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We describe the non-backtracking spectrum of a stochastic block model with connec-
tion probabilities pin, pout = ω(log n)/n. In this regime we answer a question posed in
[L. Dall’Amico, R. Couillet and N. Tremblay, Revisiting the Bethe–Hessian: Improved
community detection in sparse heterogeneous graphs, in Advances in Neural Informa-
tion Processing Systems (2019), pp. 4039–4049] regarding the existence of a real eigen-

value “inside” the bulk, close to the location pin+pout
pin−pout

. We also introduce a variant of

the Bauer–Fike theorem well suited for perturbations of quadratic eigenvalue problems,
which could be of independent interest.
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1. Introduction

For any real matrix A with size n × n, its non-backtracking operator B is the real
matrix indexed by the coordinates of the non-zero entries of A, and is defined by

B(i,j),(k,�) = Ak,�1j=k,i�=�. (1.1)

The non-backtracking matrix of a graph is the non-backtracking matrix of its adja-
cency matrix, and it is closely related to the Zeta function of the graph [29]. Its
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spectrum was first studied in the case of finite graphs and their universal covers
[5, 7, 19, 20, 27, 29]. Recently, the non-backtracking operator attracted a lot of
attention from random graph theory as a very powerful tool. In the spectral theory
of random graphs, it was a key element in a new proof of the Alon–Friedman theorem
for random regular graphs [11]. In the same vein it has been used later to study the
eigenvalues of random regular hypergraphs [16], random bipartite biregular graphs
[13] and homogeneous or inhomogeneous Erdős–Rényi graphs [3, 8, 9, 12, 18, 21, 31].
Very recently, the real eigenvalues were used to prove estimates on the vector-
coloring number of a graph [6].

Most of the results focus on the eigenvalues of large magnitude, those which
lie outside the bulk of the spectrum. They are known to be the “most informa-
tive” eigenvalues, as they capture some essential features about the structure of
the graph. For instance, in community detection, the appearance of certain outliers
indicates when the community structure can be recovered [12, 21]. A cornerstone
result was that even in the difficult dilute case, where the connection probabilities
are of order 1/n, reconstruction was feasible (under some condition) by looking
at the eigenvalues of the non-backtracking matrix appearing outside the “bulk” of
eigenvalues.

It was recently observed in [15, Sec. 3.2] that in fact, there is a real eigenvalue
isolated inside the bulk that corresponds to the ratio of the two largest eigenval-
ues outside the bulk, as displayed in the right panel of Fig. 1. Recall that B is
non-Hermitian with a complex spectrum, so that “inside” the bulk is understood
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Fig. 1. (Color online) The non-backtracking spectrum of two SBM graphs. The circle of radius√
α − 1, where α is the mean degree, is drawn in pink. We have cropped the pictures, the outliers

do not appear. On the left panel we took p = q = (log n)2/n, a classical Erdős–Rényi graph. On
the right panel, we took p = 3(log n)2/n and q = (log n)2/n, which corresponds to a two-block
SBM. We clearly see the two bulk insiders around 1 and 2. In both cases the number of vertices
is n = 1000.
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as eigenvalues inside the circle of the spectrum. To the best of our knowledge, this
phenomenon has not been rigorously studied yet. In this paper, we prove the exis-
tence of this real eigenvalue inside the bulk for the stochastic block model (SBM)
in the regime where the mean degree goes to infinity faster than log n.

Notations

Throughout the paper we will adopt the conventional notations an = o(bn) when
limn→∞ an/bn = 0, an = ω(bn) when limn→∞ an/bn = ∞ and an = O(bn) when
|an/bn| is bounded. All the results depend on the parameter n, the size of the graph,
which is seen as large through n → ∞. For any matrix M , we denote the spectral
norm of M as ‖M‖.

1.1. Setting : The SBM in the logarithmic regime

Consider a stochastic block model G(n, p, q) with an even number n of vertices,
two blocks of equal size n/2, and two probability parameters p, q: if i, j are vertices
in the same block then they are connected with probability p, and if they are in
different blocks they are connected with probability q. We will place ourselves under
the regime

p, q =
ω(log n)

n
, p, q → 0, C1 ≤ |p − q|

p + q
≤ C2 (A)

for some constants C1, C2 ∈ (0, 1). The last condition is technical: we will see that it
is here to ensure that two separated outliers appear in the spectrum of the adjacency
matrix, and are of the same order. This assumption is crucial in our perturbation
analysis, see Remark 4.1 for further discussion.

It is known (see, for example, [10, Chap. 3]) that when q = p = ω(log n/n), the
G(n, p, p) graph (the Erdős–Rényi model) is “almost regular” in the sense that all
degrees are concentrated around (n − 1)p. In general, it can be shown that when
p, q = ω(log n)/n then G(n, p, q) is almost regular with degrees concentrated around

np

2
− p +

nq

2
=

n(p + q)
2

− p.

See Sec. 3.4 for a proof. For this reason, we will denote by α the mean degree and
by β the mean difference degree:

α := E[di] =
n(p + q)

2
− p,

β := E[din
i ] − E[dout

i ] =
(n

2
− 1

)
p − n

2
q =

n

2
(p − q) − p,

where di is the number of neighbors of vertex i, and dout
i (respectively din

i ) is the
number of neighbors of vertex i which do not have the same type as i (respectively
which have the same type as i). Under assumption (A), β can be either positive or
negative, and α, β are of the same order.
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Our assumptions (A) imply that the mean degree α is ω(log n) and the mean
difference degree β has the same order as α. Finally, the adjacency matrix of the
graph is the n × n matrix A defined by Ai,j = 1i∼j , where i ∼ j denotes the event
that i and j are connected.

