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SUMMARY

We have developed a linear 3-D gravity inversion method capable of modelling complex
geological regions such as subduction margins. Our procedure inverts satellite gravity to
determine the best-fitting differential densities of spatially discretized subsurface prisms in
a least-squares sense. We use a Bayesian approach to incorporate both data error and prior
constraints based on seismic reflection and refraction data. Based on these data, Gaussian
priors are applied to the appropriate model parameters as absolute equality constraints. To
stabilize the inversion and provide relative equality constraints on the parameters, we utilize a
combination of first and second order Tikhonov regularization, which enforces smoothness in
the horizontal direction between seismically constrained regions, while allowing for sharper
contacts in the vertical. We apply this method to the nascent Puysegur Trench, south of New
Zealand, where oceanic lithosphere of the Australian Plate has underthrust Puysegur Ridge and
Solander Basin on the Pacific Plate since the Miocene. These models provide insight into the
density contrasts, Moho depth, and crustal thickness in the region. The final model has a mean
standard deviation on the model parameters of about 17 kg m=, and a mean absolute error on
the predicted gravity of about 3.9 mGal, demonstrating the success of this method for even
complex density distributions like those present at subduction zones. The posterior density
distribution versus seismic velocity is diagnostic of compositional and structural changes and
shows a thin sliver of oceanic crust emplaced between the nascent thrust and the strike slip
Puysegur Fault. However, the northern end of the Puysegur Ridge, at the Snares Zone, is
predominantly buoyant continental crust, despite its subsidence with respect to the rest of the
ridge. These features highlight the mechanical changes unfolding during subduction initiation.

Key words: Gravity anomalies and Earth structure; New Zealand; Inverse theory; Statistical
methods; Subduction zone processes.

1 INTRODUCTION

Inverse methods have become increasingly popular for addressing
a number of problems in earth science, particularly for subsurface
mapping. Gravity inversion, for determining either the densities or
depths of bodies of known density in the Earth, has been an es-
tablished method of mapping the Earth’s heterogeneities for some
time, though often with emphasis on the non-linear approach. In
non-linear gravity inversion, the densities and density contrasts of
the subsurface bodies are assumed to be known and one solves for
the geometry of the source, usually in terms of depth to a partic-
ular interface. These inversions include either methods operating
in the spatial domain (Medeiros & Silva 1996; Prutkin & Casten
2009; Camacho et al. 2011) or those operating in the wavenumber
domain (Parker 1972; Oldenburg 1974; Parker 1995; Chappell &
Kusznir 2008; Cowie & Kusznir 2012; Bai et al. 2014). However,
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despite the Fourier method being one of the classical approaches to
gravity inversion, wavenumber methods are often less effective in
recovering a fully 3-D solution with multiple sources and complex
geometry (Bear et al. 1995; Geng et al. 2019).

With the linear method, the unknowns are the densities of a dis-
cretized array of subsurface rectangular prisms and iteration is not
required in order to reach model convergence, except in the case
of testing variations in model regularization or other constraints.
Solving for the 3-D density distribution also indirectly solves for
the depth to key interfaces, such as the Moho, because we can inter-
pret such boundaries from sharp transitions in density. While linear
gravity inversion is an established method (Bear et al. 1995; Li &
Oldenburg 1998; Silva et al. 2001; Silva Dias et al. 2009; Barnoud
et al. 2016; Welford et al. 2018; Geng et al. 2019), many of the
studies using it only do so for relatively simple geological geome-
tries, such as a single sedimentary basin, mafic intrusion or volcanic
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feature (Medeiros & Silva 1996; Silva et al. 2001; Barnoud et al.
2016). Successful application of this method to crustal scale studies
and tectonic margins, with variable approaches to the implementa-
tion, also exist (Welford et al. 2010, 2018; Geng et al. 2019), but
few have applied this method to subduction zones. Subduction mar-
gins posses a complicated juxtaposition of structure and rock types
and significant and sometimes sharp lateral variations in density, as
opposed to passive continental margins, which often exhibit a more
gradual change in structure and rock type that is more easily handled
by smoothed inversions. We construct a 3-D linear gravity inver-
sion for an active subduction zone, demonstrating the successful
application of this method to more complex density distributions
and bolstering the validity of this method and its use in tectonic
applications.

Inversion has the advantage of providing statistical feedback on
solution quality. Specifically, within a Bayesian framework, the ob-
jective is to determine the posterior distribution of a set of parame-
ters given prior distributions and likelihood functions that describe
how the data relate to those unknown parameters (Tarantola 2005;
Aster et al. 2013; De La Varga & Wellmann 2016; Wellmann et al.
2018). The Bayesian approach is particularly useful for geophysical
inverse problems, which are in principle ill-posed because they are
inherently non-unique. For example, gravity data cannot distinguish
between a narrow density anomaly at depth or a wider source near
the surface (Li & Oldenburg 1998; Welford et al. 2018; Geng et al.
2019). Consequently, one must introduce constraints and a priori
information in order to transform them into well-posed problems.
With the Bayesian formulation, we can account for both error in
the data and error in our prior information to reduce how that error
may be carried over into the final model, and we can quantify the
error on our final solution via the covariance and resolution op-
erators. The Bayesian approach we use here offers improvements
over traditional gravity inversion and modelling techniques, where
one usually removes the effect of the topography and the Moho and
analyses the residual. Such an approach requires assuming constant
layer densities when in fact those densities are often unknowns,
and it requires assuming a known Moho depth that has to manually
and iteratively be adjusted by the user. This makes it difficult to
fully incorporate lateral changes in density. The Bayesian approach
is more flexible and capable of handling complex 3-D geometries
because it allows us to constrain where the boundary is most likely
to be based on seismic data and what the densities are most likely to
be, while allowing both to vary in accord with the gravity data, the
final boundary location being dependent on the differential density.
As such, we are able to draw conclusions about the 3-D density
distribution in a tectonic setting that would otherwise not be as
apparent with traditional forward or inverse gravity methods that
require harder constraints or restrictions.

There are a number of common constraints widely used in grav-
ity inversion, including inequality constraints, which specify the
lower and upper bounds of parameter estimates; absolute proxim-
ity constraints, which specify that model parameters must be close
to a specified value, based on geological information at particular
points; and relative equality constraints, which specify that the spa-
tial variation of the model parameter values must be smooth (Silva
et al. 2001). Absolute proximity constraints are rarely used alone
because there is often not enough prior information available to con-
strain all model parameters. An exception would be the minimum
Euclidean norm, or similarly zeroth order Tikhonov regularization,
which requires all parameter estimates to be as close as possible to
null values. This type of regularization is biased towards a solution
with minimum density and tends to concentrate mass anomalies

toward the surface, which is not entirely physical or useful for our
interpretation of the subsurface.

Minimum structure inversion, however, is a commonly used
method (Last & Kubik 1983; Li & Oldenburg 1998; Farquharson
2008), utilized by codes such as GRAV3D (Li & Oldenburg 1998).
To overcome the inherent insensitivity of gravity to depth and thus
the tendency for the inversion to concentrate mass near the sur-
face, these methods often apply a depth weighting (Li & Oldenburg
1998). Applying absolute proximity constraints and inequality con-
straints to specific regions of the model, however, overcomes the
need for a depth weighting (Welford et al. 2018; Geng et al. 2019).
While traditional inverse methods do allow for the adjustment of
smoothing parameters, bounds on densities and variable weighting,
they usually do so under hard constraints on predefined bound-
aries where the density is allowed to vary but the geometry of the
boundary remains unchanged (Li & Oldenburg 1998; Welford et al.
2018). In contrast, the probabilistic approach offers more flexibil-
ity. Previous comparisons between such probabilistic methods and
approaches such as those used by GRAV3D (Welford ez al. 2018)
highlight these distinctions as well, and we refer the reader to these
sources for a more in depth comparison. These comparisons show
that while each method has its advantages and disadvantages, a
probabilistic approach using sparse seismic Moho constraints may
not always lead to better results, particularly when there are sig-
nificant lateral variations in crustal thickness and composition, as
it tends to concentrate more unreasonable densities into different
parts of the model to compensate (Welford ez al. 2018). In contrast
to previous applications of this probabilistic method (Barnoud et al.
2016; Welford et al. 2018; Geng et al. 2019), our approach directly
incorporates constraints on the interface depths and on composition
via the mapping of seismic velocities to density, not only at the lo-
cations of sparse depth to Moho constraints from seismic lines, but
interpolated throughout the model domain and weighted according
to the spatial extent of the prior data. We also propagate the error
on the seismic velocities into the density prior to ensure that the
densities obtained vary within a range that is consistent with the
error in the seismic velocities and that the seismic data does not too
strongly dominate the final model obtained by the inversion, such
that it remains predominantly resolved by the gravity. Moreover,
the Bayesian approach allows us to directly evaluate the error and
statistical validity of our results in a way that does not assume the
seismic data is the full truth.

Due to the non-uniqueness of gravity, however, even with abso-
lute proximity constraints, some sort of smoothing or stabilizing
functional is needed to produce a meaningful solution. This can
come in the form of relative equality constraints such as either first
or second order Tikhonov regularization, which spatially minimizes
the first or second derivative of the physical property, respectively.
Relative equality constraints by themselves have a tendency to pro-
duce a blurred but still valuable model of the density anomalies
(Portniaguine & Zhdanov 1999; Silva et al. 2001). However, when
combined with absolute equality constraints, this inversion tech-
nique is often able to produce accurate representations of the source
geometry and density (Medeiros & Silva 1996; Silva et al. 2001).
As such, our method uses a combination of absolute and relative
equality constraints in the form of Gaussian priors based on exist-
ing geophysical data and a combination of first and second order
Tikhonov regularization.

