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Abstract
We consider the community detection problem in sparse

random hypergraphs. Angelini et al. in [6] conjectured the

existence of a sharp threshold on model parameters for

community detection in sparse hypergraphs generated by a

hypergraph stochastic block model. We solve the positive

part of the conjecture for the case of two blocks: above the

threshold, there is a spectral algorithm which asymptoti-

cally almost surely constructs a partition of the hypergraph

correlated with the true partition. Our method is a general-

ization to random hypergraphs of the method developed by

Massoulié (2014) for sparse random graphs.
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1 INTRODUCTION

Clustering is an important topic in network analysis, machine learning, and computer vision [24]. Many

clustering algorithms are based on graphs, which represent pairwise relationships among data. Hyper-

graphs can be used to represent higher-order relationships among objects, including co-authorship and

citation networks, and they have been shown empirically to have advantages over graphs [40]. Recently

hypergraphs have been used as the data model in machine learning, including recommender system

[38], image retrieval [5, 30] and bioinformatics [39]. The stochastic block model (SBM) is a gener-

ative model for random graphs with community structures, which serves as a useful benchmark for

clustering algorithms on graph data. It is natural to have an analogous model for random hypergraphs

to model higher-order relations. In this paper, we consider a higher-order SBM called the hypergraph

stochastic block model (HSBM). Before describing HSBMs, let’s recall clustering on graph SBMs.
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1.1 The stochastic block model for graphs

In this section, we summarize the state-of-the-art results for graph SBM with two blocks of roughly

equal size. Let Σn be the set of all pairs (G, 𝜎), where G= ([n], E) is a graph with vertex set [n] and

edge set E, 𝜎 = (𝜎1, … , 𝜎n) ∈ {+1,−1}n are spins on [n], i.e., each vertex i∈ [n] is assigned with a

spin 𝜎i ∈ {−1,+1}. From this finite set Σn, one can generate a random element (G, 𝜎) in two steps.

1. First generate i.i.d random variables 𝜎i ∈ {−1,+1} equally likely for all i∈ [n].

2. Then given 𝜎 = (𝜎1, … , 𝜎n), we generate a random graph G where each edge {i, j} is included

independently with probability p if 𝜎i = 𝜎j and with probability q if 𝜎i ≠ 𝜎j.

The law of this pair (G, 𝜎) will be denoted by (n, p, q). In particular, we are interested in the

model (n, pn, qn) where pn, qn are parameters depending on n. We use the shorthand notation Pn to

emphasize that the integration is taken under the law (n, pn, qn).
Imagine C1 = {i ∶ 𝜎i = +1} and C2 = {i ∶ 𝜎i = −1} as two communities in the graph G. Observ-

ing only G from a sample (G, 𝜎) from the distribution (n, pn, qn), the goal of community detection is

to estimate the unknown vector 𝜎 up to a sign flip. Namely, we construct label estimators 𝜎̂i ∈ {±1}
for each i and consider the empirical overlap between 𝜎̂ and unknown 𝜎 defined by

ovn(𝜎̂, 𝜎) ∶=
1

n
∑
i∈[n]

𝜎i𝜎̂i. (1.1)

We may ask the following questions about the estimation as n tends to infinity:

1. Exact recovery (strong consistency):

lim
n→∞

Pn ({ovn(𝜎̂, 𝜎) = 1} ∪ {ovn(𝜎̂, 𝜎) = −1}) = 1.

2. Almost exact recovery (weak consistency): for any 𝜀 > 0,

lim
n→∞

Pn ({|ovn(𝜎̂, 𝜎) − 1| > 𝜀} ∩ {|ovn(𝜎̂, 𝜎) + 1| > 𝜀}) = 0.

3. Detection: Find a partition which is correlated with the true partition. More precisely, there

exists a constant r > 0 such that it satisfies the following: for any 𝜀 > 0,

lim
n→∞

Pn({|ovn(𝜎̂, 𝜎) − r| > 𝜀} ∩ {|ovn(𝜎̂, 𝜎) + r| > 𝜀}) = 0. (1.2)

There are many works on these questions using different tools, we list some of them. A conjecture

of [14] based on nonrigorous ideas from statistical physics predicts a threshold of detection in the SBM,

which is called the Kesten–Stigum threshold. In particular, if pn = a
n

and qn = b
n

where a, b are pos-

itive constants independent of n, then the detection is possible if and only if (a− b)2 > 2(a+ b). This

conjecture was confirmed in [8, 32, 33, 35] where [8, 32, 35] provided efficient algorithms to achieve

the threshold. Very recently, two alternative spectral algorithms were proposed based on distance

matrices [36] and a graph powering method in [3], and they both achieved the detection threshold.

Suppose pn = a log n
n

, qn = b log n
n

where a, b are constant independent of n. Then the exact recovery

is possible if and only if
(√

a −
√

b
)2

> 2, which was solved in [2, 23] with efficient algorithms

achieving the threshold. Besides the phase transition behavior, various algorithms were proposed
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and analyzed in different regimes and more general settings beyond the 2-block SBM [4, 7, 10, 11,

13, 22, 28, 34, 37], including spectral methods, semidefinite programming, belief-propagation, and

approximate message-passing algorithms. We recommend [1] for further details.

1.2 Hypergraph stochastic block models

The hypergraph stochastic block model (HSBM) is a generalization of the SBM for graphs, which

was first studied in [18], where the authors consider hypergraphs generated by the stochastic block

models that are dense and uniform. A faithful representation of a hypergraph is its adjacency tensor (see

Definition 2.2). However, most of the computations involving tensors are NP-hard [25]. Instead, they

considered spectral algorithms for exact recovery using hypergraph Laplacians. Subsequently, they

extended their results to sparse, nonuniform hypergraphs [19–21]. For exact recovery, it was shown

that the phase transition occurs in the regime of logarithmic average degrees in [11, 12, 29] and the

exact threshold was given in [27], by a generalization of the techniques in [2]. Almost exact recovery

for HSBMs was studied in [11, 12, 21].

For detection of the HSBM with two blocks, the authors of [6] proposed a conjecture that the

phase transition occurs in the regime of constant average degree, based on the performance of the

belief-propagation algorithm. Also, they conjectured a spectral algorithm based on nonbacktracking

operators on hypergraphs could reach the threshold. In [17], the authors showed an algorithm for detec-

tion when the average degree is bigger than some constant by reducing it to a bipartite stochastic block

model. They also mentioned a barrier to further improvement. We confirm the positive part of the

conjecture in [6] for the case of two blocks: above the threshold, there is a spectral algorithm which

asymptotically almost surely constructs a partition of the hypergraph correlated with the true partition.

Now we specify our d-uniform hypergraph stochastic block model with two clusters. Analogous

to (n, pn, qn), we define (n, 𝑑, pn, qn) for d-uniform hypergraphs. Let Σn be the set of all pair (H, 𝜎),
where H = ([n], E) is a d-uniform hypergraph (see Definition 2.1) with vertex set [n] and hyperedge

set E, 𝜎 = (𝜎1, … , 𝜎n) ∈ {+1,−1}n are the spins on [n]. From this finite set Σn, one can generate a

random element (H, 𝜎) in two steps.

(1) First generate i.i.d random variables 𝜎i ∈ {−1,+1} equally likely for all i∈ [n].

(2) Then given 𝜎 = (𝜎1, … , 𝜎n), we generate a random hypergraph H where each hyperedge

{i1,… id} is included independently with probability pn if 𝜎i1 = · · · = 𝜎i𝑑 and with probability

qn if the spins 𝜎i1 , … 𝜎i𝑑 are not the same.

The law of this pair (H, 𝜎) will be denoted by (n, 𝑑, pn, qn). We use the shorthand notation Pn

and En to emphasize that integration is taken under the law (n, 𝑑, pn, qn). Often we drop the index

n from our notation, but it will be clear from Pn .

1.3 Main results

We consider the detection problem of the HSBM in the constant expected degree regime. Let

pn ∶= a(
n

𝑑−1

) , qn ∶= b(
n

𝑑−1

)
for some constants a≥ b> 0 and a constant integer d ≥ 3. Let

𝛼 ∶= (𝑑 − 1)a + (2𝑑−1 − 1)b
2𝑑−1

, 𝛽 ∶= (𝑑 − 1)a − b
2𝑑−1

. (1.3)
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FIGURE 1 An HSBM with d = 3. Vertices in blue and red have spin + and −, respectively

Here 𝛼 is a constant which measures the expected degree of any vertex, and 𝛽 measures the discrepancy

between the number of neighbors with + sign and − sign of any vertex. For d = 2, 𝛼, 𝛽 are the same

parameters for the graph case in [32]. Now we are able to state our main result which is an extension

of the result of for graph SBMs in [32]. Note that with the definition of 𝛼, 𝛽, we have 𝛼 > 𝛽. The

condition 𝛽2 > 𝛼 in the statement of Theorem (1.1) below implies 𝛼, 𝛽 > 1, which will be assumed

for the rest of the paper.

Theorem 1.1. Assume 𝛽2 > 𝛼. Let (H, 𝜎) be a random labeled hypergraph sampled from
(n, 𝑑, pn, qn) and B(l) be its lth self-avoiding matrix (see Definition 2.6). Set l = c log(n) for a con-
stant c such that c log(𝛼) < 1∕8. Let x be a l2-normalized eigenvector corresponding to the second
largest eigenvalue of B(l). There exists a constant t such that, if we define the label estimator 𝜎̂i as

𝜎̂i =

{
+1 if xi ≥ t∕

√
n,

−1 otherwise,

then detection is possible. More precisely, there exists a constant r > 0 such that the empirical overlap
between 𝜎̂ and 𝜎 defined similar to (1.1) satisfies the following: for any 𝜀 > 0,

lim
n→∞

Pn

(
{|ovn(𝜎̂, 𝜎) − r| > 𝜀}

⋂
{|ovn(𝜎̂, 𝜎) + r| > 𝜀}

)
= 0.

Remark 1.2. If we take d = 2, the condition 𝛽2 > 𝛼 is the threshold for detection in graph SBMs

proved in [32, 33, 35]. When d ≥ 3, the conjectured detection threshold for HSBMs is given in Equation

(48) of [6]. With our notations, in the 2-block case, Equation (48) in [6] can be written as
𝛼−𝛽
𝛼+𝛽

=
√
𝛼−1√
𝛼+1

,

which says 𝛽2 = 𝛼 is the conjectured detection threshold for HSBMs. This is an analog of the Kesten-

Stigum threshold proved in the graph case [8, 14, 32, 33, 35]. Our Theorem 1.1 proves the positive

part of the conjecture.

Our algorithm can be summarized in two steps. The first step is a dimension reduction: B(l) has n2

many entries from the original adjacency tensor T (see Definition 2.2) of nd many entries. Since the

l-neighborhood of any vertex contains at most one cycle with high probability (see Lemma 4.4), by

breadth-first search, the matrix B(l) can be constructed in polynomial time. The second step is a simple
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spectral clustering according to leading eigenvectors as the common clustering algorithm in the graph

case.

Unlike graph SBMs, in the HSBMs, the random hypergraph H we observe is essentially a random

tensor. Getting the spectral information of a tensor is NP-hard [25] in general, making the correspond-

ing problems in HSBMs very different from graph SBMs. It is not immediately clear which operator

to associate to H that encodes the community structure in the bounded expected degree regime. The

novelty of our method is a way to project the random tensor into matrix forms (the self-avoiding matrix

B(l) and the adjacency matrix A) that give us the community structure from their leading eigenvectors.

In practice, the hypergraphs we observed are usually not d-uniform, which cannot be represented as a

tensor. However, we can still construct the matrix B(l) since the definition of self-avoiding walks does

not depend on the uniformity assumption. In this paper, we focus on the d-uniform case to simplify

the presentation, but our proof techniques can be applied to the nonuniform case.

The analysis of HSBMs is harder than the original graph SBMs due to the extra dependency in the

hypergraph structure and the lack of linear algebra tools for tensors. To overcome these difficulties,

new techniques are developed in this paper to establish the desired results.

There are multiple ways to define self-avoiding walks on hypergraphs, and our definition (see

Definition 2.4) is the only one that works for us when applying the moment method. We develop a

moment method suitable for sparse random hypergraphs in Section 7 that controls the spectral norms

by counting concatenations of self-avoiding walks on hypergraphs. The combinatorial counting argu-

ment in the proof of Lemma 7.1 is more involved as we need to consider labeled vertices and labeled

hyperedges. The moment method for hypergraphs developed here could be of independent interest for

other random hypergraph problems.

The growth control of the size of the local neighborhood (Section 4) for HSBMs turns out to be

more challenging compared to graph SBMs in [32] due to the dependency between the number of

vertices with spin + and −, and overlaps between different hyperedges. We use a new second-moment

estimate to obtain a matching lower bound and upper bound for the size of the neighborhoods in the

proof of Theorem 8.4. The issues mentioned above do not appear in the sparse random graph case.

