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1 | INTRODUCTION

Clustering is an important topic in network analysis, machine learning, and computer vision [24]. Many
clustering algorithms are based on graphs, which represent pairwise relationships among data. Hyper-
graphs can be used to represent higher-order relationships among objects, including co-authorship and
citation networks, and they have been shown empirically to have advantages over graphs [40]. Recently
hypergraphs have been used as the data model in machine learning, including recommender system
[38], image retrieval [5, 30] and bioinformatics [39]. The stochastic block model (SBM) is a gener-
ative model for random graphs with community structures, which serves as a useful benchmark for
clustering algorithms on graph data. It is natural to have an analogous model for random hypergraphs
to model higher-order relations. In this paper, we consider a higher-order SBM called the hypergraph
stochastic block model (HSBM). Before describing HSBMs, let’s recall clustering on graph SBMs.
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1.1 | The stochastic block model for graphs

In this section, we summarize the state-of-the-art results for graph SBM with two blocks of roughly
equal size. Let X, be the set of all pairs (G, o), where G=([n], E) is a graph with vertex set [n] and
edge set E, 0 = (04, ... ,0,) € {+1,—1}" are spins on [n], i.e., each vertex i € [n] is assigned with a
spin o; € {—1,+1}. From this finite set X, one can generate a random element (G, o) in two steps.

1. First generate i.i.d random variables o; € {—1, +1} equally likely for all i € [n].
2. Then given o = (o}, ... ,0,), we generate a random graph G where each edge {i,j} is included
independently with probability p if 6; = o; and with probability g if o; # o;.

The law of this pair (G, o) will be denoted by G(n, p, g). In particular, we are interested in the
model G(n, p,, g,) Where p,, g, are parameters depending on n. We use the shorthand notation Pg_ to
emphasize that the integration is taken under the law G(n, p,,, q,,).

Imagine C; = {i : 0, =+1} and C; = {i : 6; = —1} as two communities in the graph G. Observ-
ing only G from a sample (G, o) from the distribution G(n, p,, g,,), the goal of community detection is
to estimate the unknown vector ¢ up to a sign flip. Namely, we construct label estimators 6; € {+1}
for each i and consider the empirical overlap between 6 and unknown ¢ defined by

ovy(6.0) 1= L Y 6i6i. (1.1
n

i€[n]

We may ask the following questions about the estimation as n tends to infinity:

1. Exact recovery (strong consistency):
nli_}rgIP’gn {ovu(6,0) =1} U {ov,(6,0)=—-1}) = 1.
2. Almost exact recovery (weak consistency): for any € > 0,
r}i_}r?o]P’g,x ({lovp(6,0) = 1| > e} n {|ovy(6,0) + 1| > €}) = 0.

3. Detection: Find a partition which is correlated with the true partition. More precisely, there
exists a constant r > 0 such that it satisfies the following: for any € > 0,

LimPg ({|ov,(6,0) — 1| > €} N {|ov,(6,0) + 7| > €}) = 0. (1.2)

There are many works on these questions using different tools, we list some of them. A conjecture
of [14] based on nonrigorous ideas from statistical physics predicts a threshold of detection in the SBM,
which is called the Kesten—Stigum threshold. In particular, if p, = % and g, = % where a, b are pos-
itive constants independent of , then the detection is possible if and only if (a — b)? > 2(a + b). This
conjecture was confirmed in [8, 32, 33, 35] where [8, 32, 35] provided efficient algorithms to achieve
the threshold. Very recently, two alternative spectral algorithms were proposed based on distance
matrices [36] and a graph powering method in [3], and they both achieved the detection threshold.

alogn _ blogn

Suppose p, = == where a, b are constant independent of n. Then the exact recovery

is possible if and only if (\/_ - \/Z)z > 2, which was solved in [2, 23] with efficient algorithms
achieving the threshold. Besides the phase transition behavior, various algorithms were proposed
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and analyzed in different regimes and more general settings beyond the 2-block SBM [4, 7, 10, 11,
13, 22, 28, 34, 37], including spectral methods, semidefinite programming, belief-propagation, and
approximate message-passing algorithms. We recommend [1] for further details.

1.2 | Hypergraph stochastic block models

The hypergraph stochastic block model (HSBM) is a generalization of the SBM for graphs, which
was first studied in [18], where the authors consider hypergraphs generated by the stochastic block
models that are dense and uniform. A faithful representation of a hypergraph is its adjacency tensor (see
Definition 2.2). However, most of the computations involving tensors are NP-hard [25]. Instead, they
considered spectral algorithms for exact recovery using hypergraph Laplacians. Subsequently, they
extended their results to sparse, nonuniform hypergraphs [19-21]. For exact recovery, it was shown
that the phase transition occurs in the regime of logarithmic average degrees in [11, 12, 29] and the
exact threshold was given in [27], by a generalization of the techniques in [2]. Almost exact recovery
for HSBMs was studied in [11, 12, 21].

For detection of the HSBM with two blocks, the authors of [6] proposed a conjecture that the
phase transition occurs in the regime of constant average degree, based on the performance of the
belief-propagation algorithm. Also, they conjectured a spectral algorithm based on nonbacktracking
operators on hypergraphs could reach the threshold. In [17], the authors showed an algorithm for detec-
tion when the average degree is bigger than some constant by reducing it to a bipartite stochastic block
model. They also mentioned a barrier to further improvement. We confirm the positive part of the
conjecture in [6] for the case of two blocks: above the threshold, there is a spectral algorithm which
asymptotically almost surely constructs a partition of the hypergraph correlated with the true partition.

Now we specify our d-uniform hypergraph stochastic block model with two clusters. Analogous
to G(n, pu, qn), we define H(n, d, p,, q,) for d-uniform hypergraphs. Let X, be the set of all pair (H, ),
where H = ([n], E) is a d-uniform hypergraph (see Definition 2.1) with vertex set [n] and hyperedge
set E, 0 = (04, ... ,0,) € {+1,—1}" are the spins on [n]. From this finite set X,, one can generate a
random element (H, o) in two steps.

(1) First generate i.i.d random variables o; € {—1,+1} equally likely for all i € [n].

(2) Then given ¢ = (o4, ... ,0,), Wwe generate a random hypergraph H where each hyperedge
{i1, ... g} is included independently with probability p, if 6;, = - - - = o;, and with probability
gn if the spins o; , ... o;, are not the same.

The law of this pair (H, o) will be denoted by H(n,d, p,,q,). We use the shorthand notation ]P’Hn
and [, to emphasize that integration is taken under the law H(n, d, p,, g,). Often we drop the index
n from our notation, but it will be clear from IP’Hn.

1.3 | Main results

We consider the detection problem of the HSBM in the constant expected degree regime. Let

a . b

Pui= (d:>, Gn i= (T)

for some constants a > b > 0 and a constant integer d > 3. Let

d—1 _ _
a:i=(d- 1)“(22‘,—_11)17, fi=(d- 1)‘;d_f’. (1.3)
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FIGURE1 An HSBM with d =3. Vertices in blue and red have spin + and —, respectively

Here « is a constant which measures the expected degree of any vertex, and f measures the discrepancy
between the number of neighbors with + sign and — sign of any vertex. For d =2, a, § are the same
parameters for the graph case in [32]. Now we are able to state our main result which is an extension
of the result of for graph SBMs in [32]. Note that with the definition of «, §, we have a« > f. The
condition #? > « in the statement of Theorem (1.1) below implies a, f > 1, which will be assumed
for the rest of the paper.

Theorem 1.1. Assume p> > a. Let (H,0) be a random labeled hypergraph sampled from
H(n,d,pn,q,) and BY be its Ith self-avoiding matrix (see Definition 2.6). Set | = clog(n) for a con-
stant ¢ such that clog(a) < 1/8. Let x be a l,-normalized eigenvector corresponding to the second
largest eigenvalue of BY. There exists a constant t such that, if we define the label estimator &; as

) {+1 if x; > t/4/n,
O =

-1 otherwise,

then detection is possible. More precisely, there exists a constant r > 0 such that the empirical overlap
between 6 and o defined similar to (1.1) satisfies the following: for any € > 0,

lim Py, ({Iovn(6,a) —r| > e} ﬂ{lovn(6',6)+ r| > 5}) = 0.

Remark 1.2. If we take d =2, the condition f? > « is the threshold for detection in graph SBMs
proved in [32, 33, 35]. When d > 3, the conjectured detection threshold for HSBMs is given in Equation

(48) of [6]. With our notations, in the 2-block case, Equation (48) in [6] can be written as Z—;Z = %: ,

which says #? = « is the conjectured detection threshold for HSBMs. This is an analog of the Kesten-
Stigum threshold proved in the graph case [8, 14, 32, 33, 35]. Our Theorem 1.1 proves the positive
part of the conjecture.

Our algorithm can be summarized in two steps. The first step is a dimension reduction: BY has n?
many entries from the original adjacency tensor T (see Definition 2.2) of n¢ many entries. Since the
I-neighborhood of any vertex contains at most one cycle with high probability (see Lemma 4.4), by
breadth-first search, the matrix B® can be constructed in polynomial time. The second step is a simple
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spectral clustering according to leading eigenvectors as the common clustering algorithm in the graph
case.

Unlike graph SBMs, in the HSBMs, the random hypergraph H we observe is essentially a random
tensor. Getting the spectral information of a tensor is NP-hard [25] in general, making the correspond-
ing problems in HSBMs very different from graph SBMs. It is not immediately clear which operator
to associate to H that encodes the community structure in the bounded expected degree regime. The
novelty of our method is a way to project the random tensor into matrix forms (the self-avoiding matrix
B® and the adjacency matrix A) that give us the community structure from their leading eigenvectors.
In practice, the hypergraphs we observed are usually not d-uniform, which cannot be represented as a
tensor. However, we can still construct the matrix B?’ since the definition of self-avoiding walks does
not depend on the uniformity assumption. In this paper, we focus on the d-uniform case to simplify
the presentation, but our proof techniques can be applied to the nonuniform case.

The analysis of HSBMs is harder than the original graph SBMs due to the extra dependency in the
hypergraph structure and the lack of linear algebra tools for tensors. To overcome these difficulties,
new techniques are developed in this paper to establish the desired results.

There are multiple ways to define self-avoiding walks on hypergraphs, and our definition (see
Definition 2.4) is the only one that works for us when applying the moment method. We develop a
moment method suitable for sparse random hypergraphs in Section 7 that controls the spectral norms
by counting concatenations of self-avoiding walks on hypergraphs. The combinatorial counting argu-
ment in the proof of Lemma 7.1 is more involved as we need to consider labeled vertices and labeled
hyperedges. The moment method for hypergraphs developed here could be of independent interest for
other random hypergraph problems.

The growth control of the size of the local neighborhood (Section 4) for HSBMs turns out to be
more challenging compared to graph SBMs in [32] due to the dependency between the number of
vertices with spin + and —, and overlaps between different hyperedges. We use a new second-moment
estimate to obtain a matching lower bound and upper bound for the size of the neighborhoods in the
proof of Theorem 8.4. The issues mentioned above do not appear in the sparse random graph case.

To analyze the local structure of HSBMs, we prove a new coupling result between a typical neigh-
borhood of a vertex in the sparse random hypergraph H and a multi-type Galton—Watson hypertree
described in Section 10, which is a stronger version of local weak convergence of sparse random hyper-
graphs (local weak convergence for hypergraphs was recently introduced in [15]). Compared to the
classical 2-type Galton—Watson tree in the graph case, the vertex + labels in a hyperedge is not assigned
independently. We carefully designed the probability of different types of hyperedges that appear in
the hypertree to match the local structure of the HSBM.

Combining all the new ingredients, we obtain the weak Ramanujan property of B® for sparse
HSBMs in Theorem 6.1 as a generalization of the results in [32]. We conclude the proof of our
Theorem 1.1 in Section 6.

Our Theorem 1.1 deals with the positive part of the phase transition conjecture in [6]. To have a
complete characterization of the phase transition, one needs to show an impossibility result when 2 <
a. Namely, below this threshold, no algorithms (even with exponential running time) will solve the
detection problem with high probability. For graph SBMs, the impossibility result was proved in [33]
based on a reduction to the broadcasting problem on Galton—Watson trees analyzed in [16]. To answer
the corresponding problem in the HSBMs, one needs to establish a similar information-theoretical
lower bound for the broadcasting problem on hypertrees and relate the problem to the detection problem
on HSBMs. To the best of our knowledge, even for the very first step, the broadcasting problem on
hypertrees has not been studied yet. The multi-type Galton—Watson hypertrees described in Section 10
can be used as a model to study this type of problem on hypergraphs. We leave it as a future direction.
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2 | PRELIMINARIES

Definition 2.1 (Hypergraph). A hypergraph H is a pair H=(V, E) where V is a set of vertices and £
is the set of nonempty subsets of V called hyperedges. If any hyperedge e € E is a set of d elements
of V, we call H d-uniform. In particular, 2-uniform hypergraph is an ordinary graph. A d-uniform
hypergraph is complete if any set of d vertices is a hyperedge and we denote a complete d-uniform
hypergraph on [n] by K, 4. The degree of a vertex i€V is the number of hyperedges in H that
contains 1.

Definition 2.2 (Adjacency tensor). Let H = (V, E) be a d-uniform hypergraph with V = [n]. We define

T to be the adjacency tensor of H such that for any set of vertices {i}, i, ...,i4},
T 1 if {il,...,id}EE,
et 0 otherwise.

We set To(i)o6,), ... o6, = i
e= {il, cees id}.

i, for any permutation ¢. We may write T in place of T; . ; where

1o eee

Definition 2.3 (Adjacency matrix). The adjacency matrix A of a d-uniform hypergraph H = (V, E) with
vertex set [n] is a n X n symmetric matrix such that for any i #j, A; is the number of hyperedges in E
which contains 7, j and A; =0 for i € [n]. Equivalently, we have

A= {ze:{w‘}eeTe if i),
;=

0 if i=].

Definition 2.4 (Walk). A walk of length [ on a hypergraph H is a sequence (io, €1, i1, ..., e, i;) such
that i;_; #i; and {i;_1,i;} Ce; for all 1 <j<I. A walk is closed if ip =7; and we call it a circuit. A
self-avoiding walk of length [ is a walk (i, e1, i1, ... , €1, i;) such that

M Niosin, ..., iy =1+1.
(2) Any consecutive hyperedges e;_ 1, e; satisfy e;_ 1 Ne;j={ij_} for 2<j <1
(3) Any two hyperedges e;, ex with 1 <j<k <1 k#j+ 1 satisfy ¢; nex =0.

See Figure 2 for an example of a self-avoiding walk in a 3-uniform hypergraph. Recall that a
self-avoiding walk of length / on a graph is a walk (iy, ... , {;) without repeated vertices. Our definition
is a generalization of the self-avoiding walk to hypergraphs.

Definition 2.5 (Cycle and hypertree). A cycle of length [ with />2 in a hypergraph H is a walk
(ip, €15 --- ,1j—1,€1,ip) such that iy, ... i;_ are distinct vertices and e; ... ¢; are distinct hyperedges. A
hypertree is a hypergraph which contains no cycles.

Let ( [Z] ) be the collection of all subsets of [n] with size d. For any subset e € ( [Z] ) and i #j € [n],

we define

e _
A =

1 if {i,j} €Ee and e € E,
0 otherwise,
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FIGURE 2 A self-avoiding walk of length 4 denoted by (vy, e, v, €3, V2, €3, V3, €4, V4)

and we define A¢ = 0 for all i € [n]. With our notation above, A; = Y. _/.,\A%. We have the following
i g ee( g ) ij

expansion of the trace of A* for any integer k > 0:

k _ AL R € k-1 C
trAk = Z AiiAiiy - Ay iy = Al AL AT
igsins -e-sig_1 Eln] igulys - siy €l
c,,....eke(lz‘)
Therefore, trA* counts the number of circuits (i, €1, i1, ... , ix— 1, €k, ip) in the hypergraph H of length

k. This connection was used in [31] to study the spectra of the Laplacian of random hypergraphs.
From our definition of self-avoiding walks on hypergraphs, we associate a self-avoiding adjacency
matrix to the hypergraph.