There is distinction in the literature between traditional regular-
ization methods and proper Bayesian approaches to inverse prob-
lems. Traditionally, regularization modifies the function relating
the data to the source of its signal, in an effort to eliminate the

020z 1oquiada( /| Uo Josn saueiqr sexe Jo Aisienun Aq 958Z065/668 L/€/€2Z/I0ME/IB/W00 dno-olwepeoe)/:sdny woiy papeojumoq



unstable problem by replacing it with a similar stable one. This
often involves a penalty on the inversion that guarantees a unique
solution (Calvetti & Somersalo 2018). The Bayesian approach, on
the other hand, by modelling the solution as a random variable,
allows one to use the exact function relating the data to its source
and offers the flexibility of obtaining multiple reasonable solutions,
as the final posterior model is in fact a probability distribution.
However, the non-uniqueness of gravity inversion in particular re-
quires some form of regularization. The regularization method that
best bridges the classical deterministic theory and the Bayesian ap-
proach is Tikhonov regularization because instead of modifying the
model function, it solves a minimization problem (Calvetti & Som-
ersalo 2018). In that sense, Tikhonov regularization is essentially
a smoothness prior and can be implemented within a probabilistic
framework, allowing the inversion problem to remain Bayesian even
though it involves regularization.

2 METHODS

2.1 Calculation of forward gravity

We model the subsurface density and structure of a defined region
and its associated effect on the gravity by discretizing the subsur-
face into a finite number of rectangular blocks. The gravitational
attraction of each rectangular prism is calculated and then summed
to compute the gravity field. The gravitational attraction of a homo-
geneous right rectangular prism relative to an observation point on
the surface is given as in Turcotte & Schubert (2014) as

2 2 2
Ag =TAp Uijk [Azk arctan Av Avy
L Az Ry
i=1 j=1 k=1
=Axiln(Rijk + Ay;) — Ayjln(Rijk + Axi)], (1)

where Axi = (xi = xp), Av; = (Vj = Vp), Azk = (zk — zp) and Uik = (
—1Y(- 1y(- 1).Ap is the density contrast of the prism, and [" is
the universal gravitational constant. xp, y, and z, are the coordinates
of the measurement point, and xi, y; and zx are the coordinates of
the corners of the prism, where (i, j, k»=(1, 2). Rj is the distance
from the measurement point to a corner at x;, yj, zx and is given by
Rik = (Ax? + A2 + A2,

The sum’defined the gdometry of the prism relative to the ob-
servation point and can be extended to the case of multiple prisms,
such that each prism in the domain has a single geometry coeffi-
cient for each gravity observation point. We invert gravity data at N
observation points to obtain the best-fitting estimate of the densities
of M subsurface prisms, or M model parameters. Eq. (1) then results
in an N matrix G that describes the geometry of each prism
relative to each observation point times [. The gravity anomaly
at any observation point due to the combined attraction of all the
prisms is the product of this matrix and Ap, which is an M 1
vector containing the differential density of each prism, expressed
as

Ag = GAp. )

2.2 Linear least-squares inversion

We adopt the method for linear least-squares inversion as given in
Aster et al. (2013) and Tarantola (2005). For N data points and M
model parameters, where gi{(m) is the model prediction of the ith
datum (the A has been omitted for clarity), the least-squares misfit
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is:
N

1
F(m) =" (d -g (m))*. 3
i=1
For a linear model such as that given in eq. (2), the model derivative
is independent of the model parameters, and our prediction can be
written directly as Gm. The Gauss—Newton solution of the model

parameters that minimizes the least-squares misfit in eq. (3) is thus:
m = (GTG)'G”(d). 4)

The data d are the observed gravity anomaly values, and the model
parameters to be estimated are the differential densities of each
discretized block in the subsurface.

We accommodate data errors and prior constraints on the model
parameters in the inversion via a Bayesian approach. Bayes theorem
states that the probability of the model parameters, given the data, is
proportional to the product of (1) the probability of producing those
data with the model and (2) the probability of the model itself.

P(m|d) « P(d|m)P(m). ®)

P(m) is a prior that we use to restrict the model parameters to certain
values given our existing geological knowledge.

In including the data error in the least-squares solution, we make
the key simplifying assumption that the data are independent. In
the case of gravity, we are incorporating the relative attraction of
both adjacent and distal blocks of mass, and if the data are gridded
with some form of interpolation, then they are arguably not truly
independent. However, given the complexity of the problem and its
physical geometry, the interdependence of the data is difficult to
quantify and the simplifying assumption that the data are indepen-
dent is sufficient to perform the inversion. We assume each data
point can be represented by a Gaussian distribution with known
error such that we can define a new least-squares misfit:

N 2
d,— g (m

O

N |—

F(m) =
i=1 G4
where we are now minimizing the difference between the known
and predicted gravity, given the error in the gravity data. From
Bayes Theorem, minimizing this new misfit /(m) is equivalent to
maximizing P(m d). To incorporate the data error into the model
parameter solutiolﬁ, we define a diagonal and symmetric weight
matrix Ca with the data variance on the diagonal. The solution

becomes:

m = (G'Ca'G)"'G” Cq™'d. (7

2.3 Tikhonov regularization

Linear least squares, even when using the generalized inverse or
the truncated generalized inverse to handle small singular values, is
often insufficient for many inverse problems due to non-uniqueness
and instability, especially for high-dimensional problems. Thus, a
form of regularization must be applied. We use a combination of first
and second order Tikhonov regularization, which stabilizes the in-
version and acts as a relative equality constraint on the values of the
model parameters. First order Tikhonov regularization minimizes
the square of the first spatial derivative of the model parameters
(i.e. the gradient), thus serving to flatten the solution. Second order
Tikhonov minimizes the square of the second spatial derivative of
the model parameters (i.e. the curvature) and hence smooths the
solution. Zeroth order Tikhonov, on the other hand, favors models
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that are small and is identical to applying a Gaussian prior with a
mean of zero and minimizing the square of the model parameter
values themselves.

As Tikhonov regularization is equivalent to applying a prior that
enforces either small values, flatness, or smoothness, we can derive
the regularized solution by adjusting the misfit equation to reflect
the additional minimization of the model parameters or their first or
second derivatives.

F(m) = 1(d -Gm)’'C “'(d - Gm)
i d
2 T
+A (Lm) (Lm), ®)

L is either the identity matrix, a first derivative finite difference
operator, or a second derivative finite difference operator for zeroth,
first, or second order Tikhonov regularization, respectively. A is
a constant controlling the strength of the regularization. As the
misfit remains exactly quadratic with the addition of the Tikhonov
regularization term, the inverse problem remains linear, and the
weighted and regularized linear least-squares solution becomes

m = (G’ Cq”'G + A’LTL)"'G" Cq7'd. 9)

For 3-D models, first and second order Tikhonov are implemented
using the sums of the finite-difference approximations to the first
or second derivatives in each direction, respectively. Because the
discretization of the grid can be different in the x, y and z directions,
we apply three different regularizations, with associated constants
a for the x-, B for the y- and ¢ for the z-direction. The derivation of
the Tikhonov regularization matrices is given in Appendix A. For
three-dimensions, the weighted Tikhonov regularized solution is

m = (G'Ca™'G + A?Lx" Ly + B2y Ly + (2L,  Ly)™!
(GTCq'd). (10)

Without a flatness constraint in the far-field, abrupt density
changes at the edges of the model domain result in a classical
gravity edge effect. Consequently, to ensure mathematical stability,
we impose an infinite edge boundary condition, which allows the
gravity to smoothly continue off the edges of the model area. We
accomplish this condition by padding the domain with edge prisms
that are sufficiently long that they extend far beyond the edge of
the gravity grid (on the order of 1000 km for the regional problem
with which we test the method). We also enforce this condition
during the inversion by using first order Tikhonov regularization
with a strong regularization coefficient to minimize the difference
between the edge parameters and the adjacent values so that their
predicted densities are the same. Thus, we apply different orders
and strengths of Tikhonov regularization to the edges and the in-
terior of the model simultaneously. The interior of the model has
second order Tikhonov imposed in the horizontal directions to allow
for smooth continuity of density bodies in the subsurface, and first
order Tikhonov is applied in the vertical direction, as it is better
equipped to allow for sharp contacts between layers of rock, while
strong first order is applied on the boundary.

As before, this variable order Tikhonov regularization can be
achieved by redefining the misfit equation, where separate L ma-
trices apply different weights to different sets of model parameters
and different directions. The full Tikhonov regularized solution,
with boundary conditions applied, is

m = (G'Cq'G + L)"/(G” Ca7'd), (11)

where
L= OZLXTLX + 52LyTLy + gszTLz + bZBxTBx + bZByTBy,
(12)

b is the weight of the first order Tikhonov regularization applied
to the boundary condition. Bx and By are the regularization matri-
ces that apply the boundary conditions in the x and y directions,
respectively.

2.4 Priors

Meaningful solutions consistent with existing geological knowledge
are obtained by applying absolute equality constraints as Gaussian
priors. In this approach, each parameter is forced to be close to a
mean value but is allowed to vary within a specified range. Different
regions of the model domain can have different priors depending
on (1) what we suspect the densities of the rocks in those areas are
and (2) how confident we are in those values based on their location
relative to the other data we have. The prior on each parameter is
given by the Gaussian probability density function

1
P(me) = UTLZﬁexP(_zoi(mk = kp ). (13)
where my is the estimated model parameter value, Jp is the expected
value of that model parameter based on our prior information and
O, is the standard deviation of the prior for that parameter.

As with the data error and Tikhonov regularization, we define a
new misfit by adding the exponential component of the Gaussian
prior to the existing misfit:

1
F(m) = E(d - Gm)’ C,;7/(d - Gm) + a*(Lm)? (Lm)
T -l
oy —m) Gy (kp — m). (14)
Defining the prior covariance operator Cp as an M M diagonal
matrix with the variance of the prior on the diagonal, we arrive at

the final data weighted, Tikhonov regularized solution with prior
constraints

m = (G'Ca"'G + L + Cp")"(G"Ca~'d + Cp~'p), (15)

where L is defined as in eq. (12). This is the final solution vector used
in our inversion. The row or column number of the elements along
the diagonal of C, correspond to the index number of that model
parameter. Likewise, Mp is an Mx1 vector for which each element
corresponds to the density of single prism. To apply different priors
to different model parameters, one need only use the coordinates
of the model parameter centroids within the desired region to find
the appropriate model parameter index and apply a value to that
element. If an element on the diagonal of C,~! is zero, then no prior
is applied to that model parameter.