To analyze the local structure of HSBMs, we prove a new coupling result between a typical neigh-

borhood of a vertex in the sparse random hypergraph H and a multi-type Galton–Watson hypertree

described in Section 10, which is a stronger version of local weak convergence of sparse random hyper-

graphs (local weak convergence for hypergraphs was recently introduced in [15]). Compared to the

classical 2-type Galton–Watson tree in the graph case, the vertex± labels in a hyperedge is not assigned

independently. We carefully designed the probability of different types of hyperedges that appear in

the hypertree to match the local structure of the HSBM.

Combining all the new ingredients, we obtain the weak Ramanujan property of B(l) for sparse

HSBMs in Theorem 6.1 as a generalization of the results in [32]. We conclude the proof of our

Theorem 1.1 in Section 6.

Our Theorem 1.1 deals with the positive part of the phase transition conjecture in [6]. To have a

complete characterization of the phase transition, one needs to show an impossibility result when 𝛽2 <

𝛼. Namely, below this threshold, no algorithms (even with exponential running time) will solve the

detection problem with high probability. For graph SBMs, the impossibility result was proved in [33]

based on a reduction to the broadcasting problem on Galton–Watson trees analyzed in [16]. To answer

the corresponding problem in the HSBMs, one needs to establish a similar information-theoretical

lower bound for the broadcasting problem on hypertrees and relate the problem to the detection problem

on HSBMs. To the best of our knowledge, even for the very first step, the broadcasting problem on

hypertrees has not been studied yet. The multi-type Galton–Watson hypertrees described in Section 10

can be used as a model to study this type of problem on hypergraphs. We leave it as a future direction.
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2 PRELIMINARIES

Definition 2.1 (Hypergraph). A hypergraph H is a pair H = (V , E) where V is a set of vertices and E
is the set of nonempty subsets of V called hyperedges. If any hyperedge e∈E is a set of d elements

of V , we call H d-uniform. In particular, 2-uniform hypergraph is an ordinary graph. A d-uniform

hypergraph is complete if any set of d vertices is a hyperedge and we denote a complete d-uniform

hypergraph on [n] by Kn, d. The degree of a vertex i∈V is the number of hyperedges in H that

contains i.

Definition 2.2 (Adjacency tensor). Let H = (V , E) be a d-uniform hypergraph with V = [n]. We define

T to be the adjacency tensor of H such that for any set of vertices {i1, i2,… , id},

Ti1,… ,i𝑑 =

{
1 if {i1, … , i𝑑} ∈ E,
0 otherwise.

We set T𝜎(i1),𝜎(i2),… ,𝜎(i𝑑 ) = Ti1,… ,i𝑑 for any permutation 𝜎. We may write Te in place of Ti1,… ,i𝑑 where

e= {i1,… , id}.

Definition 2.3 (Adjacency matrix). The adjacency matrix A of a d-uniform hypergraph H = (V , E) with

vertex set [n] is a n× n symmetric matrix such that for any i≠ j, Aij is the number of hyperedges in E
which contains i, j and Aii = 0 for i∈ [n]. Equivalently, we have

Aij =

{∑
e∶{i,j}∈eTe if i ≠ j,

0 if i = j.

Definition 2.4 (Walk). A walk of length l on a hypergraph H is a sequence (i0, e1, i1,… , el, il) such

that ij− 1 ≠ ij and {ij− 1, ij}⊂ ej for all 1≤ j≤ l. A walk is closed if i0 = il and we call it a circuit. A

self-avoiding walk of length l is a walk (i0, e1, i1,… , el, il) such that

(1) |{i0, i1,… , il}|= l+ 1.

(2) Any consecutive hyperedges ej− 1, ej satisfy ej− 1 ∩ ej = {ij− 1} for 2≤ j≤ l.
(3) Any two hyperedges ej, ek with 1≤ j< k≤ l, k≠ j+ 1 satisfy ej ∩ ek =∅.

See Figure 2 for an example of a self-avoiding walk in a 3-uniform hypergraph. Recall that a

self-avoiding walk of length l on a graph is a walk (i0,… , il) without repeated vertices. Our definition

is a generalization of the self-avoiding walk to hypergraphs.

Definition 2.5 (Cycle and hypertree). A cycle of length l with l≥ 2 in a hypergraph H is a walk

(i0, e1,… , il− 1, el, i0) such that i0,… il− 1 are distinct vertices and e1 … el are distinct hyperedges. A

hypertree is a hypergraph which contains no cycles.

Let
(

[n]
𝑑

)
be the collection of all subsets of [n] with size d. For any subset e ∈

(
[n]
𝑑

)
and i≠ j∈ [n],

we define

Ae
ij =

{
1 if {i, j} ∈ e and e ∈ E,
0 otherwise,
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FIGURE 2 A self-avoiding walk of length 4 denoted by (v0, e1, v1, e2, v2, e3, v3, e4, v4)

and we define Ae
ii = 0 for all i∈ [n]. With our notation above, Aij =

∑
e∈
(
[n]
𝑑

)Ae
ij. We have the following

expansion of the trace of Ak for any integer k≥ 0:

trAk =
∑

i0,i2,… ,ik−1∈[n]
Ai0i1 Ai2i3 … Aik−1i0 =

∑
i0 ,i1 ,… ,ik−1∈[n]

e1 ,… ,ek∈
(
[n]
𝑑

)
Ae1

i0i1 … Aek−1

ik−2ik−1
Aek

ik−1i0 .

Therefore, trAk counts the number of circuits (i0, e1, i1,… , ik− 1, ek, i0) in the hypergraph H of length

k. This connection was used in [31] to study the spectra of the Laplacian of random hypergraphs.

From our definition of self-avoiding walks on hypergraphs, we associate a self-avoiding adjacency

matrix to the hypergraph.

Definition 2.6 (Self-avoiding matrix). Let H = (V , E) be a hypergraph with V = [n]. For any l≥ 1, a lth
self-avoiding matrix B(l) is a n× n matrix where for i≠ j∈ [n], B(l)

ij counts the number of self avoiding

walks of length l from i to j and B(l)
ii = 0 for i∈ [n].

B(l) is a symmetric matrix since a time-reversing self avoiding walk from i to j is a self avoiding walk

from j to i. Let SAWij be the set of all self-avoiding walks of length l connecting i and j in the complete

d-uniform hypergraph on vertex set [n]. We denote a walk of length l by w = (i0, ei1 , … , il−1, eil , il).
Then for any i, j∈ [n],

B(l)
ij =

∑
w∈SAWij

l∏
t=1

A
eit
it−1it . (2.1)

3 MATRIX EXPANSION AND SPECTRAL NORM BOUNDS

Consider a random labeled d-uniform hypergraph H sampled from  (n, 𝑑, pn, qn) with adjacency

matrix A and self-avoiding matrix B(l). Let A ∶= En [A|𝜎]. Let 𝜌(A) ∶= supx∶||x||2=1||Ax||2 be the

spectral norm of a matrix A. Recall (2.1), define

Δ(l)
ij ∶=

∑
w∈SAWij

l∏
t=1

(Aeit
it−1it − A

eit
it−1it ), (3.1)

where A
eit
it−1it = En[A

eit
it−1it |𝜎]. Δ(l) can be regarded as a centered version of B(l).
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We will apply the classical moment method to estimate the spectral norm of Δ(l), since this method

works well for centered random variables. Then we can relate the spectrum of Δ(l) to the spectrum

of B(l) through a matrix expansion formula which connects A, B(l) and Δ(l) in the following theorem.

Recall the definition of 𝛼 in (1.3).

Theorem 3.1. Let H be a random hypergraph sampled from  (n, 𝑑, pn, qn) and B(l) be its lth self
avoiding matrix. Then the following holds.

1. There exist some matrices {Γ(l,m)}l
m=1 such that for any l≥ 1, B(l) satisfies the identity

B(l) = Δ(l) +
l∑

m=1

(Δ(l−m)AB(m−1)) −
l∑

m=1

Γ(l,m). (3.2)

2. For any sequence ln = O(log n) and any fixed 𝜀 > 0,

lim
n→∞

Pn

(
𝜌(Δ(ln)) ≤ n𝜀𝛼ln∕2

)
= 1, (3.3)

lim
n→∞

Pn

( ln⋂
m=1

{
𝜌(Γ(ln,m)) ≤ n𝜀−1𝛼(ln+m)∕2

})
= 1. (3.4)

Theorem 3.1 is one of the main ingredients to show B(l) has a spectral gap. Together with the local

analysis in Section 4, we will show in Theorem 6.1 that the bulk eigenvalues of B(l) are separated from

the first and second eigenvalues. The proof of Theorem 3.1 is deferred to Section 7. The matrices

{Γ(l,m)}l
m=1 in Theorem 3.1 record concatenations of self-avoiding walks with different weights, which

will be carefully analyzed in Lemma 7.2 of Section 7.

4 LOCAL ANALYSIS

In this section, we study the structure of the local neighborhoods in the HSBM. Namely, what the

neighborhood of a typical vertex in the random hypergraph looks like.

Definition 4.1. In a hypergraph H, we define the distance d(i, j) between two vertices i, j to be the

minimal length of walks between i and j. Define the t-neighborhood Vt(i) of a fixed vertex i to be the

set of vertices which have distance t from i. Define V≤t(i) ∶ =
⋃

k≤tVk(i) to be the set all of vertices

which have distance at most t from i and V>t = [n] \ V≤t. Let V±
t (i) be the vertices in Vt(i) with spin ±

and define it similarly for V±
≤t(i).

For i∈ [n], define

St(i) ∶= |Vt(i)|, Dt(i) ∶=
∑

j∶𝑑(i,j)=t
𝜎j.

Let 1 = (1 … , 1) ∈ Rn and recall 𝜎 ∈ {−1, 1}n. We will show that when l = c log n with c log 𝛼 <

1∕8, Sl(i), Dl(i) are close to the corresponding quantities (B(l)1)i, (B(l)𝜎)i (see Lemma 11.1). In partic-

ular, the vector (Dl(i))1≤ i≤ n is asymptotically aligned with the second eigenvector of B(l), from which

we get the information on the partitions.

We give the following growth estimates of St(i) and Dt(i). The proof of Theorem 4.2 is given in

Section 8.
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Theorem 4.2. Assume 𝛽2 > 𝛼 > 1 and l = c log n, for a constant c such that c log 𝛼 < 1∕4. There
exists constants C, 𝛾 > 0 such that for sufficiently large n, with probability at least 1 − O(n−𝛾 ) the
following holds for all i∈ [n] and 1≤ t≤ l:

St(i) ≤ C log(n)𝛼t, (4.1)|Dt(i)| ≤ C log(n)𝛽 t, (4.2)

St(i) = 𝛼t−lSl(i) + O(log(n)𝛼t∕2), (4.3)

Dt(i) = 𝛽 t−lDl(i) + O(log(n)𝛼t∕2). (4.4)

The approximate independence of neighborhoods of distinct vertices is given in the following

lemma. It will be used later to analyze the martingales constructed on the Galton–Watson hypertree

defined in Section 10. The proof of Lemma 4.3 is given in Appendix A.1.

Lemma 4.3. For any two fixed vertices i≠ j, let l = c log(n) with constant c log(𝛼) < 1∕4. Then
the total variation distance between the joint law ((U±

k (i))k≤l, (U±
k (j))k≤l) and the law with the same

marginals and independence between them, denoted by ((U±
k (i))k≤l ⊗ (U±

k (j))k≤l), is O(n−𝛾 ) for some
𝛾 > 0.

Now we consider number of cycles in V≤l(i) of any vertex i∈ [n]. We say H is l-tangle-free if for

any i∈ [n], there is no more than one cycle in V≤l(i).

Lemma 4.4. Assume l = c log n with c log(𝛼) < 1∕4. Let (H, 𝜎) be a sample from  (n, 𝑑, pn, qn).
Then

lim
n→∞

Pn

(|{i ∈ [n] ∶ V≤l(i) contains at least one cycle}| ≤ log4(n)𝛼2l) = 1,

lim
n→∞

Pn (H is l-tangle-free) = 1.

The proof of Lemma 4.4 is given in Appendix A.2.

In the next lemma, we translate the local analysis of the neighborhoods to the control of vectors

B(m)1,B(m)𝜎. The proof is similar to the proof of Lemma 4.3 in [32], and we include it in Appendix

A0.3. For any event An, we say An happens asymptotically almost surely if limn→∞Pn (An) = 1.

Lemma 4.5. Let  be the set of vertices i whose l−neighborhood contains a cycle. For l = c log n
with c log(𝛼) < 1∕4, asymptotically almost surely the following holds:

(1) for all m≤ l and all i ∉  the following holds

(B(m−1)1)i = 𝛼m−1−l(B(l)1)i + O(𝛼(m−1)∕2 log n), (4.5)

(B(m−1)𝜎)i = 𝛽m−1−l(B(l)𝜎)i + O(𝛼(m−1)∕2 log n). (4.6)

(2) For all i ∈ :

|(B(m)𝜎)i| ≤ |(B(m)1)i| ≤ 2

m∑
t=0

St(i) = O(𝛼m log n). (4.7)

Combining Theorems 3.1,4.2, and Lemma 4.5, we are able to prove the following theorem.
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FIGURE 3 A Galton–Watson hypertree with d = 3. The vertices with spin + are in blue and vertices with spin − are in red

Theorem 4.6. Assume 𝛽2 > 𝛼 > 1 and l = c log n with c log(𝛼) < 1∕8. Then the following holds:
for any 𝜀 > 0

lim
n→∞

Pn

(
sup||x||2=1,x⊤(B(l)1)=x⊤(B(l)𝜎)=0

||B(l)x||2 ≤ n𝜀𝛼l∕2

)
= 1.