Definition 2.6 (Self-avoiding matrix). Let H = (V, E) be a hypergraph with V = [n]. For any /> 1, a lth
self-avoiding matrix B? is a n X n matrix where for i #j € [n], Bg) counts the number of self avoiding

walks of length / from i to j and BE? =0forieln].

B® is a symmetric matrix since a time-reversing self avoiding walk from i to j is a self avoiding walk
from j to i. Let SAW; be the set of all self-avoiding walks of length / connecting i and j in the complete
d-uniform hypergraph on vertex set [r]. We denote a walk of length [ by w = (ip, e;, ... ,i1-1, €, 1)

Then for any i,j € [n],
I

B = Y TJa’. 2.1

WESAW,; 1=1

3 | MATRIX EXPANSION AND SPECTRAL NORM BOUNDS

Consider a random labeled d-uniform hypergraph H sampled from H (n,d, p,, g,) with adjacency
matrix A and self-avoiding matrix B®. Let A := Ey [A|o]. Let p(A) := sup,.;, - [lAx]l2 be the
spectral norm of a matrix A. Recall (2.1), define

l
. €; —€i,
Afj) = Z H(Ai,ili, _Aililil), (31)
WESAW,; 1=1
e,

where X?ﬁli =Ey [A;" ; |o]. A? can be regarded as a centered version of B,

L1l
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We will apply the classical moment method to estimate the spectral norm of A%, since this method
works well for centered random variables. Then we can relate the spectrum of A? to the spectrum
of BY through a matrix expansion formula which connects A, B® and A? in the following theorem.
Recall the definition of « in (1.3).

Theorem 3.1. Let H be a random hypergraph sampled from H (n,d, p,, q,) and BY be its Ith self
avoiding matrix. Then the following holds.

1. There exist some matrices {T'""™ }£n21 such that for any 1 > 1, BY satisfies the identity

1 !
B = AV 4 Y (ACmARM) = N i, (3.2)

m=1 m=1

2. For any sequence l,, = O(log n) and any fixed € > 0,

lim Py, (p(A%) < nfah/?) = 1, 3.3)
ln
Y}LIEO]P)H,, <ﬂ {p(r‘(ln,ﬂ’l)) < nE—la(1n+m)/2}> =1. (34)
m=1

Theorem 3.1 is one of the main ingredients to show B has a spectral gap. Together with the local
analysis in Section 4, we will show in Theorem 6.1 that the bulk eigenvalues of B’ are separated from
the first and second eigenvalues. The proof of Theorem 3.1 is deferred to Section 7. The matrices
(rtmy fn=1 in Theorem 3.1 record concatenations of self-avoiding walks with different weights, which
will be carefully analyzed in Lemma 7.2 of Section 7.

4 | LOCAL ANALYSIS

In this section, we study the structure of the local neighborhoods in the HSBM. Namely, what the
neighborhood of a typical vertex in the random hypergraph looks like.

Definition 4.1. In a hypergraph H, we define the distance d(i,j) between two vertices i, to be the
minimal length of walks between i and j. Define the #-neighborhood V(i) of a fixed vertex i to be the
set of vertices which have distance 7 from i. Define V(i) : = |J,.,Vk(i) to be the set all of vertices
which have distance at most ¢ from i and Vs, = [n]\ V<. Let V(i) be the vertices in V(i) with spin +
and define it similarly for VZ,(i).

For i € [n], define

Si@) = Vil D)= Y o

jrdGij=t

Letl=(1...,1) € R"andrecall ¢ € {—1,1}". We will show that when [ = clogn with cloga <
1/8, S,(i), D(i) are close to the corresponding quantities (B”'1);, (B”s); (see Lemma 11.1). In partic-
ular, the vector (D;(i))1 <; <, is asymptotically aligned with the second eigenvector of B®, from which
we get the information on the partitions.

We give the following growth estimates of S;(i) and D,(i). The proof of Theorem 4.2 is given in
Section 8.
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Theorem 4.2. Assume > > a > 1 and | = clogn, for a constant c such that cloga < 1/4. There
exists constants C,y > 0 such that for sufficiently large n, with probability at least 1 — O(n™") the
following holds for alli€ [n] and 1 <t<I:

S,(i) < Clog(n)a', 4.1
|D,(i)] < Clog(n)p', 4.2)
S,(i) = a'7'S)(i) + O(log(n)a'’?), 4.3)
D,(i) = p'~'Dy(i) + Olog(n)a'’?). (4.4)

The approximate independence of neighborhoods of distinct vertices is given in the following
lemma. It will be used later to analyze the martingales constructed on the Galton—Watson hypertree
defined in Section 10. The proof of Lemma 4.3 is given in Appendix A.1.

Lemma 4.3.  For any two fixed vertices i #j, let | = clog(n) with constant clog(a) < 1/4. Then
the total variation distance between the joint law E((Uki(i))kg, (Uki(i))kg) and the law with the same
marginals and independence between them, denoted by L(( U,:—'(i))ksz ® (Uki(j))kg), is O(n™7) for some
y > 0.

Now we consider number of cycles in V(i) of any vertex i € [n]. We say H is [-tangle-free if for
any i € [n], there is no more than one cycle in V ¢(i).

Lemma 4.4. Assume | = clogn with clog(a) < 1/4. Let (H, 6) be a sample from H (n,d, p,, qy,).
Then
lim Py, (|{i € [n] : V(i) contains at least one cycle}| < 10g4(n)a21) =1,
lim Py, (H is [-tangle-free) = 1.
The proof of Lemma 4.4 is given in Appendix A.2.
In the next lemma, we translate the local analysis of the neighborhoods to the control of vectors

B™1, B¢ The proof is similar to the proof of Lemma 4.3 in [32], and we include it in Appendix
A0.3. For any event A,,, we say A, happens asymptotically almost surely if lim,_, Pz (A,) = 1.

Lemma 4.5. Let B be the set of vertices i whose [—neighborhood contains a cycle. For | = clogn
with clog(a) < 1/4, asymptotically almost surely the following holds:

(1) forallm<landalli & B the following holds

(B V1) = o' I(BOD); + 0@V log ), (4.5)
(B Vo), = pm(BV6); + O(a™D/* log ). (4.6)
(2) Forallie B:
[(B™6);| < [(B™1);] < 225,(1') = O(a™ log n). .7)
=0

Combining Theorems 3.1,4.2, and Lemma 4.5, we are able to prove the following theorem.
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FIGURE 3 A Galton—Watson hypertree with d = 3. The vertices with spin + are in blue and vertices with spin — are in red

Theorem 4.6. Assume > > a > 1 and | = clogn with clog(a) < 1/8. Then the following holds:
forany e >0

lim Py, ( sup 1BOx]|, < nga’/2> =1

e lIxll,=12T (BOD)=xT (B 6)=0

Theorem 4.6 is a key ingredient to prove the bulk eigenvalues of B are O(n®a'/?) in Theorem 6.1.
The proof of Theorem 4.6 is given in in Section 9.

5 | COUPLING WITH MULTI-TYPE POISSON HYPERTREES

Recall the definition of a hypertree from Definition 2.5. We construct a hypertree growth process in
the following way. The hypertree is designed to obtain a coupling with the local neighborhoods of the
random hypergraph H.

o Generate a root p with spin 7(p) = +, then generate Pois (ﬁ) many hyperedges that only
intersects at p. Call the vertices in these hyperedges except p to be the children of p and of
generation 1. Call p to be their parent.

e For0<r<d-1,wedefine a hyperedge is of type r if  many children in the hyperedge has spin
7(p) and (d — 1 — r) many children has spin —7(p). We first assign a type for each hyperedge

independently. Each hyperedge will be of type (d — 1) with probability (Z;,l,)la and of type r with

o @=op() . (d=Da a—2 @=0o(*") "
probability —Q T for 0<r<d-2. Since o T >iso —a = 1, the probabilities

of being various types of hyperedges add up to 1. Because the type is chosen i.i.d for each
hyperedge, by Poisson thinning, the number of hyperedges of different types are independent
and Poisson.

e We draw the hypertree in a plane and label each child from left to right. For each type r hyper-
edge, we uniformly randomly pick r vertices among d — 1 vertices in the first generation to put
spins 7(p), and the rest d — 1 — r many vertices are assigned with spins —z(p).

o After defining the first generation, we keep constructing subsequent generations by induction.

For each children v with spin z(v) in the previous generation, we generate Pois (ﬁ) many
hyperedges that pairwise intersects at v and assign a type to each hyperedge by the same rule with
7(p) replaced by z(v). We call such random hypergraphs with spins a multi-type Galton—Watson
hypertree, denoted by (7, p, 7) (see Figure 3).

Let Wi be the number of vertices with + spins at the rth generation and W be the number of
hyperedges which contains exactly r children with spin + in the 7th generation. Let G, := o(WE, 1 <
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k < t—1) be the o-algebra generated by W;", 1 < k <t — 1. From our definition, Wj = 1, Wy = 0 and
{W,(r) }o<r<d—1 are independent conditioned on G,_;, and the conditioned laws of Wt(r) are given by

_ . b .-
LWIG,-1) = Pois (25_1th1 + 2(,_1WZ_1> : (5.1)
. _ b
LW|G,_1) = Pois (2:_1Wt_1 + Wit 1) : (5.2)
b (d—l >
LW,"|G,-1) = Pois S W+ WL 1<r<d -2 (5.3)
We also have

d-1 d-1
W= YW, W= d-1-nw". (5.4)

r=0 r=0

Definition 5.1. A rooted hypergraph is ahypergraph H with a distinguished vertex i € V(H), denoted
by (H, i). We say two rooted hypergraphs (H, i) and (H', i) are isomorphic and if and only if there is a
bijection ¢ : V(H) — V(H’) such that ¢(i) = i’ and e € E(H) if and only if ¢(e) := {¢(j) : jE e} €
E(H).

Let (H, i, o) be arooted hypergraph with root i and each vertex j is given a spin o(j) € {—1,+1}. Let
(H', ', ") be arooted hypergraph with root i’ where for each vertex j € V(H'), a spin ¢’(j) € {—1,+1}
is given. We say (H,i,0) and (H',i’,6") are spin-preserving isomorphic and denoted by (H,i,0) =
(H',',c") if and only if there is an isomorphism ¢ : (H,i) — (H',i") with 6(v) = ¢’(¢(v)) for each
veV(H).

Let (H,i,0):, (T, p, 7); be the rooted hypergraphs (H, i, ¢), (T, p, T) truncated at distance ¢ from i, p
respectively, and let (T, p, —7) be the corresponding hypertree growth process where the root p has
spin —1. We prove a local weak convergence of a typical neighborhood of a vertex in the hypergraph
H to the hypertree process T we described above. In fact, we prove the following stronger statement.
The proof of Theorem 5.2 is given in Section 10.

Theorem 5.2. Let (H,0) be a random hypergraph H with spin o sampled from H,. Let i € [n] be
fixed with spin o;. Let | = clog(n) with clog(a) < 1/4, the following holds for sufficiently large n.

1. If o; = +1, there exists a coupling between (H,i,0) and (T, p, t) such that (H,i,0);, = (T, p,7);
with probability at least 1 —n~'3.

2. If 0, = —1, there exists a coupling between (H,i,o) and (T, p,—7) such that (H,i,o); =
(T, p, —7); with probability at least 1 —n~'5.

Now we construct two martingales from the Poisson hypertree growth process. Define two
processes
M, = (WS +Wr), A = p7(W = W).

Lemma 5.3.  The two processes {M,}, {A;} are G;-martingales. If f*> > a > 1, {M,} and {A,} are
uniformly integrable. The martingale {A,} converges almost surely and in L? to a unit mean random
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variable A,. Moreover, A, has a finite variance and
limE|A? — A% | = 0. (5.5)
=0
The following Lemma will be used in the proof of Theorem 1.1 to analyze the correlation between
the estimator we construct and the correct labels of vertices based on the random variable A,,. The

proof is similar to the proof of Theorem 4.2 in [32], and we include it in Appendix A.S.

Lemma 5.4. Letl = clogn with cloga < 1/8. For any € > 0,

n—oo

mmu(ﬁzy%m@—Ema
i=1

> e> =0. (5.6)

Let y € R" be a random sequence of l,-normalized vectors defined by

m . D (i)

y; 1<i<n.

N

Let x™ be any sequence of random vectors in R such that for any € > 0,
lim Py, (lx =yl > £) = 0
n—oo

For all T € R that is a point of continuity of the distribution of both A, and —A, for any € > 0, one
has the following
> £> =0,

hmIP’H <

3 o1 {x<"> > 7/VnE[AL] } P2 7)

ze[n] o=+
Lim Py, ( Z 1 {x(") > t/VnE[AL] } — fIP’( Ag > 7)| > e) 6.7
nee lE[l’l] o;=—

6 | PROOF OF THE MAIN RESULT

Let S; := (Si(1), ... ,S,(n)) and D; := (D((1), ... , Dy(n)). We say the the sequence of vectors {v,}>
is asymptotically aligned with the sequence of vectors {w,},> if

[newa)]
wo Ivallz - wall2

With all the ingredients in Sections 3—10, we establish the following weak Ramanujan property of B®).
The proof of Theorem 6.1 is given in Section 11.

Theorem 6.1. For [ = clog(n) with clog(a) < 1/8, asymptotlcally almost surely the two leading
eigenvectors of BY are asymptotically aligned with vectors Sl, D,, where the first eigenvalue is of order
O(a’) up to some logarithmic factor and the second eigenvalue is of order Q(f'). All other eigenvalues
are of order O(n®a'?) for any € > 0.
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Theorem 6.1 connects the leading eigenvectors of B with the local structures of the random
hypergraph H and shows that the bulk eigenvalues of B are separated from the two top eigenvalues.
Equipped with Theorem 6.1 and Lemma 5.4, we are ready to prove our main result.

Proof of Theorem 1.1.  Let x™ be the l,-normalized second eigenvector of B, by Theorem 6.1, x
is asymptotically aligned with the /;-normalized vector

y(n) — Dl(l) ,
\/ 2 DiG?

asymptotically almost surely. So we have ||x"™ —y®™ ||, = 0 or ||x® 4+ y™||, = 0 asymptotically almost
surely.

We first assume ||x" —y™||; — 0. Since EA, = 1, from the proof of Theorem 2.1 in [32], there
exists a point 7 € R, in the set of continuity points of both A,, and —A,, that satisfies r := P(A, >
7) = P(—~Ay > 7) > 0. Take t = 7/y/E(A%) and let N'*, N~ be the set of vertices with spin + and
—, respectively.

From the definition of &, we have

s 2o 20 (V) “irorvi))

le[nj lG[nJ

1 2 2
o Ei;ﬁm ’ ”igﬁl{xf»"’zw\/@} B ng;l{xwzf/@}' ©.1)

Note that izie[nldi — 0 in probability by the law of large numbers. From (5.7) in Lemma 5.4, we
have (6.1) converges in probability to P(Ay > 7) — P(=Ay > 7) = 7. If ||x™ 4+ y™||, = 0, similarly
we have Zl [x0i0i converges to —r in probability. From these two cases, for any £ > 0,

1<i<n

lim Py, <{|0vn(6', o) =l > e} [{lovu(6.0) + 1] > e}> —0.

This concludes the proof of Theorem 1.1. n

7 | PROOF OF THEOREM 3.1

7.1 | Proof of (3.2) in Theorem 3.1

For ease of notation, we drop the index »n from [, in the proof, and it will be clear from the law H,,. For
any sequences of real numbers {a, }£=1 , by }ﬁ=1, we have the following expansion identity for / > 2 (see
for example, Equation (15) in [32] and Equation (27) in [8]):

l

l 1 m l
H(Clr - b)) = Hat Z <H(at - br)) bim1 H ay.

t=1 t=1 m=1 \ t=1 t=l-m+2
Therefore the following identity holds.
!

