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ABSTRACT
Unlike summative assessment that is aimed at grading students at
the end of a unit or academic term, formative assessment is assess-
ment for learning, aimed at monitoring ongoing student learning to
provide feedback to both student and teacher, so that learning gaps
can be addressed during the learning process. Education research
points to formative assessment as a crucial vehicle for improving
student learning. Formative assessment in K-12 CS and program-
ming classrooms remains a crucial unaddressed need. Given that
assessment for learning is closely tied to teacher pedagogical con-
tent knowledge, formative assessment literacy needs to also be a
topic of CS teacher PD. This position paper addresses the broad
need to understand formative assessment and build a framework
to understand the what, why, and how of formative assessment
of introductory programming in K-12 CS. It shares specific pro-
gramming examples to articulate the cycle of formative assessment,
diagnostic evaluation, feedback, and action. The design of formative
assessment items is informed by CS research on assessment design,
albeit related largely to summative assessment and in CS1 contexts,
and learning of programming, especially student misconceptions.
It describes what teacher formative assessment literacy PD should
entail and how to catalyze assessment-focused collaboration among
K-12 CS teachers through assessment platforms and repositories.
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1 INTRODUCTION
With CS becoming more widespread in school settings, curriculum,
tools, and classroom implementation are making steady progress.
Teacher preparation has begun to evolve from its initial focus on
training new teachers–who often have little to no background in
programming or teaching computing–in becoming familiar with
the basics of programming, usually in the programming language
they were expected to use and the curriculum they are expected
to teach. As CS teacher self-efficacy increases, attention is shifting
to helping teachers understand pedagogy–the how of teaching CS.
Scaffolding strategies, unplugged activities, creative coding, pair
programming are becoming part of teacher professional develop-
ment (PD). Meanwhile the literature on student difficulties in learn-
ing programming, even in easy-to-use block-based environments,
continues to grow, as is the large body of literature on addressing
novice programmer misconceptions that transcend age, context,
and even programming environments. Formative (or classroom)
assessment–aimed at assessment for learning, and often targeting
student misconceptions–is a critical omission from K-12 CS edu-
cation discourse and practice. Studies have identified huge gaps in
formative assessment and assessment literacy for K-12 CS teach-
ers [49, 50, 57], even when the evidence suggests that attention to
classroom formative assessment can produce greater gains in student
achievement than any other change in what teachers do [54].

This position paper makes a case for embracing formative assess-
ment in K-12 CS classrooms and ‘formative assessment literacy’ for
CS teachers with the goal of improving teaching and learning of CS,
especially introductory programming. It presents a vigorous argu-
ment for why this is an urgent and essential need. It also presents
dimensions of a framework to help understand the what, why, and
how of formative assessment in K-12 CS and guide progress on
three key aspects of formative assessment in K-12 CS: formative
assessment design, formative assessment literacy in teacher PD,
and leveraging community and community-developed resources.
CS in K-12 is young, but the time is ripe to give formal formative
assessment in K-12 CS much-needed attention.

The following section shares key aspects of formative assessment
and why it is the urgent need of the hour for K-12 CS education and
CS teacher preparation. Section 2 describes relevant CS education
assessment research. Section 3 details dimensions of a framework to
guide the integration of formative assessment for better conceptual
learning in K-12 CS classrooms including design of assessments,
teacher PD, and community collaboration and items repositories.

1.1 The what and why of formative assessment
Put simply, formative assessment is assessment for learning, or mea-
surement that helps monitor student learning and adjust teaching
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accordingly. Seminal papers and groundbreaking research in ed-
ucation around 30 years ago argued for and demonstrated that
formative assessment improves student learning [8, 39]. Since then,
disciplinary-based education research in all core subjects has paid
much attention to understanding and implementing formative as-
sessment in classroom teaching to improve student learning. Forma-
tive assessment literacy is closely related to teachers’ pedagogical
content knowledge (PCK) [37] and should be an imperative for
teacher preparation. Google scholar search results on formative
assessment in school education run into hundreds of thousands of
articles. Only a handful of these are situated in K-12 CS contexts.
This section helps build a foundational understanding of formative
assessment based on decades of education research.

