
clearly illustrate the variation in structure along the ridge, we also 
determine the Moho depth from the density model, interpreted at 
the points where the density first exceeds 3200 kg m–3 (Fig. 12b). 
We also compute the crustal thickness (Fig. 12c) by subtracting the 
bathymetry (Fig. 12a) from the Moho. The crust is notably thicker 
beneath the Snares Zone, about 18 km thick, than it is beneath the 
southern part of Puysegur Ridge, where it is as thin as 7–8 km. The 
Moho shallows to around 10–12 km depth under the southern part 
of the Solander Basin and deepens to about 18 km in the northern 
part of the Basin, and even further to 23 km or greater beneath the 
Campbell Plateau. 

 
 

 
 

 

 
Figure 6. Gravity results for the final model. (a) Observed gravity field as 
extracted from the Sandwell et al. (2019) gravity grid, v 29.1. Black lines are 
the locations of cross-sections shown in Figs 7, 8 and 9. (b) Gravity predicted 
from the final density model determined by the inversion. (c) Residual 
gravity between the observed and predicted gravity grids, calculated as the 
absolute difference between each point on the grid. 

 

standard deviation on the model parameters as determined from the 
diagonal of the covariance matrix for the entire model is 17 kg m–3. 
There is a fall-off in accuracy with depth, ranging from about 10 
to 15 kg m–3 in the shallow crust along the seismic lines to about 
30 kg m–3 on average in the deepest layer. The maximum model 
parameter standard error is 68 kg m–3, concentrated at the bottom 
and at the edges of the model, where there is less coverage by the 
gravity data and less constraint by the prior. 

The most notable features of the final density model are the 
densities and structures of the Snares Zone and along Puysegur 

5 D I S C U S S I O N   

The method of linear 3-D gravity inversion can be applied not only 
to simple, local scale structural geometries, but also complex den- 
sity distributions across active plate margins. The Bayesian method 
allows for direct inclusion of existing geophysical data as priors 
and statistical feedback on the quality of the final model. Due to 
the non-uniqueness of gravity, which is clearly demonstrated by the 
relative insensitivity of the predicted gravity to changes in the prior 
(Figs 1 and 2), the final model is ultimately dependent on the prior 
and the strength of the regularization. 

The synthetic tests demonstrate how the resulting models are 
often more sensitive to changes in regularization than they are the 
geophysical prior. The 3-D resolution matrix likewise shows how 
different parameters are determined more by the prior than by the 
gravity or vice versa. The Tikhonov regularization is a smoothness 
prior and goes into the definition of the resolution matrix (eq. 17), 
so when a parameter has a low resolution, the inversion is more 
strongly constrained by the existing geophysical information and 
the smoothness requirement than by the gravity. Differentiating the 
degree to which that parameter is determined by the geophysical 
prior versus the regularization is more difficult. Nevertheless, the 
majority of the model domain is resolved predominantly by the 
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Figure 7. East–west cross section of the final 3-D density model for line a-a’ in Fig. 6, roughly parallel to seismic line SISIE-2. (a) Gravity profiles for the 
density cross-section. Solid line is the observed gravity; dashed line is the predicted gravity from the final model slice shown in panel B; dashed–dotted line 
is the gravity from only the prior density model (panel c). (b) Predicted density distribution from the gravity inversion. (c) Prior density distribution used 
to constrain the gravity inversion. (d) Posterior standard deviation of the density of each prism shown in the cross-section, as determined from the posterior 
covariance matrix. Colourbar is saturated at 35 kg m–3. Panels (b) and (d) together represent the posterior distribution for the model parameters shown in this 
cross-section. 

 
gravity data. Only within the ocean layers and along the shallow 
portion of the seismic lines does the prior dominate the posterior 
solution, demonstrating that in the regions where we do not have 
seismic coverage, and to some extent in the regions where we do, 
we have learned something from the gravity. 