Theorem 4.6 is a key ingredient to prove the bulk eigenvalues of B(l) are O(n𝜀𝛼l∕2) in Theorem 6.1.

The proof of Theorem 4.6 is given in in Section 9.

5 COUPLING WITH MULTI-TYPE POISSON HYPERTREES

Recall the definition of a hypertree from Definition 2.5. We construct a hypertree growth process in

the following way. The hypertree is designed to obtain a coupling with the local neighborhoods of the

random hypergraph H.

• Generate a root 𝜌 with spin 𝜏(𝜌) = +, then generate Pois
(

𝛼

𝑑−1

)
many hyperedges that only

intersects at 𝜌. Call the vertices in these hyperedges except 𝜌 to be the children of 𝜌 and of

generation 1. Call 𝜌 to be their parent.
• For 0≤ r ≤ d − 1, we define a hyperedge is of type r if r many children in the hyperedge has spin

𝜏(𝜌) and (d − 1− r) many children has spin −𝜏(𝜌). We first assign a type for each hyperedge

independently. Each hyperedge will be of type (d − 1) with probability
(𝑑−1)a
𝛼2𝑑−1 and of type r with

probability
(𝑑−1)b

(
𝑑−1

r

)
𝛼2𝑑−1 for 0≤ r ≤ d − 2. Since

(𝑑−1)a
𝛼2𝑑−1 +

∑𝑑−2

r=0

(𝑑−1)b
(

𝑑−1

r

)
𝛼2𝑑−1 = 1, the probabilities

of being various types of hyperedges add up to 1. Because the type is chosen i.i.d for each

hyperedge, by Poisson thinning, the number of hyperedges of different types are independent

and Poisson.

• We draw the hypertree in a plane and label each child from left to right. For each type r hyper-

edge, we uniformly randomly pick r vertices among d − 1 vertices in the first generation to put

spins 𝜏(𝜌), and the rest d − 1− r many vertices are assigned with spins −𝜏(𝜌).
• After defining the first generation, we keep constructing subsequent generations by induction.

For each children v with spin 𝜏(v) in the previous generation, we generate Pois
(

𝛼

𝑑−1

)
many

hyperedges that pairwise intersects at v and assign a type to each hyperedge by the same rule with

𝜏(𝜌) replaced by 𝜏(v). We call such random hypergraphs with spins a multi-type Galton–Watson
hypertree, denoted by (T , 𝜌, 𝜏) (see Figure 3).

Let W±
t be the number of vertices with ± spins at the tth generation and W (r)

t be the number of

hyperedges which contains exactly r children with spin + in the tth generation. Let t−1 ∶= 𝜎(W±
k , 1 ≤
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k ≤ t− 1) be the 𝜎-algebra generated by W±
k , 1 ≤ k ≤ t− 1. From our definition, W+

0 = 1,W−
0 = 0 and

{W (r)
t }0≤r≤𝑑−1 are independent conditioned on t−1, and the conditioned laws of W (r)

t are given by

(W (𝑑−1)
t |t−1) = Pois

(
a

2𝑑−1
W+

t−1 +
b

2𝑑−1
W−

t−1

)
, (5.1)

(W (0)
t |t−1) = Pois

(
a

2𝑑−1
W−

t−1 +
b

2𝑑−1
W+

t−1

)
, (5.2)

(W (r)
t |t−1) = Pois

⎛⎜⎜⎝
b
(

𝑑−1

r

)
2𝑑−1

(W−
t−1 + W+

t−1)
⎞⎟⎟⎠ , 1 ≤ r ≤ 𝑑 − 2. (5.3)

We also have

W+
t =

𝑑−1∑
r=0

rW (r)
t , W−

t =
𝑑−1∑
r=0

(𝑑 − 1 − r)W (r)
t . (5.4)

Definition 5.1. A rooted hypergraph is a hypergraph H with a distinguished vertex i∈V(H), denoted

by (H, i). We say two rooted hypergraphs (H, i) and (H′, i′) are isomorphic and if and only if there is a

bijection 𝜙 ∶ V(H) → V(H′) such that 𝜙(i) = i′ and e∈E(H) if and only if 𝜙(e) ∶= {𝜙(j) ∶ j ∈ e} ∈
E(H′).

Let (H, i, 𝜎) be a rooted hypergraph with root i and each vertex j is given a spin 𝜎(j) ∈ {−1,+1}. Let

(H′, i′, 𝜎′) be a rooted hypergraph with root i′ where for each vertex j∈V(H′), a spin 𝜎′(j) ∈ {−1,+1}
is given. We say (H, i, 𝜎) and (H′, i′, 𝜎′) are spin-preserving isomorphic and denoted by (H, i, 𝜎) ≡

(H′, i′, 𝜎′) if and only if there is an isomorphism 𝜙 ∶ (H, i) → (H′, i′) with 𝜎(v) = 𝜎′(𝜙(v)) for each

v∈V(H).

Let (H, i, 𝜎)t, (T , 𝜌, 𝜏)t be the rooted hypergraphs (H, i, 𝜎), (T , 𝜌, 𝜏) truncated at distance t from i, 𝜌
respectively, and let (T , 𝜌,−𝜏) be the corresponding hypertree growth process where the root 𝜌 has

spin −1. We prove a local weak convergence of a typical neighborhood of a vertex in the hypergraph

H to the hypertree process T we described above. In fact, we prove the following stronger statement.

The proof of Theorem 5.2 is given in Section 10.

Theorem 5.2. Let (H, 𝜎) be a random hypergraph H with spin 𝜎 sampled from n. Let i∈ [n] be
fixed with spin 𝜎i. Let l = c log(n) with c log(𝛼) < 1∕4, the following holds for sufficiently large n.

1. If 𝜎i = +1, there exists a coupling between (H, i, 𝜎) and (T , 𝜌, 𝜏) such that (H, i, 𝜎)l ≡ (T , 𝜌, 𝜏)l
with probability at least 1− n−1/5.

2. If 𝜎i = −1, there exists a coupling between (H, i, 𝜎) and (T , 𝜌,−𝜏) such that (H, i, 𝜎)l ≡

(T , 𝜌,−𝜏)l with probability at least 1− n−1/5.

Now we construct two martingales from the Poisson hypertree growth process. Define two

processes

Mt ∶= 𝛼−t(W+
t + W−

t ), Δt ∶= 𝛽−t(W+
t − W−

t ).

Lemma 5.3. The two processes {Mt}, {Δt} are t-martingales. If 𝛽2 > 𝛼 > 1, {Mt} and {Δt} are
uniformly integrable. The martingale {Δt} converges almost surely and in L2 to a unit mean random
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variable Δ∞. Moreover, Δ∞ has a finite variance and

lim
t→∞

E|Δ2
t − Δ2

∞| = 0. (5.5)

The following Lemma will be used in the proof of Theorem 1.1 to analyze the correlation between

the estimator we construct and the correct labels of vertices based on the random variable Δ∞. The

proof is similar to the proof of Theorem 4.2 in [32], and we include it in Appendix A.5.

Lemma 5.4. Let l = c log n with c log 𝛼 < 1∕8. For any 𝜀 > 0,

lim
n→∞

Pn

(|||||1n
n∑

i=1

𝛽−2lD2
l (i) − E[Δ2

∞]
||||| > 𝜀

)
= 0. (5.6)

Let y(n) ∈ Rn be a random sequence of l2-normalized vectors defined by

y(n)i ∶= Dl(i)√∑n
j=1 Dl(j)2

, 1 ≤ i ≤ n.

Let x(n) be any sequence of random vectors in Rn such that for any 𝜀 > 0,

lim
n→∞

Pn (||x(n) − y(n)||2 > 𝜀) = 0.

For all 𝜏 ∈ R that is a point of continuity of the distribution of both Δ∞ and −Δ∞, for any 𝜀 > 0, one
has the following

lim
n→∞

Pn

(||||||1n
∑

i∈[n]∶𝜎i=+
1
{

x(n)i ≥ 𝜏∕
√

nE[Δ2
∞]
}
− 1

2
P(Δ∞ ≥ 𝜏)

|||||| > 𝜀

)
= 0,

lim
n→∞

Pn

(||||||1n
∑

i∈[n]∶𝜎i=−
1
{

x(n)i ≥ 𝜏∕
√

nE[Δ2
∞]
}
− 1

2
P(−Δ∞ ≥ 𝜏)

|||||| > 𝜀

)
= 0. (5.7)

6 PROOF OF THE MAIN RESULT

Let S⃗l ∶= (Sl(1), … , Sl(n)) and D⃗l ∶= (Dl(1), … ,Dl(n)). We say the the sequence of vectors {vn}≥1

is asymptotically aligned with the sequence of vectors {wn}n≥ 1 if

lim
n→∞

|⟨vn,wn⟩|||vn||2 ⋅ ||wn||2 = 1.

With all the ingredients in Sections 3–10, we establish the following weak Ramanujan property of B(l).

The proof of Theorem 6.1 is given in Section 11.

Theorem 6.1. For l = c log(n) with c log(𝛼) < 1∕8, asymptotically almost surely the two leading
eigenvectors of B(l) are asymptotically aligned with vectors S⃗l, D⃗l, where the first eigenvalue is of order
Θ(𝛼l) up to some logarithmic factor and the second eigenvalue is of order Ω(𝛽 l). All other eigenvalues
are of order O(n𝜀𝛼l∕2) for any 𝜀 > 0.
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Theorem 6.1 connects the leading eigenvectors of B(l) with the local structures of the random

hypergraph H and shows that the bulk eigenvalues of B(l) are separated from the two top eigenvalues.

Equipped with Theorem 6.1 and Lemma 5.4, we are ready to prove our main result.

Proof of Theorem 1.1. Let x(n) be the l2-normalized second eigenvector of B(l), by Theorem 6.1, x(n)

is asymptotically aligned with the l2-normalized vector

y(n)i = Dl(i)√∑n
j=1 Dl(j)2

, 1 ≤ i ≤ n

asymptotically almost surely. So we have ||x(n) − y(n)||2 → 0 or ||x(n) + y(n)||2 → 0 asymptotically almost

surely.

We first assume ||x(n) − y(n)||2 → 0. Since EΔ∞ = 1, from the proof of Theorem 2.1 in [32], there

exists a point 𝜏 ∈ R, in the set of continuity points of both Δ∞ and −Δ∞, that satisfies r ∶= P(Δ∞ ≥

𝜏) − P(−Δ∞ ≥ 𝜏) > 0. Take t = 𝜏∕
√

E(Δ2
∞) and let  +, − be the set of vertices with spin + and

−, respectively.

From the definition of 𝜎̂, we have

1

n
∑
i∈[n]

𝜎i𝜎̂i =
1

n
∑
i∈[n]

𝜎i

(
1{x(n)i ≥t∕

√
n
} − 1{x(n)i <t∕

√
n
})

= − 1

n
∑
i∈[n]

𝜎i +
2

n
∑

i∈ +

1{
x(n)i ≥𝜏∕

√
nEΔ2

∞

} − 2

n
∑

i∈ −

1{
x(n)i ≥𝜏∕

√
nEΔ2

∞

}. (6.1)

Note that
1

n

∑
i∈[n]𝜎i → 0 in probability by the law of large numbers. From (5.7) in Lemma 5.4, we

have (6.1) converges in probability to P(Δ∞ ≥ 𝜏) − P(−Δ∞ ≥ 𝜏) = r. If ||x(n) + y(n)||2 → 0, similarly

we have
1

n

∑
i∈[n]𝜎i𝜎̂i converges to −r in probability. From these two cases, for any 𝜀 > 0,

lim
n→∞

Pn

(
{|ovn(𝜎̂, 𝜎) − r| > 𝜀}

⋂
{|ovn(𝜎̂, 𝜎) + r| > 𝜀}

)
= 0.

This concludes the proof of Theorem 1.1. ▪

7 PROOF OF THEOREM 3.1

7.1 Proof of (3.2) in Theorem 3.1

For ease of notation, we drop the index n from ln in the proof, and it will be clear from the law n. For

any sequences of real numbers {at}l
t=1, {bt}l

t=1, we have the following expansion identity for l≥ 2 (see

for example, Equation (15) in [32] and Equation (27) in [8]):

l∏
t=1

(at − bt) =
l∏

t=1

at −
l∑

m=1

( l−m∏
t=1

(at − bt)

)
bl−m+1

l∏
t=l−m+2

at.