1.2. Main results

Let G = (V, E) be any finite graph with adjacency matrix A. The Ihara–Bass for-
mula gives a connection between the spectrum of B defined in (1.1) and a quadratic
eigenvalue problem: for any complex z,

det(B − zI) = (z2 − 1)|E|−|V | det(z2I − zA + D − I), (1.2)

see [7, 20, 27]. The zeros of the polynomial z �→ det(z2I − zA + D − I) are usually
called, with an abuse of language, the non-backtracking spectrum of B, the two
additional eigenvalues ±1 appearing with multiplicity |E|−|V | in (1.2) being usually
called trivial. The non-backtracking spectrum can be expressed as the eigenvalues
of a smaller matrix H :

H =

[
A I − D

I 0

]
, (1.3)

where D = diag(A1) is the diagonal degree matrix. This representation of the
spectrum of B in terms of H is extremely useful: to compute the spectrum of B,
we do not have to construct the matrix B, and we can analyze the spectrum of B

directly from H .
Using these facts, we answer the question posed in [15] regarding the existence

of an isolated eigenvalue inside the bulk, at least under the assumptions (A). We
also give a detailed description of the non-backtracking spectrum that is similar to
the one given in [31] for Erdős–Rényi graphs.

Theorem 1.1. Let B be the non-backtracking operator of a stochastic block model
G(n, p, q) satisfying assumption (A). We order the 2|E| eigenvalues of B by decreas-
ing modulus : |λ1(B)| ≥ · · · ≥ |λ2|E|(B)|.

With probability 1 − o(1), the spectrum of B can be described as follows. First,
the smallest eigenvalues in modulus are the trivial eigenvalues −1 and 1, each with
multiplicity |E| − |V |.

Then, in the non-trivial eigenvalues λ1(B), . . . , λ2n(B), there are four real eigen-
values which are isolated, two “outliers”

λ1(B) = α + O(α3/4), λ2(B) = β + O(α3/4), (1.4)

and two “insiders”

λ2n−1(B) =
α

β
+ o(1) and λ2n(B) = 1. (1.5)
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All the other eigenvalues λk(B) with k ∈ {3, . . . , 2n− 3} are located within distance
o(
√

α) of a circle of radius
√

α − 1. Moreover, the real parts of eigenvalues of B√
α

are asymptotically distributed as the semi-circle distribution supported on [−1, 1].

To present our approach in the most efficient and clear way, we state and prove
the theorem in the simplest regime, when there are only two blocks and when the
community structure appears in the spectrum through the presence of an extra out-
lier near β. It is straightforward to check that our proof can be extended to a diver-
sity of settings, when the mean degree is ω(log n). We state this as an informal result:

Assume that with high probability the degree of each vertex is (1+o(1))α and the
spectrum of the adjacency matrix has k = O(1) outliers far outside [−2

√
α, 2

√
α],

say λ1 ≈ α, and λ2, . . . , λk. Assume λ1, . . . , λk are of the same order. Then with
high probability its non-backtracking spectrum will have k eigenvalues near λi for
i ∈ [k], then k eigenvalues near α/λi, and all the other eigenvalues will be located
within distance o(

√
α) of the circle of radius

√
α − 1.

Remark 1.1. The concentration results we have in Sec. 3 work for general inhomo-
geneous random graphs with outliers of the same order. Our modified Bauer–Fike
theorem given in Theorem 2.1 works for general inhomogeneous random graphs as
well, as long as each vertex has almost regular degree (1 + o(1))α. Therefore all the
analysis in Sec. 4 can be extended to the case we mentioned above for k outliers.

The presence of bulk insiders in Theorem 1.1 and in the preceding statement
are illustrated in Fig. 1 for a realization of an Erdős–Rényi graph and a realization
of an SBM graph. Note that the description of the spectrum of B in the preceding
theorem is much more precise than [31, Theorem 1.5]. This comes from the fact that
their perturbation parameter R = c

√
log n/p goes to infinity (see [31, Theorem 1.5]

for the exact statement, where the scaling parameter is different from ours). Our
method includes a tailored version of the Bauer–Fike theorem suited for perturba-
tions of matrices like (1.3), which yields perturbation bounds that are better than
the classical Bauer–Fike theorem in terms of the order of magnitude, and without
which the existence of the two eigenvalues at 1 and near β/α would not follow. We
think such variants of the Bauer–Fike theorem could be of independent interest.

1.3. Bulk insiders and community detection

The real eigenvalue of B inside the bulk is closely related to community detection
problems for SBMs. An interesting heuristic spectral algorithm based on the Bethe
Hessian matrix was proposed in [26, 32]. The Bethe Hessian matrix, sometimes
called deformed Laplacian [15, 17], is defined as

H(r) := (r2 − 1)I + D − rA,

where r ∈ R is a regularizer to be carefully tuned. It is conjectured in [26]
that a spectral algorithm based on the eigenvectors associated with the negative
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eigenvalues of H(r) with r =
√

ρ(B) is able to reach the information-theoretic
threshold confirmed in [12, 23–25] for community detection in the dilute regime. In
a subsequent work [15], the authors crafted a spectral algorithm based on H(r) with
r = α/β and empirically showed it outperforms already known spectral algorithms.
Their choice of r was motivated by the conjectured value of the real eigenvalue
inside the bulk. The gain in using H(r) instead of B in spectral algorithms mainly
comes from the fact that H(r) has a smaller dimension than B, is Hermitian, and is
easiest to build from A — nearly no preprocessing is needed, in contrast with non-
backtracking matrices [12, 21], self-avoiding path matrices [23] or graph powering
matrices [1].