Formative assessment isALL about feedback–to the teacher
and the learner. Formative assessment is not complete until it has
resulted in some follow-on action on the part of the teacher (or
teaching agent) as feedback that is internalized by the student. It
can be viewed as a linear process, but in reality it is more cyclical—
from monitoring (Is learning taking place?) to diagnosis (What
is not being learned?) to action (What to do about it?) [9]]. This
all-important feedback element of formative assessment is also
related to metacognition that helps with learner self-regulation and
helping students to "learn how to learn" [29].

Formative assessment is NOT for giving students a grade
The word ’test’ is an anathema to some teachers [37]. However, the
reality of formative assessment could not be farther from norm-
referenced and standardized testing that the K-12 CS community
largely eschews. The function of the formative assessment process
is to supply evidence that will enhance students’ learning [53]
through feedback and appropriate follow-up instructional moves.
It is thus an important piece of the learning puzzle regardless of
grade level, programming environment, or the pedagogy used to
teach CS. As Bloom said, ”we see [much more] effective use of
formative evaluation if it is separated from the grading process and
used primarily as an aid to teaching (p. 48)”[10].

Formative assessment is used to share learning goals with
students A key role of formative assessment is to clarify and share
with learners learning intentions and criteria for success, that are
originally a teacher’s goals. If improvement in learning is to take
place, students need to come to hold a concept of quality in line
with that held by the teacher, and the community (via standards,
for example). This "growing concept of what good work is forms
part of the learning itself" [11]. The need for formative assessments
is underscored even in classrooms using project-based learning;
the best project-based approaches use a combination of ongoing
formative assessment and project rubrics that can both communi-
cate high standards and help teachers make judgments about the
multiple dimensions of project work [5].

Formative assessments should target and address miscon-
ceptions ‘Diagnostic questions’ (or items) often target student
misconceptions. What makes a diagnostic item particularly forma-
tive is that an incorrect response not only provides information
about gaps in student understanding; it also provides insight into
what it is that the student does not understand—in other words,
the nature of their misconceptions [13]. The misconceptions litera-
ture in introductory programming at all education levels is large
and growing. Sorva details several misconceptions in K-12 learners

based on research of novice programming since the 1980s [23, 47].
Ideally, formative assessments could and should be targeting these
misconceptions through diagnostic items (see section 3.1.1).

Formative Assessment and Teacher PCK Professional learn-
ing of formative assessment practices, or formative assessment
literacy, also helps build teachers’ CS knowledge and PCK; the cul-
tivation of teacher expertise to effectively implement formative
assessment is grounded in three core, interrelated domains: forma-
tive assessment knowledge and skills, disciplinary knowledge, and
habits of practice [27]. Knowledge of misconceptions and how to
address them forms the link between PCK and formative assess-
ment. A teacher cannot know whether students harbor naïve or
wrong notions of a concept, even after it has been taught, unless a
teacher gets feedback through formative assessments.

Formative assessments come in many forms Formative as-
sessment refers to formal and informal moves that teachers employ
to make inferences about what their students know and can do
during their routine classroom learning. “CS teachers teachers can
informally assess students in several ways– a show of hands in
response to a question; students’ expressions of frustration, disen-
gagement, or joy during a coding task; and informal conversations
with students as they code or debug their programs" [26]. CS educa-
tion research suggests that multiple forms–or “systems”–of formal
assessment are also needed to get a holistic view of student learning
[21]. These include closed and open-ended programming assign-
ments (that are ideally accompanied by peer and self assessment,
student and teacher rubrics, and student reflections), quizzes with
multiple choice questions (MCQ), as well as assessments beyond
MCQ such as Parson’s problems [36], hotspot and point & click
items, and unit-test coding assignments that are innovate and also
autogradable [26]. These varied forms of formal assessment help
address conceptual and affective goals of teaching CS. Given the
many known conceptual difficulties of learning programming, a
focus on formative assessments that provide speedy and timely
feedback on conceptual learning is a crucial need. Programming
projects are notoriously time-consuming and subjective to score
and give feedback on. Even if programs are auto-analyzed - targeted
feedback to students is challenging, and the presence of constructs
or correct code does not necessarily equal understanding [40].