Therefore the following identity holds.

l∏
t=1

(Aeit
it−1it − A

eit
it−1it ) =

l∏
t=1

A
eit
it−1it −

l∑
m=1

( l−m∏
t=1

(Aeit
it−1it − A

eit
it−1it )

)
A

eil−m+1

il−mil−m+1

l∏
t=l−m+2

A
eit
it−1it .
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Summing over all w∈ SAWij, Δ(l)
ij can be written as

B(l)
ij −

l∑
m=1

∑
w∈SAWij

( l−m∏
t=1

(Aeit
it−1it − A

eit
it−1it )

)
A

eil−m+1

il−mil−m+1

l∏
t=l−m+2

A
eit
it−1it . (7.1)

Introduce the set Qm
ij of walks w defined by concatenations of two self-avoiding walks w1, w2 such

that w1 is a self-avoiding walk of length l−m from i to some vertex k, and w2 is a self-avoiding walk

of length m from k to j for all possible 1≤m≤ l and k∈ [n]. Then SAWij ⊂ Qm
ij for all 1≤m≤ l. Let

Rm
ij = Qm

ij ∖SAWij. Define the matrix Γ(l,m) as

Γ(l,m)
ij ∶=

∑
w∈Rm

ij

l−m∏
t=1

(Aeit
it−1it − A

eit
it−1it )A

etl−m+1

il−mil−m+1

l∏
t=l−m+2

A
eit
it−1it . (7.2)

From (7.1), Δ(l)
ij can be expanded as

B(l)
ij −

l∑
m=1

∑
w∈Qm

ij ∖Rm
ij

( l−m∏
t=1

(Aeit
it−1it − A

eit
it−1it )

)
A

eil−m+1

il−mil−m+1

l∏
t=l−m+2

A
eit
it−1it .

It can be further written as

B(l)
ij −

l∑
m=1

∑
w∈Qm

ij

l−m∏
t=1

(Aeit
it−1it − A

eit
it−1it )A

eil−m+1

il−mil−m+1

l∏
t=l−m+2

A
eit
it−1it +

l∑
m=1

Γ(l,m)
ij .

From the definition of matrix multiplication, we have

∑
w∈Qm

ij

l−m∏
t=1

(Aeit
it−1it − A

eit
it−1it )A

eil−m+1

il−mil−m+1

l∏
t=l−m+2

A
eit
it−1it

=
∑

1≤u,v≤n
Δ(l−m)

iu AuvB(m−1)
vj =

(
Δ(l−m)AB(m−1))

ij. (7.3)

Combining the expansion of Δ(l)
ij above and (7.3), we obtain

Δ(l)
ij = B(l)

ij −
l∑

m=1

(Δ(l−m)AB(m−1))ij +
l∑

m=1

Γ(l,m)
ij . (7.4)

Since (7.4) is true for any i, j∈ [n], it implies (3.2).

7.2 Proof of (3.3) in Theorem 3.1

We first prove the following spectral norm bound on Δ(l).

Lemma 7.1. For l = O(log n) and fixed k, we have

En [𝜌(Δ
(l))2k] = O(n𝛼kllog6kn). (7.5)
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FIGURE 4 A multigraph G(w) associated to a circuit w= (w1, … , w4) of length 2kl with k= 2, l= 5. w1 = (1, e1, 2, e2, 3, e3,

4, e4, 5, e5, 6), w2 = (6, e5, 5, e4, 4, e6, 7, e7, 8, e8, 3), w3 = (3, e2, 2, e1, 1, e9, 9, e10, 10, e11, 11), w4 = (11, e12, 10, e10, 9, e13, 12, e14,

13, e15, 1). Edges that are not included in T(w) are {e8, e12, e15}. The triplet sequences associated to the 4 self-avoiding walks

{wi}4
i=1

are given by (0, 6, 0); (4, 2, 3), (0, 0, 0); (1, 3, 0); (0, 0, 10), (9, 2, 1), (0, 0, 0), respectively.

Proof. Note that En[𝜌(Δ
(l))2k] ≤ En [tr(Δ

(l))2k]. The estimation is based on a coding argument,

and we modify the proof in [32] to count circuits in hypergraphs. Let W2k, l be the set of all circuits of

length 2kl in the complete hypergraph Kn, d which are concatenations of 2k many self-avoiding walks

of length l. For any circuits w∈W2k, l, we denote it by w = (i0, ei1 , i1, … ei2kl , i2kl), with i2kl = i0. From

(3.1), we have

En

[
tr(Δ(l))2k] = ∑

j1,… ,j2k∈[n]
En

[
Δ(l)

j1j2Δ
(l)
j2j3 … Δ(l)

j2kj1

]
=
∑

w∈W2k,l

En

[
2kl∏
t=1

(Aeit
it−1it − A

eit
it−1it )

]
. (7.6)

For each circuit, the weight it contributes to the sum is the product of (Ae
ij −Ae

ij) over all the hyperedges

e traversed in the circuits. In order to have an upper bound on En [tr(Δ
(l))2k], we need to estimate how

many such circuits are included in the sum and what are the weights they contribute.

We also write w= (w1, w2, … w2k), where each wi is a self-avoiding walk of length l. Let v and h
be the number of distinct vertices and hyperedges traversed by the circuit, respectively. The idea is to

bound the number of all possible circuits w in (7.6) with given v and h, and then sum over all possible

(v, h) pairs.

Fix v and h, for any circuit w we form a labeled multigraph G(w) with labeled vertices {1, … , v}

and labeled multiple edges {e1, … , eh} by the following rules:

• Label the vertices in G(w) by the order they first appear in w, starting from 1. For any pair vertices

i, j∈ [v], we add an edge between i, j in G(w) whenever a hyperedge appears between the ith and

jth distinct vertices in the circuit w. G(w) is a multigraph since it is possible that for some i, j, there

exists two distinct hyperedges connecting the ith and jth distinct vertices in w, which corresponds

to two distinct edges in G(w) connecting i, j.
• Label the edges in G(w) by the order in which the corresponding hyperedge first appears in w from

e1 to eh. Note that the number of edges in G(w) is at least h since distinct edges in G(w) can get

the same hyperedge labels. At the end we obtain a multigraph G(w)= (V(w), E(w)) with vertex set

{1, … , v} and edge set E(w) with hyperedge labels in {e1, … eh}.

It is crucial to see that the labeling of vertices and edges in G(w) is in order, and it tells us how

the circuit w is traversed. Consider any edge in G(w) such that its right endpoint (in the order of the

traversal of w) is a new vertex that has not been traversed by w. We call it a tree edge. Denote by T(w)

the tree spanned by those edges. It is clear for the construction that T(w) includes all vertices in G(w),
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so T(w) is a spanning tree of G(w). Since the labels of vertices and edges are given in G(w), T(w) is

uniquely defined. See Figure 4 for an example.

For a given w∈W2k, l with distinct hyperedges e1, … , eh, define end(ei) to be the set of vertices in

V(w) such that they are the endpoints of edges with label ei in G(w). For example, consider a hyperedge

e1 = {1, 2, 3, 4} such that {1, 2}, {1, 3} are all the edges in G(w) with labels e1, then end(e1)= {1, 2, 3}.

We consider circuits w in three different cases and estimate their contribution to (7.6) separately.

Case (1). We first consider w∈W2k, l such that

• each hyperedge label in {ei}1≤ i≤ h appears exactly once on the edges of G(w);

• vertices in ei ∖ end(ei) are all distinct for 1≤ i≤ h, and they are not vertices with labels in V(w).

The first condition implies the number of edges in G(w) is h. The second condition implies that

there are exactly (d − 2)h+ v many distinct vertices in w. We will break each self-avoiding walk wi
into three types of successive sub-walks where each sub-walk is exactly one of the following 3 types,

and we encode these sub-walks as follows.

• Type 1: hyperedges with corresponding edges in G(w) ∖ T(w). Given our position in the circuit w,

we can encode a hyperedge of this type by its right-end vertex. Hyperedges of Type 1 breaks the

walk wi into disjoint sub-walks, and we partition these sub-walks into Type 2 and 3 below.

• Type 2: sub-walks such that all their hyperedges correspond to edges of T(w) and have been tra-

versed already by w1, … , wi− 1. Each sub-walk is a part of a self-avoiding walk, and it is a path

contained in the tree T(w). Given its initial and its end vertices, there will be exactly one such path

in T(w). Therefore these walks can be encoded by the end vertices.

• Type 3: sub-walks such that their hyperedges correspond to edges of T(w) and they are being tra-

versed for the first time. Given the initial vertex of a sub-walk of this type, since it is traversing new

edges and knowing in what order the vertices are discovered, we can encode these walks by their

length, and from the given length, we know at which vertex the sub-walk ends.

We encode any Type 1, Type 2, or Type 3 sub-walk by 0 if the sub-walk is empty. Now we can

decompose each wi into sequences characterizing by its sub-walks:

(p1, q1, r1), (p2, q2, r2), … , (pt, qt, rt). (7.7)

Here r1, … rt− 1 are codes from sub-walks of Type 1. From the way we encode such hyperedges,

we have ri ∈ {1, … v} for 1≤ i≤ t− 1. Type 2 and Type 3 sub-walks are encoded by p1, … , pt and

q1, … , qt, respectively. Since Type 1 hyperedges break w into disjoint pieces, we use (pt, qt, rt) to

represent the last piece of the sub-walk and make rt = 0. Each pi represents the right-end vertex of

the Type 2 sub-walk, and pi = 0 if it the sub-walk is empty, hence pi ∈ {0, … v} for 1≤ i≤ t. Each qi
represents the length of Type 3 sub-walks, so qi ∈ {0, … l} for 1≤ i≤ t. From the way we encode these

sub-walks, there are at most (v+ 1)2(l+ 1) many possibilities for each triplet (pj, qj, rj).

We now consider how many ways we can concatenate sub-walks encoded by the triplets to form a

circuit w. All triples with rj ∈ [v] for 1≤ j≤ t− 1 indicate the traversal of an edge not in T(w). Since we

know the number of edges in G(w) ∖ T(w) is (h− v+ 1), and within a self-avoiding walk wi, edges on

G(w) can be traversed at most once, the length of the triples in (7.7) satisfies t− 1≤ h− v+ 1, which

implies t≤ h− v+ 2. Since each hyperedge can be traversed at most 2k many times by w due to the

constraint that the circuits w of length 2kl are formed by self-avoiding walks, so the number of triple

sequences for fixed v, h is at most [(v+ 1)2(l+ 1)]2k(2+ h− v).

There are multiple w with the same code sequence. However, they must all have the same number

of vertices and edges, and the positions where vertices and hyperedges are repeated must be the same.
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The number of ordered sequences of v distinct vertices is at most nv. Given the vertex sequence, the

number of ordered sequences of h distinct hyperedges in Kn, d is at most
(

n
𝑑−2

)h
. Therefore, given v, h,

the number of circuits that share the same triple sequence (7.7) is at most nv
(

n
𝑑−2

)h
.

Combining the two estimates, the number of all possible circuits w with fixed v, h in Case (1) is at

most

nv
( n
𝑑 − 2

)h
[(v + 1)2(l + 1)]2k(2+h−v). (7.8)

Now we consider the expected weight of each circuit in the sum (7.6). Given 𝜎, if i, j∈ e, we

have Ae
ij ∼ Ber

(
p𝜎(e)
)
, where p𝜎(e) = a(

n
𝑑−1

) if vertices in e have the same ± spins and p𝜎(e) = b(
n

𝑑−1

)
otherwise. For a given hyperedge appearing in w with multiplicity m∈ {1, … , 2k}, the corresponding

expectation En

[
(Ae

ij − Ae
ij)m
]

is 0 if m= 1. Since 0 ≤ Ae
ij ≤ 1, for m≥ 2, we have

En

[
(Ae

ij − Ae
ij)

m|𝜎] ≤ En

[
(Ae

ij − Ae
ij)

2|𝜎] ≤ p𝜎(e). (7.9)

For any hyperedge e corresponding to an edge in G(w) ∖T(w) we have the upper bound

p𝜎(e) ≤
a ∨ b(

n
𝑑−1

) . (7.10)

Taking the expectation over 𝜎 we have

E𝜎[p𝜎(e)] =
a + (2𝑑−1 − 1)b

2𝑑−1
(

n
𝑑−1

) = 𝛼

(𝑑 − 1)
(

n
𝑑−1

) . (7.11)

Recall the weight of each circuit in the sum (7.6) is given by

En

[
2kl∏
t=1

(Aeit
it−1it − A

eit
it−1it )

]
.

Conditioned on 𝜎, (Aeit
it−1it − A

eit
it−1it ) are independent random variables for distinct hyperedges. Denote

these distinct hyperedges by e1, … eh with multiplicity m1, … mh and we temporarily order them such

that e1, … ev− 1 are the hyperedges corresponding to edges on T(w). Introduce the random variables

Aei ∼ Ber
(
p𝜎(ei)

)
for 1≤ i≤ h and denote Aei = En[A

ei |𝜎]. Therefore from (7.9) we have

En

[
2kl∏
t=1

(Aeit
it−1it − A

eit
it−1it )

]
= E𝜎

[
En

[
2kl∏
t=1

(Aeit
it−1it − A

eit
it−1it )|𝜎

]]

= E𝜎

[ h∏
i=1

En

[
(Aei − Aei)mi |𝜎]] ≤ E𝜎

[ h∏
i=1

p𝜎(ei)

]
.