Ultimately, the goal of obtaining a realistic density model from 
the inversion is to place constraints on the composition of key 
features and structures that control subduction and subduction ini- 
tiation regionally. As the composition of Puysegur Ridge and the 
origin of the Snares Zone are key motivators for the gravity inver- 
sion and for understanding subduction initiation, these regions are 
highlighted in the comparison of the posterior densities to seismic 
velocities in Fig. 11. Prisms corresponding to the western and east- 
ern halves of Puysegur Ridge at the Snares Zone are shown by pink 
and maroon points, respectively. The western half of the ridge plots 
in two distinct regions, a cluster lying predominantly between 2700 
and 2900 kg m–3 and a cluster lying below 2100 kg m–3, the latter 
of which corresponds to the sedimentary units within the shallow 
portion of the Snares Zone bathymetric depression and the accreted 
sedimentary portion of the western half of the ridge (Fig. 11, red- 
orange points), which is also clearly visible on the seismic reflection 
images from SISIE-2 (Shuck et al. submitted). 

The difference between the western and eastern halves of Puyse- 
gur Ridge at the Snares Zone is notable, with the western half av- 
eraging around 2803 kg m–3 and the eastern half averaging around 

 
2750 kg m–3—the difference of which is more than three times as 
much as the mean standard deviation of the prisms within the Snares 
Zone, about 15.1 kg m–3 (Fig. 10). This is especially significant in 
light of the difference between the final density model and the prior. 
The prior densities for the Puysegur Ridge at the Snares Zone, par- 
ticularly for the western half, average around 2500 2700 kg m–3 
and are consistent with a continental crustal interpretation (Figs 7c 
and 11a). However, the gravity consistently requires the presence of 
a higher density body of around 2700 3100 kg m–3 on the western 
half of Puysegur Ridge in order to fit the observed gravity signal 
(Fig. 7). These densities, however, are not inconsistent with the ve- 
locity models because highly fractured or deformed rock can have a 
much lower seismic velocity while still maintaining a high density, 
so what the seismic velocity models seem to indicate is deformed 
sediment or continental crust, could in fact be fractured oceanic 
crustal rock (Barton 1986). We postulate that basement rock of the 
western half of Puysegur Ridge is compositionally distinct from that 
of the east and is most likely a sliver of oceanic crust that has been 
emplaced laterally against the continental crust of the eastern half 
via the strike slip motion of the Puysegur Fault, which runs through 
the Snares Zone. This inference is also consistent with the seismic 
interpretations in Shuck et al. (submitted). 

The under-prediction of the densities on the western half of Puy- 
segur Ridge by the seismic velocities via the Nafe-Drake curve 
and the large amount of scatter in the posterior densities relative to 
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Figure 8. East-west cross section of the final 3-D density model for line b–b’ in Fig. 6, roughly parallel to seismic line SISIE-1. (a) Gravity profiles for the 
density cross-section. Solid line is the observed gravity; dashed line is the predicted gravity from the final model slice shown in panel (b); dashed–dotted line 
is the gravity from only the prior density model (panel c). (b) Predicted density distribution from the gravity inversion. (c) Prior density distribution used 
to constrain the gravity inversion. (d) Posterior standard deviation of the density of each prism shown in the cross-section, as determined from the posterior 
covariance matrix. Colourbar is saturated at 35 kg m–3. Panels (b) and (d) together represent the posterior distribution for the model parameters shown in this 
cross-section. 

 
that curve put limitations on the degree to which the Nafe-Drake 
relationship can be used to predict densities without further infor- 
mation, as has been noted by previous authors (Barton 1986). The 
Nafe-Drake equation, though valid for velocities between 1.5 and 
8.5 km s–1, was based empirically on continental crustal data from 
California (Ludwig et al. 1970; Brocher 2005) and as such may not 
be accurate for oceanic crust. However, a comparison between the 
Nafe-Drake predictions of Brocher (2005) and theoretical seismic 
velocity and density predictions from mineral physics calculations 
using the MinVel Subduction Factory Toolbox (Abers & Hacker 
2016; Sowers & Boyd 2019) reveal that differences between the 
two predictions are less than 1 per cent on average, though can be as 
high as 37 per cent for specific rock types (Sowers & Boyd 2019). 
There is also the question of whether thermal effects may impact 
the accuracy of the Nafe-Drake prediction and the model density 
estimates. However, an analysis of the possible perturbations to the 
velocity and density estimates of the Brocher (2005) relationship 
under a hot geotherm calculated using the MinVel toolbox, using 
the half-space cooling model with a plate age of 25 Ma for rocks in 
oceanic regimes and a typical continental geotherm with a conserva- 
tively high surface heat flux of 120 mW m–2 for continental regimes, 
demonstrate that elevated temperature has a negligible impact on 
the Nafe-Drake predictions relative to the range of densities in our 
model domain (Figs 11b and c). The rock compositions used in this 
analysis include basalt (Hacker et al. 2003), harzburgitic mantle 