Speed and timeliness of feedback matters Formative assess-
ment can happen at different time scales. Research shows, however,
that teachers’ day-to-day classroom practices with an explicit focus
on short-cycle assessment are most impactful [53]. When teachers
want to quickly survey student thinking, an MCQ has utility in
terms of taking little time to ask, collect responses and process them
[56]. Thus, MCQ or other interactive, instantly autogradable items
designed to be administered as short, quick quizzes embedded in
interactive textbooks, or through homework systems or assessment
platforms that allow for autograding, are valuable formative tools.

Formative and summative assessment have different de-
signs Summative assessment is assessment of learning and hap-
pens at the end of a unit, term, or year. Its purposes and goals are
fundamentally different from formative assessment, where the goal
is to strengthen student understanding during learning. Formative
assessments need to be diagnostic and focused on misconceptions
and what students find historically difficult, or based on granular
learning progressions to provide a clear signal of next steps.



2 RELEVANT PRIORWORK
Assessment has been an active area of research in CS education.
However the overwhelming majority of literature is devoted to
measuring learning in undergraduate contexts (CS1 classrooms).
Research in primary and secondary schools (or K-12) has largely
been focused on summative assessment design of assessments
for computational thinking (CT) and introductory programming
[20, 22, 35, 45, 52], or rubrics for analyzing projects (e.g. [12, 24]).
Literature on formative assessment specifically in K-12 CS is limited.
Formative assessments are listed as part of “systems of assessments”
designed for CS inmiddle grades [21]. Formative assessment in K-12
have often been the focus of automated tools [6, 34, 51] that are (a)
not generalizable as they are restricted to a specific programming
environment, (b) provide little guidance on specific areas of diffi-
culty or misconceptions, and (c) may not be completely accurate in
truly assessing student understanding [40]. Given the intertwined
nature of learning and formative assessment, CS literature on learn-
ing progressions [31, 38], models of program comprehension [43],
MCQ and other forms of assessments (e.g., [16, 32, 36]) are releveant
to formative assessment design, as are assessment taxonomies such
as SOLO and Bloom (e.g., [14, 33, 48]) and the large body of research
on misconceptions (e.g.,[46, 47]). There is some prior and ongoing
work on creating repositories of assessments (mainly MCQ and
other autogradable items) [1, 2, 19, 41] that is also relevant. A recent
paper focused broadly on assessment for K-12 CS identified need for
a taxonomy of assessment in the primary grades, measurements of
student progression and growth over time, and creating culturally
relevant evaluations and assessment [50].

3 FORMATIVE ASSESSMENT IN K-12 CS
This section outlines key dimensions of a framework that can guide
the use of formative assessment in K-12 CS: design of formative
assessments, teacher preparation, and community resources and
collaboration for formative assessments. These, along with their
sub-elements are described in detail along with guidelines drawn
from the large body of literature on formative assessment in edu-
cation research (shared in Section 1.1), as well as analysis of for-
mative assessments in existing (high school) CS curricula in the
US, designed CS assessments created by researchers (albeit aimed
primarily at summative assessment) [20, 22, 35, 45, 52], and ongoing
work in creating corpuses of formative assessments.