We use the bound (7.10) for p𝜎(ev), … , p𝜎(eh), which implies

E𝜎

[ h∏
i=1

p𝜎(ei)

]
≤

⎛⎜⎜⎝ a ∨ b(
n

𝑑−1

)⎞⎟⎟⎠
h−v+1

E𝜎

[ v−1∏
i=1

p𝜎(ei)

]
. (7.12)
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From the second condition for w in Case (1), any two hyperedges among {e1, … ev− 1} share at

most 1 vertex, and p𝜎(ei), p𝜎(ej) are pairwise independent for all 1≤ i< j≤ v− 1. Moreover, since the

corresponding edges of e1, … ev− 1 form the spanning tree T(w), taking any ej such that the corre-

sponding edge in T(w) is attached to some leaf, we know ej and
⋃

i≠j,1≤i≤vei share exactly one common

vertex, therefore p𝜎(ej) is independent of
∏

1≤i≤v−1,i≠jp𝜎(ei). We then have

E𝜎

[ v−1∏
i=1

p𝜎(ei)

]
= E𝜎[p𝜎(ej)] ⋅ E𝜎

[ ∏
1≤i≤v−1,i≠j

p𝜎(ei)

]
. (7.13)

Now the corresponding edges of all hyperedges {e1, … ev− 1} ∖ {ej} form a tree in G(w) again and the

factorization of expectation in (7.13) can proceed as long as we have some edge attached to leaves.

Repeating (7.13) recursively, with (7.11), we have

E𝜎

[ v−1∏
i=1

p𝜎(ei)

]
=

v−1∏
i=1

E𝜎[p𝜎(ei)] =
⎛⎜⎜⎝ 𝛼

(𝑑 − 1)
(

n
𝑑−1

)⎞⎟⎟⎠
v−1

. (7.14)

Since every hyperedge in w must be visited at least twice to make its expected weight nonzero, and

w is of length 2kl, we must have h≤ kl. In the multigraph G(w), we have the constraint v≤ h+ 1≤ kl+ 1.

Since the first self-avoiding walk in w of length l takes l+ 1 distinct vertices, we also have v≥ l+ 1.

So the possible range of v is l+ 1≤ v≤ kl+ 1 and h satisfies v− 1≤ h≤ kl.
Putting all the estimates above together, for fixed v, h, the total contribution of self-avoiding walks

from Case (1) to the sum is bounded by

nv
( n
𝑑 − 2

)h
[(v + 1)2(l + 1)]2k(2+h−v)

⎛⎜⎜⎝ 𝛼

(𝑑 − 1)
(

n
𝑑−1

)⎞⎟⎟⎠
v−1⎛⎜⎜⎝ a ∨ b(

n
𝑑−1

)⎞⎟⎟⎠
h−v+1

.

Denote S1 to be the sum of all contributions from self-avoiding walks in Case (1). Then

S1 ≤

kl+1∑
v=l+1

kl∑
h=v−1

nv
(

𝑑 − 1

n − 𝑑 + 2

)h( 𝛼

𝑑 − 1

)v−1

[(v + 1)2(l + 1)]2k(2+h−v)(a ∨ b)h−v+1. (7.15)

When l = O(log n) and d, k are fixed, for sufficiently large n,
(

n
n−𝑑+2

)h
≤ 2. Then from (7.15),

S1 ≤

kl+1∑
v=l+1

kl∑
h=v−1

2nv−h(𝑑 − 1)h−v+1[(v + 1)2(l + 1)]2k(2+h−v)𝛼v−1(a ∨ b)h−v+1

≤2

kl+1∑
v=l+1

kl∑
h=v−1

n
[ (a ∨ b)(𝑑 − 1)

n

]h−v+1

[(kl + 2)2(l + 1)]2k(2+h−v)𝛼v−1.

Hence

S1

n𝛼kl[(kl + 2)2(l + 1)]2k ≤2

kl+1∑
v=l+1

𝛼v−1−kl
kl∑

h=v−1

[
n−1(a ∨ b)(𝑑 − 1)((kl + 2)2(l + 1))2k]h−v+1

. (7.16)
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Since for fixed d, k and l = O(log n), n−1(a∨ b)(d − 1)((kl+ 2)2(l+ 1))2k = o(1) for n sufficiently

large, the leading term in (7.16) is the term with h= v− 1. For sufficiently large n, we have

S1

n𝛼kl[(kl + 2)2(l + 1)]2k ≤ 3

kl+1∑
v=l+1

𝛼v−1−kl = 3 ⋅
𝛼 − 𝛼(1−k)l

𝛼 − 1
≤

3𝛼

𝛼 − 1
.

It implies that S1 = O(n𝛼kllog6kn).
Case (2). We now consider w∈W2k, l such that

• the number of edges in G(w) is greater than h;

• vertices in ei ∖ end(ei) are all distinct for 1≤ i≤ h, and they are not vertices with labels in V(w).

Let h̃ be the number of edges in G(w) with h̃ ≥ h + 1. Same as in Case (1), the number of triple

sequence is at most [(v + 1)2(l + 1)]2k(2+h̃−v). Let si, 1≤ i≤ h be the size of end(ei). We have
∑h

i=1 si =
2h̃. Note that when si > 3, there are more than 2 vertices in ei contained in V(w), therefore given the

choices of vertices with labels in V(w), we have fewer possibilities to choose the rest of vertices in ei.

Compared with (7.8), the number of all possible circuits in Case (2) with fixed v, h, h̃ is now bounded

by

[(v + 1)2(l + 1)]2k(2+h̃−v)nv
(

n
𝑑 − s1

)
…
(

n
𝑑 − sh

)
.

When k is fixed and l = O(log n), for large n, the quantity above is bounded by

2[(v + 1)2(l + 1)]2k(2+h̃−v)nv
(
𝑑 − 1

n

)2h̃−h( n
𝑑 − 1

)h
.

Now we consider the expected weight of each circuit in Case (2). In the spanning tree T(w), we

keep edges with distinct hyperedge labels that appear first in the circuit w and remove other edges.

This gives us a forest denoted F(w) inside T(w), with at least v−1− h̃+h many edges. We temporarily

label those edges in the forest as e1, … , eq with q ≥ v − 1 − h̃ + h. Then similar to the analysis of

(7.14) in Case (1), we have

E𝜎

[ q∏
i=1

p𝜎(eq)

]
=
⎛⎜⎜⎝ 𝛼

(𝑑 − 1)
(

n
𝑑−1

)⎞⎟⎟⎠
q

,

and

En

[
2kl∏
t=1

(Aeit
it−1it − A

eit
it−1it )

]
≤ E𝜎

[ h∏
i=1

p𝜎(ei)

]
≤

⎛⎜⎜⎝ a ∨ b(
n

𝑑−1

)⎞⎟⎟⎠
h̃−v+1⎛⎜⎜⎝ 𝛼

(𝑑 − 1)
(

n
𝑑−1

)⎞⎟⎟⎠
v−1−h̃+h

.

Since every hyperedge in w must be visited at least twice to make its expected weight nonzero,

we must have l≤ h≤ kl. In the multigraph G(w), we have the constraint v ≤ h̃ + 1. Since the first

self-avoiding walk in w of length l takes l+ 1 distinct vertices, we also have v≥ l+ 1. So the possible

range of v is l + 1 ≤ v ≤ h̃ + 1 and h satisfies l≤ h≤ kl. Therefore we have
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S2 ≤2

kl∑
h=l

2kl∑
h̃=h+1

h̃+1∑
v=l+1

[(v + 1)2(l + 1)]2k(2+h̃−v)nv
(
𝑑 − 1

n

)2h̃−h( n
𝑑 − 1

)h

⋅
⎛⎜⎜⎝ a ∨ b(

n
𝑑−1

)⎞⎟⎟⎠
h̃−v+1⎛⎜⎜⎝ 𝛼

(𝑑 − 1)
(

n
𝑑−1

)⎞⎟⎟⎠
v−1−h̃+h

=O(𝛼kllog6kn).

Case (3). We now consider w∈W2k, l not included in Cases (1) or Case (2), which satisfies that

• for some i≠ j, there are common vertices in ei ∖ end(ei) and ej ∖ end(ej);

• or there are vertices in ei ∖ end(ei) with labels in V(w).

Let v, h, h̃ be defined in the same way as in Case (2). The number of triple sequence is at most

[(v + 1)2(l + 1)]2k(2+h̃−v). Consider the forest F(w) introduced in Case (2) as a subgraph of T(w), which

has at least (v − 1 − h̃ + h) many edges with distinct hyperedge labels. We temporarily denote the

edges by e1, … , eq, and the ordering is chosen such that e1 is adjacent to a leaf in F(w), and each

ei, i≤ 2 is adjacent to a leaf in F(w) ∖ {e1, … , ei− 1}. For 1≤ i≤ q, we call ei a bad hyperedge if the

set ei ∖ end(ei) share a vertex with some set ej ∖ end(ej) for j> i, or there are vertices in ei ∖ end(ei) with

labels in V(w). In both cases, we have fewer choices for the vertices in ei.

Suppose among ei, 1≤ i≤ q, there are t bad hyperedges. Let si, 1≤ i≤ h be the size of end(ei) in

G(w). Then the number of all possible circuits in Case (3) with fixed v, h, h̃, and t, is bounded by

[(v + 1)2(l + 1)]2k(2+h̃−v)nv
(

n
𝑑 − s1 − 𝛿1

)
…
(

n
𝑑 − sh − 𝛿h

)
, (7.17)

where 𝛿i ∈ {0, 1} and 𝛿i = 1 if ei is a bad hyperedge. Note that
∑h

i=1 sh = 2h̃ and
∑h

i=1 𝛿i = t. For large

n, the number in (7.17) is at most

2[(v + 1)2(l + 1)]2k(2+h̃−v)nv
(
𝑑 − 1

n

)2h̃−h+t( n
𝑑 − 1

)h
.

After removing the t edges with bad hyperedge labels from the forest F(w), we can do the same analysis

as in Case (2). The expected weight of each circuit in Case (3) with given v, h, h̃, t now satisfies

En

[
2kl∏
t=1

(Aeit
it−1it − A

eit
it−1it )

]
≤

⎛⎜⎜⎝ a ∨ b(
n

𝑑−1

)⎞⎟⎟⎠
h̃−v+1+t⎛⎜⎜⎝ 𝛼

(𝑑 − 1)
(

n
𝑑−1

)⎞⎟⎟⎠
v−1−h̃+h−t

.

Let S3 be the total contribution from circuits in Case (3) to (7.6) . Then

S3 ≤

kl∑
h=l

2kl∑̃
h=h

h̃+1∑
v=l+1

v−1∑
t=0

2[(v + 1)2(l + 1)]2k(2+h̃−v)nv
(
𝑑 − 1

n

)2h̃−h+t( n
𝑑 − 1

)h

⋅
⎛⎜⎜⎝ a ∨ b(

n
𝑑−1

)⎞⎟⎟⎠
h̃−v+1+t⎛⎜⎜⎝ 𝛼

(𝑑 − 1)
(

n
𝑑−1

)⎞⎟⎟⎠
v−1−h̃+h−t

=O(n𝛼kllog6kn).
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From the estimates on S1, S2 and S3, Lemma 7.1 holds. ▪

With Lemma 7.1, we are able to derive (3.3). For any fixed 𝜀 > 0, choose k such that 1 − 2k𝜀 < 0,

using Markov inequality, we have

Pn(𝜌(Δ
(l)) ≥ n𝜀𝛼l∕2) ≤

En(𝜌(Δ
(l))2k)

n2k𝜀𝛼kl = O(n1−2k𝜀log6kn).

This implies (3.3) in the statement of Theorem 3.1.

7.3 Proof of (3.4) in Theorem 3.1

Using a similar argument as in the proof of Lemma 7.1, we can prove the following estimate of 𝜌(Γ(l,m)).
The proof is given in Appendix A.6.

Lemma 7.2. For l = O(log n), fixed k, and any 1≤m≤ l, there exists a constant C> 0 such that

En[𝜌(Γ
(l,m))2k] ≤ Cn1−2k𝛼k(l+m−2)log14kn. (7.18)

With Lemma 7.2, we can apply the union bound and Markov inequality. For any 𝜀 > 0, choose

k> 0 such that 1 − 2k𝜀 < 0, we have

Pn

(
∪l

m=1

{
𝜌(Γ(l,m)) ≥ n𝜀−1𝛼(l+m)∕2

})
≤

l∑
m=1

Pn

(
𝜌(Γ(l,m)) ≥ n𝜀−1𝛼(l+m)∕2

)
≤

l∑
m=1

En𝜌(Γ
(l,m))2k

n2k(𝜀−1)𝛼k(l+m) ≤

l∑
m=1

Clog14k(n) ⋅ n1−2k𝛼k(l+m−2)

n2k(𝜀−1)𝛼k(l+m) = O
(
(log14k+1(n) ⋅ n1−2k𝜀𝛼−2k) .

This proves (3.4) in Theorem 3.1.