 
(Hacker et al. 2003), Fiordland orthogneiss (Bradshaw 1990) and a 
combination of pelagic clays and biogenic ooze (Li & Schoonmaker 
2003; Patel et al. 2020). The absolute densities estimated for each 
of these rock types differ insubstantially between low (surface) and 
warm (25 km depth) temperatures, and the velocity and density both 
change in accord with one another with that change in temperature, 
such that the predictive relationship between them remains the same 
(Fig. 11c, Sowers & Boyd 2019). Puysegur itself is also not a no- 
tably hot subduction zone. Despite the young age of the subduction 
front, the crust that is being subducted is not particularly young, 
spreading in the Tasman Sea having ceased around 53 Ma, though 
spreading in Emerald Basin south of the study area continued un- 
til around 10–20 Ma (Lebrun et al. 2003). Thus, we find it is not 
necessary to incorporate any thermal effect into our model and that 
the Nafe-Drake relationship is a reasonable one in light of any pos- 
sible thermal perturbations and its performance relative to mineral 
physics estimates. 

Some of the differences in density between the prior and poste- 
rior also likely arise from error in the 3-D interpolation scheme, but 
the difference in densities between the two even across the Snares 
Zone, where we have direct seismic data, suggests a significance 
in the under-prediction of many of the posterior densities by the 
Nafe-Drake equation. However, this does not invalidate its use as a 
prior, but rather highlights the advantage of using it in the context 
of a Bayesian approach. Rather than using seismic velocity as the 
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Figure 9. North–south cross-section of the final 3-D density model for line c–c’ in Fig. 6, roughly parallel to the Puysegur Ridge. (a) Gravity profiles for 
the density cross-section. Solid line is the observed gravity; dashed line is the predicted gravity from the final model slice shown in panel (b); dashed–dotted 
line is the gravity from only the prior density model (panel c). (b) Predicted density distribution from the gravity inversion. (c) Prior density distribution used 
to constrain the gravity inversion. (d) Posterior standard deviation of the density of each prism shown in the cross-section, as determined from the posterior 
covariance matrix. Colourbar is saturated at 35 kg m–3. Panels (b) and (d) together represent the posterior distribution for the model parameters shown in this 
cross-section. 

 
only indication of a rock’s density, we use it as a guide for the rock’s 
possible density and weight that estimate of density accordingly. As 
such, the Bayesian approach allows for a more reasonable and flex- 
ible use of a common velocity–density relationship that otherwise, 
by itself, may be erroneous in its estimation of rock type. 

For this reason, the gravity inversion is an invaluable supplement 
to our seismic study in estimating rock compositions and structure 
and in particular to spatially filling the gaps between where we have 
seismic information. Gravity at short wavelength strongly reflects 
topography (or bathymetry, Sandwell et al. 2014; Turcotte & Schu- 
bert 2014); however, if the bathymetry is fully constrained in the 
inversion and cannot by itself reproduce the gravity signal, then 
perturbations to the gravity must be coming from other sources— 
namely lateral density variations that may be governed by Moho 
geometry. As such, the shape of the interpreted Moho (Fig. 12b) 
strongly mirrors the gravity. Traditional gravity modelling tech- 
niques avoid this by removing the signal from the Moho/the iso- 
static effect and looking at the residual (Oldenburg 1974; Bai et al. 
2014). However, this assumes constant densities in the respective 
layers and sometimes a fixed interface. Because we do not explicitly 
impose such assumptions with the Bayesian inverse approach, but 
rather constrain the 3-D densities and hence the structure proba- 
bilistically, the resulting Moho, though it does mirror the gravity, 
is likely a good approximation to the true Moho. Taking the south- 
ern line, SISIE-1, as an example, ultimately to match the gravity 