3.1 Design of formative assessment items
When designing formative assessment items we need to keep in
mind the several goals of formative assessment. For the teacher, the
main goals relate to monitoring and diagnosis in order to inform
formative action. For the student, formative assessments help:

(1) Establish and maintain an orientation to learning goals (and
national or state standards);

(2) Demonstrate to students how to achieve those learning goals;
(3) Highlight key concepts that they might otherwise overlook;
(4) Help to control frustration and confusion (as is often the

case among novice programmers [30]); and
(5) Help close the gap between their understanding and the goal.
Formative assessments for K-12 CS classrooms could be formal

or informal and target conceptual and affective learning goals. Due

to space constraints, and based on the rationale (in Section 1.1)
on using autograded assessment types for speedy feedback on
conceptual understanding, this paper focuses mainly on formal,
designed formative quiz-like check-ins. These are strategic, targeted,
autogradable, frequent, low-stakes, and provide quick feedback and
explanation. Such items are suitable for probing understanding of
key programming concepts (such a sequence, loops, conditionals,
functions, expressions, variables and other data structures) and CT
practices (such as debugging, problem decomposition, algorithmic
thinking, pattern recognition, and abstraction). These need not,
however, always involve a code snippet or programming language.

3.1.1 Multiple Choice Question (MCQ) and innovative assessment
types. Contrary to what some believe, well-designed MCQ and
easily gradable fixed answer types can probe and shine a light
on conceptual understanding, and surface student difficulties and
gaps in understanding [16, 32]. Past research in CS education has
identified various kinds of good question types [43]. These, along
with additional ones added by the author, are presented in Table 1.

Question
Type

Description/Example

Fixed code Manually trace through some code and select the cor-
rect outcome or result from a set of options

Determine
correctness

Given a goal, determine whether a code snippet
achieves the goal (requires code tracing)

Compare so-
lutions

Given two or more solutions, pick correct option; or
evaluate which is better based on given criteria

Specify vari-
able value

Trace code to determine what the value of variable(s)
at a specified point or at the end

Skeleton
code

Requires selection of code (from a set of options) that
completes the provided “skeleton” code,

Change in
logic

Given a code fragment, select from options the code
fragment(s) that should give the same result but the
logic of the algorithm has been altered (or reversed).

Change in
representa-
tion

Given an algorithm in pseudo code (or natural lan-
guage) translate the logic into code in language X (or
vice versa).

Code pur-
pose

Given a code segment, explain the purpose of that
piece of code in plain English (or select from options)

Code refac-
toring

Given a code snippet, select options for refactoring
or click on code chunks suitable for refactoring.

Parson’s
problems

Given a goal, rearrange blocks (of code) to achieve
the given goal

Debug/Fix
Code

Given a goal, identify bug by selecting from options
or clicking on blocks or lines of code; or selecting
what would fix the code

Code intent From a test case or series of test cases, determine
the intent, the code for which this test specifies the
functional intent.

Table 1: Item types for programming (adapted from [43])

Thanks to the affordances of technology, new andmore engaging
forms of autogradable assessment that provide quick feedback have
emerged. New-age assessment platforms provide a rich pallette of
new assessment types beyond the traditional multiple choice or
multiple answer or fixed response type that make autogradeable
assessment more engaging and less taxing cognitively. Parson’s



problems [36], created as drag-drop items, have been shown to be a
helpful formative learning and assessment activity for novice learn-
ers [16, 17]. Additionally, “hotspot” and “point & click” items, are
not only well-suited for block-based programming code segments,
but they also reduce cognitive load imposed on learners who other-
wise might have to keep track of labeled code segments presented
as MC options as in Figure 1. Newer browser-based assessment
tools also allow for microworlds or in-browser code writing that
can be auto-graded based on fixed possible solutions or unit-tests.

Figure 1: An MCQ item from CTt [20] adapted into a point-
and-click item (more intuitive and lower cognitive barriers).

3.1.2 Learning targets. Formative check-ins can target knowledge
of the syntax of a programming environment or knowledge of
programming vocabulary (e.g. definition of the term "algorithm").
However, much more valuable for teacher feedback and student
learning are the ones that target understanding of programming
concepts and constructs–how and when to use them, program
comprehension–tracing code to figure things out to answer a ques-
tion, or debugging a code snippet. Formative assessments could
also target a known misconception or a key learning goal that is a
building block in a learning trajectory of programming.