8 PROOF OF THEOREM 4.2

Let n± be the number of vertices with spin ± respectively. Consider the event

Ω̃ ∶=
{|n± − n

2

||| ≤ log(n)
√

n
}
. (8.1)

By Hoeffding’s inequality,

P𝜎

(|n± − n
2
| ≥ log(n)

√
n
)
≤ 2 exp(−2log2(n)), (8.2)

which implies P𝜎(Ω̃) ≥ 1− 2 exp(−2log2(n)). In the rest of this section we will condition on the event

Ω̃, which will not effect our conclusion and probability bounds, since for any event A, if Pn (A|Ω̃) =
1 − O(n−𝛾 ) for some 𝛾 > 0, we have

Pn (A) =Pn(A|Ω̃)Pn (Ω̃) + Pn (A|Ω̃c)Pn (Ω̃
c) = 1 − O(n−𝛾 ).
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The following identity from Equation (38) in [32] will be helpful in the proof.

Lemma 8.1. For any nonnegative integers i, j, n and nonnegative numbers a, b such that a/n, b/n< 1,
we have

ai + bj
n

− 1

2

(ai + bj
n

)2

≤ 1 − (1 − a∕n)i(1 − b∕n)j ≤ ai + bj
n

. (8.3)

We will also use the following version of Chernoff bound (see [9]):

Lemma 8.2. Let X be a sum of independent random variables taking values in {0, 1}. Let 𝜇 = E[X].
Then for any 𝛿 > 0, we have

P(X ≥ (1 + 𝛿)𝜇) ≤ exp(−𝜇h(1 + 𝛿)), (8.4)

P(|X − 𝜇| ≤ 𝛿𝜇) ≥ 1 − 2 exp(−𝜇h̃(𝛿)), (8.5)

where

h(x) ∶= x log(x) − x + 1, h̃(x) ∶= min{(1 + x) log(1 + x) − x, (1 − x) log(1 − x) + x}.

For any t≥ 0, the number of vertices with spin ± at distance t (respectively ≤) of vertices i is

denoted U±
t (i) (respectively, U±

≤t(i)) and we know St(i) = U+
t (i) + U−

t (i). We will omit index i when

considering quantities related to a fixed vertex i. Let n± be the number of vertices with spin ± and  ±

be the set of vertices with spin ±. For a fixed vertex i. Let

t ∶= 𝜎(U+
k ,U

−
k , k ≤ t, 𝜎i, 1 ≤ i ≤ n) (8.6)

be the 𝜎-algebra generated by {U+
k ,U−

k , 0 ≤ k ≤ t} and {𝜎i, 1 ≤ i ≤ n}. In the remainder of the section

we condition on the spins 𝜎i of all i∈ [n] and assume Ω̃ holds. We denote P(⋅) ∶= Pn (⋅|Ω̃).
A main difficulty to analyze U+

t ,U−
t compared to the graph SBM in [32] is that U±

k are no longer

independent conditioned on k−1. Instead, we can only approximate U±
k by counting subsets connected

to Vk− 1. To make it more precise, we have the following definition for connected-subsets.

Definition 8.3. A connected s-subset in Vk for 1≤ s≤ d − 1 is a subset of size s which is contained

in some hyperedge e in H and the rest d − s vertices in e are from Vk− 1 (see Figure 5 for an example).

Define U(r)
k,s , 0 ≤ r ≤ s to be the number of connected s-subsets in Vk where exactly r many vertices

have + spins. For convenience, we write U(r)
k ∶= U(r)

k,𝑑−1 for 0≤ r ≤ d − 1. Let Uk,s =
∑s

r=0 U(r)
k,s be the

number of all connected s-subsets in Vk.

We will show that
∑𝑑−1

r=0 rU(r)
k is a good approximation of U+

k and
∑𝑑−1

r=0 (𝑑 − 1 − r)U(r)
k is a good

approximation of U−
k , then the concentration of U(r)

k , 0 ≤ r ≤ 𝑑 − 1 implies the concentration of U±
k .

Since each hyperedge appears independently, conditioned on k−1, we know {U(r)
k , 0 ≤ r ≤

𝑑 − 1} are independent binomial random variables. For U(𝑑−1)
k , the number of all possible connected

(d − 1)-subsets with d − 1 many + signs is
(

n+−U+
≤k−1

𝑑−1

)
, and each such subset is included in the hyper-

graph if and only if it forms a hyperedge with any vertex in Vk− 1. Therefore each such subset is included
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FIGURE 5 d = 5, Q1 is a connected 3-subsets in Vk and Q2 is a connected 4-subsets in Vk

independently with probability

1 −
⎛⎜⎜⎝1 − a(

n
𝑑−1

)⎞⎟⎟⎠
U+

k−1⎛⎜⎜⎝1 − b(
n

𝑑−1

)⎞⎟⎟⎠
U−

k−1

.

Similarly, we have the following distributions for U(r)
k , 1 ≤ r ≤ 𝑑 − 1:

U(𝑑−1)
k ∼ Bin

⎛⎜⎜⎜⎝
(

n+ − U+
≤k−1

𝑑 − 1

)
, 1 −

⎛⎜⎜⎝1 − a(
n

𝑑−1

)⎞⎟⎟⎠
U+

k−1⎛⎜⎜⎝1 − b(
n

𝑑−1

)⎞⎟⎟⎠
U−

k−1⎞⎟⎟⎟⎠ , (8.7)

U(0)
k ∼ Bin

⎛⎜⎜⎜⎝
(n− − U−

≤k−1

𝑑 − 1

)
, 1 −

⎛⎜⎜⎝1 − a(
n

𝑑−1

)⎞⎟⎟⎠
U−

k−1⎛⎜⎜⎝1 − b(
n

𝑑−1

)⎞⎟⎟⎠
U+

k−1⎞⎟⎟⎟⎠ , (8.8)

and for 1≤ r ≤ d − 2,

U(r)
k ∼ Bin

⎛⎜⎜⎜⎝
(

n+ − U+
≤k−1

r

)(n− − U−
≤k−1

𝑑 − 1 − r

)
, 1 −

⎛⎜⎜⎝1 − b(
n

𝑑−1

)⎞⎟⎟⎠
Sk−1⎞⎟⎟⎟⎠ . (8.9)

For two random variable X, Y , we denote X ≼ Y if X is stochastically dominant by Y , i.e., P(X ≤

x) ≥ P(Y ≤ x) for any x ∈ R. We denote U∗
k ∶=

∑𝑑−2

s=1 Uk,s to be the number of all connected s-subsets

in Vk for 1≤ s≤ d − 2.

For each 1≤ s≤ d − 2, conditioned on k−1, the number of possible s-subsets is at most
(

n
s

)
, and

each subset is included in the hypergraph independently with probability at most

(
a∨b(

n
𝑑−1

) ( Sk−1

𝑑−s

))
∧ 1,

so we have

Uk,s ≼ Bin

⎛⎜⎜⎝
(n

s

)
,

a ∨ b(
n

𝑑−1

) ( Sk−1

𝑑 − s

)
∧ 1

⎞⎟⎟⎠ . (8.10)
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With the definitions above, we have the following inequality for U±
k by counting the number of ±

signs from each type of subsets:

U+
k ≤

𝑑−1∑
r=0

rU(r)
k + (𝑑 − 2)U∗

k , (8.11)

U−
k ≤

𝑑−1∑
r=0

(𝑑 − 1 − r)U(r)
k + (𝑑 − 2)U∗

k . (8.12)

To obtain the upper bound of U±
k , we will show that U∗

k is negligible compared to the number of ±
signs from U(r)

k . Since U(r)
k , 1 ≤ r ≤ 𝑑 − 1 are independent binomial random variables, we can prove

concentration results of these random variables. For the lower bound of U±
k , we need to show that only

a negligible portion of (d − 1) connected subsets are overlapped, therefore U+
k is lower bounded by∑𝑑−1

r=0 rU(r)
k minus some small term, and we can do it similarly for U−

k . We will extensively use Chernoff

bounds in Lemma 8.2 to prove the concentration of U±
k in the following theorem.

Theorem 8.4. Let 𝜀 ∈ (0, 1), and l = c log(n) with c log(𝛼) < 1∕4. For any 𝛾 ∈ (0, 3∕8), there
exists some constant K > 0 and such that the following holds with probability at least 1 − O(n−𝛾 ) for
all i∈ [n].

1. Let T ∶= inf{t ≤ l ∶ St ≥ K log n}, then ST = Θ(log n).
2. Let 𝜀t ∶= 𝜀𝛼−(t−T)∕2 for some 𝜀 > 0 and

M ∶= 1

2

[
𝛼 + 𝛽 𝛼 − 𝛽

𝛼 − 𝛽 𝛼 + 𝛽

]
. (8.13)

Then for all t, t′ ∈ {T ,… l}, t> t′, the vector U⃗t ∶= (U+
t ,U−

t )⊤ satisfies the coordinate-wise
bounds:

U+
t ∈

[ t−1∏
s=t′

(1 − 𝜀s),
t−1∏
s=t′

(1 + 𝜀s)

]
(Mt−t′U⃗t′ )1, (8.14)

U−
t ∈

[ t−1∏
s=t′

(1 − 𝜀s),
t−1∏
s=t′

(1 + 𝜀s)

]
(Mt−t′U⃗t′ )2, (8.15)

where (Mt−t′U⃗t′ )j is the jth coordinate of the vector Mt−t′U⃗t′ for j= 1, 2.

Proof. In this proof, all constants Ci’s, C, C′ are distinct for different inequalities unless stated

otherwise. By the definition of T , ST−1 ≤ K log(n). Let ZT be the number of all hyperedges in H that are

incident to at least one vertices in VT − 1. We have ST ≤ (d − 1)ZT , and since the number of all possible

hyperedges including a vertex in VT − 1 is at most ST−1

(
n

𝑑−1

)
, ZT is stochastically dominated by

Bin

⎛⎜⎜⎝K log(n)
( n
𝑑 − 1

)
,

a ∨ b(
n

𝑑−1

)⎞⎟⎟⎠ ,
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which has mean (a ∨ b)K log(n). Let K1 = (a∨ b)K. By (8.4) in Lemma 8.2, we have for any constant

K2 > 0,

P(ZT ≥ K2 log(n)|T−1) ≤ exp(−K1 log(n)h(K2∕K1)) (8.16)

Taking K2 >K1 large enough such that K1h(K2∕K1) ≥ 2 + 𝛾 , we then have

P(ZT ≥ K2 log(n)|T−1) ≤ n−2−𝛾 . (8.17)

So with probability at least 1−n−2−𝛾 , for a fixed i∈ [n], ST ≤ K3 log(n)with K3 = (d − 2)K2. Taking

a union bound over i∈ [n], part (1) in Lemma 8.4 holds. We continue to prove (8.14) and (8.15) in

several steps.

Step 1: base case. For the first step, we prove (8.14) and (8.15) for t=T + 1, t′ =T , which is

U±
T+1 ∈ [1 − 𝜀, 1 + 𝜀]

(
𝛼 + 𝛽

2
U±

T + 𝛼 − 𝛽

2
U±

T

)
. (8.18)

This involves a two-sided estimate of U±
T+1. The idea is to show the expectation of U±

T+1 conditioned

on T is closed to
𝛼+𝛽

2
U±

T + 𝛼−𝛽
2

U±
T , and U±

T+1 is concentrated around its mean.

(i) Upper bound. Define the event T ∶= {ST ≤ K3 log n}. We have just shown for a fixed i,

P(T ) ≥ 1 − n−2−𝛾 . (8.19)

Recall |n± − n∕2| ≤√n log n and conditioned on T , for some constant C > 0,

U+
≤T ≤

T∑
t=0

St ≤ 1 + TK3 log n ≤ 1 + lK3 log n ≤ CK3log2n.

Conditioned on T and T , for sufficiently large n, there exists constants C1 > 0 such that(
n+ − U+

≤T
𝑑 − 1

)
≥ C1

( n
2

𝑑 − 1

)
.

From inequality (8.3), there exists constant C2 > 0 such that

1 −
⎛⎜⎜⎝1 − a(

n
𝑑−1

)⎞⎟⎟⎠
U+

T ⎛⎜⎜⎝1 − b(
n

𝑑−1

)⎞⎟⎟⎠
U−

T

≥
aU+

T + bU−
T(

n
𝑑−1

) − 1

2

⎛⎜⎜⎝
aU+

T + bU−
T(

n
𝑑−1

) ⎞⎟⎟⎠
2

≥
C2(aU+

T + bU−
T )(

n
𝑑−1

) ≥
C2(a ∧ b)K log n(

n
𝑑−1

) .

Then from (8.7), for some constant C3 > 0,

E[U(𝑑−1)
T+1 |T ,T ] =

(
n+ − U+

≤T
𝑑 − 1

)⎛⎜⎜⎜⎝1 −
⎛⎜⎜⎝1 − a(

n
𝑑−1

)⎞⎟⎟⎠
U+

T ⎛⎜⎜⎝1 − b(
n

𝑑−1

)⎞⎟⎟⎠
U−

T ⎞⎟⎟⎟⎠
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≥C1

( n
2

𝑑 − 1

)
⋅

C2(a ∧ b)K log n(
n

𝑑−1

) ≥ C3K log n.