2.5 Quantifying error

A key advantage of a Bayesian approach is that it allows us to statis-
tically evaluate the solution, via the posterior covariance matrix C of
the model parameters and the resolution matrix R. The covariance
matrix is defined as the inverse of the Hessian:

C=(G'Cq'G + L + Gy ). (16)

Here the values of m estimated by the inversion are the centre-points
of the posterior Gaussian, and the diagonal values of the covariance
matrix C are their associated variances.
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The resolution matrix is determined from the covariance matrix
(Tarantola 2005):

R=1-CC, (17

where I is the identity matrix. If the resolution matrix equals the
identity matrix, the model is fully resolved by the data. This par-
ticular formulation of the resolution operator primarily allows us
to distinguish between those parameters that are resolved by inver-
sion of the gravity data and those that are resolved by the prior.
Mathematically, this can be written as:

tr(I) = tr(R) + tr(CCp™") (18)

meaning the total number of model parameters is the sum of the
number of parameters resolved by the data and the number of pa-
rameters resolved by the prior information (Tarantola 2005). Higher
resolution (values closer to 1) means those parameter values have
mostly been determined by the inversion—in other words, we have
learned something from the gravity that we did not know a priori.
On the other hand, low resolution (values closer to 0) means the val-
ues of those parameters are almost entirely attributed to the prior.
This is the case for regions of the model where the prior is very
strong, that is a very small prior variance.

Ultimately, solution quality is based on the mean absolute error of
the gravity and the mean standard deviation of the model parameters
as determined from the diagonal of the covariance matrix, as well as
visual inspection of the model to determine its geological reason-
ability. Even with relative and absolute equality constraints, gravity
inversion remains non-unique and there are a number of model so-
lutions that could fit the data. It is possible to obtain a solution that
minimizes the misfit as required but that still appears geologically
unreasonable and must be disregarded as the most likely poste-
rior distribution of densities. However, the regularization and priors
ensure enough stability in the model that with the appropriate regu-
larization parameters a, B and { , the model obtained is geologically
sound and in line with our standing geophysical knowledge.

3 SYNTHETIC TESTS

Estimating optimal regularization parameters is difficult for gravity
inversion. We use an iterative technique on a series of synthetic tests
to determine @ and { values that produce (1) the best fit between
the predicted and observed gravity and (2) the most geologically
reasonable solution, which for the synthetic models, is a nearly
complete recovery of the known density distribution. We conduct
these synthetic tests on a simplified lower resolution model of a sub-
duction system. In all synthetic tests, we construct a density model,
compute the forward gravity as given by eq. (1) and add Gaussian
noise to the gravity using a similar standard deviation to that of the
data set we will later use (about 1.7 mGal). We invert this gravity
for a range of Tikhonov regularization parameters and orders, with
or without priors on specific sets of model parameters, while at-
tempting to recover the known density distribution and judging the
stability of the inversion.

The performance of the inversion when used with first and second
order Tikhonov is tested using a simplified synthetic 3-D model of
a subduction zone (depicted in representative cross-sections in the
bottom row of Figs 1 and 2). We test various combinations of the
horizontal regularization coefficient O and the vertical regulariza-
tion coefficient { for the cases of only first order Tikhonov, only
second order Tikhonov, and a combination of second order in the
horizontal and first order in the vertical. For each of these cases, we
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test four additional classes of constraints: no priors, priors enforced
only on parameters within the water column, priors enforced only
on parameters within the water and crustal layers, and priors on all
parameters, including the mantle. The prism size is about 17.5 km in
the x-direction, 22.5 km in the y-direction, and increases from about
206 to 2060 m from shallow to deeper depths in the z-direction. The
a and { values tested range from 1073 to 108. There are a total
of 10, 648 model parameters and 22, 500 data points, yielding an
overdetermined system. The synthetic density model is constructed
with a seawater density of 1027 kg m™, oceanic crustal density of
2900 kg m3, sediment density of 2300 kg m™, continental crustal
density of 2700 kg m™ and mantle density of 3300 kg m=. We de-
fine differential density, AD, by subtracting the lateral average of
each layer from the true density of each prism in that layer. The prior
densities, when applied, match those differential densities. The stan-
dard deviation of the priors, when applied, are 5 kg m™ for seawater,
80 kg m™ for the sedimentary and crustal rocks and 100 kg m™ for
the mantle.

The results for these synthetic tests are summarized in Figs S1—
S4, which show gridded results for each combination of @ and
in panels corresponding to the order(s) of Tikhonov regularization
used (panel rows) and the set of priors used (panel columns). Grey
regions demarcate  and ¢ combinations where the regularization
strength is too low to produce stable results. The minimum of each
test for both the mean absolute error (MAE) on the gravity and the
MAE on the model parameters is plotted in each of these figures
as well. Fig. S1 depicts the MAE between the true gravity field
of the synthetic model and the gravity predicted by the recovered
density distribution. Changes in the gravity misfit are much more
dependent on the order of regularization than they are on the pres-
ence of a prior. For first order Tikhonov alone, the misfit increases
dramatically above a values of 10* because the model becomes too
flat to correctly reproduce the shorter wavelength variations in the
gravity field. For second order Tikhonov, stability is achieved at {
values of 107 in cases with limited priors, above which the gravity
error remains reasonably low until @ values of about 107. For the
combination of first and second order Tikhonov, the error remains
reasonably low until an @ value of 107 and between ¢ values of
10~" and 103. The lowest error on the gravity amongst all the tests
is about 1.29 mGal, which is less than the noise level of 1.7 mGal,
and occurs for the case of first order Tikhonov with no priors for g =
10°and ¢ = 10", The lowest gravity error occurs for the case of no
priors because without priors the model is allowed to take whatever
shape it must, subject to the smoothness constraint, to fit the data,
again highlighting the inherent non-uniqueness of the gravity.

However, to achieve a geologically reasonable model, priors must
be applied. For the case of enforcing a prior on all parameters, the
minimum gravity error is still only 1.36 mGal, so the fit to the
gravity data is not compromised by adding priors, while the fit to
the true density model is dramatically improved. Fig. S2 illustrates
the MAE between the predicted model parameter values and the
true model parameter values of the known density model. For most
combinations of different regularization orders and priors, too small
of an @ or ¢ value and the regularization is not strong enough to
provide a smooth and continuous density distribution, yielding non-
physical fluctuations in the density values (Figs 1 and 2, columns
1 and 2). Alternative cross sections with results using different
regularization strengths are shown in supplementary Figs S5 and
S6. For a values that are too large, the solution smooths over any
density variations almost entirely. For cases with no priors or limited
priors, the misfit decreases with increasing ¢ , but for cases with more
priors, the misfit begins to increase again with larger { values after
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Figure 1. Representative cross-section in the x-direction of the synthetic inversion results for @, { combinations that produce some of the lowest errors for
their respective order of Tikhonov regularization, as determined by comparing the test results depicted in Figs S1-S4. Row 1: gravity profiles for each of the
three cases depicted in the panels below. Dark blue line: true gravity produced by the synthetic model, with noise; gray line: gravity from inversion using only
first order Tikhonov; light blue line: gravity from inversion using only second order Tikhonov; orange line: gravity from inversion using second order Tikhonov
in the horizontal and first order in the vertical. Row 2: cross-sections of the density model recovered from using only first order Tikhonov witha = 10" and {

= 107" for the cases of no priors, priors only on the ocean water parameters, priors on the ocean and crustal parameters, and priors on all parameters. Row 3:
cross-sections of the density model recovered from using only second order Tikhonov with @ = 10° and { = 10 for each of the different prior cases. Row 4:
cross-sections of the density model recovered from using a combination of first and second order Tikhonov with @ = 10° and { = 10° for each of the different
prior cases. Row 5: cross-section of true synthetic density model for comparison.

achieving its minimum. However, the misfit decreases overall as
we apply more priors throughout the model domain, starting with
the ocean. Though the results from applying a prior only to the
ocean do not look dramatically improved over the case of no priors,
in practice, the prior on the ocean is one of the most important
constraints because it is the most certain. It eliminates any need
for the model to determine where the seafloor is and forces the
inversion to put higher densities in the crust and mantle where they
belong. This is evident in the cross-sections in Figs 1 and 2. The
minimum absolute error on the model parameters amongst all tests
is approximately 10.1 kg m™ and occurs when using priors on all
parametersand @ = 10',a = 10*anda = 10%,and { = 1073, =
10" and = 107! for first, second, and combination-first-and-second

Tikhonov, respectively.