 
high over the ridge, there can be either (1) an elevated Moho or 
(2) anomalously high densities in the crust. In the absence of fixing 
either of these, the algorithm has no knowledge about which is the 
correct choice to fit the gravity, and the easiest way to fit the gravity 
is to create a density distribution increasing in depth with a shape 
mirroring that of the gravity. This is why inclusion of the Bayesian 
priors is so important. We can see the effect of the prior versus 
that of the gravity beneath the Campbell Plateau in Fig. 8(b), where 
there is smearing at the base of the crust relative to the prior in panel 
(c). The gravity in combination with the regularization wants to put 
the Moho higher to smoothly mirror the gravity signal. The prior, 
on the other hand, pulls the Moho down, but not so much so that 
the predicted gravity is depressed. As we can see in Fig. 8(a), the 
gravity from only the prior is too low to match the observations. 
This means that, given the inclusion of the prior, the combination of 
density and structure returned by the gravity inversion is probably 
the most reasonable estimate of the true structure. In other words, 
it is the most likely combination of (1) adjusting the Moho depth 
and (2) adjusting the density that can be obtained in light of our 
existing knowledge. It is the Bayesian approach that allows us to 
do this so effectively. It also means, given we have applied a strong 
prior along this transect, the fact that the gravity still pulls the Moho 
up under the Ridge despite the constraint is all the more significant 
and suggests this is not just an artefact of reflecting the shape of the 
gravity. 
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Figure 10. (a) Diagonal of the resolution matrix mapped into 3-D space. 
Slices are shown at depths of 1, 9, 17 and 25 km. The resolution represents 
the fraction of each model parameter value that is resolved by the gravity 
as opposed to the prior information. (b) Posterior standard deviation of the 
model parameters (square root of the diagonal of the covariance matrix) 
mapped into 3-D space. Slice depths are the same as in A. Colourbar is 
saturated at 35 kg m–3. 

 
This large gravity high over the southern portion of Puysegur 

Ridge cannot be explained solely by the bathymetry and requires a 
mass excess (Fig. 8). Similarly, the large gravity low over the Snares 
Zone also cannot be reproduced by the bathymetry alone, and hence 
requires a mass deficit to produce the observed gravity (Fig. 7). In 
other words, the density profiles and Moho and crustal thickness 
maps demonstrate there is relatively shallow mantle beneath the 
southern Puysegur Ridge and unusually thick crust beneath the 
Snares Zone; unusual in that the region is bathymetrically low, yet 
predominantly composed of buoyant continental crust, except for 
the very western side as previously discussed. The Solander Basin, 
which is composed of rifted continental margin crust, evidenced by 
both the seismic data (Gurnis et al. 2019; Shuck et al. submitted) 
and the densities, progressively thins to the south, where the basin 

 
Figure 11. Density versus Vp relative to the Nafe-Drake equation (black 
line). (a) Density versus Vp for the prisms in the prior. Densities were calcu- 
lated from Vp using the Nafe-Drake equation (black-line) along the seismic 
lines; the remaining prism centroid densities were 3-D interpolated from 
those points, producing the observed scatter. The prior for the oceanic crust 
was set to 2900 kg m–3 instead of using values directly from the equation 
(blue circles). (b) Posterior density from the inversion model versus Vp 
for each prism centroid. Prisms in the mantle have been omitted for clarity. 
Colours and their corresponding 2σ error ellipses represent different regions 
of the model as defined by the structural horizons in the prior. Dotted ellipse 
represents the shift in the density prediction resulting from low temperature 
conditions and dashed ellipse represents the shift due to high temperature 
conditions, as calculated from the MinVel predictions in panel (c). Similar 
ellipses can be computed for the other crustal blocks, but in all cases, the 
effect is negligible, so they have been omitted for clarity. Colours are as 
in panel (a). (c) Comparison of Brocher (2005) density predictions (filled 
symbols) to MinVel density predictions (open symbols) for low (surface) 
temperature conditions (blue symbols) and hotter (25 km depth) temperature 
conditions (red symbols) for characteristic rock types present in the model 
domain. Carbonate and pelagic sediment compositions are estimated from 
values in Li & Schoonmaker (2003) and Patel et al. (2020). Composition of 
Fiordland Orthogneiss, taken to represent regional continental crustal rock, 
is from Bradshaw (1990). Composition of MORB and harzburgitic mantle 
is from Hacker et al. (2003). 
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Figure 12. (a) Bathymetry for the Puysegur study area used in the com- 
putation of crustal thickness. PB, Puysegur Bank; SZ, Snares Zone; CP, 
Campbell Plateau; PR, Puysegur Ridge and SB, Solander Basin. (b) Moho 
depth interpreted from the 3-D density model at the points where the density 
first exceeds 3200 kg m–3. (c) Crustal thickness for the Puysegur study area 
calculated by subtracting the bathymetry from the Moho depth and overlain 
on the bathymetric surface. The crustal volume is filled to the base of the 
crust using the Moho surface in panel (b). Text labels are as in panel (a). 