Targetingmisconceptions and knowndifficulties through
diagnostic items. What makes diagnostic items particularly for-
mative is that an incorrect response to a diagnostic item not only
provides information that a student does not clearly understand a
particular topic; it also provides specific insight into what it is that
the student does not understand—in other words, the nature of their
misconceptions (see Figure 2). There are about 40 to 50 well-known
misconceptions in introductory programming relevant to primary
and secondary school CS (e.g. [46, 47]), most of which transcend
programming environment. Creating a bank of "misconceptions-
oriented" items across various grade levels would be a valuable
resource for teachers. These items would also serve as crucial train-
ing on programming PCK for teachers who are new to teaching CS
(see Section 3.2).

Targeting learning progressions, building blocks, and pro-
gram comprehension. Formative assessment is closely related to
learning goals–in the moment and on the day. As such, it is more im-
portant that it be informed by what we know about the systematic
building of student understanding of programming as articulated
in learning trajectories and progressions [3, 31, 38], rather than
by standards [4] (national or state-specific) that are oriented more
toward summative understanding or learning goals at the end of
each grade or grade band. In-the-moment formative assessments
must therefore target more granular learning goals of program-
ming that serve as building blocks toward more comprehensive
understanding, which is the target of summative assessment. As
examples in Figure 2 show, formative assessments can query stu-
dent understanding of single concepts especially when a concept
is first introduced. Schulte’s Block Model [42] would suggest that
these understandings are at the Atom or Block levels rather than
the Relations or Macro-structure levels, although the latter should
be part of formative understanding in secondary school. Given
that learning of programming is intertwined with program syn-
tax and semantics, it is also important that formative assessments
target learning goals that encompass both structure and function
as defined in the Block Model (rather than only a learning goals-
oriented trajectory such as [38]). Bloom’s taxonomy [48] and SOLO
taxonomy [7] have been used extensively in tertiary CS education
assessment research [14, 33, 44] and could similarly provide guid-
ance on design of formative assessment items target varying levels
of program comprehension and CT practices such as debugging,
algorithmic thinking, and abstraction.

3.2 Formative assessment literacy for teachers
K-12 CS teachers’ lack of confidence or knowledge and skills has
impacted the implementation of assessments and the depth of feed-
back they provide [50]. It is therefore crucial to develop teachers’
capacity and influence their habits of practice to make formative
assessment integral to their teaching. Teachers need to incorpo-
rate the following formative assessment process (adapted from the
Michigan Assessment Consortium resources) in their classroom.

(1) Establish clear learning goals and success criteria for lessons,
and ensure students understand what these mean and entail;

(2) Plan for and elicit evidence of learning during or in between
lessons, and interpret that evidence–as close to the actual



Figure 2: Formative assessment design. Examples based on research on misconceptions, learning trajectories, and levels of
program comprehension. Process of assessment, diagnosis and formative action described.



time of the lesson as possible–to judge where students are
in relation to learning goals and success criteria;

(3) Take pedagogical action based on evidence of learning and
provide students feedback linked to learning goals and suc-
cess criteria. Feedback during lessons helps to scaffold stu-
dents’ learning by helping them to answer:Where am I going?
Where am I now? What are my next steps?

(4) Support students to engage in peer- and self-assessment
and self-reflection in addition to other quick means of feed-
back in order to strengthen their awareness, collaboration,
confidence, efficacy, and autonomy as learners; and

(5) Foster a collaborative classroom culture where students and
teachers are partners in learning.

In order to make the formative assessment integral and meaningful
to the CS teaching and learning process, CS teachers also need to
know and understand (a) what formative assessment looks like in
an introductory CS classroom– what are informal and formal forms
of monitoring student progress? (b) how assessments should be
incorporated in CS classrooms–when should a quiz be administered
and how? A single diagnostic item given to the entire class in the
middle of a whole class discussion? or an exit ticket at the end of
a period? or a review at the beginning of the next period? (c) the
assessment item itself– what is the item targeting? what does a
wrong answer suggest? what follow-up action should be taken? (Fig.
2). In addition, they also need to know strategies of formative action
in various situations– a single student or a few students providing
an incorrect response will require different action than a when
sizeable proportion of the class responds incorrectly to a certain
question (e.g. [25]). (d) how to design their own assessments. In
addition, there is a need for community collaboration and support
that works to provide teachers access to shared banks of exemplary
assessments for the target topics/concepts or learning goals at the
grade(s) they are teaching, in the desired programming language,
and at varied difficulty level(s) for their students (Section 3.3).