The relation between the Bethe Hessian matrix and the non-backtracking oper-
ator is given by the Ihara–Bass formula (see (1.2) above). Therefore, a good under-
standing of the real eigenvalues of the non-backtracking operator is the first step
towards understanding the theoretical guarantee of the heuristic algorithms pur-
posed in [15, 26].

Unfortunately, our proof techniques do not work in the dilute regime. In the
regime studied in this paper, community detection problems are now very well
understood and clustering based on the second eigenvector of A has been proven to
yield exact reconstruction (see [2]). Our result should instead be seen as a prelimi-
nary step in view of (1) proving the existence of bulk insiders in the dilute regime,
(2) showing their usefulness in practical reconstruction. It will be helpful in practice
to have a better understanding of the eigenvectors for the Bethe Hessian matrix,
and we leave it as a future direction.

The key obstacle is the lack of concentration of degrees profiles, which tells us
random graphs with bounded expected degrees are far away from being “roughly”
regular (see also the discussion in Sec. 3.4). Without this property, our perturbation
analysis does not apply.

Organization of the paper

In Sec. 2, we first state some classical facts on the non-backtracking spectrum
of graphs then we state and prove a perturbation theorem which is well suited
for quadratic eigenvalue problems and improves the classical Bauer–Fike results.
In Sec. 3, we gather several facts on stochastic block models. Then we study the
spectrum of H as in (1.3) and a suitably chosen perturbation of H (defined later in
(3.2)). In Sec. 4 we prove the main theorem.

2. Perturbation of the Non-Backtracking Spectrum

2.1. The non-backtracking spectrum

When the graph is regular with degree d, the diagonal matrix satisfies D = dI, and
we can relate the eigenvalues of B with the eigenvalues of A through exact algebraic
relations as in the following elementary lemma.
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Lemma 2.1. Let Â be a Hermitian matrix with eigenvalues λ1, . . . , λn and let η be
a non-zero complex number. Then, the characteristic polynomial of the matrix

Ĥ0 =

[
Â ηI

I 0

]

is given by χĤ0
(z) =

∏n
k=1(z

2 − λkz − η), and the eigenvalues of Ĥ0 are the 2n

complex numbers (counted with multiplicities) which are solutions of z2−zλk−η = 0
for k ∈ [n].

Similar exact relations have also been used when the graph has a very specific
structure, like bipartite biregular (see [13]). When the graph G does not exhibit such
a simple structure, the relation between A and B becomes more involved. Several
Ihara–Bass-like formulas are available (see, for instance, [4, 8, 32]), but they are
usually hard to analyze.

As cleverly noted in [31], the spectrum of H as in (1.3) is hard to describe
in terms of the spectrum of A, but the spectrum of Ĥ0 in the preceding lemma is
completely explicit in terms of the spectrum of Â, even if Â has no specific structure.
It is therefore quite natural to study the spectrum of Ĥ0 using the spectrum of Â,
then use perturbation theorems to infer results on the “true” non-backtracking
spectrum, the spectrum of H . This is done in [31] through a combination of the
Bauer–Fike theorem and a refinement of the Tao–Vu replacement principle [28].

The celebrated Bauer–Fike theorem says thatif a square matrix Â is diagonaliz-
able, say Â = PΔP−1 for a diagonal matrix Δ and a non-singular matrix P , then
under a perturbation E, every eigenvalue of the matrix Â + E is within distance ε

of an eigenvalue of Â, where ε = κ(P )‖E‖, and κ(P ) = ‖P‖‖P−1‖ is the condition
number (see, for instance, [12]).

We observe that the Bauer–Fike theorem, while optimal in the worst case, is
indeed extremely wasteful when applied to H and H0. Taking into account the
specific structure of H and H0 yields a better perturbation bound at virtually no
cost, as shown in the next section.

2.2. Bauer–Fike theorems for quadratic eigenvalue problems

A quadratic eigenvalue problem (QEP) consists of finding the zeroes of the polyno-
mial equation

0 = det(z2M − zÂ − X), (2.1)

where M, Â, X are square matrices, and M is non-singular. Such problems appear
in a variety of contexts and there exists an extensive literature on them, mainly
from a numerical point of view (see the survey [30]).

The triplet (M, Â, X) can be replaced with by the triplet (I, ÂM−1, XM−1)
without changing the problem, so we will be interested in the case where M = I. In
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this case, one can easily check that the solutions of (2.1) are the eigenvalues of the
2n × 2n matrix

QÂ,X :=

[
Â X

I 0

]
,

which is called a linearization of the problem. In this section, we will present exten-
sions of the Bauer–Fike theorem for linearizations of quadratic eigenvalue problems.