Comparing the MAE of the model parameters, given the known
density distribution, to the standard deviation of the model parame-
ters as determined from the diagonal of the covariance matrix (Fig.
S3) allows us to determine how the covariance matrix reflects un-
certainty in the presence of a priori model constraints. For all cases
except that of second order Tikhonov with no priors, the posterior

standard deviation on the model parameters decreases with increas-
ing @ and { and is consistently lowest for the case where priors are
enforced on all model parameters. For the O and ¢ values where
the MAE on the model parameters was lowest (red square in Fig.
S2, lower right-hand panel), the mean posterior standard deviation
on the model parameters is comparatively 56.3 kg m>, a value that,
while higher, is still reasonably within a range necessary to distin-
guish one rock layer from another. The standard deviation from the
covariance matrix continuously decreases with increasing regular-
ization, while the MAE starts to increase after some minimum when
priors are applied, because unlike with the MAE, the minimization
in the gradient or curvature between the model parameters enforced
by the Tikhonov regularization tends to dominate the definition of
the covariance matrix. As the weight of regularization increases, the
Tikhonov component of the misfit equation (eq. 14) is reduced, and
as such, the posterior covariance is reduced as well. Too large of
an @ or ¢ value can cause oversmoothing of the model parameters,
and as such the standard deviation of the posterior solution is not
always as accurate an estimator of the error on the model param-
eters away from the ‘correct’ density distribution as the MAE is.
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Figure 2. Representative cross-section in the y-direction of the synthetic inversion results for @ and { combinations that produced some of the lowest errors
for their respective order of Tikhonov regularization, as determined by comparing the test results depicted in Figs S1-S4. Row 1: gravity profiles for each of
the three cases depicted in the panels below. Dark blue line: true gravity produced by the synthetic model, with noise; gray line: gravity from inversion using
only first order Tikhonov; light blue line: gravity from inversion using only second order Tikhonov; orange line: gravity from inversion using second order
Tikhonov in the horizontal and first order in the vertical. Row 2: cross-sections of the density model recovered from using only first order Tikhonov with C=
10" and ¢ = 107" for the cases of no priors, priors only on the ocean water parameters, priors on the ocean and crustal parameters, and priors on all parameters.
Row 3: cross-sections of the density model recovered from using only second order Tikhonov with @ = 10° and { = 10 for each of the different prior cases.
Row 4: cross-sections of the density model recovered from using a combination of first and second order Tikhonov with @ = 10° and = 10° for each of the
different prior cases. Row 5: cross-section of true synthetic density model for comparison.

However, because we do not know the correct density distribution
in a study with real data, as we do in the synthetic tests, we can
only use the @ and { combination of the minimum MAE from the
synthetic models as a proxy for what the ideal regularization coef-
ficients must be in order to produce the best geological model. The
covariance matrix still provides information on how well the model
parameters are estimated, but we should expect errors as high as
around 50-60 kg m™ to be indicative of a good model because we
do not want to fully minimize the Tikhonov component.

We can also use the resolution matrix R to quantify how much we
have actually learned about the subsurface density structure from
inverting the gravity data, as opposed to what we already knew from
our prior. The mean resolution of all the model parameters for each
of the tests is depicted for each combination of @ and  in Fig. S4.
The resolution should be interpreted as the fraction of that model
parameter estimate that can be attributed to the inversion of the
gravity data itself, as opposed to the prior. Resolution values close
to 1 mean the model is well resolved by the gravity, not the prior.
Hence, the tests for the case of no priors have a resolution of 1 be-
cause those models are resolved entirely by the gravity. Resolution
values close to 0 mean the model is mostly resolved by the prior

information alone and not the gravity: that is the gravity inversion
did not tell us anything we did not already know from the prior. In
this way, a resolution of 0 does not necessarily mean the values of
the model parameters are wrong in a geological sense, just that the
inversion was not useful. In some regions of the model, such as the
ocean layer, where we know the density, it is desirable to have low
resolution values because we want these regions to be entirely con-
strained by the prior and not affected by the inversion. As such there
is a clear relationship between the MAE on the model parameters
and the resolution: lower O, (i.e. a stronger prior) correlates with
lower resolution and hence lower MAE on the model parameters.
Going from the case of no priors to that of priors on all parameters,
we can clearly see that the dependence on the prior increases for
a greater number of @, { combinations as expected (Fig. S4). We
can also see that the more or the stronger priors we apply, the less
regularization is needed to produce a stable and reasonable model
(Fig. S5).

Ideally, we are trying to obtain a model that both best fits the
gravity and matches the prior data and so we neither want a model
that is entirely determined by the gravity nor entirely determined
by the prior. Thus, a very high resolution is not necessarily ideal.
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Rather, we would expect resolution to increase with distance from
the locations where we have prior constraints, exhibiting a spatial
dependence. Therefore, a mean resolution somewhere in the middle
may be considered reasonable, which is consistent with @ and  val-
ues in the range of 10— 5x 10% and 107"~ 10, respectively (Fig.
S4), as well as the best 0 and ¢ values as determined by the MAE on
the model parameters (Fig. S2). As an example, representative cross
sections of the 3-D model results, using ¢&& 10" and ¢ = 107" for
first order, @ = 10%and { = 107 for second order and = 10° and
¢ T0° for combination first and second order, are shown in Figs 1
and 2. Similarly, representative cross-sections of the 3-D model do-
main using @ and ¢ values that produced the lowest MAE on the
model parameters for each of the different combinations of regular-
ization order and priors are shown in Figs S5 and S6. The top panel
shows the predicted gravity profile produced by each of the models
against the true gravity calculated from the known density model.
The subsequent three rows depict the resulting models for first, sec-
ond and combination first and second order Tikhonov, respectively.
The bottom panel illustrates the corresponding cross-section of the
true synthetic density model that we are trying to recover in each
of these inversions, for comparison. Different @, { pairs are ideal
for different orders of Tikhonov regularization. Higher regulariza-
tion constants are needed for second order Tikhonov; those same
coefficients would, on the other hand, oversmooth the first order
models.

For these combinations of @ and {, the accuracy of the result-
ing density models changes drastically across the different applied
priors. However, the gravity signal for each model is essentially
the same and matches the true gravity well, with an MAE of only
about 1.3—1.4 mGal for each case, demonstrating the effective non-
uniqueness of the gravity (Figs 1 and 2, Row 1). Thus, priors are
necessary to improve the model. When priors are applied to all pa-
rameters, all three regularization options recover the known density
model, though at higher values of O, combination first and second
order Tikhonov is better at recovering the density distribution. Ulti-
mately, the recovered model is more sensitive to changes in { than
in @, and for low values of @, first order regularization appears suffi-
cient. However, across all tests, the combination of first and second
order Tikhonov consistently produced the most stable results and
was the most successful at recovering the known density distribu-
tion. Moreover, increasing the resolution of the subsurface model
(i.e. adding more model parameters) tends to require increasing the
regularization strength, so the combination first and second order
Tikhonov is more stable for larger models, as first order becomes
too strong, flattening out the model completely, at large O values.

Even without any priors, some semblance of the structure is
recovered for the example in Fig. S5 when using first order regular-
ization, though with such high @ values, structure is better recovered
when using the first and second order combination. For first and sec-
ond order, there is often an unrealistic degree of fluctuation in the
density values for the case of no priors and priors only on the ocean
(Figs 1 and 2). Ultimately, different combinations of the @ and { val-
ues can yield similarly satisfactory models, but based on the above
results for the MAE on the gravity and model parameters and the
covariance and resolution matrices, and considering the increase in
model resolution for the regional study, using a combination of first
and second order Tikhonov with &= 10 ° or a = 10° and { = 10°
with priors of varying certainty on all parameters produces the best
results. These are the values that will be applied to the subsequent
regional case study of the Puysegur region offshore southern New
Zealand.

4 APPLICATION TOTHE PUYSEGUR
REGION

Gravity inversion of an active tectonic margin is challenging be-
cause of the complicated structures and source geometries and the
sharp lateral changes in density across the boundary. Those very
compositional contrasts across and along such an active margin
play a large role in governing the tectonic processes taking place.
Because dynamic processes often dominate the gravity field and
influence local topography, gravity modelling at these locations can
shed light on important aspects of subduction (Toth & Gurnis 1998;
Krien & Fleitout 2008). The Puysegur subduction zone is an at-
tractive test case for subduction initiation in particular because of
its young age and the transition from developed subduction in the
north to incipient underthrusting in the south (Gurnis et al. 2004,
2019). As such, the margin provides a progressive snapshot of the
subduction initiation process along strike. Puysegur also exhibits
unusual gravity anomalies, the origin of which can inform us about
the regional dynamics and motivates detailed study of Puysegur
with a gravity inversion.

4.1 Regional setting

The Puysegur-Fiordland subduction zone lies at the northern end
of the Macquarie Ridge Complex (MRC) and the southern tip of
South Island, New Zealand. Present day plate motion is predom-
inantly dextral strike-slip, with highly oblique subduction of the
Australian Plate (AUS) northeastwards beneath the Pacific Plate
(PAC) at the Puysegur Ridge and Fiordland (Fig. 3a; Sutherland
1995; DeMets et al. 2010). The Puysegur margin has evolved from
a spreading ridge into a subduction zone. Spreading along the PAC-
AUS margin began approximately 45 Ma, then became increasingly
oblique as the AUS-PAC Euler pole migrated to the southeast during
the Miocene, eventually rotating into a strike-slip plate boundary
(Sutherland 1995; Lebrun et al. 2003). This evolution is evident in
the curvilinear fracture zones that merge along the MRC and are
prominent in the gravity field and bathymetry. Oblique convergence
led to subduction beneath the Fiordland boundary starting around
16-10 Ma, beneath the northern extent of the Puysegur segment
about 11-8 Ma, and beneath the southernmost extent of the Puyse-
gur Ridge within the last several million years (Lebrun et al. 2003;
Sutherland et al. 2006).

The crustal structure and tectonics related to the above kinematic
history were investigated in detail with seismic reflection, seismic
refraction, and bathymetric mapping during the recent South Island
Subduction Initiation Experiment (SISIE, Gurnis ef al. 2019). Puy-
segur has the advantage of being a small subduction zone with a
well known plate kinematic history before and during subduction
initiation, making it accessible for studying the process of subduc-
tion initiation and for constructing a regional gravity inverse model
at a relatively high resolution.