To be successful, CS teacher assessment literacy must concen-
trate on both content and process; but we must first focus on what
we want teachers to change about what they do, and then work
on how to support teachers in making those changes. This is key,
because students benefit only when teachers change what they do in
classrooms (and not based on what teachers think) [54]. Addition-
ally, we need to build assessment measures of teacher assessment
literacy that take into account the introductory CS context and
include factors shown to influence student assessment [15].

3.3 Assessment repositories, feature-rich
platforms, and community collaboration

Teacher learning communities are a powerful mechanism to im-
prove teachers’ capabilities in using assessment in the service of
learning [55]. Additionally, a teacher community of practice of-
ten sustains itself around a shared need and the give and take of
shared resources for all to benefit [28]. Anecdotally and empiri-
cally [49], it is evident that teachers are in need of assessments
and especially, formative assessment-oriented items designed with
care and purpose (based on the guidelines in Section 3.1) to aid
their teaching classroom assessment efforts. Fincher [18] outlined
six criteria for successful repositories in CS education: Control

(who can contribute, who can use it, and how is this enforced?);
Contributors (how are people motivated to contribute? how are
they rewarded?); Catalogue (how will users find what they are
looking for in the repository?);Community (is there a community
of contributors? of users? how are these communities built and
sustained, and what roles do they play?);Curation (how is the data
maintained?) and Content (are the items in the collection focused
on a specific topic or more general purpose? is the content based on
a pre-existing collection or created specifically for the repository
(or both)?) Extant and ongoing efforts for CS assessment item banks
and repositories include Edfinity, Project Quantum, Viva, and the
Canterbury Question Bank (focused on CS1) [1, 2, 19, 41].

Assessment platforms and homework systems can serve as item
repositories for aggregation, creation, curation, and cataloging or
taxonomizing of assessments based on multiple and multi-level
taxonomies including, among others, CS/CT topics, learning stan-
dards, grade, difficulty level, programming language, and ad-hoc
metadata to support easy search and discovery. These technology
platforms can also aid with assessment delivery, administration,
auto-grading, and teacher dashboards. Back-end data and analytics
on student performance can provide teachers crucial insights into
students’ learning and understanding at individual and aggregate
levels. Such technology platforms should be affordable and afford
features important for formative assessment such as provision for
multiple attempts of a question by students, hints, and feedback (or
explanation) for the correct and incorrect options. Solution expla-
nation must be provided as feedback. These explanations, as also
the question stem should support rich text, graphics and video for
better learner engagement and multiple modes (and languages) of
presentation to equitably support diverse learners. Item banks must
include technology-enhanced assessments that push the boundaries
to include interactivity, drag-drop (for items types such as Parson’s
problems), microworlds, and in-browser code entry and testing.
Furthermore, technology platforms could innovate with random-
ized variants of items, solution validation, and customized feedback.
It is imperative that assessment aggregation also support features
for teacher collaboration, contribution, attribution, and sharing,
as well as interfaces for creation of both simple and technology-
enhanced items. Paper formative assessments cannot be autograded
or leverage aforementioned affordances of technology. Tools such
as Google Forms, while popular for formative assessment, do not
auto-grade or afford many of the features described above.

4 CONCLUSION
This position paper makes a persuasive argument for formative
assessment and teacher formative assessment literacy in K-12 CS,
keeping the goal of robust student learning in mind. CS is more than
programming and conceptual learning. However, through focusing
the framework and its dimensions on conceptual learning and ex-
amples of formative assessment forms, along with designs, tools,
and guidance for providing convenient and powerful formative
feedback, this paper makes a start in addressing a crucial lacuna.
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