We can choose K large enough such that C3Kh̃(𝜀∕(2𝑑)) ≥ 2 + 𝛾, then from (8.5) in Lemma 8.2, for

any given 𝜀 > 0 and 𝛾 ∈ (0, 1),

P

(|U(𝑑−1)
T+1 − E[U(𝑑−1)

T+1 |T ]| ≤ 𝜀

2𝑑
E[U(𝑑−1)

T+1 |T ]
|||T

)
≥ P

(|U(𝑑−1)
T+1 − E[U(𝑑−1)

T+1 |T ]| ≤ 𝜀

2𝑑
E[U(𝑑−1)

T+1 |T ]
|||T ,T

)
P(T )

≥
[
1 − exp

(
−E[U(𝑑−1)

T+1 |T ,T ]h̃(𝜀∕2𝑑)
)]

(1 − n−2−𝛾 ) ≥ (1 − n−2−𝛾 )2 ≥ 1 − 2n−2−𝛾 .

From the symmetry of ± labels, the concentration of U(0)
T+1 works in the same way. Similarly, there

exists a constant C1 > 0 such that E[U(r)
T+1|T ], 1 ≤ r ≤ 𝑑 − 2:

E[U(r)
T+1|T ] =

(
n+ − U+

≤T
r

)(n− − U−
≤T

𝑑 − 1 − r

) ⎛⎜⎜⎜⎝1 −
⎛⎜⎜⎝1 − b(

n
𝑑−1

)⎞⎟⎟⎠
ST ⎞⎟⎟⎟⎠ ≥ C1K log n.

We can choose K large enough such that for all 0≤ r ≤ d − 1,

P

(|||U(r)
T+1 − E[U(r)

T+1|T ]
||| ≤ 𝜀

2𝑑
E[U(r)

T+1|T ]|T

)
≥ 1 − 2n−2−𝛾 .

Next, we estimate U∗
T+1 =

∑𝑑−2

s=1 UT+1,s. Recall from (8.10), we have UT+1,s ≼ ZT+1,s where

ZT+1,s ∼ Bin

⎛⎜⎜⎝
(n

s

)
,

a ∨ b(
n

𝑑−1

) ( ST
𝑑 − s

)⎞⎟⎟⎠ .
Conditioned on T we know K log n ≤ ST ≤ K3 log n, and

E[ZT+1,s|T ,T ] =
(n

s

) a ∨ b(
n

𝑑−1

) ( ST
𝑑 − s

)
≤ C2log𝑑−s(n)n1+s−𝑑

for some constant C2 > 0. Using the fact that h(x) ≥ 1

2
x log(x) for x large enough, from (8.4), we have

for any constant 𝜆 > 0, 1≤ s≤ d − 2, there exists a constant C3 > 0 such that for large n,

P(UT+1,s ≥ 𝜆ST |T ,T ) ≤ P(ZT+1,s ≥ 𝜆ST |T ,T )

≤ exp

(
−E[ZT+1,s|T ,T ]h

(
𝜆ST

E[ZT+1,s|T ,T ]

))
≤ exp

(
−1

2
𝜆ST log

(
𝜆ST

E[ZT+1,s|T ,T ]

))
≤ exp(−𝜆C3log2n) ≤ n−2−𝛾 . (8.20)

Therefore with (8.19) and (8.20),

P(UT+1,s < 𝜆ST |T ) ≥ P(UT+1,s < 𝜆ST |T ,T )P(T ) ≥ (1 − n−2−𝛾 )2 ≥ 1 − 2n−2−𝛾 .
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Taking 𝜆 = (𝛼−𝛽)𝜀
4𝑑2

, we have UT+1,s ≤
(𝛼−𝛽)𝜀

4𝑑2
ST with probability at least 1 − 2n−2−𝛾 for any 𝛾 ∈ (0, 1).

Taking a union bound over 2≤ r ≤ d − 1, it implies

U∗
T+1 ≤

(𝛼 − 𝛽)𝜀
4𝑑

ST (8.21)

with probability 1 − O(n−2−𝛾 ) for any 𝛾 ∈ (0, 1).
Note that n± = n

2
+ O(

√
n log n) and U±

≤T =
∑T

k=1 Sk = O(log2(n)). From (8.3),

⎛⎜⎜⎝1 −
aU+

T + bU−
T

2
(

n
𝑑−1

) ⎞⎟⎟⎠
aU+

T + bU−
T(

n
𝑑−1

) ≤ 1 −
⎛⎜⎜⎝1 − a(

n
𝑑−1

)⎞⎟⎟⎠
U+

T ⎛⎜⎜⎝1 − b(
n

𝑑−1

)⎞⎟⎟⎠
U−

T

≤
aU+

T + bU−
T(

n
𝑑−1

) .

It implies that

E[U(𝑑−1)
T+1 |T ,T ] =

(
n
2
+ O(

√
n log n)

𝑑 − 1

)(
1 + O

(
log(n)
n𝑑−1

))
aU+

T + bU−
T(

n
𝑑−1

)
=

(
1

2𝑑−1
+ O

(
log(n)√

n

))
(aU+

T + bU−
T ). (8.22)

Similarly, for 1≤ r ≤ d − 2.

E[U(0)
T+1|T ,T ] =

(
1

2𝑑−1
+ O

(
log(n)√

n

))
(bU+

T + aU−
T ),

E[U(r)
T+1|T ,T ] =

(
1

2𝑑−1
+ O

(
log(n)√

n

))(
𝑑 − 1

r

)
(bU+

T + bU−
T ).

Therefore from the estimations above, with the definition of 𝛼, 𝛽 from (1.3),

E

[
𝑑−1∑
r=0

rU(r)
T+1|T ,T

]

=

(
1 + O

(
log(n)√

n

))
1

2𝑑−1

(
(𝑑 − 1)(aU+

T + bU−
T ) +

𝑑−2∑
r=1

r
(
𝑑 − 1

r

)
b(U+

T + U−
T )

)

=

(
1 + O

(
log(n)√

n

))(
𝛼 + 𝛽

2
U+

T + 𝛼 − 𝛽

2
U−

T

)
. (8.23)

Since we have shown
∑𝑑−1

r=0 U(r)
T+1 concentrated around its mean by

𝜀

2𝑑
with probability at least

1 − O(n−2−𝛾 ), conditioned on T , we obtain

||||||
𝑑−1∑
r=0

rU(r)
T+1 − E[

𝑑−1∑
r=0

rU(r)
T+1|T ]

|||||| ≤
𝑑−1∑
r=0

r |||U(r)
T+1 − E[U(r)

T+1|T ]
||| ≤ 𝜀

2𝑑

𝑑−1∑
r=1

rE[U(r)
T+1|T ]
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≤
𝜀

4

(
1 + O

(
log(n)√

n

))(
𝛼 + 𝛽

2
U+

T + 𝛼 − 𝛽

2
U−

T

)
(8.24)

with probability 1−O(n−2−𝛾 ). Therefore from (8.23), conditioned on T , for large n, with probability

1 − O(n−2−𝛾 ),
𝑑−1∑
r=0

rU(r)
T+1 ∈

[
1 − 𝜀

3
, 1 + 𝜀

3

] (
𝛼 + 𝛽

2
U+

T + 𝛼 − 𝛽

2
U−

T

)
. (8.25)

From (8.11), (8.21), and (8.25), conditioned on T and T , with probability 1 − O(n−2−𝛾 ),

U+
T+1 ≤

𝑑−1∑
r=0

rU(r)
T+1 + (𝑑 − 2)U∗

T+1 ≤

𝑑−1∑
r=0

rU(r)
T+1 + (𝑑 − 2) (𝛼 − 𝛽)𝜀ST

4𝑑

≤ (1 + 𝜀)
(
𝛼 + 𝛽

2
U+

T + 𝛼 − 𝛽

2
U−

T

)
.

Since P(T ) = 1 − n−2−𝛾 , and by symmetry of ± labels, with probability 1 − O(n−2−𝛾 ),

U±
T+1 ≤ (1 + 𝜀)

(
𝛼 + 𝛽

2
U±

T + 𝛼 − 𝛽

2
U±

T

)
. (8.26)

(ii) Lower bound. To show (8.14), (8.15) for t′ =T + 1, t= T , we cannot directly bound U±
T+1 from

below by U(r)
T+1, 1 ≤ r ≤ 𝑑 − 1 since from our definition of the connected (d − 1)-subsets, they can

overlap with each other, which leads to over-counting of the number vertices with ± labels. In the

following we show the overlaps between different connected (d − 1)-sets are small, which gives us the

desired lower bound.

Let W±
t+1,i be the set of vertices in V>t with spin ± and appear in at least i distinct connected

(d − 1)-subsets in V>t for i≥ 1. Let Wt+1,i = W+
t+1,i∪W−

t+1,i. From our definition, W+
T+1,1 are the vertices

with spin + that appear in at least one connected (d − 1)-subsets, so |W+
T+1,1| ≤ U+

T+1. By counting the

multiplicity of vertices with spin +, we have the following relation

𝑑−1∑
r=1

rU(r)
T+1 = |W+

T+1,1| +∑
i≥2

|W+
T+1,i| ≤ U+

T+1 +
∑
i≥2

|WT+1,i|. (8.27)

This implies a lower bound on U+
T+1:

U+
T+1 ≥

𝑑−1∑
r=1

rU(r)
T+1 −

∑
i≥2

|WT+1,i|. (8.28)

Next we control |WT + 1, 2|. Let m= n− |V≤T |. We enumerate all vertices in V>T from 1 to m tem-

porarily for the proof of the lower bound. Let Xi, 1≤ i≤m be the random variables that Xi = 1 if

i∈WT + 1, 2 and 0 otherwise, we then have |WT+1,2| = ∑m
i=1 Xi. A simple calculation yields

|WT+1,2|2 − |WT+1,2| = ( m∑
i=1

Xi

)2

−
m∑

i=1

Xi = 2
∑

1≤i<j≤m
XiXj. (8.29)

The product XiXj is 1 if i, j∈WT + 1, 2 and 0 otherwise.
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We further consider 3 events, Es
ij for s= 0, 1, 2, where E0

ij is the event that all (d − 1)-subsets in

V>T containing i, j are not connected to VT , E1
ij is the event that there is only one (d − 1)-subset in V>T

containing i, j connected to VT and E2
ij is the event that there are at least two (d − 1)-subsets in V>T

containing i, j connected to VT . Now we have

E[XiXj|T ,T ] = P
(
i, j ∈ WT+1,2|T ,T

)
=

2∑
r=0

P
(
i, j ∈ WT+1,2|Er

ij,T ,T
)

P(Er
ij|T ,T ). (8.30)

We estimate the three terms in the sum separately. Conditioned on E0
ij, T , and T , the two events that

i∈WT + 1, 2 and j∈WT + 1, 2 are independent. And the probability that i∈WT + 1, 2 is bounded by

( n
𝑑 − 2

)2⎛⎜⎜⎝ a ∨ b(
n

𝑑−1

)⎞⎟⎟⎠
2

S2
T ≤

C1log2(n)
n2

for some constant C1 > 0. So we have

P
(
i, j ∈ WT+1,2|E0

ij,T ,T
)

P(E0
ij|T ,T ) ≤ P

(
i, j ∈ WT+1,2|E0

ij,T ,T
)

= P
(
i ∈ WT+1,2|E0

ij,T ,T
)

P
(
j ∈ WT+1,2|E0

ij,T ,T
)
≤

C2
1log4n

n4
. (8.31)

For the term that involves E1
ij, we know for some C2 > 0,

P(E1
ij|T ,T ) ≤

( n
𝑑 − 3

) a ∨ b(
n

𝑑−1

)ST ≤
C2 log n

n2
,

and conditioned on E1
ij and T ,T , the two events that i∈WT + 1, 2 and j∈WT + 1,2 are independent

again, since we require i, j to be contained in at least 2 connected-subsets. We have

P
(
i ∈ WT+1,2|E1

ij,T ,T
)
≤
( n
𝑑 − 2

)
ST

a ∨ b(
n

𝑑−1

) ≤
C2 log n

n
.

Therefore we have

P
(
i, j ∈ WT+1,2|E1

ij,T ,T
)

P(E1
ij|T ,T )

= P
(
i ∈ WT+1,2|E1

ij,T ,T
)

P
(
j ∈ WT+1,2|E1

ij,T ,T
)

P(E1
ij|T ,T )

≤
C2

2 log2n
n2

⋅
C2 log n

n2
=

C3
2 log3n

n4
. (8.32)

Conditioned on E2
ij, i, j have already been included in 2 connected (d − 1) subsets, so

P
(
i, j ∈ WT+1,2|E2

ij,T ,T
)
= 1.