If both matrices Â and X are diagonal, say Â = diag(âi) and X = diag(xi),
then it is easily seen through elementary linear algebra operations that

det(QÂ,X − zI) =
n∏

i=1

(z2 − âiz − xi) (2.2)

and the eigenvalues of QÂ,X are the 2n complex solutions of the collection of n

quadratic equations z2 − âiz − xi = 0 for 1 ≤ i ≤ n.
We say the matrices Â and X are co-diagonalizable if there is a common non-

singular matrix P such that PÂP−1 and PXP−1 are diagonal. If Â, X are co-
diagonalizable, then the identity (2.2) still holds with âi being the eigenvalues of Â

and xi being those of X . As a consequence, we say that QÂ,X is QEP-diagonalizable
if Â and X are co-diagonalizable. This is equivalent to ask that the matrix z2I −
zÂ − X is diagonalizable for any z ∈ C.

Our main tool for the perturbation analysis is the following theorem.

Theorem 2.1. Let Â, B̂, X, Y be n × n matrices. We define

L0 =

[
Â X

I 0

]
, L =

[
B̂ Y

I 0

]
.

Suppose L0 is QEP-diagonalizable, with Â and X being diagonalized by the common
matrix P . Then, for any eigenvalue μ of L, there is an eigenvalue ν of L0 such that

|μ − ν| ≤
√

κ(P )
√
‖X − Y + μ(Â − B̂)‖. (2.3)

Moreover, “multiplicities are preserved” in the following sense: Denote ε(μ) the
RHS of (2.3) and ε = maxμ∈Spec(L) ε(μ). If ν1, . . . , νn are the eigenvalues of L0

and K is a subset of [n] such that⎛
⎝ ⋃

j∈K
B(νk, ε)

⎞
⎠ ∩

⎛
⎝ ⋃

j /∈K
B(νk, ε)

⎞
⎠ = ∅,

where B(νk, ε) = {z ∈ C : |z − νk| ≤ ε} for 1 ≤ k ≤ n, then the number of
eigenvalues of L in

⋃
j∈K B(νk, ε) is exactly equal to |K|.

Remark 2.1. Theorem 2.1 is stated for two general matrices L0 and L. How-
ever, the inequality (2.3) will yield good perturbation bound only when we can
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control the difference between Â, B̂, the difference between X, Y , and the condition
number κ(P ).

Proof. Assume μ is an eigenvalue of L. The matrix Rμ := μ2I − μB̂ − Y is then
singular. Assume, in addition, that μ is not an eigenvalue of L0. Then, the matrix
Sμ := μ2I − μÂ − X is non-singular. We have

Rμ = μ2I − μB̂ − Y = μ2I − μÂ − X + X + μÂ − μB̂ − Y

= Sμ + X + μÂ − μB̂ − Y

= Sμ(I + S−1
μ (X + μÂ − μB̂ − Y )).

As a consequence the matrix I + S−1
μ (X + μÂ − μB̂ − Y ) is singular, which

directly implies that −1 is an eigenvalue of S−1
μ (X + μÂ − μB̂ − Y ). Therefore

by the definition of spectral norm,

1 ≤ ‖S−1
μ ‖ · ‖X + μÂ − μB̂ − Y ‖ = ‖S−1

μ ‖ · ‖X − Y + μ(Â − B̂)‖.

As noted before the statement of the theorem, if L0 is QEP-diagonalizable then
the matrix Sμ is indeed diagonalizable: if Σ = diag(λi) is the diagonal matrix of
eigenvalues of Â, Δ = diag(δi) the diagonal matrix of eigenvalues of X , and P

their common diagonalization matrix, then Sμ = P−1(μ2I − μΣ − Δ)P , and the
eigenvalues of Sμ are the complex numbers μ2 − μλk − δk, so

‖S−1
μ ‖ ≤ κ(P ) × max

k∈[n]
|μ2 − μλk − δk|−1.

From this, we infer that there is a k ∈ [n] such that ‖S−1
μ ‖ ≤ κ(P )×|μ2−μλk−δk|−1.

Let us denote αk and βk the two complex solutions of 0 = z2 − zλk − δk (they are
eigenvalues of L0), then

1 ≤ κ(P ) × ‖X − Y + μ(Â − B̂)‖
|μ2 − μλk − δk| = κ(P ) × ‖X − Y + μ(Â − B̂)‖

|μ − αk||μ − βk|

which implies that

|μ − αk||μ − βk| ≤ κ(P )‖X − Y + μ(Â − B̂)‖ =: x.

If |μ−αk| and |μ−βk| were both strictly greater than
√

x, the preceding inequality
would be violated. One of those distances is thus smaller than

√
x, thus prov-

ing (2.3).
The “multiplicities preserved” part is then proven as usual with the complex

argument principle, see for instance [14, Appendix A].
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When applying the preceding result with Â = B̂, one gets the following corollary.

Corollary 2.1. Let

L0 =

[
Â X

I 0

]
L =

[
Â Y

I 0

]
, (2.4)

where Â, X, Y are square matrices and are such that L0 is QEP-diagonalizable with
Â and X diagonalized by the common matrix P . Then, for any eigenvalue μ of L,

there is an eigenvalue ν of L0 such that

|μ − ν| ≤ ε :=
√

κ(P )‖X − Y ‖. (2.5)

Remark 2.2 (Comparison with Classical Bauer–Fike). Casting the classical
Bauer–Fike theorem in this setting would yield an error term of ε′ = κ(Q)‖X−Y ‖,
where Q is the diagonalization matrix of L0. We thus gain the whole square root,
and we do not need to compute the condition number of Q. This improvement is
remarkable when the matrix Â is itself Hermitian, for in this case P is unitary and
κ(P ) = 1, thus reducing the error term to

√‖X − Y ‖. If we had invoked the classical
Bauer–Fike theorem instead, the error term would be κ(Q)‖X − Y ‖, which can be
far bigger than ‖X − Y ‖. In fact, the matrix L0 is not Hermitian in general, and
its diagonalization matrix Q might be either difficult to compute or ill-conditioned:
in [31], the bound obtained by the authors is κ(Q) ≤ O(

√
1/p), where p is the

connection probability for an Erdős–Rényi graph G(n, p). Our version of the Bauer–
Fike theorem shows that for QEP, the only parameters at stake in perturbations
are those of the original matrices Â and X , not those of the linearization of the
QEP.