[ [ I—m !
A i-mt1 H <
H(A’r 1l ’x 1’ H iyl Z H( byl 'z 1’ Ailfmilfnﬁl Air—lir-
=1 m=1

=1 =1 t=l-m+2



M_Wl LEY PAL AND ZHU

Summing over all w € SAW;, Ag) can be written as

l !
Bl('JD Z Z (H( VR ’r 1 >Alll’;1r:t+]m+1 H Aziili,' (7.1

m=1wESAW t=l-m+2

Introduce the set O} of walks w defined by concatenations of two self-avoiding walks w1, w, such
that w) is a self-avoiding walk of length [ — m from i to some vertex k, and w; is a self-avoiding walk
of length m from k to j for all possible 1 <m </ and k € [n]. Then SAW;; C Qy forall 1 <m <. Let

= Q/'\SAW;;. Define the matrix " as

1

(Lm) . _ ’1 m1 €iy
FU : Z H(Al ll ll ll ’l mll+m+l H Ail—lil. (72)

WER’” = t=l-m+2

From (7.1), Al(-;) can be expanded as

I I
Bg) Z Z <H(A’r 1 _A’zllll >Alll’:1;7]m+1 H Aziili,'

m= leQ"’\Rm t=l-m+2

It can be further written as

B(l) Z Z H(A’r Vi ’r 1y l:m”;;—lml H A’r 1l Z[‘(?’m).

m= lweQ"’ =1 t=l-m+2

From the definition of matrix multiplication, we have

1

A —A €y A Citomi1 I I
2 H( b1k b lll) = ml/ m+l ll lll

WEQ t= —m+!
_ (I-m)% (m—1) __ (I-m)% p(m—1)
= Y ALABYTY = (ACMAB ), (7.3)

iu
1<u,v<n

Combining the expansion of AE;) above and (7.3), we obtain
AY =B - Z(A“ "WAB™ V), + Zr” ", (7.4)

Since (7.4) is true for any i, j € [n], it implies (3.2).

7.2 | Proof of (3.3) in Theorem 3.1

We first prove the following spectral norm bound on A®,

Lemma 7.1. For [l = O(logn) and fixed k, we have

Ey [p(AD)*] = O(natlog®n). (7.5)
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FIGURE 4 A multigraph G(w) associated to a circuit w=(wy, ... ,w,) of length 2kl with k=2,1=5. w; =(1,e1,2, €5, 3, €3,
4,e4,5,5,6),wr =(6,¢5,5,¢€4,4,¢6,7,€7,8,€3,3),w3=(3,€5,2,€1,1,€9,9,€10, 10, €11, 11),wy =(11, €15, 10, €19,9, €13, 12, €14,
13, e;5, 1). Edges that are not included in T(w) are {eg, €},, €5 }. The triplet sequences associated to the 4 self-avoiding walks
{w; }f:l are given by (0, 6, 0); (4,2, 3), (0,0, 0);(1,3,0); (0,0, 10), (9, 2, 1), (0, 0, 0), respectively.

Proof.  Note that Ey; [p(AP)*] < Ey [tr(A”)?*]. The estimation is based on a coding argument,
and we modify the proof in [32] to count circuits in hypergraphs. Let Wy ; be the set of all circuits of
length 2kl in the complete hypergraph K, s which are concatenations of 2k many self-avoiding walks
of length [. For any circuits w € Wy ;, we denote it by w = (ig, €;,, 11, ... €y, i2u), With iz =ip. From
(3.1), we have

2kl
1) ) 1) €, i
EHn [tr(A(l))zk] = Z ]EH” [Aj(lizAj(zjz Ajzi/]] = z EH’I H(Ail—lit _Ail—lil) : (76)
Jis - Ju€lnl weWy =1

For each circuit, the weight it contributes to the sum is the product of (A7 —/Tfj) over all the hyperedges
e traversed in the circuits. In order to have an upper bound on [Ez;, [tr(A?)2¥], we need to estimate how
many such circuits are included in the sum and what are the weights they contribute.

We also write w = (wy, wa, ... wy), Where each w; is a self-avoiding walk of length /. Let v and &
be the number of distinct vertices and hyperedges traversed by the circuit, respectively. The idea is to
bound the number of all possible circuits w in (7.6) with given v and 4, and then sum over all possible
(v, h) pairs.

Fix v and A, for any circuit w we form a labeled multigraph G(w) with labeled vertices {1, ... ,v}
and labeled multiple edges {e, ... ,e;} by the following rules:

e Label the vertices in G(w) by the order they first appear in w, starting from 1. For any pair vertices
i,j€[v], we add an edge between i,j in G(w) whenever a hyperedge appears between the ith and
Jjth distinct vertices in the circuit w. G(w) is a multigraph since it is possible that for some i, j, there
exists two distinct hyperedges connecting the ith and jth distinct vertices in w, which corresponds
to two distinct edges in G(w) connecting i,j.

e Label the edges in G(w) by the order in which the corresponding hyperedge first appears in w from
e to e;. Note that the number of edges in G(w) is at least & since distinct edges in G(w) can get
the same hyperedge labels. At the end we obtain a multigraph G(w) = (V(w), E(w)) with vertex set
{1, ... ,v} and edge set E(w) with hyperedge labels in {ej, ... e,}.

It is crucial to see that the labeling of vertices and edges in G(w) is in order, and it tells us how
the circuit w is traversed. Consider any edge in G(w) such that its right endpoint (in the order of the
traversal of w) is a new vertex that has not been traversed by w. We call it a tree edge. Denote by T(w)
the tree spanned by those edges. It is clear for the construction that T'(w) includes all vertices in G(w),
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so T(w) is a spanning tree of G(w). Since the labels of vertices and edges are given in G(w), T(w) is
uniquely defined. See Figure 4 for an example.

For a given w € Wy, ; with distinct hyperedges ey, ... , ej,, define end(e;) to be the set of vertices in
V(w) such that they are the endpoints of edges with label e; in G(w). For example, consider a hyperedge
e;1=1{1,2,3,4} such that {1,2}, {1,3} are all the edges in G(w) with labels e, then end(e;) = {1, 2,3}.
We consider circuits w in three different cases and estimate their contribution to (7.6) separately.

Case (1). We first consider w € Wy ; such that

o cach hyperedge label in {e;}; <;<; appears exactly once on the edges of G(w);
e vertices in e; \ end(e;) are all distinct for 1 <i <A, and they are not vertices with labels in V(w).

The first condition implies the number of edges in G(w) is h. The second condition implies that
there are exactly (d —2)h + v many distinct vertices in w. We will break each self-avoiding walk w;
into three types of successive sub-walks where each sub-walk is exactly one of the following 3 types,
and we encode these sub-walks as follows.

e Type 1: hyperedges with corresponding edges in G(w)\ T(w). Given our position in the circuit w,
we can encode a hyperedge of this type by its right-end vertex. Hyperedges of Type 1 breaks the
walk w; into disjoint sub-walks, and we partition these sub-walks into Type 2 and 3 below.

o Type 2: sub-walks such that all their hyperedges correspond to edges of T'(w) and have been tra-
versed already by wi, ... ,w;_. Each sub-walk is a part of a self-avoiding walk, and it is a path
contained in the tree T(w). Given its initial and its end vertices, there will be exactly one such path
in T(w). Therefore these walks can be encoded by the end vertices.

e Type 3: sub-walks such that their hyperedges correspond to edges of T(w) and they are being tra-
versed for the first time. Given the initial vertex of a sub-walk of this type, since it is traversing new
edges and knowing in what order the vertices are discovered, we can encode these walks by their
length, and from the given length, we know at which vertex the sub-walk ends.

We encode any Type 1, Type 2, or Type 3 sub-walk by O if the sub-walk is empty. Now we can
decompose each w; into sequences characterizing by its sub-walks:

(pl’qlarl)’(p2’q2’r2)’ cee ’(Pt,%7rt)~ (7'7)

Here ry, ... r,_; are codes from sub-walks of Type 1. From the way we encode such hyperedges,
we have r; € {1, ... v} for  <i<r—1. Type 2 and Type 3 sub-walks are encoded by py, ... ,p; and
q1, --- »q;, respectively. Since Type 1 hyperedges break w into disjoint pieces, we use (p;, q;, 1) to
represent the last piece of the sub-walk and make r, =0. Each p; represents the right-end vertex of
the Type 2 sub-walk, and p; =0 if it the sub-walk is empty, hence p; € {0, ... v} for 1 <i<t. Each g;
represents the length of Type 3 sub-walks, so g; € {0, ... [} for 1 <i <t. From the way we encode these
sub-walks, there are at most (v + 1)*(/+ 1) many possibilities for each triplet (p;, g;, r;).

We now consider how many ways we can concatenate sub-walks encoded by the triplets to form a
circuit w. All triples with r; € [v] for 1 <j <z — 1 indicate the traversal of an edge not in 7(w). Since we
know the number of edges in G(w)~ T(w) is (h — v+ 1), and within a self-avoiding walk w;, edges on
G(w) can be traversed at most once, the length of the triples in (7.7) satisfies t — 1 <h—v+ 1, which
implies t <h —v+2. Since each hyperedge can be traversed at most 2k many times by w due to the
constraint that the circuits w of length 2kl are formed by self-avoiding walks, so the number of triple
sequences for fixed v, & is at most [(v + 1)2(I 4 1)]¥@+h=v),

There are multiple w with the same code sequence. However, they must all have the same number
of vertices and edges, and the positions where vertices and hyperedges are repeated must be the same.
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The number of ordered sequences of v distinct vertices is at most n”. Given the vertex sequence, the

h
number of ordered sequences of & distinct hyperedges in K, 4 is at most ( di 5 ) . Therefore, given v, h,

h
the number of circuits that share the same triple sequence (7.7) is at most n < io
Combining the two estimates, the number of all possible circuits w with fixed v, 4 in Case (1) is at

most

v n h 2 2k(2+h—v)
n<d_2>[(v+l)(l+l)] ), (1.8)

Now we consider the expected weight of each circuit in the sum (7.6). Given o, if i,j € e, we

have A§ ~ Ber (po(c) ) Where po() = ﬁ if vertices in e have the same + spins and p,() = ﬁ

d-1 d-1
otherwise. For a given hyperedge appearing in w with multiplicity m € {1, ... , 2k}, the corresponding

expectation [z, [(Aj} - foj)’"] isOifm=1. Since 0 < AZ <l1,form>2, we have

Ex, [(A§ =AD" |o] < Ex, [(Af = AD[0] < poco)- (7.9)
For any hyperedge e corresponding to an edge in G(w) \ T(w) we have the upper bound

b

<

a
Pa(e) < " . (7.10)
(1)
Taking the expectation over ¢ we have
a+ Q4 —1)b a
B o] = =10 = —. (7.11)
2 (L) @en(l)
Recall the weight of each circuit in the sum (7.6) is given by
2%l
EH lH(At v 1, Vi ] :
Conditioned on o, (Aziili, - Zi ii[i,) are independent random variables for distinct hyperedges. Denote
these distinct hyperedges by ey, ... e, with multiplicity m,, ... mj, and we temporarily order them such
that e;, ... e,_ are the hyperedges corresponding to edges on 7(w). Introduce the random variables

A% ~ Ber (po(, ) for 1 <i<hand denote A% = [y, [A%|c]. Therefore from (7.9) we have
2% 2%
EH lH(Alt e lt 1 ] lEH lH(A’ 1 Aiztliz)lall
=E, lHEH" [(Agi — E)mi |o']] <E, alg(gi)] .
i=1 i=1

We use the bound (7.10) for p,e,), ... »Po(e,)» Which implies

h—v+1

h y—1
]Eo' alU(e,)] S <a\n/b> ]EG alg(ei)] . (712)
i=1 i=1

d—1
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From the second condition for w in Case (1), any two hyperedges among {e;, ... e,_} share at
most 1 vertex, and py(e,), Po(e,) are pairwise independent for all 1 <i<j<v—1. Moreover, since the
corresponding edges of ey, ... e,_ form the spanning tree T(w), taking any e; such that the corre-
sponding edge in 7(w) is attached to some leaf, we know ¢; and | J; 4 1<i<v€i share exactly one common
vertex, therefore po(e) is independent of [[,c, | izPo(e)- We then have

v—1
]Ea ala(ei)] = Eo’[pa(ej)] ']Ecr l H pa(ei)] . (713)
i=1

1<i<v—1,i#j

Now the corresponding edges of all hyperedges {ei, ... e,_{} ~ {¢;} form a tree in G(w) again and the
factorization of expectation in (7.13) can proceed as long as we have some edge attached to leaves.
Repeating (7.13) recursively, with (7.11), we have

v—1

v—1 v—1
E, oy | = [[Bolpoey] =| —2—| - (7.14)
lgp m] ,ll [Poce) @1 (d:)

Since every hyperedge in w must be visited at least twice to make its expected weight nonzero, and
wis of length 2kl, we must have / < kl. In the multigraph G(w), we have the constraintv<h+ 1 <kl + 1.
Since the first self-avoiding walk in w of length / takes /4 1 distinct vertices, we also have v >[4+ 1.
So the possible range of vis I+ 1 <v<kl+1 and & satisfies v— 1 <h <kl.

Putting all the estimates above together, for fixed v, i, the total contribution of self-avoiding walks
from Case (1) to the sum is bounded by

v—1 h—v+1
a aVvb

@-n()) (L)

Denote S; to be the sum of all contributions from self-avoiding walks in Case (1). Then

of no\! 2 2k(2+h—v)
n (d_2> [+ 12+ 1))

ki+1 kl

d=1 \'/ a ! - _
Si < ( (755) 10+ D20+ DRI @y by, 7.15
1 lel h;‘v_,ln ) (5%5) e+ (avb) (7.15)

h
When [ = O(log n) and d, k are fixed, for sufficiently large n, ( L ) < 2. Then from (7.15),

n—d+2
kl+1 kl
Sl S Z Z 2nv—h(d _ 1)h—v+1[(v + 1)2(1 + 1)]2k(2+h—v)av—1(a \Vi b)h—v+1

v=l+1 h=v-1

kl+1 kl _ h—v+1
< Z n[(a VvV b)(d 1)] (K] + 2)%(1 + DJA@H=g=1.
v=lrl h=v—1 n
Hence
s, kl+1 kl

& <2 ) o« N nia v b)(d - DK+ 2%+ 1))2k]”‘v+‘. (7.16)

v=[+1 h=v—1

naf[(kl + 2)2( + 1)
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Since for fixed d, k and [ = O(logn), n~'(a Vv b)(d — 1)((kl + 2)>(I + 1))* = o(1) for n sufficiently
large, the leading term in (7.16) is the term with &2 =v — 1. For sufficiently large n, we have

kl+1

— o=k
S S3Zav_l_kl=3-a a < 3a
na¥ [kl + 22+ DP* a—1 “a—1

v=I[+1

It implies that S| = O(na*log®n).
Case (2). We now consider w € Wy ; such that

e the number of edges in G(w) is greater than #;
e vertices in e; ~ end(e;) are all distinct for 1 <i <h, and they are not vertices with labels in V(w).