 
experienced more extension during the rifting phase in the Eocene 
to Oligocene prior to the development of the strike-slip and sub- 
duction margin (Lebrun et al. 2003). Based on the crustal thickness 
results as estimated from the gravity, we estimate the continent– 
ocean transition in the southern Solander Basin to be around 50◦S 
or even further south of the model domain, which is roughly con- 
sistent with Shuck et al. (submitted). 

Another notable feature of the inversion results is the inability 
to resolve a slab structure, despite its presence in the prior and 
the seismically observable décollement between the two plates on 
seismic reflection data. The absence of descending crust in the final 
density model is likely due to the obliquity of subduction. A seismic 
Benioff zone extending to 150 km depth puts the slab northwards 
of the gravity study area, beneath Fiordland (Sutherland et al. 2006; 
Eberhart-Phillips & Reyners 2001). It is also possible that while the 
slab is present, it is not required to recover the local scale gravity 
signal, which is dominated by the bathymetry and shallow crustal 
structure. 

 
 

6 C O N C L U S I O N S   

The inversion technique presented inverts gravity data for 3-D den- 
sity distributions within a Bayesian framework without the need for 
iteration and with the direct incorporation of prior geophysical con- 
straints. Previous applications of linear gravity inversion, as opposed 
to the commonly used non-linear and wavenumber domain meth- 
ods, have predominantly been for geometrically and structurally 

simpler density anomalies, though have also successfully been ap- 
plied to crustal scale and tectonic studies. We have demonstrated 
this method can also be successfully applied to more geologically 
complex regions with significant lateral variations in density and 
structure by applying it to an active subduction zone. 

The resulting density models provide a more complete picture of 
the subsurface, filling in the gaps between where there is seismic 
data and allowing us to estimate the Moho depth and crustal thick- 
ness. The crustal thickness and density models reveal the presence 
of buoyant, yet subsided, continental crust beneath the central and 
eastern portions of the Puysegur Ridge at the Snares Zone, whereas 
the western half of the ridge is most likely a sliver of oceanic crust. 
In contrast, an elevated mantle underlies the southern portion of 
Puysegur Ridge. The features observed in the Snares Zone and 
along the Ridge have implications for the structures and rock com- 
positions that control subduction initiation and the changing state 
of stress during the initiation process, and they support the idea that 
the margin is transitioning to a state of self-sustaining subduction in 
the north. These results will allow us to make further calculations 
of the regional stress and effective topography that can be used to 
constrain geodynamic models that are the target of future research. 
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S UPPORT  ING I NFORMAT  ION  