3. The Stochastic Block Model in the Logarithmic Regime

In this section, we collect results from the literature on stochastic block models or
inhomogeneous Erdő–Rényi graphs, based on which we prove several quick results
for our models, as given in Propositions 3.1, 3.2 and Corollary 3.1.

3.1. Outliers of the adjacency matrix

The concentration of the spectral norm for the SBMs follows immediately from
the spectral norm bounds given in [8, 22] for inhomogeneous random matrices and
random graphs. Recall Assumption (A). The following statement can be found for
example in [22, Example 4.1]: assume α = ω(log n), then

E[‖A − EA‖] ≤ (2 + o(1))
√

α.

Also from [8, Eq. (2.4)], there exists a constant c > 0 such that

P

(∣∣∣∣‖A − EA‖√
α

− E[‖A − EA‖]√
α

∣∣∣∣ ≥ t

)
≤ 2e−cα2t2 .

2150028-10
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Taking t =
√

log n/α in the inequality above, we have with probability 1 − 2n−c

that

‖A − EA‖ ≤
√

log n

α
+ E[‖A − EA‖] ≤ (2 + o(1))

√
α. (3.1)

Since all the eigenvalues of E[A] are {−p, β, α}, and p = o(1) under assumption
(A), the Weyl eigenvalue inequalities for Hermitian matrices yields the following
proposition.

Proposition 3.1. Assume α = ω(log n), then with high probability the following
holds :

|λ1(A) − α| ≤ (2 + o(1))
√

α, |λ2(A) − β| ≤ (2 + o(1))
√

α,

max
k≥3

|λk(A)| ≤ (2 + o(1))
√

α.

3.2. Spectrum of the partially derandomized matrix H0

We will use the notation

γ =
n(p + q)

2
− p − 1 = α − 1,

which is the “mean degree minus one”. We introduce the partial derandomization
of H (defined in (1.3)) as

H0 =

[
A −γI

I 0

]
. (3.2)

As already mentioned in Lemma 2.1, by elementary operations on H0, one finds
that the characteristic polynomial of H0 is indeed equal to

χ0(z) =
n∏

i=1

(z2 − λiz + γ). (3.3)

The eigenvalues of H0 hence come into conjugate pairs coming from eigenvalues
of A. Those eigenvalues λk of A for which |λk| < 2

√
γ give rise to two complex

conjugate eigenvalues

λk − i
√

4γ − λ2
k

2
and

λk + i
√

4γ − λ2
k

2
(3.4)

and the other ones, the outliers |λk| > 2
√

γ of the spectrum of A, give rise to two
“harmonic conjugate” eigenvalues

λk +
√

λ2
k − 4γ

2
and

γ

λk +
√

λ2
k − 4γ

2

. (3.5)

Next we obtain a description of the eigenvalues of H0 from the discussion on the
spectrum of A in Proposition 3.1. The description is illustrated in the second panel
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Fig. 2. (Color online) The spectrum of H0 for the two graphs whose non-backtracking spectrum
is depicted in Fig. 1. The circle of radius

√
α − 1 is in pink.

of Fig. 2, the first one depicting the same phenomenon but for Erdős–Rényi graphs
(with only one outlier in the spectrum).

Proposition 3.2. Under assumption (A) with high probability the following holds
for H0.

(1) The two eigenvalues with greater modulus, λ1(H0) and λ2(H0), are real, and
they satisfy

λ1(H0) = α + O(α3/4) and λ2(H0) = β + O(α3/4).

(2) The two eigenvalues with smaller modulus, λ2n(H0) and λ2n−1(H0), are real,
and they satisfy

λ2n−1(H0) =
α

β
+ O(α−1/4), λ2n(H0) = 1 + O(α−1/4).

(3) All the other 2n−4 eigenvalues have modulus smaller than
√

α+o(
√

α). Among
them, complex eigenvalues lie on a circle of radius

√
α − 1 and real ones lie in

the intervals [
√

α − o(
√

α),
√

α + o(
√

α)] and [−√
α − o(

√
α),−√

α + o(
√

α)].

Proof. We use Proposition 3.1 and the link described before between the spectrum
of A and the spectrum of H0 given in (3.4) and (3.5).

The greatest eigenvalue of A is λ1 = λ1(A) = α + O(
√

α), from (3.4), it gives
rise to two real eigenvalues of H0:

μ1 =
λ1 +

√
λ2

1 − 4γ

2
= α + O(α3/4), μ2 =

α − 1
μ1

= 1 + O(α−1/4).