Let & be the number of edges in G(w) with i > h + 1. Same as in Case (1), the number of triple
sequence is at most [(v + D2(I + 1))@= Let s;, 1 <i < h be the size of end(e;). We have 2?:1 5=
2h. Note that when s; > 3, there are more than 2 vertices in e; contained in V(w), therefore given the
choices of vertices with labels in V(w), we have fewer possibilities to choose the rest of vertices in e;.
Compared with (7.8), the number of all possible circuits in Case (2) with fixed v, A, % is now bounded
by

2 2k2+h—v) v n n
[+ 1)1+ 1)] n (d—s1>m <d—sh>'

When £ is fixed and / = O(log n), for large n, the quantity above is bounded by

2[(v+ DU+ 1>12k(”“”""(d;1>22_h<d " )h‘

Now we consider the expected weight of each circuit in Case (2). In the spanning tree 7(w), we
keep edges with distinct hyperedge labels that appear first in the circuit w and remove other edges.
This gives us a forest denoted F(w) inside T(w), with at least v — 1 — 2 4+ 4 many edges. We temporarily
label those edges in the forest as ey, ... ,e, withg > v —1 — A + h. Then similar to the analysis of
(7.14) in Case (1), we have

q

q
_ o
E, lgpn@q)] = 7((1 B 1)((1};) )

and

h=v+1 v—1=h+h

2kl h
IE:’H,l H(Ailil,l - IKZ:,‘I) S ]EG Hpn(ei) S M L
=1 i=1 ( " ) (d—l)(dfl)

d—1

Since every hyperedge in w must be visited at least twice to make its expected weight nonzero,
we must have / <h <kl. In the multigraph G(w), we have the constraint v < & + 1. Since the first
self-avoiding walk in w of length [ takes [+ 1 distinct vertices, we also have v >/+ 1. So the possible
range of vis [+ 1 <v < i+ 1 and h satisfies [ < h < k. Therefore we have
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2kl h+1

52 <2Z D DI+ DX+ D v( - 1)2;"h(di1>h

h=l h=h+1 v=I+1

h—v+1 v—1—h+h
aVvb o
(1)) la-n(r)
=0(ak’log6kn).

Case (3). We now consider w € Wy, ; not included in Cases (1) or Case (2), which satisfies that

o for some i # j, there are common vertices in ¢; ~ end(e;) and ¢; ~ end(e;);
e or there are vertices in e; ~ end(e;) with labels in V(w).

Let v, h, h be defined in the same way as in Case (2). The number of triple sequence is at most
[(v+ D21+ 1)]2"(2”3“’). Consider the forest F(w) introduced in Case (2) as a subgraph of T'(w), which
has at least (v — 1 — & + h) many edges with distinct hyperedge labels. We temporarily denote the
edges by ey, ... , e, and the ordering is chosen such that e; is adjacent to a leaf in F(w), and each
e;,i <2 is adjacent to a leaf in F(w)\{ey, ... ,e;_1}. For 1 <i<gq, we call ¢; a bad hyperedge if the
set e; » end(e;) share a vertex with some set e; \ end(e;) for j > i, or there are vertices in ¢; \ end(e;) with
labels in V(w). In both cases, we have fewer choices for the vertices in e;.

Suppose among ¢;, 1 <i<gq, there are ¢ bad hyperedges. Let s;, | <i<h be the size of end(e;) in
G(w). Then the number of all possible circuits in Case (3) with fixed v, &, h, and 7, is bounded by

2 2k(2+h—v) v n n
[+ D+ 1)] n <d—s1—51> <d_sh_5h>’ (7.17)

where 6; € {0, 1} and §; = 1 if ¢; is a bad hyperedge. Note that Ef.':l sp = 2h and EL 0; = t. For large
n, the number in (7.17) is at most

- _ 2h—h+t A
2[(v + 1)2(1 + 1)]2k(2+h—v)nv(u> ( n ) .
n d-1

After removing the ¢ edges with bad hyperedge labels from the forest F(w), we can do the same analysis
as in Case (2). The expected weight of each circuit in Case (3) with given v, h, &, t now satisfies

h=v+1+t v—1—h+h—t

2kl avb *
i ] o

d—1

Let S5 be the total contribution from circuits in Case (3) to (7.6) . Then

2kl b+l v-1

S5 <Z 2 2 22[(v+ 2+ 1)]2k(2+h v) v( -1 >2ﬁ—h+,(d ﬁ 1 >h

h=l jh=h v=I+1 =0
h—v+1+1 v—1—h+h—t
avb a

<dﬁ1) (d_1)<dr—ll)

=0(na*1og%n).
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From the estimates on S, S, and S3, Lemma 7.1 holds. [ |

With Lemma 7.1, we are able to derive (3.3). For any fixed € > 0, choose k such that 1 — 2ke < 0,
using Markov inequality, we have

Eyq, (p(A")%)

Py, (p(AD) 2 n*a’?) < =2

— 0(nl—2k510g6kn).

This implies (3.3) in the statement of Theorem 3.1.

7.3 | Proof of (3.4) in Theorem 3.1

Using a similar argument as in the proof of Lemma 7.1, we can prove the following estimate of p(I'*™).
The proof is given in Appendix A.6.

Lemma 7.2. Forl = O(logn), fixed k, and any 1 <m <1, there exists a constant C >0 such that
EH“ [p(l"(l,m))zk] S Cnl_Zkak(l+m_2)10gl4kn. (718)

With Lemma 7.2, we can apply the union bound and Markov inequality. For any € > 0, choose
k> 0 such that 1 — 2ke < 0, we have

i
PHn (Ufnzl {p(r(l,m)) > ne—la(l+m)/2}) < ZPH,, (p(r(l,tn)) > ns—la(l+m)/2)

m=1
(L.m)y2k ! 14k - -
2 Eg, p(T™) < Clog'*(n) - n'=2kgkttm=2 O ((log" ¥+ (n) - n=%q~2%)
= L jy2k(e—1) o k(I+m) n2k(e=1) grk(l+m) - & ’
m=1

This proves (3.4) in Theorem 3.1.

8 | PROOF OF THEOREM 4.2

Let n* be the number of vertices with spin + respectively. Consider the event

- {|nr_g| < log(my/n }. 8.1)

By Hoeffding’s inequality,
P, (|ni - g| > 1og(n)\/ﬁ) < 2exp(=2log’(n)), (8.2)

which implies P, Q) >1-2 exp(—ZIOg2 (n)). In the rest of this section we will condition on the event
Q, which will not effect our conclusion and probability bounds, since for any event A, if P, A|Q) =
1 — O(n~7) for some y > 0, we have

Py (A) =P3 (AIQPs (Q) + Py (AIQ)Py (Q) = 1 - O(n™).
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The following identity from Equation (38) in [32] will be helpful in the proof.

Lemma 8.1. For any nonnegative integers i, j, n and nonnegative numbers a, b such that a/n,b/n < 1,
we have

al+b]

ai+bj_1<ai+bj>
n

—(1—a/n)(1 =b/ny <
n 2

(8.3)
We will also use the following version of Chernoff bound (see [9]):

Lemma 8.2. Let X be a sum of independent random variables taking values in {0, 1}. Let uy = E[X].
Then for any 6 > 0, we have

PX > (14 0)u) < exp(—ph(1 + 6)), (8.4)
P(IX — p| < 6p) = 1 — 2 exp(—uh(5)), (8.5)

where

h(x) :=xlog(x) —x+ 1, h(x) 1= min{(1 + x)log(1 +x) — x, (1 —x)log(1 —x) + x}.

For any >0, the number of vertices with spin + at distance ¢ (respectively <) of vertices i is
denoted U7 (i) (respectively, Uz, (i)) and we know S,(i) = U/ (i) + U; (i). We will omit index i when
considering quantities related to a fixed vertex i. Let n* be the number of vertices with spin + and N'*
be the set of vertices with spin +. For a fixed vertex i. Let

Fii=o(Uf Uk <t0i,1 <i<n) (8.6)

be the o-algebra generated by {U;, U;,0 < k <t} and {0, 1 <i < n}. In the remainder of the section
we condition on the spins o; of all i € [n] and assume Q holds. We denote P(-) := Py, (- Q).

A main difficulty to analyze U;", U; compared to the graph SBM in [32] is that U} are no longer
independent conditioned on F_;. Instead, we can only approximate U} by counting subsets connected
to Vi —1. To make it more precise, we have the following definition for connected-subsets.

Definition 8.3. A connected s-subset in V; for 1 <s <d —1 is a subset of size s which is contained
in some hyperedge e in H and the rest d — s vertices in e are from V;_; (see Figure 5 for an example).
Define U,(:z, 0 < r < 5 to be the number of connected s-subsets in V where exactly r many vertices
have + spins. For convenience, we write U,((r) T= U,(:z,_l for0<r<d-1.LetUg, =Y, _, U,((rz be the
number of all connected s-subsets in V.

We will show that Z 0 rU,(() is a good approximation of U;" and Zr—O d-1- r)U,(C’) is a good
approximation of U, then the concentration of U,((r), 0 < r < d — 1 implies the concentration of U.

Since each hyperedge appears independently, conditioned on Fj_;, we know {U(’),O <r <
d — 1} are independent binomial random variables. For U,((d_l), the number of all possible connected
(d — 1)-subsets with d — 1 many + signs is <"+:£%H ), and each such subset is included in the hyper-

graph if and only if it forms a hyperedge with any vertex in V _ . Therefore each such subset is included
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FIGURES5 d=35, Q, is a connected 3-subsets in V; and Q, is a connected 4-subsets in V;,

independently with probability

Ut Uz
a b

1—1—<dn_1> 1_<d"_1)

Similarly, we have the following distributions for U(r), 1<r<d-1:

. U;—l Uk_—l
+_
U,((d_l)NBin nt—Ug, 1-]1= a 1_L , (8.7)
d—1 ( n ) ( n )
d—1 d—1
U;l Uzll
SO [t W (PR RN ) PP
d—1 ( n ) ( n )
d-1 d-1
andfor 1 <r<d-2,
Si-1
+_ g+ -_U-
U0 ~ Bin| (77 Ve (n Ug(_l),l_ L I (8.9)
r d—1-r ( n )
d-1

For two random variable X, Y, we denote X < Y if X is stochastically dominant by Y, i.e., P(X <
x) > P(Y < x) for any x € R. We denote U} := Zf;lz Uy s to be the number of all connected s-subsets
inViforl<s<d-2.

For each 1 <s<d -2, conditioned on Fj_;, the number of possible s-subsets is at most (’Y’ ), and

each subset is included in the hypergraph independently with probability at most ( avh (S"“ )) Al

(djl) d—s

so we have

Urs <Bin| ("), avb (S"—l )/\1 . (8.10)
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With the definitions above, we have the following inequality for U;f by counting the number of +
signs from each type of subsets:

d—1

U < YUY +(d - U, (8.11)
r=0
d—1

Up £ D(d=1-nU" +(d -2)Uj. (8.12)
r=0

To obtain the upper bound of U, we will show that U; is negligible compared to the number of +
signs from U,((r). Since U,((r), 1 < r < d —1 are independent binomial random variables, we can prove
concentration results of these random variables. For the lower bound of Uki, we need to show that only
a negligible portion of (d — 1) connected subsets are overlapped, therefore U} is lower bounded by
Z;:ol rU,Er) minus some small term, and we can do it similarly for U, . We will extensively use Chernoff
bounds in Lemma 8.2 to prove the concentration of U in the following theorem.

Theorem 84. Let € € (0,1), and | = clog(n) with clog(a) < 1/4. For any y € (0,3/8), there
exists some constant K >0 and such that the following holds with probability at least 1 — O(n™") for
allie[n].

1. LetT :=inf{t <1 : S, > Klogn}, then St = O(logn).
2. Letg; :=ea""D/2 for some € > 0 and

+ —
mo=L|oTP a=h (8.13)
2la=p a+p
Then for all t,/ € {T,...1}, t>7, the vector U, i= (U, U7)T satisfies the coordinate-wise
bounds:
-1 -1
Ul e l]‘[(l —e). [ +ss)] M T, (8.14)
s=t' s=t'
-1 -1
Ui € l]‘[(l —&). [Ja +es>] MU, (8.15)
s=r s=r

where (M'™" f],r)j is the jth coordinate of the vector M'™" Uy forj=1,2.

Proof.  In this proof, all constants C;’s, C,C’ are distinct for different inequalities unless stated
otherwise. By the definition of 7, S7—; < K log(n). Let Z be the number of all hyperedges in H that are
incident to at least one vertices in V7 _ ;. We have St <(d — 1)Z7, and since the number of all possible
d-1

hyperedges including a vertex in Vr_ is at most Sr_; ( > Zy is stochastically dominated by

. b
Binl k1 ( n )L i
in og(n) d-1 <n )

d—1
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which has mean (a v b)K log(n). Let K| =(a Vv b)K. By (8.4) in Lemma 8.2, we have for any constant
K>, >0,

P(Zr > K> log(n)|Fr-1) < exp(—=K; log(m)h(K>/K1)) (8.16)
Taking K, > K large enough such that K;#(K,/K;) > 2 + y, we then have
P(Zr > K, log(n)|Fr_y) <n 7. (8.17)
So with probability at least 1—n~277, for afixed i € [n], S7 < K3 log(n) with K3 = (d — 2)K,. Taking
a union bound over i € [n], part (1) in Lemma 8.4 holds. We continue to prove (8.14) and (8.15) in
several steps.

Step 1: base case. For the first step, we prove (8.14) and (8.15) fort=T+ 1,7 =T, which is

a+p
2

Ui ell-el+el ( U%+a_ﬁU}—'). (8.18)

2

This involves a two-sided estimate of U7, ,. The idea is to show the expectation of U7, conditioned

on Fr is closed to % Ur + % Uz, and Uz, is concentrated around its mean.

(i) Upper bound. Define the event A7 := {S7 < K3logn}. We have just shown for a fixed i,
P(Ar) > 1—n277. (8.19)

Recall [n* —n/2| < \/ﬁ log n and conditioned on A7, for some constant C > 0,
T
Ut < ZS, <1+ TKslogn <1+ IK3logn < CKzlog*n.

t=0

Conditioned on Fr and Ay, for sufficiently large n, there exists constants C; > 0 such that

<n+—U2T ZCI E .
d—1 d—-1

From inequality (8.3), there exists constant C, > 0 such that

Ur Uy 2
a b aUr +bU; 1| aUs +bUz

A A

Cy(aUyf + bUy) 5 Ga(anb)Klogn

T T W)

1-]1-

Then from (8.7), for some constant C3 > 0,

+_ 7t
E[U(Ti‘l”m,m]:(”d L}T) e e l Ky
()
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>C, (d 2 ) . Calanb)Klogn > C3K log n.

- ()

We can choose K large enough such that C3Kiz(£/(2d)) > 2 + 7, then from (8.5) in Lemma 8.2, for
any givene > O and y € (0, 1),

P <|U(T‘{+_11) -E U(T(ill)|7?T]| < EE[U%—IWFT”FT)

> P (105" — B 1P| < S BLUER P [Fr Ar ) BA)

> [1 —exp (-]E[U;‘il“m, AT]E(g/zd)>] A=n27)> (=272 > 1= 2m 27

From the symmetry of + labels, the concentration of U +1 works in the same way. Similarly, there
exists a constant C; > 0 such that IE[U(TC)rl |Frl,1 <r<d-2:

Sy

+_ U+t -_ Uz
]E[U(T’lllf‘r]:(n UST)(Z UST) t={1- > Ciklogn.
r

—-1-r (dil)

We can choose K large enough such that forall 0 <r<d -1,

P <|U(T’i1 ~E[U%, |FT]| < gE[U(TZI |PT]|FT) > 1 =202

Next, we estimate Uy | = Zv 1 Urs1s. Recall from (8.10), we have Uryi s < Zri1,s Where

Zras ~Bin ("), ().

s <d:) -5

Conditioned on A7 we know K logn < St < K3 logn, and
aVvb

()

for some constant C, > 0. Using the fact that h(x) > %x log(x) for x large enough, from (8.4), we have
for any constant 4 > 0, 1 <s<d —2, there exists a constant C3 > 0 such that for large n,

ElZr1 5| Ar, Fr] = (Z ) ( dS_T ; > < Calog®=* (nyn' 5~

P(Urs1,s > AS7|Fr, A1) S P(Zrs1s > AST|Fr, At)

= 8 =

AST
< —
=P ( oz, Az, Frik <E[ZT+1,s|AT, Frl >>

1 AST ) o
< ——AS71 - < —AC3l < 7, 8.20
= &P ( 2108 <E[ZT+1,X|AT,FT]>> < exp(=4Glogn) < (8.20)

Therefore with (8.19) and (8.20),

P(Ury15 < AS7|Fr) 2 P(Ury1 5 < AS7|Fr, Ap)P(A7) > (1 —n7277) > 1 = 2n7277,
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Taking A = (ng)g» we have Ur,j, < & ﬂ )¢ §7 with probability at least 1 — 2727 for any y € (0, 1).