The margin possesses distinctive, high amplitude gravity anoma-
lies, which as of yet have poorly constrained structural and compo-
sitional interpretations and which have implications for the dynamic
processes taking place in the region. The MRC is characterized by
long and narrow bathymetric and gravitational highs and lows along
strike (Fig. 3b). The southern part of Puysegur Ridge is character-
ized by a 100 to 150 mGal gravity high adjacent to the —100 to —150
mQGal gravity low of the trench. In contrast, a significant approx-
imately —150 mGal gravity low exists over the northern Puysegur
Ridge—a region known as the Snares Zone (Fig. 3; Gurnis et al.
2019). This region is of particular interest in our gravity inversion
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Figure 3. (a) Puysegur survey area, outlined by the black rectangle. The
Macquarie Ridge Complex is the long, narrow gravity high/low feature
running between the Australian (AUS) and Pacific (PAC) plates from the
Hjort Trench (HT) in the south to the Puysegur Trench (PT) in the north. eTR
is the extinct Tasman Ridge. Base map is free-air gravity (Sandwell et al.
2019). (b) Bathymetry of Puysegur region from the NIWA grid (Mitchell
et al. 2012). Solid blue lines are MCS lines. Triangles represent the locations
of OBS. SISIE-1 and SISIE-2 are combined OBS and MCS lines. Black
dashed line outlines the Snares Zone (SZ) bathymetric low. RR: Resolution
Ridge; Sol: Solander Island; PB: Puysegur Bank; PR: Puysegur Ridge; and
PT: Puysegur Trench. Red arrows are the modern relative plate motion
(DeMets et al. 2010) of the AUS plate with respect to the PAC. (c) Satellite
free-air gravity for the Puysegur study region from the Sandwell et al. (2019)
global marine gravity grid, v. 29.1. Labels, seismic lines, and plate motion
vectors are the same as in (a) and (b). The grid of black dots are the locations
of the gravity data points used in the inversion.

because it has subsided with respect to the rest of Puysegur Ridge
by nearly 2 km (Collot e al. 1995). If composed of buoyant crust,
this subsidence has implications for the subduction initiation pro-
cess and the force balance on the system. In addition to addressing
questions about these anomalies, gravity modelling can help stitch
together the information obtained seismically to provide a more
complete 3-D picture of the structures and rock types in the region.

Bayesian 3-D linear gravity inversion 1907

4.2 Prior geophysical constraints

Prior constraints on a gravity inversion can come from a number of
geophysical data, including seismic, bathymetric, borehole data and
more. For the investigation of the Puysegur subduction system, we
utilize bathymetric and seismic data collected from the SISIE marine
geophysical expedition (Gurnis et al. 2019; Shuck et al. submitted),
as well as sediment thickness estimates from the NOAA sediment
thickness database (Straume et al. 2019), to constrain the gravity
inversion. These data include the regional NIWA bathymetry grid
(Mitchell et al. 2012), horizons picked from seismic reflection pro-
files, and seismic velocity models constructed from ocean bottom
seismometer (OBS) seismic refraction analysis (Gurnis et al. 2019;
Shuck et al. submitted). The NIWA grid is based only on shiptrack
multibeam data and not calculated from the gravity like the global
bathymetry data sets. This ensures the prior remains independent of
the gravity data.

The seismic velocity models were constructed using a tomo-
graphic inversion of marine seismic refraction data gathered during
the SISIE cruise. A total of 43 short-period OBSs were deployed
on two east—west transects across the Puysegur Trench (Fig. 3a).
The wide-angle seismic data records show reflected and refracted
arrivals that help constrain the seismic velocities, depth to base-
ment and Moho of both the Australian and Pacific Plates. We
correlated arrival times between neighboring stations to identify
refracted and reflected phases and checked the reciprocity on oppo-
site source—receiver pairs. The average maximum source—receiver
offset at which we observed seismic refractions was 80 km. We as-
signed traveltime uncertainties between 40 and 150 ms to account
for noise on wide-angle data. We applied a regularized tomographic
inversion of the wide-angle traveltimes to image the seismic ve-
locities of the crust and uppermost mantle along the two transects
(Van Avendonk et al. 2004). The resulting seismic velocity models
for SISIE-1 and SISIE-2 have an rms data misfit of 90 and 80 ms,
respectively, which is comparable to the assigned data errors.

The 2-D seismic velocity images along SISIE-1 and SISIE-2
show the nature of the oceanic crust of the incoming AUS Plate and
the crustal structure of the overriding Puysegur Ridge and Solander
Basin (Fig. 4). In the deeper parts of the basin, the top of basement
was constrained by wide-angle seismic refractions. However, we
determined the depth to basement from multichannel seismic re-
flection images (Shuck ef al. submitted) where the sediment cover
was thin. We were able to determine the Moho depth outboard of the
trench on the AUS Plate and beneath the Solander Basin. However,
the thickness of Puysegur Ridge is not well resolved from the OBS
refraction data alone because the observed wide-angle refractions
did not turn to such depths near the plate boundary. The gravity
model can thus help constrain the thickness of the crust at the ridge.
Nevertheless, Moho depths as determined from the seismic velocity
models (deeper bold gray line in Fig. 4) are included in our prior.
Like the other horizons, the Moho is not a ‘hard’ constraint but
rather a probabilistic constraint on where the top of mantle is most
likely to be. This flexibility is a reflection of the fact that there is
uncertainty in the seismic data, and the Bayesian method means we
do not have to take it completely at face value. The seismic veloci-
ties along SISIE-1 and SISIE-2 (Fig. 4) confirm that relatively thin
oceanic crust of the AUS Plate has higher seismic velocities than
the rifted continental crust of the PAC Plate (Gurnis ef al. 2019).
Consequently, there should be a substantial density contrast across
the margin that should be evident in the gravity. The composition of
Puysegur Ridge appears predominantly continental as well, though
this is questionable and a point of interest for the gravity inversion.
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Figure 4. Seismic velocity models used in the prior. (a, ¢) Seismic velocity profiles for OBS lines SISIE-2 and SISIE-1, respectively. Grey lines are the
sediment-basement contact and Moho interpretations. White dots are the locations of OBS. Dark shaded area is where the model has unreliable resolution. (b,
d) Standard deviation of the seismic velocities based on seismic ray tracing for OBS lines SISIE-2 and SISIE-1, respectively. Black regions indicate areas with
unreliable velocities. White dots are the locations of OBS and their corresponding numbers.

Based on the seismic velocities, we can constrain the thickness
of'the incoming AUS Plate to be about 7 km, with isolated pockets
of sediment, usually less than 500 m in thickness. Due to the spatial
resolution of the gravity model, sediment on the AUS Plate usually
does not appear in the model except in places where it is relatively
thick. The seismic reflection profiles reveal that sediment thickness
in the Solander Basin is as thick as 6 km in places, averaging about
2-3 km for the majority of the basin (Shuck et al. submitted).
Between our seismic lines, we also constrain the top of basement

using the NOAA global sediment thickness database (Straume et al.
2019). The Snares Zone on the northern end of Puysegur Ridge is
filled with up to 1 km of sediment, and both the layering observed
in the seismic reflection profiles and the low seismic velocities
on the western half of Puysegur Ridge suggest it is composed of
deformed sediments, more than 10 km in width and 3 km in depth.
However, below about 5.5 km depth, the seismic reflection data
are inconclusive as to whether the accretionary wedge consists of
sedimentary rock or crystalline basement (Gurnis ef al. 2019); the
gravity inversion can shed light on the compositions of these rocks.
The decollement between the overriding and subducting plates is
visible on the seismic reflection images from SISIE-1 and SISIE-2
(Gurnis et al. 2019; Shuck et al. submitted). This horizon is used
to constrain the top of the slab in the prior. The vertical, strike-slip

Puysegur fault that cuts through the middle of the Snares Zone also
appears to be present in the seismic reflection profiles (Shuck ez al.
submitted). While this fault is not included in the prior information
directly, its presence could explain potential density differences
observed in the final model.

We invert the Sandwell ez al. (2019) global 1 min marine gravity
grid, v. 29.1, for the region within the black grid in Fig. 3(b), which
for the Puysegur region has a standard error of about 1.7-2 mGal
(Sandwell et al. 2013, 2019). We include horizons that represent
the seafloor, the sediment-basement contact, and the interpreted
Moho from the velocity models (Fig. 4). Seismic velocities along
the profile lines were converted to density using the empirical Nafe-
Drake equation (Ludwig et al. 1970; Brocher 2005). Those densities
were then extrapolated from the 2-D SISIE transects to each model
parameter using a 3-D interpolation scheme. Likewise, surfaces for
the horizons are interpolated from the scattered data points of the
2-D seismic data and the basement as determined from sediment
thickness. For certain regions of the model, the prisms that fall
between certain surfaces are assigned a specific prior. For example,
prisms that fall between the AUS basement and Moho are given a
prior oceanic crustal density of 2900 kg m~ and prisms below the
interpreted seismic Moho on the PAC Plate are assigned a prior
density of 3300 kgm™, as the estimated seismic velocity in the
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Figure S. Variation of the standard deviation of the prior in 3-D space.
Because the prior has a higher certainty along the trajectory of the seismic
lines, the standard deviation is lowest along the survey lines, and increases
exponentially away from the lines and their respective horizons and away
from the seafloor. The ocean layer is essentially fixed by the bathymetry and
thus has the lowest prior error.

models falls below an acceptable resolution below about 15 km
depth. Otherwise, the prior densities used are those obtained directly
from the velocity conversion.

For the prior, we have the highest degree of certainty on the den-
sities of the prisms that lie along our seismic lines. We estimated
the local standard deviation in the seismic velocity model with a
forward ray tracing test. The uncertainty assigned to the model was
the range in seismic velocity perturbations that would not raise
the traveltime misfit more than 5 ms. These errors are for blocks
of 10 km by 4 km. The lowest error is approximately 0.05 km s7!
and the highest is approximately 0.35 km s~'. These standard devia-
tions of the velocities are mapped into density using standard error
propagation methods and the Nafe-Drake relationship. We 3-D in-
terpolate these density errors to the locations of the prism centroids,
which then serve as the starting values for the standard deviations
on the prior. Certainty on the parameter values decreases from the
initial value as we move away from the seismic lines, which we
implement in the model by using a higher standard deviation far-
ther from the lines, allowing the gravity to dominate the resulting
density values in areas where we do not have seismic data. This is
accomplished with a 3-D nearest neighbor algorithm that calculates
the distance each prism centroid is from its closest data point. The
standard deviation determined from propagation of error is then
weighted via a smoothly varying functional—exponential decay of
the increasing form—of nearest neighbor distance from the seismic
and bathymetric data points. In this way, our prior includes both
the error on the initial velocity model and the uncertainty due to
spatial separation from our prior information. Horizontal slices of
the spatially variable prior uncertainty mapped into 3-D space are
shown in (Fig. 5). The Tikhonov regularization then ensures the
model retains a smooth solution laterally, so values everywhere are
to some degree constrained by those along the seismic lines. The
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degree to which the solution values are the result of the prior data
or the gravity inversion itself can be visualized in the resolution
matrix. The majority of the model domain is determined by gravity
data and thus not overly biased by the prior information, except in
places where we want it to be, such as in the ocean layer.