The second greatest eigenvalue (in absolute value) of A is λ2 = λ2(A) = β +
O(

√
α), which gives rise to two real eigenvalues of H0:

μ3 =
λ2 +

√
λ2

2 − 4γ

2
= β + O(α3/4), μ4 =

α − 1
μ3

=
α

β
+ O(α−1/4).
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For the eigenvalues λk of A with 2
√

γ < |λk| ≤ (2 + o(1))
√

α, from (3.5), the
same argument gives

|μ2k| =

∣∣∣∣∣λk +
√

λ2
k − 4γ

2

∣∣∣∣∣ = (1 + o(1))
√

α, |μ2k+1| =
∣∣∣∣α − 1

μ2k

∣∣∣∣ = (1 + o(1))
√

α.

(3.6)

Finally, from (3.4), all eigenvalues of A with |λk| ≤ 2
√

γ give rise to two complex
conjugate eigenvalues of H0 with magnitude

√
γ =

√
α − 1. This completes the

proof.

The preceding description in Proposition 3.2 also shows that H0 is non-singular,
and we can quickly describe the eigenvalues of H−1

0 . We will later show that
the norm of (H−1 − H−1

0 ) is very small in Sec. 4. The strategy is then to apply
Theorem 2.1 to H−1

0 and H−1, which gives a more precise estimate on the location
of the outliers in H . See Remark 4.2 for further discussion.

Corollary 3.1 (Inverse Spectrum). Under the assumption (A), with high
probability, in the spectrum of the matrix H−1

0 there are exactly two real outliers

ζ1 =
1

1 + O(α−1/2)
= 1 + o(1), (3.7)

ζ2 =
1

α

β
+ O(α−1/2)

=
β

α
+ o(1), (3.8)

and all the other eigenvalues of H−1
0 have modulus smaller than (

√
α(1+ o(1))−1 =

o(1).

Proof. The location of the two real outliers in the spectrum of H−1
0 comes from

part (2) in Proposition 3.2. The location of all the other eigenvalues comes from
part (1) and (3) in Proposition 3.2.

We now turn to the description of the global behavior of the spectrum of A.

3.3. Limiting spectral distribution of A

If we have an SBM with two blocks of equal size, and p, q = ω(1/n), the empiri-
cal spectral distribution of A√

α
will converge weakly to the semicircle law: for any

bounded continuous test function f , almost surely

1
n

n∑
i=1

f(λi(A/
√

α)) → 1
2π

∫ 2

−2

f(t)
√

4 − t2dt. (3.9)

This can be seen from the graphon representation of SBMs and the result for gener-
alized Wigner matrices ([33, Sec. 4]), since each row in EA has the same row sum or
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equivalently, each vertex has the same expected degree. If the degree is not homo-
geneous, then the limiting spectral distribution will not be the semicircle law. We
recall the following result from [33] for generalized Wigner matrices, which includes
the regime where the sparsity parameter is ω(1/n).

Theorem 3.1 ([33, Theorem 4.2]). Let An be a random Hermitian matrix such
that entries on and above the diagonal are independent and satisfy the following
conditions :

(1) E[aij ] = 0, E|aij |2 = sij.
(2) 1

n

∑n
j=1 sij = 1 + o(1) for all i ∈ [n].

(3) For any constant η > 0, limn→∞ 1
n2

∑
1≤i,j≤n E[|aij |21(|aij | ≥ η

√
n)] = 0.

(4) supij sij ≤ C for a constant C > 0.

Then the empirical spectral distribution of An√
n

converges weakly to the semicircle
law almost surely, which means that on an event with probability 1, the convergence
(3.9) holds for any bounded continuous function f .

We obtain the following theorem for the adjacency matrix A of an SBM, and
also for H0.

Theorem 3.2. Assume α → ∞ and p, q → 0. The empirical spectral distribution
of A√

α
converges weakly to the semicircle law supported on [−2, 2] almost surely.

Moreover, the empirical spectral distribution of H0√
α

converges weakly almost
surely to a distribution on the circle of radius 1, and the limiting distribution of
the real part of the eigenvalues of H0 is the semicircle law rescaled on [−1, 1].

Proof. We first consider the centered and scaled matrix

M := (mij)1≤i,j≤n =
A − EA√
(p + q)/2

.

For i 
= j we have

E[|mij |2] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q(1 − q)
(p + q)/2

if i, j are in the same block,

p(1 − p)
(p + q)/2

otherwise.

Then for all i ∈ [n],

1
n

∑
j

E[|mij |2] =
1
n

((n

2
− 1

) p(1 − p)
(p + q)/2

+
n

2
q(1 − q)
(p + q)/2

)
= 1 + o(1).

One can quickly check that all the conditions in Theorem 3.4 hold for M . There-
fore the empirical spectral distribution of

M√
n

=
A − (EA + pI)√

n(p + q)/2
+

pI√
n(p + q)/2
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converges weakly to the semicircle law. Or equivalently the empirical spectral dis-
tribution of A−(EA+pI)√

α
converges weakly almost surely to the same distribution.

Finally, since the rank of the matrix (EA + pI) is 2 and by the Cauchy interlacing
theorem for the eigenvalue of Hermitian matrices, the empirical spectral distribution
of A√

α
converges weakly to the semicircle law almost surely.

We now turn to the second part of the theorem. Note that from (3.3), one
eigenvalue λi(A) corresponds to two eigenvalues of H0 momentarily denoted by
μ2i−1(H0), μ2i(H0), and such that

Re μ2i−1(H0) = Re μ2i(H0) =
λi(A)

2
.