Taking a union bound over 2 <r < d — 1, it implies

" a — f)e
Urs <! 4dﬁ) St (8.21)

with probability 1 — O(n=277) for any y € (0, 1).
Note that n* = % + O(+/nlogn) and U%, = ¥,_, S = O(log*(n)). From (8.3),

Uf U5

a b aUf + bUz

R

~

aU} + bUz | aUy + bU; <1-|i-
() ) () ()
d—1 d-1 d—1

It implies that

n + -
B[V [Fr, Ar] = <2 + 0(\/ﬁlogn)> (1 40 <10g(n)>> aUy + bU;

“ )
d-1

(2‘}1 +0<bg\/(£l)>>(aU}“+bU}). (8.22)

1-—

Similarly, for 1 <r<d-2.

E[UY), |Fr, Ar] = <2dl—l +0 (1°\g/(_”)>> (bUF + aUy),
n

E[US), | Fr, Ar] = <2dl_1 +0 (lo\g/(f)» (d B ! ) (bUF + bUT).
n

Therefore from the estimations above, with the definition of «, § from (1.3),

d-1
E erU;mrT,AT
r=0

d-2
1 1 d-1 _
=<1+0<°\“”/%”)>>2<(d—1)(aU++bUT)+;( ) )b(U;+UT)>
_ log(n) a+p a—pf. .
_<1+0< \/E>>< up+ S Ur). (8.23)

d- lU()

Since we have shown ) _ 41 concentrated around its mean by = W1th probability at least

1 — O(n~277), conditioned on A7, we obtain

d—1 d— d-1
> Uy, - E[ZrU<’>1|FT] < Z r| Ut — BRI < 5 ZrE[U<”1|FT]
r=0 r= r
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Z<1+0<1°j%’)>>(“;ﬂU;+“;ﬂU;> (8.24)

with probability 1 — O(n~277). Therefore from (8.23), conditioned on A, for large n, with probability
1 —0m™27),

d-1
ZU(T’LE[l—*H ](“+ﬂU;+“_ﬁU;). (8.25)
r=0 3 2

From (8.11), (8.21), and (8.25), conditioned on A and Fr, with probability 1 — O(n=>77),

d-1 i
4 r a— p)eS
Ut € X rUTh +(d =DUsyy < DU +(d = 2)%
r=0 r=0
<+o (Lo + Ly,

Since P(A7) = 1 — n~277, and by symmetry of + labels, with probability 1 — O(n=277),

U}—'+]§(l+s)<a;ﬁU+ a;ﬂU$>. (8.26)

(i) Lower bound. To show (8.14), (8.15) for ¥ =T + 1,1=T, we cannot directly bound Uz, , from
below by U(Tril, 1 < r < d — 1 since from our definition of the connected (d — 1)-subsets, they can
overlap with each other, which leads to over-counting of the number vertices with + labels. In the
following we show the overlaps between different connected (d — 1)-sets are small, which gives us the
desired lower bound.

Let W;ru be the set of vertices in V., with spin + and appear in at least i distinct connected
(d —1)-subsets in V5, fori > 1. Let Wiy, = Wi ;UW,,, ;. From our def1n1t10r1 Wi, are the vertices
with spin + that appear in at least one connected (d — 1)-subsets, so |W. +1 | < U7,,. By counting the
multiplicity of vertices with spin +, we have the following relation

d-1
ZVU(TrJ)rl _IW}—+11|+Z|WT+IZI < Uy 1+Z|WT+11| (8.27)
r=1 i>2 i>2

This implies a lower bound on U7, ;:

d-1
Uty 2 2 rUSL = Y Wil (8.28)

r=1 i>2

Next we control |Wr 41 2|. Let m=n—|V<r|. We enumerate all vertices in V-7 from 1 to m tem-
porarily for the proof of the lower bound. Let X;, 1 <i<m be the random variables that X; =1 if
i€ Wr4 1,2 and O otherwise, we then have |Wry) 2| = Z:’;] X;. A simple calculation yields

|WT+1,2|2—|WT+1,2|=<ZXi> Zx =2 ) XX (8.29)
i=1

1<i<j<m

The product X;X; is 1if i,j € Wr 1,2 and O otherwise.
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We further consider 3 events, E; for s=0,1,2, where Eg is the event that all (d — 1)-subsets in
V. containing i,j are not connected to V7, E; is the event that there is only one (d — 1)-subset in V.1
containing i,j connected to V; and Eg is the event that there are at least two (d — 1)-subsets in V.7
containing i, j connected to V7. Now we have

E[X:X;|Fr, Ar] = P (i.j € Wri12|Fr, Ar)

2
= Y'P(i.j € Wry12|Ej, Fr, Ar) P(E}| Fr, Ar). (8.30)
r=0

We estimate the three terms in the sum separately. Conditioned on Eg, Fr, and A7, the two events that

i€Wri12andje Wy, are independent. And the probability that i € Wy is bounded by

2
2 2
< n ) avb S%<C110g (n)

d-2 (n) n?
d-1

for some constant C| > 0. So we have

P (i.j € Wrs12|E)

ij>

Fr, Ar) P(EJ|Fr, A7) < P (i.j € Wryi 2| E). Fr, Ar)
C%log“n
n4

=P (l (S WT+],2|EQ Fr, AT) P (J (S WT+]’2|EQ Fr, AT) < . (8.31)

i i’

For the term that involves Elll we know for some C, > 0,

bl

PEFrAD s (") £l < %8N

St <
d-73 <)T n2
d—1

and conditioned on E; and Fr, Ar, the two events that i€ Wy, 2 and j€ Wr 1, are independent
again, since we require 7, j to be contained in at least 2 connected-subsets. We have

< n )STavb <C210gn.

d-2 <n>_ n
d-1

P (i € Wryi2lEjs

PT,AT) <

Therefore we have

P (i.j € Wry12|Ej, Fr, Ar) P(Ej| Fr, Ar)

=P (i € Wri12|Ej, Fr. A7) P (j € Wry12|Ej, Fr, Ar) P(E}| Fr, Ar)

i i
< CZlog’n Cylogn _ C3log’n

SR (8.32)

n? n n

Conditioned on Eizj, i,j have already been included in 2 connected (d — 1) subsets, so

]P) (l’.] € WT+1,2|E1'2j’ FT7 AT) = 1'
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We then have for some C5 > 0,

P (i,j € Wrs12|Ej, Fr, Ar) P(E;|Fr, Ar)

2

n \2x| avb Cslog’n
=pEFLAn< (") s | < = (8.33)
()
Combining (8.31)—(8.33), we have for some constant C' > 0,
! 4
EXX)[Fr, A7) < & lzf " (8.34)

Taking conditional expectation in (8.29), we have

C'log*n
E[[Wrial? = WrealFr Al =2 Y EIXX|Fr, Ar] < =5,
n

1<i<j<m

By Markov’s inequality, there exists a constant C >0 such that for any constant A > 0 and
sufficiently large n,

P (W12l > ASr|Fr, A7) <P (IWrsaal(|Wrsi2l = 1) > ASp(4S7 — D|Fr, A7) (8.35)
< ElWre12|(Wrsi2| = DIFr, A7l _ Clog’n
- AST(AST — 1) - A2

(a—p)e
4

where in the last inequality we use the fact that St > K logn. Taking A = , we have for all large

n and for any y € (0, 1),

2
P(Wrnat > “5PEsrirr ar) =0 (1% ”) <t (836)

n? -

. 1
LI
For a fixed vertex j € V., the probability that j € Wy, ; is at most (di2> StT< <a\n/b) > , then we
d-1
have for sufficiently large n,

E[|WT+1,,'||FT,AT]SH< n )S’TM Sn<C410gn>

d-2 (n> n
d-1

for some C4 > 0. For the rest of the terms in (8.27), we have for some constant C > 0,

< [ Cilo " Clog?
E lZ|WT+1,i||FT,AT] SnZ( 4ngn> < ngz(n)'

i>3 i=3

By Markov’s inequality,

(a — P)e Clog’(n) _ _,_
P<Z|WT+1,1‘| > ) Sr|Fr, AT> < —a <n 7.

i>3
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Together with (8.36), we have conditioned on A7, Zl>2| T41. 5l < (a_zﬂ ) S with probability at least
1 —2n~!7 for any y € (0, 1) and all large n.

Note that
(a — Pe 6<a+ﬁ +, 0= p _>
< =
5 rsy T Ut
With (8.25), (8.28), and (8.19), we have
S . g . g

» £ (a a— _ a a—p,
Uppr = Y rUS), — E( LU+ UT>2(1—5)( TLup+ 2 UT)

r=1

with probability 1 — O(n~'~7). By symmetry, the argument works for Uy, ,, therefore with probability
1 — O~ '=7) for any y € (0, 1), we have

a+/3

a—p U;> . (8.37)

U, > (- )( .

From (8.26) and (8.37), we have with probability 1 — O(n~'~7) for any y € (0, 1), (8.18) holds.
Step 2: Induction. It remains to extend this estimate in Step 1 for all T <# <t <I. We now define
the event

A, 3={Utie[1_51—1»1+5t—1]< Uzi;1+a;ﬁUti;l>} (8.38)

2
for T+ 1<t<I and recall &, = ea"""D/2, Ar = {S; < K3logn}.

From the proof above, we have shown A7, holds with probability 1 — O(n~'-7). Conditioned on
A7, Arq1, ..., A, for some fix t with T + 2 <t <[, the vector U, = (U}, Uy) satisfies (8.14), (8.15) for
any T <7 <t.

ko opk ok
Set ¥ =T + 1. From [32], for any integer k > 0, M* = 1 [ak 1_ ‘gk o« —F ] (8.14) implies that

2 |a ak + pk
o -T-1 4 p-T-1 —T—1
< H (1 _£S)> <ﬂU%+1 + %U;H
s=T+1
—T-1 + _ .
> (1 - 0(e)® . (1—e)<“2ﬂU$+“2ﬁUT)
> (1 - 0@ TE=A= P, > 10 T ogn), (839)
for some constant C| > 0. For any 7 with T <t, conditioned on Az, Aryy, ..., A;, since f < a,
-1
az—T + ﬂt—T az—T _ ﬁt—T -
Ut < (E(l +£s)> < Ui+ Uf
a T+ ﬁt_T -T -T
<+ O(e))fST < (1 +0(e)a""Kzlog(n) < Cra' " logn (8.40)

for some C, > 0. Combining lower and upper bounds on U, we obtain

S, = U + U7 =0(a" T logn). (8.41)
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‘We now show by induction that .4,, holds with high enough probability conditioned on { A;,T< j < t}.

(i) Upper bound. Note that a/ = o(n'/*), for some constant C >0

U

IAN+

t
< ZSi < Ca' Tlog?n < Ca'logn = o(n'/* log n).

Recall |n* — gl < \/ﬁlog n. From (8.7)—(8.9), similar to the case for t =T, we have
U+ U-

t t

d—1 d—1

<dl1 <1°g”>> (Ut + bU;),
2 n

E[US, | Ny Aj, Fil = < +0

U(d l)| TAj,Ft

t+1

and

I% >> bUF + aUy),

E[US,] A TA,,P,]—( +0<1°g”>) )(bU++bU, ),

for 1 <r <d—2. Hence there exists a constant Co > 0 such that forall 0 <r<d -1,

U(r)ll ﬂ =T Aj, 7:‘t] > C()Sl

From (8.5) in Lemma 8.2, for any 0 <r <d — 1, to show

P(

it suffices to have

US, —BIUD, | "y AL Fi| < SBIUS, iy Ay Fi| Al TA,,F,)zl—n‘z‘y, (8.42)

_2d

CoS/ (2‘%) > (24 7)logn. (8.43)

From (8.5), by a second-order expansion of i around 0, A(x) > x? /3 when x>0 is small. For
y € (0, 1), the left hand side in (8.43) is lower bounded by

CiKa'"Tlog(n)h < ) > G TK 10g(n)£, C,Klogn > (2 +y)logn,

by taking K large enough. Therefore (8.42) holds.
We also have

U1 X Zis15,  Zig15 ~ Bin <rsl), avbh (dSl ) ,
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(d=$)(t=T)] 0~ .
and Z, 1 ; has mean ('j) (a\n/b) (ds_'v> =0 (aﬂfM) . For 1 <s<d -2, using the fact that
s) () s

h(x) > %x log(x) for x large enough, similar to (8.20), there are constants C;, C», C3, C4 > 0 such that
for any 4 > 0,

P(Usy1s 2 ASi| Niep Aj F) S P(Zigrs 2 ASi| Ny A}, Fr)
CrAa'"T log(n) > >

Cs a(d—s)(t—T)logd—S(n)n1+s—d

<exp <—C1 Aa'"Tlog(n) log <

. — — -(t=-7)/2
Taking A = (“4:2)“" = ﬂ)ijz , we have

P (Ur+l,s > ((x%ﬁ)asﬂ m]t'=T Aj’rt)

< exp ( —Cl a2 10g(n) - 1og(cga<*‘—d+%><Z—T>1og1+s—d(n)nd—1—5)) .
Since for some constants Cy4, Cs, Cg > 0,

log(céa(s—aw%)(t—T)10g1+s—d(n)nd—1—s)
> C4 — Cs(t — T) log(a) + log(log'**~4(n)) + (d — 1 — s)logn > Cg logn,
we have forall 1 <s<d -2,

P(Uy1s 2 %m Ni_r A;j. Fi) < exp (=CCelog’n) < n™>77 (8.44)

for any y € (0, 1). Recall for sufficiently large n,
& =ea D2 > gq7l2 5 g7 1/8,

Therefore k:;’;" = o(g;). From (8.44), conditioned on A7, ...,A; and F,

d-1
’ . + -p,._
Uk, < D rUS +d - U, §(1+e,)<a2ﬁU,++a2ﬂU,>
r=1

with probability at least 1 — O(n=277). A similar bound works for Us, +1» Which implies conditioned on
ATs ey At9

Ui1§(1+£,)<a;ﬁU;—'+a;ﬂUf—'> (8.45)
with probability 1 — O(n=277) for any y € (0, 1).
(ii) Lower bound. We need to show that conditioned on Arp,..., A, Uti+1 > (1 -

&) (# Ui + "’—;ﬂ U;—') with probability 1 — O(n~'=7) for some y € (0, 1). This part of the proof is very

similar to the case for 7=T. Same as (8.28), we have the following lower bound on U7, ;:

d—1
U:H > ZVUI(.?] - 2|Wt+1,i|'
r=1

i>2
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Next we control |W,, 1 2|. Let m=n—|V| and we enumerate all vertices in Vs, from 1 to m. Let
X1, ... X,, be the random variable that X; =1 if i € W, » and O otherwise. Same as (8.29),

(Wisiol? = [Wisial =2 ) XiX;. (8.46)

1<i<j<m

Let E; for s =0, 1, 2, be the similar events as in (8.30) before, now we have

EIXX| iy Ay, Fil = P (isj € Wil Ny A, F)
2

= ) P (i.j € W12l Ej, Nip Ay, Fr) P(E| Ny Aj, Fo).
r=0

The three terms in the sum can be estimated separately in the same way as before. By using the upper
bound Ca'Tlogn < S; < Copa'~Tlogn for some C, Cy> 0, and use the same argument for the case
when ¢t =T, we have the following three inequalities for some constants Cy, C, C3 > 0:

C2a*=Dlog*n
4
C3a®Dlog’n
s
C302Dlog’n

nt

P (i.j € W12l E. Fr) P(E)| Ny A, F) <

k]

P (i.j € W12l Ej, Fr) P(E| Ny A, F) <

b}

P (i.j € Wip12|ES, Fy) P(EF| Ny A}, Fo) <

This implies E[XX;] n}zT Aj, Fil < %?k’g" for some C’ > 0. Taking conditional expectation in
(8.46), we have

C'a*=Diog*n

E [|W,+1’2|2 - IWt+1,2|| njt'=T -Aj, Ft] < 2

Then by Markov inequality and (8.41), similar to (8.35), there exists a constant C > 0 such that for any
A =Q(a™h),

Ca®Dlog’n
P (IWonral > A8 oy 4, 73) < 2 _0E0

Take A = (“_4&. Since clog(a) < 1/4, we have a' < n'/*, and

20-T) 02
Ca log™n <n!

n2

-7

P (th+1,2| > %Sﬁ njt‘:T Aj7 Ft) <

for any y € (0,1/2).
For each |W, . ;| for i >3, we have for sufficiently large n, there exists a constant C4 >0

i =T i
]E[|W,+.,,-||n;:TAj,rt]5n( " )s' avb <n<C4al°g">_

d-2 l(n>_ n
d-1
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For the rest of the terms, we have for some constant Cg >0,

[ CsaTlogn\' _ ChaDlog*(n)
E l2|Wi|| Ni=r A, Fz] < nz< " < " .

i>3 i=3

By Markov’s inequality,

2
i>3 n

25(=T) ] 2
<Z|W| > )ftStl TAi’ Fl> < C5a—log(n) < n—l—?’

for any y € (0, 3/8). Together with the estimate on W, | 2, we have

)e & (a+p a—p
Bt < 50 < (0 )

with probability 1 — 2n~!1=7 for any y € (0,3/8).