Ultimately, the final model has 64 000 model parameters with
a horizontal resolution of about 9 km and a vertically increasing
resolution of about 110-1130 m. We invert 92 953 gravity data
points from the marine gravity grid, using a horizontal second order
Tikhonov regularization coefficient of 5<10° and a vertical first
order Tikhonov regularization coefficient of 10°. We include priors
on all parameters, though with spatially varying standard deviation
as described above.

4.3 Results

We predict the gravity field from the final density model and com-
pare it to the observed gravity, as well as the residual between the
two (Fig. 6). The mean absolute error on the gravity produced from
the final model is about 3.9 mGals, which is less than 2 per cent
of the maximum anomaly in the study area (220 mGal). All the
prominent features of the satellite gravity are well-recovered, in-
cluding the prominent lows in the Snares Zone and the trench and
the gravity high over the southern portion of Puysegur Ridge. Some
of the finer features in the gravity are not fully recovered due to
model resolution. The highest errors on the gravity, as shown by the
residual, are mostly concentrated over areas with the largest gravity
anomalies and where there is a sharp change in bathymetry, such
as over the Puysegur Ridge and the edge of the Campbell Plateau.
This is likely due to the trade-off between the regularization try-
ing to smooth features laterally and the inversion trying to match
these sharp changes in the gravity and bathymetry. Nevertheless,
the highest error on the gravity is only 33.5 mGal, which on the
scale of the major anomalies in the study area is still minor.

The model results for the 3-D density distribution are presented
in representative cross-sections in Figs 7, 8 and 9, with the prior
density distribution and posterior standard deviation plotted for
comparison. The resolution and covariance matrices also illustrate
the 3-D distribution of error in the posterior model (Fig. 10). The full
resolution matrix exhibits a sharp diagonal with elements close to
one, demonstrating that the model parameters are well resolved by
the inversion. Looking at only the diagonal components, on the other
hand, where each element of the diagonal represents the resolution
of a particular model parameter as determined by the gravity, gives
us a better sense of how the resolution varies throughout the model
domain. As each element is associated with a particular parameter,
we can map the diagonal of R into 3-D space (Fig. 10a). This 3-
D resolution illustrates which parameters are resolved mostly by
the gravity and which are not. The resolution is almost zero in the
ocean layer because those parameters are determined entirely by
the prior and thus are not resolved by the gravity. The resolution
of parameters along the seismic lines is also lower because these
parameters are weighted more by the prior. The resolution matrix
shows an increase in the degree to which parameters are resolved
by the gravity with depth.

However, barring the degree to which the parameters are deter-
mined by the prior, there is a fall off in the certainty of the solution
with depth, as evident from the posterior covariance matrix, the
square root of the diagonal of which is also mapped into 3-D space
and visualized in Fig. 10(b). This shows the spatial distribution of
the standard deviation of the posterior estimate of m. The mean
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Figure 6. Gravity results for the final model. (a) Observed gravity field as
extracted from the Sandwell ez al. (2019) gravity grid, v 29.1. Black lines are
the locations of cross-sections shown in Figs 7, 8 and 9. (b) Gravity predicted
from the final density model determined by the inversion. (¢) Residual

gravity between the observed and predicted gravity grids, calculated as the
absolute difference between each point on the grid.

standard deviation on the model parameters as determined from the
diagonal of the covariance matrix for the entire model is 17 kg m™.
There is a fall-off in accuracy with depth, ranging from about 10
to 15 kg m™ in the shallow crust along the seismic lines to about
30 kg m™ on average in the deepest layer. The maximum model
parameter standard error is 68 kg m=, concentrated at the bottom
and at the edges of the model, where there is less coverage by the
gravity data and less constraint by the prior.

The most notable features of the final density model are the
densities and structures of the Snares Zone and along Puysegur

Ridge. The inversion requires a low density body beneath the central
and eastern portion of the Snares Zone, extending to about 18-20 km
depth (Figs 7 and 9) and is mostly consistent with the prior velocity
models. However, the western half of Puysegur Ridge, below about
5.5 km depth, is consistently higher density than predicted from the
velocity models. The southern cross section (Fig. 8), on the other
hand, shows an elevated mantle beneath the Puysegur Ridge, more-
so than suggested by the velocity prior. In all cases, we are mostly
unable to resolve a slab structure, despite its presence in the prior.

To get a broad sense of the density and crustal variations within
the final model, as well as how they compare to the prior and
the seismic velocities, we look at the posterior densities of each
prism versus their respective V), values used to determine the prior
(Fig. 11). The points are colored by the block of the model in
which they reside, as determined by interpolating surfaces between
the horizons on the seismic reflection lines from the SISIE survey.
Based on these surfaces, prisms are either in the sediments (gray
points), the AUS Plate crust (blue points), or the PAC Plate crust
(burnt orange points); prisms within the mantle are not shown for
clarity. There is scatter even in the prior data points because only
the prisms lying along the seismic lines were converted directly
with the Nafe-Drake equation; the other prism densities are then
3-D interpolated. The scatter is greatest within sedimentary units
where rocks can vary over a relatively large range of densities and
where there is substantial shallow structural complexity from the
velocity models for the interpolation to accommodate. To more
clearly illustrate the variation in structure along the ridge, we also
determine the Moho depth from the density model, interpreted at
the points where the density first exceeds 3200 kg m~ (Fig. 12b).
We also compute the crustal thickness (Fig. 12c) by subtracting the
bathymetry (Fig. 12a) from the Moho. The crust is notably thicker
beneath the Snares Zone, about 18 km thick, than it is beneath the
southern part of Puysegur Ridge, where it is as thin as 7-8 km. The
Moho shallows to around 10-12 km depth under the southern part
of the Solander Basin and deepens to about 18 km in the northern
part of the Basin, and even further to 23 km or greater beneath the
Campbell Plateau.

5 DISCUSSION

The method of linear 3-D gravity inversion can be applied not only
to simple, local scale structural geometries, but also complex den-
sity distributions across active plate margins. The Bayesian method
allows for direct inclusion of existing geophysical data as priors
and statistical feedback on the quality of the final model. Due to
the non-uniqueness of gravity, which is clearly demonstrated by the
relative insensitivity of the predicted gravity to changes in the prior
(Figs 1 and 2), the final model is ultimately dependent on the prior
and the strength of the regularization.

The synthetic tests demonstrate how the resulting models are
often more sensitive to changes in regularization than they are the
geophysical prior. The 3-D resolution matrix likewise shows how
different parameters are determined more by the prior than by the
gravity or vice versa. The Tikhonov regularization is a smoothness
prior and goes into the definition of the resolution matrix (eq. 17),
so when a parameter has a low resolution, the inversion is more
strongly constrained by the existing geophysical information and
the smoothness requirement than by the gravity. Differentiating the
degree to which that parameter is determined by the geophysical
prior versus the regularization is more difficult. Nevertheless, the
majority of the model domain is resolved predominantly by the
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Figure 7. East-west cross section of the final 3-D density model for line a-a’ in Fig. 6, roughly parallel to seismic line SISIE-2. (a) Gravity profiles for the
density cross-section. Solid line is the observed gravity; dashed line is the predicted gravity from the final model slice shown in panel B; dashed—dotted line
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covariance matrix. Colourbar is saturated at 35 kg m>. Panels (b) and (d) together represent the posterior distribution for the model parameters shown in this

cross-section.

gravity data. Only within the ocean layers and along the shallow
portion of the seismic lines does the prior dominate the posterior
solution, demonstrating that in the regions where we do not have
seismic coverage, and to some extent in the regions where we do,
we have learned something from the gravity.

Ultimately, the goal of obtaining a realistic density model from
the inversion is to place constraints on the composition of key
features and structures that control subduction and subduction ini-
tiation regionally. As the composition of Puysegur Ridge and the
origin of the Snares Zone are key motivators for the gravity inver-
sion and for understanding subduction initiation, these regions are
highlighted in the comparison of the posterior densities to seismic
velocities in Fig. 11. Prisms corresponding to the western and east-
ern halves of Puysegur Ridge at the Snares Zone are shown by pink
and maroon points, respectively. The western half of the ridge plots
in two distinct regions, a cluster lying predominantly between 2700
and 2900 kg m and a cluster lying below 2100 kg m™3, the latter
of which corresponds to the sedimentary units within the shallow
portion of the Snares Zone bathymetric depression and the accreted
sedimentary portion of the western half of the ridge (Fig. 11, red-
orange points), which is also clearly visible on the seismic reflection
images from SISIE-2 (Shuck et al. submitted).