The empirical spectral distribution of the real parts of eigenvalues of H0/
√

α satisfies

1
2n

2n∑
j=1

δRe(μj/
√

α) =
1
n

n∑
i=1

δλi/2
√

α,

which converges weakly almost surely to the semicircle law rescaled on [−1, 1] by
the first part of the theorem.

3.4. Concentration of the degrees

We finally describe the degrees in the SBM. Let us note di the degree of vertex i in
the SBM graph. Under the assumption (A), we have α = ω(log n), and the degrees
are highly concentrated in the following sense.

Lemma 3.1. With high probability maxi∈[n] |di − α| = o(α).

Remark 3.1. Note that Lemma 3.1 is no longer true in other regimes. When
α = O(log n), the event di = (1 + o(1))α for all i ∈ [n] does not happen with high
probability (see, for example, [10, Chap. 3]). Then the diagonal degree matrix D is
not close to αI, which is a barrier for our perturbation analysis to work.

Lemma 3.1 can be found in the literature, but we provide a proof for complete-
ness. We recall Bernstein’s inequality: let Yn =

∑n
i=1 Xi where Xi are independent

random variables such that |Xi| ≤ b. Define σ2
n := Var(Yn). Then for any x > 0,

P(|Yn − E[Yn]| ≥ x) ≤ 2 exp
( −x2

2(σ2
n + bx/3)

)
.

Now we prove Lemma 3.1.

Proof. Each di has the same distribution with mean α, hence we can apply the
union bound and get

P

(
max
i∈[n]

|di − α| ≥ x

)
≤

∑
i∈[n]

P(|di − α| ≥ x) = nP(|d1 − α| ≥ x). (3.10)

Let us write d1 = X2+· · ·+Xn/2+Xn/2+1+· · ·+Xn, where the Xi are independent,
and Xi is a Bernoulli random variable with parameter p if i ∈ {2, . . . , n/2} and q if
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i ∈ {n/2 + 1, . . . , n}. Those variables are all bounded by 1 so we can take b = 1 in
Bernstein’s inequality. The variance is

σ2
n =

(n

2
− 1

)
p(1 − p) +

n

2
q(1 − q) ≤ α.

From (3.10) and Bernstein’s inequality we have

P(|d1 − α| ≥ x) ≤ 2 exp
( −x2

2(α + x/3)

)
.

Let h(n) be any sequence of positive numbers. The choice x = α
h(n) then leads to

P

(
max
i∈[n]

|di − α| ≥ x

)
≤ 2 exp

(
log n − α

2h2(n) + 2h(n)/3

)
.

Since we know α = ω(log n), any choice of h(n) growing to ∞ slowly enough will
be sufficient; for instance if α = log(n)f(n) with f(n) → ∞, we take h(n) = f(n)1/3

and we obtain that maxi∈[n] |di − α| = o(α) with probability 1 − o(1).

4. Proof of Theorem 1.1

4.1. Existence of bulk insiders

In this section we prove the existence of the isolated eigenvalues inside the bulk. To
do this, we compare the spectrum of H (defined in (1.3)) and H0 (defined in (3.2)).
We also need to compare the spectrum of H−1 and H−1

0 to have a more refined
estimate compared to [31]. See Remark 4.2 for further discussion.

Fix any non-singular square matrix X . One can easily check that[
A −X

I 0

]−1

=

[
0 I

−X−1 X−1A

]
(4.1)

and by conjugation the spectrum of this matrix is the same as the spectrum of the
matrix [

X−1A −X−1

I 0

]
.

Let us introduce the matrices

K =

[
(D − I)−1A −(D − I)−1

I 0

]
and K0 =

[
(α − 1)−1A −(α − 1)−1I

I 0

]
.

(4.2)

These matrices have the same spectrum as (respectively) H−1 and H−1
0 and we are

going to apply Theorem 2.1 to them. First, one has to note that the spectrum of
K is indeed bounded away from zero. More precisely, all the eigenvalues of H are
bounded below by 1, as explained in the following statement ([5, Theorem 3.7], the
same result for finite graphs was first given in [20]): let dmin ≥ 2 and dmax be the
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minimal and maximal degrees of some finite or infinite graph G. Then the spectrum
of B is included in

{λ ∈ C \ R :
√

dmin − 1 ≤ |λ| ≤
√

dmax − 1} ∪ {λ ∈ R : 1 ≤ |λ| ≤ dmax − 1}.
(4.3)

We see from Lemma 3.1 that with high probability all the degrees in our graph
are greater than 2, hence every eigenvalue of H has modulus greater than 1, thus
ensuring that every eigenvalue μ of H−1 has |μ| ≤ 1. We now apply Theorem 2.1
to K and K0. It is easily seen from (4.2) that K0 is QEP-diagonalizable and the
change-of-basis matrix P is unitary since A is Hermitian. We take

X = (α − 1)−1I, and Y = (D − I)−1. (4.4)

From Theorem 2.1, we have

ε := max
μ∈Spec(H−1)

ε(μ) = max
μ∈Spec(H−1)

√
κ(P )

√
‖X − Y + μ(Y − X)A‖

≤ max
μ∈Spec(H−1)

√
‖X − Y ‖(1 + |μ|‖A‖)

≤ max
μ∈Spec(H−1)

√
‖X − Y ‖(1 + ‖A‖)

≤
√
‖X − Y ‖(1 + α(1 + o(1)),

where the last line holds with high probability from the description of the spectrum
of A in Proposition 3.1. It turns out that ε = o(1), as a consequence of the following
lemma.