With (8.28) and (8.25), U, > (1 — &) ("’ZLHU,Jr + “—;”Ut‘) with probability 1 — O(n~!77). By
symmetry, the argument works for Uy, . Therefore conditioned on Az, ..., A;, with probability 1 —
O(n~'7) for any y € (0,3/8),

+
Ut+1

>(1—e,)<“+ﬁU,i+“_ﬂUf). (8.47)
2 2
This finishes the proof the lower bound part of Step 2.

Recall (8.38). With (8.47) and (8.45), we have shown that conditioned on Arp, ..., A;, with
probability 1 — O(n~'~7), A,y holds. This finishes the induction step. Finally, for fixed i € [1] and
y € (0,3/8),

! l
]P <ﬂAt> = IP>(-/4T) H ]P)(AIIA[—h 3AT)

t=T+1
> —-Cn 7)1 = Cn~ ') > 1 = Cglog(m)n™'7,

for some constant C¢ > 0. Taking a union bound over i € [n], we have shown A, holds for all T <t <[
and all i € [n] with probability 1—O(n~") forany y € (0, 3/8). This completes the proof of Theorem 8.4.
m

With Theorem 8.4, the rest of the proof of Theorem 4.2 follows similarly from the proof of Theorem
2.3 in [32]. We include it for completeness.

Proof of Theorem 4.2.  Assume all the estimates in statement of Theorem 8.4 hold. For t <[, if < T,
from the definition of T, we have S;, |D,| = O(logn). For ¢t > T, from [32], M satisfies

1 ak + ﬁk ak _ ﬂk
M= .
lak _ ﬂk a,k + ﬂk]
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Using (8.14) and (8.15), we have for ¢t >¢ > T,
-1 -1
5 < <H(1 +e;)> (1, DM Ty < <H<1 +e;)> @Sy, (8.48)
s=t' s=t'
-1 -1
S > (H(l —a)) (LM Ty > (H(l —a)) 'Sy, (8.49)
s=t' s=t'
Setting =T in (8.48), we obtain
-1
S, < (H(l + ss)) o TSy = O(a' " logn) = O(a’ log n).
s=T
Therefore (4.1) holds. Let =1 in (8.48) and (8.49), we have for all T <¢ </,
-1 =1
(H(l - &)) oSy <8 < <H(1 + es)> oSy
s=t' s=t'
And it implies
-1 -1
<H(1 - es)> Sy <a'7ls, < <H(1 + £S)> Sy. (8.50)
s=t' s=t'
Note that
-1 -1
max {H(l +e)—-11-JJa- es)} = O(ey) = O(a™"1?).
s=t' s=t'
Together with (8.50), we have for all T <7 </,
1S, — &' 7!8)| < O(a™""*)S, = O(a"* log n). (8.51)
On the other hand, for < T, we know S; = O(logn). Let ¥ =T in (8.51), we have
IS7 — a’7!S)| = O(a"/? log n). (8.52)
Sofor1<t<T,
1S, — a'7'S)| = O(log n) + &'~ T (S7 + Olog(n)a’’?))
= O(logn) + O(a"" "% log n) = O(a'’? log n). (8.53)

The last inequality comes from the inequality ¢ — 7/2 <¢#/2. Combining (8.51) and (8.53), we have

proved (4.3) holds forall 1 <7 <1.
Using (8.14) and (8.15), we have

Dy = U:H - U;_+1 < ﬂ(Ut+ -Ur)+ ae,(U,+ + U ) = pD; + ag;S;.
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Similarly, D, — ae;S; < Dy < D, + ag,S;. By iterating, we have for [>t>¢ > T,
t—1
D, = B"Dy| < Y ap e, (8.54)
s=t!
Recall S; = O(log(n)a*~T), |Dr| = O(logn), and £, = a~¢~1/2_ Taking ¢ =T in (8.54), for t > T,

t—1
ID;| = O (log(n)f') + O <zaﬂt—1—s log(n)a(S‘T)/2> .

s=T

Since 1 < a < f2, it follows that

t—1 t—1 s/2

1= — 11— a
Zaﬁz 1 ‘log(n)a(‘ T)/2 =g L1772 10%01)2(,;2)
s=T s=T

= p~'a' " log(mO(@’27") = Olog(m)p").

So we have |D,| = O(lognf"). The right side of (8.54) is of order

t—1

Y ap a2 log(n) = Ollogmp~ ).

s=t'

Thus setting r=1 in (8.54), for [>7 >T, we obtain D; — f~"D,, = O(log(n)p"~"a"/?). Therefore
Dy = f"~'D; + O(log(n)a""/?) holds for all T <¢ < 1. For Y < T, we have D, = O(log n) and

|D, — p"7'Dy| < OClogn) + p"~"(IDr| + O(log(m)a’/?))
= O(logn) + O(B"Ta’?logn) = O(a"/* logn),

where the last estimate is because -7 < a’~7)/2 under the condition that # < T. Altogether we have

shown (4.4) holds for all 1 <# <. This completes the proof of Theorem 4.2. [

9 | PROOF OF THEOREM 4.6

We first state the following lemma before proving Theorem 4.6. The proof is included in Appendix
AT

Lemma 9.1. Forallme{l,...,1} withl = clogn, cloga < 1/4, it holds asymptotically almost
surely that

sup 117 B™ V||, = O(y/na"™ D/ 1og n), 9.1)
[lx]l,=1xTBO1=xT BO6=0
sup lloe"TB™ Vx|, = 0(\/20:(’"_1)/2 log n). 9.2)

[lx]l,=1,xT BO1=xT BO6=0
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Proof of Theorem 4.6.  Using matrix expansion identity (3.2) and the estimates in Theorem 3.1, for
any l,-normalized vector x with x"B?1 = x"B?¢ = 0, we have for sufficiently large n, asymptotically
almost surely

1 l
ADx + Y (ACMAB™MD)x — N Pty

m=1 m=1
l l
< p(AD) + 3 AT AB™ Dl + Y pT )

m=1 m=1

1BOxll> =

2

<2na’? + znﬁa”—"ﬂ/z||KB<m—1>x||2, 9.3)

m=1
where A = Ey, [Alo]. We have the following expression for entries of A Ifi#jand o, = oj =+I,

Ay = (da ) <r:1+—_22> * (21) ((Zj)_ (;Z_—zz» = an

Ifi#jand o; = 6, = —1,

If O; 9& Oj,

S
|

Il

S

n-

e b (n -2 > .
S
d-1
We then have a;, @y, b, = O(1/n). Conditioned on the event {|n* —n/2| < log(n)\/ﬁ }, we obtain
— -+ _a—b <n‘—2)_ nt -2 _ logn
ay a, (}’L)( d—2 d—2 0 n3/2 .
Let R be a n X n matrix such that

1 o;=0;=—1 and i #,
Ri]:{ j i ]

0 otherwise.

We then have ||R]|; < 4 /ZUR?] < n. The following decomposition of A holds.

A=a' [2(1 1" +606") - 1] (1 1" —66")+ (@, —aHR 9.4)

a +b ;b"mﬁ + (@ —aHrR-ail). (9.5)

nl 1T
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Since

(@ — @GR = @illls < 1a — at| - IRll2 + || = Ologn/+/n),

by (9.5), we have

JAB™Dxll = 0 (=) 11-17B"Vxll2 + 0 ( 1 ) lloaTB"Dxllx + 0 <l°g"> 1BV,

% n NG
By Cauchy inequality,
11178 Vxlly < A/l 1TB"Vxlla,  [loo B Vx|ly < y/nllo "B x],.
Therefore,
IAB™Dxll2 = O™ /*)(|lo "B Vxll2 + I117B"Vxl|2) + OClog n/A/n) 1B "x]l.
Using (9.1) and (9.2), the right hand side in the expression above is upper bounded by
0@ D2 10g n) + O(||B™ Vx|l - logn//n). 9.6)

Since B~V is a nonnegative matrix, the spectral norm is bounded by the maximum row sum (see
Theorem 8.1.22 in [26]), we have that

n

IB™Dxlly < p(B™D) < max Y B
i 4 b

J=1

By (4.1), (4.5) and (4.7), the right hand side above is O(a! log n). Combing (9.6) and noting that
a1 /y/n = o(n™'/*), it implies

IAB™Vx|l, = O(a™ /2 log n) + O™ 'log*n//n) = O™/ log n). 9.7)

Taking (9.7) into (9.3), we have for any & > 0, with high probability, ||B®x||> = O(na'/*log’n) <
n’¢a!’? for n sufficiently large. This completes the proof. .

10 | PROOF OF THEOREM 5.2

The proof in this section is a generalization of the method in [33] for sparse random graphs. We now
prove the case where o; = +1, and the case for 6; = —1 can be treated in the same way. Recall the
definition of V, from Definition 4.1. Let A, be the event that no vertex in V, is connected by two distinct
hyperedges to V,_ ;. Let B, be the event that there does not exist two vertices in V, that are contained

in a hyperedge e C < ‘;’ >



M_Wl LEY PAL AND ZHU

We can construct the multi-type Poisson hypertree (7', p, ) in the following way. For a vertex ve T,
Let ¥{”,0 < r < d — 1 be the number of hyperedges incident to v which among the remaining d — 1
vertices, r of them have the same spin with z(v). We have

(d 1)1)
YYD < Pois <2da_1> . Y ~ Pois 2;_1 0<r<d-2.

Note that (7, p, 7) can be entirely reconstructed from the label of the root and the sequence {Yﬁr)} for
veV(T),0<r<d-1.

We define similar random variables for (H, i, ¢). For a vertex ve V,, let Xﬁr) be the number of
hyperedges incident to v, where all the remaining d — 1 vertices are in V, | such that » of them have
spin o(v). Then we have

o(v)
X9 < Bin (|V>t |>’ a

d—1 ( n ) ’
d-1
a(v) —o(v)
X&’)~Bin [Voil [Vsr | , b 0<r<d-2
r d—1-r

()

and conditioned on F; (recall the definition of F; from (8.6)) they are independent. Recall
Definition 5.1. We have the following lemma on the spin-preserving isomorphism. The proof of
Lemma 10.1 is given in Appendix A.8.

Lemma 10.1. Ler (H,i,0),,(T, p,t); be the rooted hypergraph truncated at distance t from i, p
respectively. If

(1) there is a spin-preserving isomorphism ¢ such that (H,i,0),—1 = (T, p, T)i-1,
(2) foreveryveV,_;, X\ = Yg()v)for 0<r<d-1,
(3) A, B; hold,

then (H7 i’ O-)t = (T7 P, T)l'
To make our notation simpler, for the rest of this section, we will identify v with ¢(v). Recall the

event Q,(i) = {S,(i) < Clog(n)a'} where the constant C is the same one as in Theorem 4.2. Now
define a new event

C = ﬂQs(i). 10.1)

s<t

From the proof of Theorem 4.2, for all t </, Py (C;) = 1 - O(n~'-7) for any y € (0,3/8). Note that
conditioned on C;, there exists C’ > 0 such that

Vel < Y Clogma' < C'log*(n)a’. (10.2)

s<t

We now estimate the probability of event A,, B, conditioned on C,;. The proof is included in
Appendix A.9.
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Lemma 10.2. Foranyt>1,

PANC) > 1 - o), PB|C)>1-o(n'7).

Before proving Theorem 5.2, we also need the following bound on the total variation distance
between binomial and Poisson random variables, see for example Lemma 4.6 in [33].

Lemma 10.3. Let m, n be integers and c be a positive constant. The following holds:

’ =0(1V|m—n|>'
TV n

Proof of Theorem 5.2.  Fix t and suppose that C, holds, and (7', p); = (H,i),. Then for each ve V,,

recall
X0 ~gin] (VST | xo il (VY (VST b
d-1 <n) r d—1-r (n)
d-1

Bin <m E) — Pois(c)
n

d—1

and

Y9V < Pois <2“_> .Y <~ Pois

Recall [n* —n/2| < \/ﬁ log n. We have the following bound for VZ;:

IVE] > n* — |Vl > % — \/nlog(n) — O(log*(n)a®) > g —24/nlog(n),

IVE| <n* < g + \/Elog(n).
Therefore |VZ, — g| < 2\/5 log n. Then from Lemma 10.3,

(5) ()
)

1X7 = YNy = 0~ ?logn), 0 < -2

”X\(;d_l) _ Yéd_l)”TV < C O(n—l/Z logn)

We can couple X with Y2,0 <

r < d -1 such that P (X&") + YS”) — O('/210g n). Taking a
union bound over all ve V;, and 0 <r <d — 1 and recall (10.2), we can find a coupling such that with
probability at least

1= Oog’ma'n™"?) 2 1~ o(n™"/"),

X =y forevery ve V, and 0<r<d—1.
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Lemma 10.2 implies A,, B;, C, hold simultaneously with probability at least 1 — o(n~"/#). Altogether
we have that assumptions (2),(3) in Lemma 10.1 hold with probability 1 —o(n~"*), which can be
written as

P <(H7 ia O-)l‘+l = (T7 P> T)t+la C[+1 (H, i, U)t = (T, P, T)t, Cz‘) > 1 - 0(n_1/4)'

Since we can certainly couple i with p from our construction, we have P (H, i, o)y = (T, p, 7)o, Cp) = 1.
Therefore for large n,

P((H,i,0) = (T,p,7))
l
= HP ((H’ i’ 0)! = (T9 P T)h Ct (H’ i’ G)t—l = (T7 P, T)t—l’ Cl—l) : ]P)((H’ i’ 0)0 = (T’ P T)O’ CO)
=1
> (1 —om V)Y > 1 -—n1/5.

This completes the proof. n

11 | PROOF OF THEOREM 6.1

The proof of the following Lemma 11.1 follows in a similar way as Lemma 4.4 in [32], and we include
it in Appendix A.10.

Lemma 11.1. For [ = clog(n), clog(a) < 1/4, the following hold asymptotically almost surely

1B1 = 51, = o(IBO1]]2), (11.1)
1BY6 — Dl = o(|BVs ), (11.2)
(B®1,B%) = o (IB1]) - 1BV |l2) . (11.3)

The next lemma estimate ||B®x||, when x = B®¢ and B”1. The proof of Lemma 11.2 is provided
in Appendix A.11.