Supplementary data are available at GJ I online. 
Figure S1 Mean absolute error between the gravity from the true 
density model and that predicted by the inversion for each combi- 
nation of α and ζ which are labeled for every other value. Panel 
rows represent either first or second order Tikhonov regularization 
or a combination of the two. Panel columns represent, from left to 
right, inversion with no priors, inversion with priors only on prisms 
that fall within the ocean, inversion with priors on prisms in the 
ocean and crustal rocks, and inversion with priors on all prisms, 
including the mantle. Red circles mark the α, ζ combination cor- 
responding to the minimum MAE on the gravity; red squares mark 
the α, ζ combination corresponding to the minimum MAE on the 
model parameters relative to the true model. Colorbar is saturated at 
25 mGal. Gray regions correspond to α, ζ combinations that yield 
unstable or unreasonable results. 
Figure S2 Mean absolute error between the predicted model pa- 
rameter values and the known model parameter values from the 
synthetic model for each combination of α and ζ which are labeled 
for every other value. Panel rows represent either first or second 
order Tikhonov regularization or a combination of the two. Panel 
columns represent, from left to right, inversion with no priors, inver- 
sion with priors only on prisms that fall within the ocean, inversion 
with priors on prisms in the ocean and crustal rocks, and inversion 
with priors on all prisms, including the mantle. Red circles mark 
the α, ζ combination corresponding to the minimum MAE on the 
gravity; red squares mark the α, ζ combination corresponding to the 
minimum MAE on the model parameters relative to the true model. 
Colorbar is saturated at 800 kg m–3. Grey regions correspond to α, 
ζ combinations that yield unstable or unreasonable results. 
Figure S3 Mean standard deviation on the model parameters as 
determined from the diagonal of the covariance matrix C for each 
combination of α and ζ which are labeled for every other value. 
Panel rows represent either first or second order Tikhonov regular- 
ization or a combination of the two. Panel columns represent, from 
left to right, inversion with no priors, inversion with priors only on 
prisms that fall within the ocean, inversion with priors on prisms in 
the ocean and crustal rocks, and inversion with priors on all prisms, 
including the mantle. Red circles mark the α, ζ combination cor- 
responding to the minimum MAE on the gravity; red squares mark 
the α, ζ combination corresponding to the minimum MAE on the 
model parameters relative to the true model. Colorbar is saturated 
at 800 kg m–3. Gray regions correspond to α, ζ combinations that 
yield unstable or unreasonable results. 
Figure S4 Mean resolution of the model parameters as determined 
from the diagonal of the resolution matrix R for each combination 
of α and ζ which are labeled for every other value. Panel rows 
represent either first or second order Tikhonov regularization or a 
combination of the two. Panel columns represent, from left to right, 
inversion with no priors, inversion with priors only on prisms that 
fall within the ocean, inversion with priors on prisms in the ocean 
and crustal rocks, and inversion with priors on all prisms, including 
the mantle. Red circles mark the α, ζ combination corresponding 
to the minimum MAE on the gravity; red squares mark the α, 
ζ combination corresponding to the minimum MAE on the model 
parameters relative to the true model. Grey regions correspond to α, 
ζ combinations that yield unstable or unreasonable results. Lower 

Figure S5 Representative cross section in the x-direction of the 3-D 
inversion results for the α and α combinations that produced the 
minimum MAE on the model parameters for each of the regular- 
ization order and prior combinations, as determined from the test 
results depicted in Figs S1–S4. Row 1: gravity profiles for each of 
the three cases depicted in the panels below. Dark blue line: true 
gravity produced by the synthetic model, with noise; gray line: grav- 
ity from inversion using only first order Tikhonov; light blue line: 
gravity from inversion using only second order Tikhonov; orange 
line: gravity from inversion using second order Tikhonov in the 
horizontal and first order in the vertical. Row 2: cross-sections of 
the density model recovered from using only first order Tikhonov 
for the cases of no priors, priors only on the ocean water param- 
eters, priors on the ocean and crustal parameters, and priors on 
all parameters, each with their respective minimum model param- 
eter MAE α, ζ combinations. Row 3: cross-sections of the density 
model recovered from using only second order Tikhonov for each 
of the different prior cases. Row 4: cross-sections of the density 
model recovered from using a combination of first and second order 
Tikhonov for each of the different prior cases. Row 5: cross-section 
of true synthetic density model for comparison. 
Figure S6 Representative cross-section in the y-direction of the 
inversion results for α and α combinations that produced the mini- 
mum MAE on the model parameters for each of the regularization 
order and prior combinations, as determined by comparing the test 
results depicted in Figs S1–S4. Row 1: gravity profiles for each of 
the three cases depicted in the panels below. Dark blue line: true 
gravity produced by the synthetic model, with noise; gray line: grav- 
ity from inversion using only first order Tikhonov; light blue line: 
gravity from inversion using only second order Tikhonov; orange 
line: gravity from inversion using second order Tikhonov in the 
horizontal and first order in the vertical. Row 2: cross-sections of 
the density model recovered from using only first order Tikhonov 
for the cases of no priors, priors only on the ocean water param- 
eters, priors on the ocean and crustal parameters, and priors on 
all parameters, each with their respective minimum model param- 
eter MAE α, ζ combinations. Row 3: cross-sections of the density 
model recovered from using only second order Tikhonov for each 
of the different prior cases. Row 4: cross-sections of the density 
model recovered from using a combination of first and second order 
Tikhonov for each of the different prior cases. Row 5: cross-section 
of true synthetic density model for comparison. 
Please note: Oxford University Press is not responsible for the con- 
tent or functionality of any supporting materials supplied by the 
authors. Any queries (other than missing material) should be di- 
rected to the corresponding author for the paper. 