Lemma 4.1. For X and Y defined in (4.4), with high probability ‖X−Y ‖ = o(α−1).

Proof. Since X, Y are diagonal matrices, we have

‖X − Y ‖ = max
i∈[n]

∣∣∣∣ 1
di − 1

− 1
α − 1

∣∣∣∣ = max
i∈[n]

|di − α|
(di − 1)(α − 1)

.

By Lemma 3.1, with high probability maxi∈[n] |di − α| = o(α) and this implies the
lemma.

We thus have ε = o(1) and now we can combine the “multiplicities preserved”
part of Theorem 2.1 and the description of the spectrum of K0 in Corollary 3.1.

Remark 4.1. Recall ζ1, ζ2 from Corollary 3.1. The crucial fact here is that ζ1 ≈ 1
and ζ2 ≈ β/α are of order 1 and in particular they are bounded away from 0, which
is guaranteed by the third inequality in our assumption (A).

Theorem 2.1 implies that there is exactly one eigenvalue of K in B(ζ1, ε), one in
B(ζ2, ε) and all the other eigenvalues have modulus o(1). In other words, there are
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exactly two eigenvalues ξ1, ξ2 of H such that

ξ−1
1 = 1 + o(1), ξ−1

2 =
β

α
+ o(1),

and all the other ones have inverse modulus o(1). By the continuity of x �→ x−1, we
have exactly two eigenvalues of H ,

ξ1 = 1 + o(1), ξ2 =
α

β
+ o(1), (4.5)

which are of order 1, and all the other eigenvalues of H have inverse modulus ω(1).
Since 0 is always an eigenvalue of the Laplacian D − A, we have

1 ∈ {z ∈ C : det(z2I − zA + D − I) = 0},
which implies 1 is always an eigenvalue of H . So ξ1 is indeed exactly equal to
1, otherwise we have three eigenvalues of H : 1, ξ1 and ξ2 that are of order 1, a
contradiction to (4.5).

Moreover, ξ2 must be a real eigenvalue of H , otherwise from the fact that the
spectrum of B is symmetric with respect to the real line, we would see two eigen-
values of K in the ball B(ζ2, ε), which is a contradiction to Theorem 2.1. This
completes the proof of (1.5).

4.2. Existence of the outliers

We now simply apply Theorem 2.1 to the matrices H defined in (1.3) and H0

defined in (3.2). Here, A = B and in fact we are in the setting of Corollary 2.1 with
X = (α − 1)I and Y = D − I. Hence

ε =
√
‖X − Y ‖ =

√
max
i∈[n]

|di − α| = o(
√

α)

with high probability from Lemma 3.1. From the description of the spectrum of H0

in Proposition 3.2, we see that there are two outliers located near β and α and all
other eigenvalues have order O(

√
α). From this and the “multiplicities preserved”

part in Corollary 2.1, we see that H has two outliers located within distance o(
√

α)
of

λ1(H0) = α + O(α3/4), and λ2(H0) = β + O(α3/4).

By the symmetry of the spectrum with respect to the real line, those two outliers
are real numbers. This completes the proof of (1.4).

Remark 4.2. Note that we could also use this strategy to infer the existence of
the bulk insiders: in fact, the result would yield the existence of two eigenvalues
located in the balls B(1, ε) and B(α/β, ε). These eigenvalues would be detached
from the bulk of eigenvalues of H , which lie within distance o(

√
α) of the circle of

radius
√

α; however, no further information can be inferred, since o(
√

α) can go to
infinity as well. This is the reason why we had to compare H−1 with H−1

0 , which
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has two effects: first, it isolates the two “insiders” of H0 and the other eigenvalues
close to zero; and secondly, it turns out that the norm of H−1 − H−1

0 is very
small. In addition, our use of the specific Bauer–Fike theorem designed for QEP
(Theorem 2.1) yields more precise results than [31].

4.3. Global spectral distribution

We now prove the “bulk” part of Theorem 1.1. The strategy is the same as [31] and
we borrow their main theorem.

Theorem 4.1 ([31, Corollary 3.3]). Let Mm and Pm be m × m matrices with
entries in complex numbers, and let f(z, m) ≥ 1 be a real function depending on
z, m. Let μM be the empirical spectral distribution of any square matrix M . Assume
that

1
m
‖Mm‖2

F +
1
m
‖Mm + Pm‖2

F (4.6)

is bounded in probability, and

f(z, m)‖Pm‖ → 0 (4.7)

in probability, and for almost every complex number z ∈ C,

‖(Mm − zI)−1‖ ≤ f(z, m) (4.8)

with probability tending to 1, then μMm −μMm+Pm converges in probability to zero.

Recall H from (1.3) and H0 from (3.2). Take

Mm =
H0√

α
, Pm =

1√
α

(H − H0) =
1√
α

[
0 αI − D

0 0

]

in Theorem 4.1. If all the conditions in Theorem 4.1 hold, then the “bulk” part of
Theorem 1.1 follows from our Theorem 3.2.

The condition (4.6) follows verbatim from the proof of [31, Lemma 3.7]. Condi-
tion (4.7) follows from [31, Lemma 3.9] and our Lemma 3.1. Condition (4.8) follows
from [31, Lemma 3.9]. This completes the proof of global spectral distribution part
of Theorem 1.1.
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