Lemma 11.2. Assume > > a > 1 and [ = clog(n) with clog(a) < 1/8. Then for some fixed y > 0
asymptotically almost surely one has

Q@H|1B1]l, < 1BYB1|l, < O(a' log n)[|B1]|5, (11.4)
Q(B)HIIB s |l> < IIB"BVs ||, < O™ a")[|BVs],. (11.5)

Together with Lemmas 11.1 and 11.2, we are ready to prove Theorem 6.1.

Proof of Theorem 6.1.  From Theorem 4.6 and Lemma 11.2, the top two eigenvalues of BY will be
asymptotically in the span of B”1 and B®s. By the lower bound in (11.4) and the upper bound in
(11.5), the largest eigenvalue of BY’ will be ®(a’) up to a logarithmic factor, and the first eigenvector
is asymptotically aligned with B"1.

From (11.1), B?1 is also asymptotically aligned with S, therefore our statement for the first eigen-
value and eigenvector holds. Since B”1 and B¢ are asymptotically orthogonal from (11.3), together
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with (11.5), the second eigenvalue of B® is Q(p’) and the second eigenvector is asymptotically aligned
with B9,

From (11.2), BYs is asymptotically aligned with D;. So the statement for the second eigenvalue and

eigenvector holds. The order of other eigenvalues follows from Theorem 4.6 and the Courant minimax

principle (see [26]). [
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APPENDIX A

A.1 | Proof of Lemma 4.3

Proof. The two sequences (U,'f(i))ksl, (U,fg))kg are independent conditioned on the event
{V<(i) N V() =90}. It remains to estimate Py, ({V</(i) N V<(j) = @}). Introduce the events

Ji o =[SV Si(i) < Clogma'}, Ly 2= (Vi) ) Veri) = 8},

t<k

where the constant C is the same one as in the statement of Theorem 4.2. For any vertex
ve [nI\(V4 (@) U V(j)), Conditioned on L and J, there are two possible situations where v is
included in Vi 4 1(0) N Vi 1():

1. There is a hyperedge containing v and a vertex in V (i), and a different hyperedge containing v and
a vertex in Vi(j).
2. There is a hyperedge containing v, one vertex in V(i), and another vertex in V(j).
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There exists a constant C; > 0 such that Case (1) happens with probability at most

2
n )2 avb

d-2 m

Sk(i)sk(n( < Crlog(m)a® /n,

and Case (2) happens with probability at most

aVvb

()

= n*1og® = p(n'/?), we have for large n,

= Clog*(n)a* /n?.

scos) (" 5)

Since a®

Py, (v € Vier1 () 0 Vit (I Tk L) < 2C1log>(ma® [ < n™'7.
Taking a union bound over all possible v, we have for some constant C3 > 0,
Py (Vie1 () N Visr1 () = BTk L£2) 2 1 = Cyn™ V2,

From the proof of Theorem 4.2, for all 0 <k <1, Py (Ji) = 1 - O(n~'-7) for any y € (0,3/8). We then
have

Py, (Vie1 () 0 Vi1 () = B1L0) 2Py (Vier1 () 0 Vi1 () = 81T, L1 Py (T > 1= O™/,

Finally, for large n,

Py, ({Vai()) 0 V() = B)) = P, (L1) = P, (Vi) 0 V() = BIL1-1)Py, (L1-1)
-1

> Pry, (L) [ [Pr, (Vier1 ) 0 Vis () = B1£0)

k=0
> (1= 0@ 2 > 1 —n153,

This completes the proof. n

A2 | Proof of Lemma 4.4

Proof.  Consider the exploration process of the neighborhood of a fixed vertex i. Conditioned on
Fi—1, there are two ways to create new cycles in Vs _1(i):

(1) Type 1: a new hyperedge e C V»;_1(i) containing two vertices in Vj_(i) may appear, which
creates a cycle including two vertices in Vj _(i).

(2) Type 2: two vertices in V; _ (i) may be connected to the same vertex in V(i) by two new distinct
hyperedges.
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Define the event
Q1 (i) 1= {Sk=1(i) < Clog(mya*™'}, (AD)

where the constant C is the same one as in Theorem 4.2. From the proof of Theorem 4.2, Py (€:(2)) =
1 — O(n~'=7) for some y € (0,3/8).
Let E,((]) (i) be the number of hyperedges of type 1. Conditioned on Fy_q, Efcl) (i) is stochastically

dominated by Bin <<Sk—21(i) ) <di2) , (”\:b) > . Then for some constant C; > 0,
d—1

Ey [E" (1)1 ()] < Cilog*(m)a®*2/n < Cilog(n)a® /n.

By Markov’s inequality,

Py, ({E () > 1)) < Py (ELG) = 114 1() + Pry (€5, ()
< By [EN DQ%1(D] + O™ = Oog?(m)a® /n).

Taking the union bound, the probability that there is a type 1 hyperedge in the /-neighborhood of i is

! !
Py, (U{E,i“(i) > 1}) < Y Py, ({E{" () > 1)) = O(log*(m)a® /n).
k=1

k=1

The number of hyperedge pair (e, e;) of Type 2 is stochastically dominated by

2
n )2 avb

d-2 (n) ’
d-1

which conditioned on €;_; (i) has expectation O(log*(n)a? /n). By a Markov’s inequality and a union
bound, in the same way as the proof for Type 1, we have the probability there is a type 2 hyperedge
pair in the [-neighborhood of i is O(log?(n)a® /n). Altogether the probability that there are at least one
cycles within the /—neighborhood of i is O(log>(n)a? /n).

Let Z; be the random variable such that Z; = 1 if [-neighborhood of i contains one cycle and Z; =0
otherwise. From the analysis above, we have E[Z;] = O(log*(n)a? /n). By Markov’s inequality,

Bin nS,%_l(

SEIZ]  0dog*(n)a?) _

i€[n]

Then asymptotically almost surely the number of vertices whose /-neighborhood contains one cycle at
most log*(n)a?.

It remains to show H is [-tangle free asymptotically almost surely. For a fixed vertex i € [n], there
are several possible cases where there can be two cycles in V(7).

(1) There is one hyperedge of Type 1 or a hyperedge pair of Type 2 which creates more than one
cycles. We discuss in the following cases conditioned on the event N/_, Q,(i).

(a) The number of hyperedge of the first type which connects to more than two vertices in

Vi1 is stochastically dominated by Bin ((Sk“ ) ( " > , b ) . The expectation is at most

3 d-3 (L)

O(a*og’(n)/n?).
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(b) If the intersection of the hyperedge pair of Type 2 contains 2 vertices in Vi, it will
create two cycles. The number of such hyperedge pairs is stochastically dominated by

2
Bin <<; st () ) v ot

d-1

Then by Markov’s inequality and a union bound, asymptotically almost surely, there is no V(i)
such that its neighborhood contains Type 1 hyperedges or Type 2 hyperedge pairs which create more
than one cycles.

(2) The remaining case is that there is a V(i) where two cycles are created by two Type 1 hyper-
edges or two Type 2 hyperedge pairs or one Type 1 hyperedge and another hyperedge pairs. By the
same argument, under the event nﬁzl Q,(i), the probability that such event happens is O(log®(n)a*! /n?).
Since a* = o(n), by taking a union bound over i € [n], we have H is I-tangle-free asymptotically almos.t
surely.

A3 | Proof of Lemma 4.5

Proof.  Leti & B whose [-neighborhood contains no cycles. For any k € [n] and any m <[, there is a
unique self-avoiding walk of length m from i to k if and only if d(i, k) = m, so we have BE,’:’) = L jo=m-
For such i we have

(B™1); = (@), (B™6); = Dy (i)

Then (4.5), (4.6) follows from Theorem 4.2.

By Lemma 4.4, asymptotically almost surely all vertices in /3 have only one cycle in
I-neighborhood. For any m < I,i € B, since (B"™1); = Zke[n]Bf,'("), and only vertices at distance at
most m from i can be reached by a self-avoiding walk of length m from i, which will be counted in
(B™1),. Moreover, for any k € [n] with B} # 0, since the [-neighborhood of i contains at most one
cycle, there are at most 2 self-avoiding walks of length m between i and k. Altogether we know

D BY <2 S,(i) = O(a" log n)

ke€[n] t=0

asymptotically almost surely. Then (4.7) follows. [

A4 | Proof of Lemma 5.3

Proof.  Recall the definitions of a, § from (1.3). From (5.1)-(5.3),

-1 -2 (p <d—1 )

r — b —
E(W;,16) = Y rEW A 16) = Yr S WE W+ =D (25‘_1w,+ + =W )

r=0 r=1 2d_
a+ a— _ al*! t+1

Similarly, E[W>,|C,] = %“M, — 2 A,. Therefore

E[Mi411G] = a7 'E[W}, + Wi41G] = M,,
E[A1]G] = B 'E[W}, — Wi 1G] = A,.

It follows that {M,}, {A,} are martingales with respect to G,. From (5.1)-(5.4),

r=0

d—1
Var(M;|G;-1) = Var(@™ (Wi + W)IG,-1) = a” Var ((d - l)zw,(’)w,_l)
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=(d - 1)2a—2f ( T+ WI) =(d - Da'M,_y.

Sine EM, = 1, by conditional variance formula,

Var(M;) = Var(E[M;|G,—1]) + EVar(M;|G,—1) = Var(M,_1) + (d — Da™".

Since Var(M,) =0, we have for t >0, Var(M,) = (d — 1)1 “’ So {M,} is uniformly integrable for
a>1.

Similarly,
d—1
Var(A|G,1) = Var(B~ (W = W)IGioy) = 72 ) 2r — d + 1) Var(W,”|G,-1)
r=0
L @d=Da+ QT +1-d)b _
= @/fMor(d - Do - DB H L= s o/,
where k ;= @=Dab+2"h

a+Q2*'-1)p . .
And we also have the following recursion:

Var(A;) = Var(E[A,|G,1]) + EVar(A|G, 1) = Var(A, ;) + x> d.

Since Var(A() = 0, we have for > 0,

_ 1=
Var(A,) = a1 (A2)

So {A;}is uniformly integrable if f> > a. From the martingale convergence theorem, EA,, = Ag = 1,
Var(Ay) = ——, and (5.5) holds. This finishes the proof. u

A5 | Proof of Lemma 5.4

Proof.  From Theorem 5.2, For each i € [n], there exists a coupling such that with probability 1 —
O(n~¢) for some positive €, f~'c(i)D;(i) = A; and we denote this event by C. When the coupling fails,
by Theorem 4.2, f~'6(i)D,(i) = O(log(n)) with probability 1 — O(n~") for some y > 0.

Recall the event

Q1) 2= {Sk—1() < Clog(n)a*'}. (A3)

We define Q := ﬂ7=1 Q>i), Q») : = ﬂkggk(i). We have
E <’112ﬁ_21D12(i)|Q> = O(log(n))n™ + E(A21¢|Q). (Ad)
i=1

Moreover,
E(A71c — E(A71c1p) — P(QE(AL,)
P(Q)

< IE(A? — AL)] L-P@p 2, IE(A?IE)—E(A?IC@)I‘
P(Q) P(Q) P(Q)

IE(A71c]1Q) — E(AL)| = ‘

(AS5)
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Since we know P(QN C) — 1 and (5.5), the first two terms in (AS) converges to 0. The third term also
converges to 0 by dominated convergence theorem. So we have

1 PR N 2
E<ni§ﬁ Dz(z)|§2> E(AL).

We then estimate the second moment. Note that

n 2 n
Y et e (S iptina ) o 2 4B mnitnc
E(nZ;ﬁ 2/D12(1)|Q) = an(g;ﬁ 41D?(l)|§2> + Ezﬁ 4IE(D1(Z)ZD12(])|Q), (A6)

i<j
and from Theorem 4.2, the first term is 0(10g4(n) /n) = o(1). Next, we show the second term satisfies

2 _ , . 2 TR | . .
= 2P EDPDI(IR) = = ¥ p 5y Bl DF() = o(1). (A7)

i<j i<j

Since P(Q) = 1 — O(n™7), it suffices to show

2 Y HEAD@DRG) = o).

i<j
Consider f~E(1gna; D (D7 (j). From Lemma 4.3, when i # j, D(i), D/(j) are asymptotically inde-
pendent. On the event that the coupling with independent copies fails (recall the failure probability is
O(n™")), we bound D?(i)D?(j) by O(f*1og*(n)). When the coupling succeeds,
F~YEainnep Diy’Di()) = b~ E(lanDi) ) E(ag Di()?)-

Then from (5.6),

%Zﬁ_ME(lQ(i)nQ(j)Dz(i)lez(f)) =0 <n12Zﬂ“”E(lg<,~>Dl<i>2>E<19@Dzo'>2) + 0(n‘2710g4n)>

i<j i<j

=0 ((E(AY))?) = O(D). (AB)

Therefore from (A6), (A7), and (AS),
" 2
1 _ .
E<n2ﬂ 21012(1)|Q> =0o(1).
i=1
With (A4), by Chebyshev’s inequality, conditioned on €2, in probability we have
1N o 2
lim = Di (i) = E(A%).
Jim Z:,ﬂ 70) = E(A%)

Since P(Q) — 1, (5.6) follows.
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We now establish (5.7). Without loss of generality, we discuss the case of + sign. Since 7 is a
continuous point of the distribution of A, for any fixed 6 > 0, we can find two bounded K-Lipschitz
function f, g for some constant K > 0 such that

f < (1x21) <glx),x € R, 0< E(g(Aoo) - f(AL)) < 6.

Consider the empirical sum izie wif (xE") v/nE(A%), we have

Zf(x(”)\/nEAz )- - Zf(ﬁ 'Dy(i))

tE/\f+ tGN*
<= 2 " = 3" VnEAL| + = 2 " VnEAL = 57Dy
,€N+ tEJ\/Jr

The first term converges to 0 by the assumption that ||x —y||> = 0 in probability. The second term
converges to 0 in probability from (5.6). Moreover, izie N+f(ﬂ"Dl(i)) converges in probability to

%]Ef(Aoo). So we have

lim ~ Z fVnEAL) = fEf(Aco)

n—-oon

IEN

and the same holds for g. If follows that

. 1 )
lim sup |~ Z 1. - iP(AL > 1) <6
n— oo niean:6i=+ {xi >z/ nE[A;O]} 2
for any 6 > 0. Therefore (5.7) holds. .

A.6 | Proof of Lemma 7.2
Proof.  For any n X n real matrix M, we have p(M)* < tr[(MMT)*], therefore

k
Ey, [pT)] < Ey, [tr(l"(”’”)l"”’m)T) ] (A9)

= Y Es [r“””r“”‘) . r“””].

Ly © I3 by—1lhop Il
iy, ... €[N

Recall the definition of Fl(-;’m) from (7.2), the sum in (A9) can be expanded to be the sum over all circuits
w=(wy, ... wy) of length 2kl which are obtained by concatenation of 2k walks of length /, and each
w;, 1 <i< 2k is a concatenation of two self-avoiding walks of length [ —m and m — 1. The weight that
each hyperedge in the circuit contributes can be either A} A;,A‘ or Af. For all circuits w in (A9)
with nonzero expected weights, there is an extra constraint that each w; 1ntersects with some other wj,
otherwise the expected weight that w; contributes to the sum (A9) will be 0. We want to bound the
number of such circuits with nonzero expectation.

Let v, h denoted the number of distinct vertices and hyperedges traversed by the circuit. Here we

don’t count the hyperedges that are weighted by A?; We associate a multigraph G(w) for each w as
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before, but the hyperedges with weight Aij; are not included. Since Ez;, [Fg’”’)] = 0 for any i,j € [n], if
the expected weight of w is nonzero, the corresponding graph G(w) must be connected.
We detail the proof for circuits in Case (1), where

e cach hyperedge label in {e;}; <; < appears exactly once on G(w);
e vertices in e; \ end(e;) are all distinct for 1 <i < h, and they are not vertices with labels in V(w),

and the cases for other circuits follow similarly from the proof of Lemma 7.1.