The difference between the western and eastern halves of Puyse-
gur Ridge at the Snares Zone is notable, with the western half av-
eraging around 2803 kg m~ and the eastern half averaging around

2750 kg m—the difference of which is more than three times as
much as the mean standard deviation of the prisms within the Snares
Zone, about 15.1 kg m™ (Fig. 10). This is especially significant in
light of the difference between the final density model and the prior.
The prior densities for the Puysegur Ridge at the Snares Zone, par-
ticularly for the western half, average around 2500-2700 kg m3
and are consistent with a continental crustal interpretation (Figs 7¢
and 11a). However, the gravity consistently requires the presence of
a higher density body of around 2700-3100 kg m™ on the western
half of Puysegur Ridge in order to fit the observed gravity signal
(Fig. 7). These densities, however, are not inconsistent with the ve-
locity models because highly fractured or deformed rock can have a
much lower seismic velocity while still maintaining a high density,
so what the seismic velocity models seem to indicate is deformed
sediment or continental crust, could in fact be fractured oceanic
crustal rock (Barton 1986). We postulate that basement rock of the
western half of Puysegur Ridge is compositionally distinct from that
of the east and is most likely a sliver of oceanic crust that has been
emplaced laterally against the continental crust of the eastern half
via the strike slip motion of the Puysegur Fault, which runs through
the Snares Zone. This inference is also consistent with the seismic
interpretations in Shuck et al. (submitted).

The under-prediction of the densities on the western half of Puy-
segur Ridge by the seismic velocities via the Nafe-Drake curve
and the large amount of scatter in the posterior densities relative to
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that curve put limitations on the degree to which the Nafe-Drake
relationship can be used to predict densities without further infor-
mation, as has been noted by previous authors (Barton 1986). The
Nafe-Drake equation, though valid for velocities between 1.5 and
8.5 km s™!, was based empirically on continental crustal data from
California (Ludwig et al. 1970; Brocher 2005) and as such may not
be accurate for oceanic crust. However, a comparison between the
Nafe-Drake predictions of Brocher (2005) and theoretical seismic
velocity and density predictions from mineral physics calculations
using the MinVel Subduction Factory Toolbox (Abers & Hacker
2016; Sowers & Boyd 2019) reveal that differences between the
two predictions are less than 1 per cent on average, though can be as
high as 37 per cent for specific rock types (Sowers & Boyd 2019).
There is also the question of whether thermal effects may impact
the accuracy of the Nafe-Drake prediction and the model density
estimates. However, an analysis of the possible perturbations to the
velocity and density estimates of the Brocher (2005) relationship
under a hot geotherm calculated using the MinVel toolbox, using
the half-space cooling model with a plate age of 25 Ma for rocks in
oceanic regimes and a typical continental geotherm with a conserva-
tively high surface heat flux of 120 mW m? for continental regimes,
demonstrate that elevated temperature has a negligible impact on
the Nafe-Drake predictions relative to the range of densities in our
model domain (Figs 11b and c¢). The rock compositions used in this
analysis include basalt (Hacker et al. 2003), harzburgitic mantle

(Hacker et al. 2003), Fiordland orthogneiss (Bradshaw 1990) and a
combination of pelagic clays and biogenic ooze (Li & Schoonmaker
2003; Patel et al. 2020). The absolute densities estimated for each
of'these rock types differ insubstantially between low (surface) and
warm (25 km depth) temperatures, and the velocity and density both
change in accord with one another with that change in temperature,
such that the predictive relationship between them remains the same
(Fig. 11c, Sowers & Boyd 2019). Puysegur itself is also not a no-
tably hot subduction zone. Despite the young age of the subduction
front, the crust that is being subducted is not particularly young,
spreading in the Tasman Sea having ceased around 53 Ma, though
spreading in Emerald Basin south of the study area continued un-
til around 10-20 Ma (Lebrun et al. 2003). Thus, we find it is not
necessary to incorporate any thermal effect into our model and that
the Nafe-Drake relationship is a reasonable one in light of any pos-
sible thermal perturbations and its performance relative to mineral
physics estimates.

Some of the differences in density between the prior and poste-
rior also likely arise from error in the 3-D interpolation scheme, but
the difference in densities between the two even across the Snares
Zone, where we have direct seismic data, suggests a significance
in the under-prediction of many of the posterior densities by the
Nafe-Drake equation. However, this does not invalidate its use as a
prior, but rather highlights the advantage of using it in the context
of a Bayesian approach. Rather than using seismic velocity as the

020 4oquiade( /| U0 Jasn saueiqr sexa | Jo AsIoniun Aq 9G82065/668 1/€/€2z/a1one/IB/woo dno-oiwspese)/:sdRy Wwolj papeojumod



Bayesian 3-D linear gravity inversion 1913

Obs. Gravity

— e Predicted Gravity
== = = Prior Gravity

3000

2500 <

2000

Density (kg/m

1500

10

15

Depth (km)

50 100 150 200

Paosterior & {(kg/m™}

250 300 350 400

Distance (km)
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cross-section.

only indication of a rock’s density, we use it as a guide for the rock’s
possible density and weight that estimate of density accordingly. As
such, the Bayesian approach allows for a more reasonable and flex-
ible use of a common velocity—density relationship that otherwise,
by itself, may be erroneous in its estimation of rock type.

For this reason, the gravity inversion is an invaluable supplement
to our seismic study in estimating rock compositions and structure
and in particular to spatially filling the gaps between where we have
seismic information. Gravity at short wavelength strongly reflects
topography (or bathymetry, Sandwell e al. 2014; Turcotte & Schu-
bert 2014); however, if the bathymetry is fully constrained in the
inversion and cannot by itself reproduce the gravity signal, then
perturbations to the gravity must be coming from other sources—
namely lateral density variations that may be governed by Moho
geometry. As such, the shape of the interpreted Moho (Fig. 12b)
strongly mirrors the gravity. Traditional gravity modelling tech-
niques avoid this by removing the signal from the Moho/the iso-
static effect and looking at the residual (Oldenburg 1974; Bai et al.
2014). However, this assumes constant densities in the respective
layers and sometimes a fixed interface. Because we do not explicitly
impose such assumptions with the Bayesian inverse approach, but
rather constrain the 3-D densities and hence the structure proba-
bilistically, the resulting Moho, though it does mirror the gravity,
is likely a good approximation to the true Moho. Taking the south-
ern line, SISIE-1, as an example, ultimately to match the gravity

high over the ridge, there can be either (1) an elevated Moho or

(2) anomalously high densities in the crust. In the absence of fixing
either of these, the algorithm has no knowledge about which is the
correct choice to fit the gravity, and the easiest way to fit the gravity
is to create a density distribution increasing in depth with a shape
mirroring that of the gravity. This is why inclusion of the Bayesian
priors is so important. We can see the effect of the prior versus
that of the gravity beneath the Campbell Plateau in Fig. 8(b), where
there is smearing at the base of the crust relative to the prior in panel
(c). The gravity in combination with the regularization wants to put
the Moho higher to smoothly mirror the gravity signal. The prior,
on the other hand, pulls the Moho down, but not so much so that
the predicted gravity is depressed. As we can see in Fig. 8(a), the
gravity from only the prior is too low to match the observations.
This means that, given the inclusion of the prior, the combination of
density and structure returned by the gravity inversion is probably
the most reasonable estimate of the true structure. In other words,
it is the most likely combination of (1) adjusting the Moho depth
and (2) adjusting the density that can be obtained in light of our
existing knowledge. It is the Bayesian approach that allows us to
do this so effectively. It also means, given we have applied a strong
prior along this transect, the fact that the gravity still pulls the Moho
up under the Ridge despite the constraint is all the more significant
and suggests this is not just an artefact of reflecting the shape of the
gravity.
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Figure 10. (a) Diagonal of the resolution matrix mapped into 3-D space.
Slices are shown at depths of 1, 9, 17 and 25 km. The resolution represents
the fraction of each model parameter value that is resolved by the gravity
as opposed to the prior information. (b) Posterior standard deviation of the
model parameters (square root of the diagonal of the covariance matrix)
mapped into 3-D space. Slice depths are the same as in A. Colourbar is
saturated at 35 kgm™.

This large gravity high over the southern portion of Puysegur
Ridge cannot be explained solely by the bathymetry and requires a
mass excess (Fig. 8). Similarly, the large gravity low over the Snares
Zone also cannot be reproduced by the bathymetry alone, and hence
requires a mass deficit to produce the observed gravity (Fig. 7). In
other words, the density profiles and Moho and crustal thickness
maps demonstrate there is relatively shallow mantle beneath the
southern Puysegur Ridge and unusually thick crust beneath the
Snares Zone; unusual in that the region is bathymetrically low, yet
predominantly composed of buoyant continental crust, except for
the very western side as previously discussed. The Solander Basin,
which is composed of rifted continental margin crust, evidenced by
both the seismic data (Gurnis et al. 2019; Shuck et al. submitted)
and the densities, progressively thins to the south, where the basin
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Figure 11. Density versus V), relative to the Nafe-Drake equation (black
line). (a) Density versus V), for the prisms in the prior. Densities were calcu-
lated from V), using the Nafe-Drake equation (black-line) along the seismic
lines; the remaining prism centroid densities were 3-D interpolated from
those points, producing the observed scatter. The prior for the oceanic crust
was set to 2900 kg m™ instead of using values directly from the equation
(blue circles). (b) Posterior density from the inversion model versus V),
for each prism centroid. Prisms in the mantle have been omitted for clarity.
Colours and their corresponding 20 error ellipses represent different regions
of the model as defined by the structural horizons in the prior. Dotted ellipse
represents the shift in the density prediction resulting from low temperature
conditions and dashed ellipse represents the shift due to high temperature
conditions, as calculated from the MinVel predictions in panel (¢). Similar
ellipses can be computed for the other crustal blocks, but in all cases, the
effect is negligible, so they have been omitted for clarity. Colours are as
in panel (a). (¢) Comparison of Brocher (2005) density predictions (filled
symbols) to MinVel density predictions (open symbols) for low (surface)
temperature conditions (blue symbols) and hotter (25 km depth) temperature
conditions (red symbols) for characteristic rock types present in the model
domain. Carbonate and pelagic sediment compositions are estimated from
values in Li & Schoonmaker (2003) and Patel et al. (2020). Composition of
Fiordland Orthogneiss, taken to represent regional continental crustal rock,
is from Bradshaw (1990). Composition of MORB and harzburgitic mantle
is from Hacker ez al. (2003).
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Figure 12. (a) Bathymetry for the Puysegur study area used in the com-
putation of crustal thickness. PB, Puysegur Bank; SZ, Snares Zone; CP,
Campbell Plateau; PR, Puysegur Ridge and SB, Solander Basin. (b) Moho
depth interpreted from the 3-D density model at the points where the density
first exceeds 3200 kg m>. (c) Crustal thickness for the Puysegur study area
calculated by subtracting the bathymetry from the Moho depth and overlain
on the bathymetric surface. The crustal volume is filled to the base of the
crust using the Moho surface in panel (b). Text labels are as in panel (a).

experienced more extension during the rifting phase in the Eocene
to Oligocene prior to the development of the strike-slip and sub-
duction margin (Lebrun et al. 2003). Based on the crustal thickness
results as estimated from the gravity, we estimate the continent—
ocean transition in the southern Solander Basin to be around 50°S
or even further south of the model domain, which is roughly con-
sistent with Shuck et al. (submitted).