 
 
 
 

A P P E N D I X  A : T IKHO NOV 
R E G U L A R I Z A T I O N   

Tikhonov regularization is implemented using different regulariza- 
tion matrices for each of the x, y and z directions. For first order 
Tikhonov regularization and the 1-D case, the finite difference ap- 
proximation to the first derivative is 

resolution means that model parameters are determined more by 
the prior than they are the gravity data itself. Resolution values of 

∂mk 1 
∂x  

= 
∆x (−mk + mk+1 ), (A1) 

1 or near 1 mean model parameter values are resolved more by the 
gravity data than the prior. which can be represented in the form of an upper bidiagonal matrix 

operator L1 acting on a vector of the spatially discretized model 
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∂x 2  = 
δx j ∂xi+1 

− 
∂xi 

= 
δx 

      

 

parameters. The result is an M−1 × M matrix. 
 
 

which can likewise be represented in the form of an upper tri- 
diagonal matrix operator L2 acting on a vector of the model param- 
eters, where L2 is an M − 2 × M matrix. 

⎡−1   1    0   · · · 0
⎤⎡

m1
⎤ 

⎡
1 −2   1    0   · · · 0

⎤⎡
m1
⎤ 

∂mk 1  ⎢  0   −1  1   · · · 0⎥⎢m2⎥ ∂2mk 1   ⎢0   1   −2  1   · · · 0⎥⎢m2⎥ 

∂x   
= 

∆x 
⎢⎣  . 

. . . . . . . . . 0
⎥⎦⎢⎣  .  

⎥⎦ 
 

 

(A2) 
∂x 2  = ∆x 2 ⎢⎣ . 

. . . . . . . . . 
. . .  0
⎥⎦⎢⎣  .  

⎥⎦ 
 

 

(A4) 

 
 

Because the discretization can vary within the x, y and z directions, 
the L matrices are unique for each of those directions and ∆x, ∆y 

 

The second derivative finite difference operator can be written in 
terms of the first derivative finite difference approximation as 

∂2mk 1 
 

∂mk+1 ∂mk 
 

 
 

 

regularized. When this is the case, the 1/∆x term is brought inside L. 

 

  1   
  

−mk + mk+1 
 

   

 −mk−1 + mk 
  

 
 

  

∂2mk 1 

The L2 matrix is thus calculated from the L1 matrix for the x and 
y directions. For the z-direction, we use only first order Tikhonov 
regularization. 

∂x 2  = ∆x 2 (mk−1 − 2mk + mk+1) (A3) 

i ∆x i +1 ∆x j 
For second order Tikhonov regularization and for the 1-D case, 

the finite difference approximation to the second derivative is 

or ∆z may vary for each adjacent pair of model parameters being 

mk mk 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/223/3/1899/5902856 by U

nitversity of Texas Libraries user on 17 D
ecem

ber 2020 

   

0 · · ·  0  −1 1  0 · · ·  0  1  −2 1  

− . (A5) 
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