Let m be fixed. For each circuit w, there are 4k self-avoiding walks, and each w; is broken into
two self-avoiding walks of length m — 1 and / — m, respectively. We adopt the way of encoding each
self-avoiding walk as before, except that we must also include the labels of the endpoint j after the
traversal of an edge e with weight from fTZ , which gives us the initial vertex of the self-avoiding walk of
length [ — m within each w;. These extra labels tell us how to concatenate the two self-avoiding walks
of length m — 1 and [ — m into the walk w; of length /. For each w;, label is encoded by a number from
{1, ... ,v}. So all possible such labels can be bounded by v**. Then the upper bound on the number of
valid triplet sequences with extra labels for fixed v, & is now given by v*[(v + 1)>(I 4 1)]#*@+h=v),

The total number of circuits that have the same triplet sequences with extra labels is at most

B2k
n’ ( diZ ) where /1 + 2k is the total number of distinct hyperedges we can have in w, including the

hyperedges with weights from A,

We also need to bound the possible range of v, . There are overall 2k(/ — 1) hyperedges traversed
in w (remember we don’t count the edges with weights from AT?) Out of these, 2k(/ — m) hyperedges
(with multiplicity) with weights coming from Af; — sz must be at least doubled for the expectation not

e

to vanish. Then the number of distinct hyperedges in w excluding the hyperedge weighted by some A,
satisfies h < k(I —m) + k(I — 1) — 2k(l — m)) = k(I + m — 2). We have v > max{m, [—m+1} since each
self-avoiding walk of length m — 1 or [ — m has distinct vertices. Moreover, since G(w) is connected,
h>v—1,sowehavev—1<h<k(+m—2). And the range of v is then given by max{m,/—m+1} <
v<k(l+m-2)+1.

The expected weight that a circuit contributes can be estimated similarly as before. From (7.14),
the expected weights from v — 1 many hyperedges that corresponds to edges on 7T(w) is bounded by

v—1
<(511;E>> . Similar to (7.10), the expected weights from % — v+ 1 4+ 2k many hyperedges that
N a

corresponds to edges on G(w) \ T(w) together with hyperedges whose weights are from foI is bounded

Y h—v+1+2k
b av > )
Y < (1)

Putting all estimates together, for fixed v, k, the total contribution to the sum is bounded by

v—1 h—v+1+42k
o aVvb

@-n()) (L)

v v=l, g1\
=" <da1> <n_d+2> VZkQ(k5l,v,h),

v n 2k 2k 2 4k(2+h—v)
n d—2 v v+ D+ 1]

where Q(k, I, v, h) := [(v + 1)2(L + 1)|#@+h=)(g v py=vHI+2k,
Let S; be the contribution of circuits in Case (1) to the sum in (A9). We have

k(l4+m=2)+1 k(I+m—2)

v—1 d-1 h+2k
Si < (%) ( ) v 0Ly, A0
1 v:m\/;m+l) h=127—1 ! d—1 n—d+2 ! Q( ! ) ( )
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Taking [ = O(log n), similar to the discussion in (7.16), the leading term in (A10) is given by the term
with h=v— 1. So for any 1 <m </, and sufficiently large n, there are constants C, C, > 0 such that

k(+m—2)+1
S < 2 20" ((d = D[+ D2+ D]*a" @ v b)*

v=mV(l—-m+1)

§C210g14k(n) . nl—Zkak(I+m—2).

For circuits not in Case (1), similar to the proof of Lemma 7.1, their total contribution is bounded by
C)n' =2k gk Hm=210g!%p for a constant C, > 0. This completes the proof of Lemma 7.2. "

A7 | Proof of Lemma 9.1

Proof.  Let B be the set of vertices such that their /-neighborhood contains a cycle. Let x be a normed
vector such that x"B®1=0. We then have

1TB" Dy = 3 (B V1) = D xiS1(i) + ) x(B" 1)

i€[n] i€B ieB
= in(am_l_l(B(l)l)i + O(a% log n))
i€[n]
— Y xi@"BOD; + 0@ logn) + Y xi(BT V1), (A10)
ieB ienB

Since we have 1T B x =0, the first term in (A10) satisfies

D i@ BO1); + 0T logn) = O(y/na'T logn),

i€[n]

3 x0T logn)

i€[n]

where the last inequality above is from Cauchy inequality.

From Lemma 4.4, |B| = 0((x2’10g4n). For the second term in (A10), recall from (4.7), for m <1,
|(B™1);| = O(a™ log n), then by Cauchy inequality
D xi@ B, + 0T logn)| < VIBIO@" logn) = 0@ log’n).

ieB

Similarly, the third term satisfies

Zx,-(B(m‘l)l),-‘ = 0(a"*" 'log’n).
ien

Note that a/+"~! = o(n'/?), altogether we have

m—1

11TB™ Vx| = O(v/na"= logn + a"*"'log®n) = O(y/na’T log n). (A11)

(9.1) then follows. Using the property x'B”s = 0 instead of x' B”1=0 and following the same
argument, (9.2) holds. [
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A.8 | Proof of Lemma 10.1

Proof.  Conditioned on (H,i,0),—; = (T, p, 7)1, if A; holds, it implies that hyperedges generated
from vertices in V,_ do not overlap (except for the parent vertices in V,_1). If B, holds, vertices in V,
that are in different hyperedges generated from H,_; do not connect to each other. If both A; B, holds,
(H,1i,0),1s still a hypertree. Since X = Yg()v) forve V,_, we can extend the hypergraph isomorphism
¢ by mapping the children of v € V, to the corresponding vertices in the rth generation of children of
p in T, which keeps the hypertree structure and the spin of each vertex. u

A9 | Proof of Lemma 10.2

Proof.  First we fix u,v € V;. For any w € V,, the probability that (u, w), (v, w) are both connected
is O(n™2). We know |V,|<n and |V,| = O(log?(n)a’) conditioned on C;. Since a? < a® = o(n'/?),
taking a union bound over all u, v, w we have

P(A,|C) > 1 — O(og*(ma®n™) =1 — o(n™'/?). (A12)

For the second claim, the probability of having an edge between u,v €V, is O(n~"). Taking a union
bound over all pairs of u, v € V, implies

P(B,|C,) > 1 — O(log*(m)a®n™") = 1 — o(n™'/?). (A13)

A.10 | Proof of Lemma 11.1

Proof. In(11.1), the coordinates of two vectors on the left hand side agree at i if the /-neighborhood
of [ contains no cycle. Recall B is the set of vertices whose I-neighborhood contains a cycle, from
Lemma 4.4, and (4.7), we have asymptotically almost surely,

1BO1 = 51, < V/IBlO(og(n)a') = O(og*(n)a®) = o(v/n). (Al4)

From (5.6) we have

1D, = ©(/np') (A15)

asymptotically almost surely, and ||[BO1]||, > ||51||2, therefore (11.1) follows.
Similar to (A14), we have

1B — Dyll2 = o(v/n),  1BO6|ly = IDyll2 + o(y/n) = ©(y/np). (A16)

Then (11.2) follows.
It remains to show (11.3). Using the same argument as in Theorem 5.4, we have the following

convergence in probability
fim Y as}) = EM, (A17)

n
—>ooni€[”]

where M, is the limit of the martingale M,. Similarly, the following convergences in probability hold
tim = Y a gD = lim Y @ FIS @D + lim = Y a7 FSODIG)
n—oop : n—oon n—oon
i€[n] iEN* iEN-

= Ygmop, - LEM_ D, = 0.
2 2
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Thus (S, D;) = o(na! ') asymptotically almost surely.
From (A17) we have

15112 = ©(y/nd'), (A18)

therefore together with (A15), we have ||§,||2 . ||l3,||2 = O(na'p"). With (11.1) and (11.2), (11.3) holds.

| |
A1 | Proof of Lemma 11.2
Proof.  For the lower bound in (11.4), note that BY is symmetric, we have
y
189113 = (81, B1) = (1,B"B1) < |[1]2|BBO1||>. (A19)
Therefore from (A18) and (11.1),
) 13113 NI
I1BYB71]2 > T = 6(a)||B*1]l2. (A20)
2

For the upper bound in (11.4), from (4.1) and (4.7), the maximum row sum of B® is O(a' log n). Since
B®Y is nonnegative, the spectral norm p(B) is bounded by the maximal row sum, hence (11.4) holds.
The lower bound in (11.5) can be proved similarly as in (11.4), from the inequality ||BOs||3 <
lloll21|BP?BP ¢ ||, together with (A15) and (11.2).
Recall B is the set of vertices whose [-neighborhood contains cycles. Let B = [n]\ 3. Since

(BY806), = ¥ BB o),

JEn]

we can decompose the vector BY B¢ as a sum of three vectors z +z 47, where

2 =150 ), DI, 7 i=150) Y, O logm1x(),

jrd(ij)=l Jrd@ip=l
2 1= 150)0(@*1og’n).

The decomposition above depends on whether i,j € B and the estimation follows from (4.7). From
Lemma 4.4, B = O(a*log*(n)) asymptotically almost surely, so one has

YEr=Y Y Y 0@iogmls()s()
i=1

iep JidGp=l j:dGj)=l

2 2 2 0@login = Y 0log’n) = Oalog'"n).

JjEB j/EB B JJEB
d(ij)=d(ij)=l

2
112/112

which implies ||Z/||> = O(a”/*log""/?n). And similarly |||, = O(alog’n).
We know from (A16), [|BOs ||, = ©(p'4/n), and since cloga < 1/8, we have a*/2 = n™""\/n for
some y’ > 0, therefore

2" +2"ll> = O(a™/*log"*n) = o(a®? p*) = O™ B'| BV ||). (A21)
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It remains to upper bound ||z||. Assume the 2/-neighborhood of i is cycle-free, then the ith entry of
B®B"¢, denoted by X;, can be written as

n

X; :=BYBY), = ZB(D(B(Z)O')k = Zld(z o= lzldo f)=I0j

1
=Y > ollk:dik)=dG. k) =1}]. (A22)

h=0 j:d(ij)=2h

We control the magnitude of X; in the corresponding hypertree growth process. Since 2/ = 2clogn
and 2clog(a) < 1/4, the coupling result in Theorem 5.2 can apply.

Let C; be the event that coupling between 2/-neighborhood of i with the Poisson Galton—Watson
hypertree has succeeded and n~¢ be the failure probability of the coupling. When the coupling succeeds,
z; = X, therefore

E(ll2I31Q) = Y n*0@* fPlog?n) + 3 E(X?1¢,|Q)

i€[n] i€[n]
=n'" 0 flog’n) + Y E(X71c,|Q). (A23)

i€[n]

For any i,j € [n]. t € [I], define D!} := |{k : d(i.k) = d(j.k) = t}|. From (A22), we have

1
=y ) Y. ooy DD (A24)

=0 j:d(ij)=2h j:d(ij")=2h'

We further classify the pair j,j’ in (A24) according to their distance. Let d(j,j') = 2(h + ' — 1) for
T= .,2(h A K'). This yields

1 2(hAN)

Z 2 Z Z Ly jy=2(hti )00 /fo])Dl(-?,.

h'=0 7=0 j:d(ij=2h j:d(ij)=2h'

Conditioned on Q and C;, similar to the analysis in Appendix H in [32], we have the following holds

[{k : dG, k) =d(,k) =1} = O(@ " logn), (A25)
[{kt : d(i, k) = d(jt, kr) = 1}] = O™ logn), (A26)
|{j : d(i,)j) = 2h}| = O(a@* logn), (A27)
|{jr @ d(.,jr) = 2ht,d(j,j1) = 2(h + ht — 7)}| = O(@*"' " log n). (A28)
We claim that
d(jjn—1
Elgorlcl < (2) (A29)

and prove (A29) in Cases (a)—(d).

(a) Assume;j is the parent of j’ in the hypertree growth process. Then d(j, ;') = 1. Let T, be the event
that the hyperedge containing ;" is of type r. Given 7, by our construction of the hypertree process,
the spin of j’ is assigned to be o; with probability d%] and —o; with probability d‘:

—-r
s sowe have

d—1 d—1

d-—1-
Elojoy|Ci] = ZE[U_;‘O';le GIP[T,|Ci] = 2 (d - 1 d-1 r) P[T;Ci].
r=0 r=0 - -
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Recall P[T;_, |C (dzdl),“ and P[7;|C] = % for 0 <r<d-2. A simple calculation implies
E[ojoﬂC,» = ; < <1

(b) Suppose d(j,j') =t and there is a sequence of vertices j, i, ...,j;_1,j such that j; is a child of
J.Jjiisachild of j;_ for 1 <i<t, andj’ is a child of j,_ ;. We show by induction that for > 1,

Elojo;|Ci] = (g)r

When ¢ =1 this has been approved in part (a). Assume it is true for all j,;’ with distance <7— 1. Then
when d(j,j') =t, we have

E[O’j(ijrlci] = ]E[GjO'j/|O'j1 = O'j, Ci]IP)(GjI = Gle') + ]E[GJ'O'J'/|O'J'1 = —aj,Ci]P(ajl = —Gjlci)

= (g)t_lp(ajl = gj|C)) — (ﬁ) Ploj, = —g;IC)

04
t—1 t—1 t
() )

(i) d(ij-1
Therefore E[o;0,|C;] < (g) < (;) . This completes the proof for part (b).

(c) Suppose j,j’ are not in the same hyperedge and there exists a vertex k such that j, k satisfies the
assumption in Case (b) with d(j, k) =1, and j', k satisfy the assumption in Case (b) with d(j’, k) =1,.
Conditioned on oy, we know o; and ajf are independent. Then we have

Elsjo; |Ci] = E[E[oj07 6} |ox. C1ICi] = E [Elojor|ox. Ci] - Eloyorlow. Cil|Ci]
1+t d@yjH-1
()
a a

where the last line follows from the triangle inequality d(j, k) +d(j’, k) > d(j,j’) and the condition
p<a.

(d) If j,j/ are in the same hyperedge, then d(j,j) = 1 and (A29) holds trivially.

Combining Cases (a)—(d), (A29) holds. From (A29) and (A25)-(A28), we have

1 2(hnAR')

D p(l

EX?lolC1< Y D, D Y Llagp=2mew-nEloio]|CIRURS)
hW=0 =0 j:d(ij)=2h j':d(ij")=2h

1 2(hAK)

IA

/ B 2(h+h —7)—1 /
0@~ 1ogn)( £ ) - 0@ log’n)
hhW=0 =0 j:d(i,j)=2h ¢

[ 2(hAR')

2(h+h -1)—1
— Z Z 0(a21+h+h/ Tlog n)(ﬁ) ( 4
hih=0 =0
1 2(hAR')
= > D 0@log*n) - (7 /)" =* = O(p*1og*n). (A30)
hih=0 =0

From (A23) and (A30), we have for some £ > 0,

E(||z]131Q) = n'~*0(a® p¥log’n) + O(np*10g’n).
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Then by Chebyshev’s inequality, asymptotically almost surely,
llzll2 = O(n'/*/%a! fllog’n) + O/ f*og*n) = (\/np'log’n) - O(F' v a'n~c/?).

Recall [ = clogn. We have ! = nc'2f ol = pcloge So p! = n=¢'a! for some constant £’ > 0. Since
from (A16), |BOc||> = ©(+/np"), we have

llzll2 = 0" a'|Bs]12) (A31)
for some constant y”” > 0. Combining (A21) with (A31), it implies for some constant y > 0,
1BBYsll2 = llz+ 2 +2"ll2 = O™ a)IBVs .

Then the upper bound on ||[B?B®¢ ||, in (11.5) holds. "