Another notable feature of the inversion results is the inability
to resolve a slab structure, despite its presence in the prior and
the seismically observable décollement between the two plates on
seismic reflection data. The absence of descending crust in the final
density model is likely due to the obliquity of subduction. A seismic
Benioff zone extending to 150 km depth puts the slab northwards
of the gravity study area, beneath Fiordland (Sutherland ez al. 2006;
Eberhart-Phillips & Reyners 2001). It is also possible that while the
slab is present, it is not required to recover the local scale gravity
signal, which is dominated by the bathymetry and shallow crustal
structure.

6 CONCLUSIONS

The inversion technique presented inverts gravity data for 3-D den-
sity distributions within a Bayesian framework without the need for
iteration and with the direct incorporation of prior geophysical con-
straints. Previous applications of linear gravity inversion, as opposed
to the commonly used non-linear and wavenumber domain meth-
ods, have predominantly been for geometrically and structurally
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simpler density anomalies, though have also successfully been ap-
plied to crustal scale and tectonic studies. We have demonstrated
this method can also be successfully applied to more geologically
complex regions with significant lateral variations in density and
structure by applying it to an active subduction zone.

The resulting density models provide a more complete picture of
the subsurface, filling in the gaps between where there is seismic
data and allowing us to estimate the Moho depth and crustal thick-
ness. The crustal thickness and density models reveal the presence
of buoyant, yet subsided, continental crust beneath the central and
eastern portions of the Puysegur Ridge at the Snares Zone, whereas
the western half of the ridge is most likely a sliver of oceanic crust.
In contrast, an elevated mantle underlies the southern portion of
Puysegur Ridge. The features observed in the Snares Zone and
along the Ridge have implications for the structures and rock com-
positions that control subduction initiation and the changing state
of stress during the initiation process, and they support the idea that
the margin is transitioning to a state of self-sustaining subduction in
the north. These results will allow us to make further calculations
of the regional stress and effective topography that can be used to
constrain geodynamic models that are the target of future research.
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Figure S1 Mean absolute error between the gravity from the true
density model and that predicted by the inversion for each combi-
nation of @ and ¢ which are labeled for every other value. Panel
rows represent either first or second order Tikhonov regularization
or a combination of the two. Panel columns represent, from left to
right, inversion with no priors, inversion with priors only on prisms
that fall within the ocean, inversion with priors on prisms in the
ocean and crustal rocks, and inversion with priors on all prisms,
including the mantle. Red circles mark the a, { combination cor-
responding to the minimum MAE on the gravity; red squares mark
the @, ¢ combination corresponding to the minimum MAE on the
model parameters relative to the true model. Colorbar is saturated at
25 mGal. Gray regions correspond to a, { combinations that yield
unstable or unreasonable results.

Figure S2 Mean absolute error between the predicted model pa-
rameter values and the known model parameter values from the
synthetic model for each combination of  and { which are labeled
for every other value. Panel rows represent either first or second
order Tikhonov regularization or a combination of the two. Panel
columns represent, from left to right, inversion with no priors, inver-
sion with priors only on prisms that fall within the ocean, inversion
with priors on prisms in the ocean and crustal rocks, and inversion
with priors on all prisms, including the mantle. Red circles mark
the @, ¢ combination corresponding to the minimum MAE on the
gravity; red squares mark the @, { combination corresponding to the
minimum MAE on the model parameters relative to the true model.
Colorbar is saturated at 800 kg m=. Grey regions correspond to Q,
¢ combinations that yield unstable or unreasonable results.

Figure S3 Mean standard deviation on the model parameters as
determined from the diagonal of the covariance matrix C for each
combination of @ and { which are labeled for every other value.
Panel rows represent either first or second order Tikhonov regular-
ization or a combination of the two. Panel columns represent, from
left to right, inversion with no priors, inversion with priors only on
prisms that fall within the ocean, inversion with priors on prisms in
the ocean and crustal rocks, and inversion with priors on all prisms,
including the mantle. Red circles mark the @, { combination cor-
responding to the minimum MAE on the gravity; red squares mark
the a, { combination corresponding to the minimum MAE on the
model parameters relative to the true model. Colorbar is saturated
at 800 kg m=. Gray regions correspond to @, { combinations that
yield unstable or unreasonable results.

Figure S4 Mean resolution of the model parameters as determined
from the diagonal of the resolution matrix R for each combination
of a and ¢ which are labeled for every other value. Panel rows
represent either first or second order Tikhonov regularization or a
combination of the two. Panel columns represent, from left to right,
inversion with no priors, inversion with priors only on prisms that
fall within the ocean, inversion with priors on prisms in the ocean
and crustal rocks, and inversion with priors on all prisms, including
the mantle. Red circles mark the @, { combination corresponding
to the minimum MAE on the gravity; red squares mark the Q,
¢ combination corresponding to the minimum MAE on the model
parameters relative to the true model. Grey regions correspond to Q,
¢ combinations that yield unstable or unreasonable results. Lower
resolution means that model parameters are determined more by
the prior than they are the gravity data itself. Resolution values of
1 or near 1 mean model parameter values are resolved more by the
gravity data than the prior.
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Figure S5 Representative cross section in the x-direction of the 3-D
inversion results for the @ and @ combinations that produced the
minimum MAE on the model parameters for each of the regular-
ization order and prior combinations, as determined from the test
results depicted in Figs S1-S4. Row 1: gravity profiles for each of
the three cases depicted in the panels below. Dark blue line: true
gravity produced by the synthetic model, with noise; gray line: grav-
ity from inversion using only first order Tikhonov; light blue line:
gravity from inversion using only second order Tikhonov; orange
line: gravity from inversion using second order Tikhonov in the
horizontal and first order in the vertical. Row 2: cross-sections of
the density model recovered from using only first order Tikhonov
for the cases of no priors, priors only on the ocean water param-
eters, priors on the ocean and crustal parameters, and priors on
all parameters, each with their respective minimum model param-
eter MAE @, { combinations. Row 3: cross-sections of the density
model recovered from using only second order Tikhonov for each
of the different prior cases. Row 4: cross-sections of the density
model recovered from using a combination of first and second order
Tikhonov for each of the different prior cases. Row 5: cross-section
of true synthetic density model for comparison.

Figure S6 Representative cross-section in the y-direction of the
inversion results for 0 and @ combinations that produced the mini-
mum MAE on the model parameters for each of the regularization
order and prior combinations, as determined by comparing the test
results depicted in Figs S1-S4. Row 1: gravity profiles for each of
the three cases depicted in the panels below. Dark blue line: true
gravity produced by the synthetic model, with noise; gray line: grav-
ity from inversion using only first order Tikhonov; light blue line:
gravity from inversion using only second order Tikhonov; orange
line: gravity from inversion using second order Tikhonov in the
horizontal and first order in the vertical. Row 2: cross-sections of
the density model recovered from using only first order Tikhonov
for the cases of no priors, priors only on the ocean water param-
eters, priors on the ocean and crustal parameters, and priors on
all parameters, each with their respective minimum model param-
eter MAE @, { combinations. Row 3: cross-sections of the density
model recovered from using only second order Tikhonov for each
of the different prior cases. Row 4: cross-sections of the density
model recovered from using a combination of first and second order
Tikhonov for each of the different prior cases. Row 5: cross-section
of true synthetic density model for comparison.

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
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APPENDIX A: TIKHONOV
REGULARIZATION

Tikhonov regularization is implemented using different regulariza-
tion matrices for each of the x, y and z directions. For first order
Tikhonov regularization and the 1-D case, the finite difference ap-
proximation to the first derivative is

Omi 1

Ox = E(_WU{ + Mik+1 )/ (Al)

which can be represented in the form of an upper bidiagonal matrix
operator L1 acting on a vector of the spatially discretized model
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parameters. The result is an M—1 x M matrix.

= (A2)

T ]
ame l DI ] | ¥
ox AxL .00 l

0--0-11 Mk

Because the discretization can vary within the x, y and z directions,
the L matrices are unique for each of those directions and Ax, Ay
or Az may vary for each adjacent pair of model parameters being
regularized. When this is the case, the 1/Ax term is brought inside L.

For second order Tikhonov regularization and for the 1-D case,
the finite difference approximation to the second derivative is

Pmy

a2 Mik-1 = 2m + Mi1) (A3)

which can likewise be represented in the form of an upper tri-
diagonal matrix operator L2 acting on a vector of the model param-

eters, where L[ils ag A/ll —g x Mrﬁlﬁix.—l

Pmy 1 I 01 -2 -0 " ma
= A4
Ox? szl. Jl J (A9
0--- O 1 —2 1 Mk

The second derivative finite difference operator can be written in
terms of the first derivative finite difference approximation as

Pmi _ 1 Onucrr  Omik
Ox? bx;  Oxinl Oxi
1 —mk + Mg Myt my
= - . A5
Ox; AX i Ax; (&5

The L2 matrix is thus calculated from the L1 matrix for the x and
y directions. For the z-direction, we use only first order Tikhonov
regularization.
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