436 PAL AND ZHU

We then have for some C3 > 0,

P
(
i, j ∈ WT+1,2|E2

ij,T ,T
)

P(E2
ij|T ,T )

= P(E2
ij|T ,T ) ≤

( n
𝑑 − 3

)2

S2
T

⎛⎜⎜⎝ a ∨ b(
n

𝑑−1

)⎞⎟⎟⎠
2

≤
C3log2n

n4
. (8.33)

Combining (8.31)–(8.33), we have for some constant C′ > 0,

E[XiXj|T ,T ] ≤
C′log4n

n4
. (8.34)

Taking conditional expectation in (8.29), we have

E
[|WT+1,2|2 − |WT+1,2||T ,T

]
= 2

∑
1≤i<j≤m

E[XiXj|T ,T ] ≤
C′log4n

n2
.

By Markov’s inequality, there exists a constant C > 0 such that for any constant 𝜆 > 0 and

sufficiently large n,

P
(|WT+1,2| > 𝜆ST |T ,T

)
≤ P
(|WT+1,2|(|WT+1,2| − 1) > 𝜆ST (𝜆ST − 1)|T ,T

)
(8.35)

≤
E[|WT+1,2|(|WT+1,2| − 1)|T ,T ]

𝜆ST (𝜆ST − 1)
≤

Clog2n
𝜆2n2

,

where in the last inequality we use the fact that ST ≥ K log n. Taking 𝜆 = (𝛼−𝛽)𝜀
4

, we have for all large

n and for any 𝛾 ∈ (0, 1),

P

(|WT+1,2| > (𝛼 − 𝛽)𝜀
4

ST |T ,T

)
= O

(
log2n

n2

)
≤ n−1−𝛾 . (8.36)

For a fixed vertex j∈V>T , the probability that j∈WT + 1, i is at most
(

n
𝑑−2

)i
Si

T

(
a∨b(

n
𝑑−1

))i

, then we

have for sufficiently large n,

E[|WT+1,i||T ,T ] ≤ n
( n
𝑑 − 2

)i
Si

T

⎛⎜⎜⎝ a ∨ b(
n

𝑑−1

)⎞⎟⎟⎠
i

≤ n
(

C4 log n
n

)i

for some C4 > 0. For the rest of the terms in (8.27), we have for some constant C > 0,

E

[∑
i≥3

|WT+1,i||||T ,T

]
≤ n

∞∑
i=3

(
C4 log n

n

)i

≤
Clog3(n)

n2
.

By Markov’s inequality,

P

(∑
i≥3

|WT+1,i| ≥ (𝛼 − 𝛽)𝜀
4

ST |T ,T

)
≤

Clog2(n)
n2

≤ n−1−𝛾 .
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Together with (8.36), we have conditioned on T ,
∑

i≥2|W+
T+1,2| ≤ (𝛼−𝛽)𝜀

2
ST with probability at least

1 − 2n−1−𝛾 for any 𝛾 ∈ (0, 1) and all large n.

Note that

(𝛼 − 𝛽)𝜀
2

ST ≤
𝜀

2

(
𝛼 + 𝛽

2
U+

T + 𝛼 − 𝛽

2
U−

T

)
.

With (8.25), (8.28), and (8.19), we have

U+
T+1 ≥

𝑑−1∑
r=1

rU(r)
T+1 −

𝜀

2

(
𝛼 + 𝛽

2
U+

T + 𝛼 − 𝛽

2
U−

T

)
≥ (1 − 𝜀)

(
𝛼 + 𝛽

2
U+

T + 𝛼 − 𝛽

2
U−

T

)
with probability 1 − O(n−1−𝛾 ). By symmetry, the argument works for U−

T+1, therefore with probability

1 − O(n−1−𝛾 ) for any 𝛾 ∈ (0, 1), we have

U±
T+1 ≥ (1 − 𝜀)

(
𝛼 + 𝛽

2
U±

T + 𝛼 − 𝛽

2
U∓

T

)
. (8.37)

From (8.26) and (8.37), we have with probability 1 − O(n−1−𝛾 ) for any 𝛾 ∈ (0, 1), (8.18) holds.

Step 2: Induction. It remains to extend this estimate in Step 1 for all T ≤ t′ < t≤ l. We now define

the event

t ∶=
{

U±
t ∈ [1 − 𝜀t−1, 1 + 𝜀t−1]

(
𝛼 + 𝛽

2
U±

t−1 +
𝛼 − 𝛽

2
U±

t−1

)}
(8.38)

for T + 1≤ t≤ l, and recall 𝜀t = 𝜀𝛼−(t−T)∕2,T = {ST ≤ K3 log n}.

From the proof above, we have shown T+1 holds with probability 1 − O(n−1−𝛾 ). Conditioned on

T , T+1,… ,t for some fix t with T + 2≤ t≤ l, the vector U⃗t = (U+
t ,U−

t ) satisfies (8.14), (8.15) for

any T ≤ t′ < t.

Set t′ =T + 1. From [32], for any integer k> 0, Mk = 1

2

[
𝛼k + 𝛽k 𝛼k − 𝛽k

𝛼k − 𝛽k 𝛼k + 𝛽k

]
. (8.14) implies that

U±
t ≥

( t−1∏
s=T+1

(1 − 𝜀s)

)(
𝛼t−T−1 + 𝛽 t−T−1

2
U±

T+1 +
𝛼t−T−1 − 𝛽 t−T−1

2
U∓

T+1

)
≥ (1 − O(𝜀))𝛼

t−T−1

2
(1 − 𝜀)

(
𝛼 + 𝛽

2
U±

T + 𝛼 − 𝛽

2
U∓

T

)
≥ (1 − O(𝜀))𝛼t−T (1 − 𝜀)(𝛼 − 𝛽)

4𝛼
ST ≥ C1𝛼

t−T log(n), (8.39)

for some constant C1 > 0. For any t with T ≤ t, conditioned on T , T+1,… ,t, since 𝛽 < 𝛼,

U±
t ≤

( t−1∏
s=T

(1 + 𝜀s)

)(
𝛼t−T + 𝛽 t−T

2
U±

T + 𝛼t−T − 𝛽 t−T

2
U∓

T

)
≤ (1 + O(𝜀))𝛼

t−T + 𝛽 t−T

2
ST ≤ (1 + O(𝜀))𝛼t−TK3 log(n) ≤ C2𝛼

t−T log n (8.40)

for some C2 > 0. Combining lower and upper bounds on U±
t , we obtain

St = U+
t + U−

t = Θ(𝛼t−T log n). (8.41)
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We now show by induction thatt+1 holds with high enough probability conditioned on {j,T≤ j≤ t}.

(i) Upper bound. Note that 𝛼l = o(n1∕4), for some constant C > 0

U+
≤t ≤

t∑
i=1

Si ≤ C𝛼t−T log2n ≤ C𝛼l log n = o(n1∕4 log n).

Recall |n± − n
2
| ≤√n log n. From (8.7)–(8.9), similar to the case for t=T , we have

E[U(𝑑−1)
t+1 | ∩t

j=T j,t] =
(

n+ − U+
≤t

𝑑 − 1

)⎛⎜⎜⎜⎝1 −
⎛⎜⎜⎝1 − a(

n
𝑑−1

)⎞⎟⎟⎠
U+

t ⎛⎜⎜⎝1 − b(
n

𝑑−1

)⎞⎟⎟⎠
U−

t ⎞⎟⎟⎟⎠
=

(
1

2𝑑−1
+ O

(
log n√

n

))
(aU+

t + bU−
t ),

and

E[U(0)
t+1| ∩t

j=T j,t] =

(
1

2𝑑−1
+ O

(
log n√

n

))
(bU+

t + aU−
t ),

E[U(r)
t+1| ∩t

j=T j,t] =

(
1

2𝑑−1
+ O

(
log n√

n

))(
𝑑 − 1

r

)
(bU+

t + bU−
t ),

for 1≤ r ≤ d − 2. Hence there exists a constant C0 > 0 such that for all 0≤ r ≤ d − 1,

E[U(r)
t+1| ∩t

j=T j,t] ≥ C0St.

From (8.5) in Lemma 8.2, for any 0≤ r ≤ d − 1, to show

P

(|||U(r)
t+1 − E[U(r)

t+1| ∩t
j=T j,t]

||| ≤ 𝜀

2𝑑
E[U(r)

t+1| ∩t
j=T j,t]

||| ∩t
j=T j,t

)
≥ 1 − n−2−𝛾 , (8.42)

it suffices to have

C0Sth̃
(
𝜀t
2𝑑

)
≥ (2 + 𝛾) log n. (8.43)

From (8.5), by a second-order expansion of h̃ around 0, h̃(x) ≥ x2∕3 when x> 0 is small. For

𝛾 ∈ (0, 1), the left hand side in (8.43) is lower bounded by

C1K𝛼t−T log(n)h̃
(
𝜀t
2𝑑

)
≥ C2𝛼

t−TK log(n)𝜀2
t = C2K log n ≥ (2 + 𝛾) log n,

by taking K large enough. Therefore (8.42) holds.

We also have

Ut+1,s ≼ Zt+1,s, Zt+1,s ∼ Bin

⎛⎜⎜⎝
(n

s

)
,

a ∨ b(
n

𝑑−1

) ( St
𝑑 − s

)⎞⎟⎟⎠ ,
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and Zt+ 1, s has mean
(

n
s

)
a∨b(

n
𝑑−1

) ( St
𝑑−s

)
= Θ

(
𝛼(𝑑−s)(t−T)log𝑑−s(n)

n𝑑−1−s

)
. For 1≤ s≤ d − 2, using the fact that

h(x) ≥ 1

2
x log(x) for x large enough, similar to (8.20), there are constants C1, C2, C3, C4 > 0 such that

for any 𝜆 > 0,

P(Ut+1,s ≥ 𝜆St| ∩t
j=T j,t) ≤ P(Zt+1,s ≥ 𝜆St| ∩t

j=T j,t)

≤ exp

(
−C1𝜆𝛼

t−T log(n) log

(
C2𝜆𝛼

t−T log(n)
C3𝛼(𝑑−s)(t−T)log𝑑−s(n)n1+s−𝑑

))
.

Taking 𝜆 = (𝛼−𝛽)𝜀t
4𝑑2

= (𝛼−𝛽)𝜀𝛼−(t−T)∕2

4𝑑2
, we have

P

(
Ut+1,s ≥

(𝛼 − 𝛽)𝜀t
4𝑑2

St| ∩t
j=T j,t

)
≤ exp

(
−C′

1𝛼
(t−T)∕2 log(n) ⋅ log(C′

2𝛼
(s−𝑑+ 1

2
)(t−T)log1+s−𝑑(n)n𝑑−1−s)

)
.

Since for some constants C4, C5, C6 > 0,

log(C′
2𝛼

(s−𝑑+ 1

2
)(t−T)log1+s−𝑑(n)n𝑑−1−s)

≥ C4 − C5(t − T) log(𝛼) + log(log1+s−𝑑(n)) + (𝑑 − 1 − s) log n ≥ C6 log n,

we have for all 1≤ s≤ d − 2,

P(Ut+1,s ≥
(𝛼 − 𝛽)𝜀t

4𝑑2
St| ∩t

j=T j,t) ≤ exp
(
−C′

1C6log2n
)
≤ n−2−𝛾 (8.44)

for any 𝛾 ∈ (0, 1). Recall for sufficiently large n,

𝜀t = 𝜀𝛼−(t−T)∕2 ≥ 𝜀𝛼−l∕2 > n−1∕8.

Therefore
log n√

n
= o(𝜀t). From (8.44), conditioned on T ,… ,At and t,

U+
t+1 ≤

𝑑−1∑
r=1

rU(r)
t+1 + (𝑑 − 2)U∗

t+1 ≤ (1 + 𝜀t)
(
𝛼 + 𝛽

2
U+

t + 𝛼 − 𝛽

2
U−

t

)
with probability at least 1 − O(n−2−𝛾 ). A similar bound works for U−

T+1, which implies conditioned on

T , … ,At,

U±
t+1 ≤ (1 + 𝜀t)

(
𝛼 + 𝛽

2
U±

t + 𝛼 − 𝛽

2
U±

t

)
(8.45)

with probability 1 − O(n−2−𝛾 ) for any 𝛾 ∈ (0, 1).
(ii) Lower bound. We need to show that conditioned on T ,… ,t, U±

t+1 ≥ (1 −
𝜀t)
(

𝛼+𝛽
2

U±
t + 𝛼−𝛽

2
U±

t

)
with probability 1−O(n−1−𝛾 ) for some 𝛾 ∈ (0, 1). This part of the proof is very

similar to the case for t= T . Same as (8.28), we have the following lower bound on U+
T+1:

U+
t+1 ≥

𝑑−1∑
r=1

rU(r)
t+1 −

∑
i≥2

|Wt+1,i|.
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Next we control |Wt+ 1, 2|. Let m= n− |V≤t| and we enumerate all vertices in V>t from 1 to m. Let

X1,…Xm be the random variable that Xi = 1 if i∈Wt+ 1, 2 and 0 otherwise. Same as (8.29),

|Wt+1,2|2 − |Wt+1,2| = 2
∑

1≤i<j≤m
XiXj. (8.46)

Let Es
ij for s= 0, 1, 2, be the similar events as in (8.30) before, now we have

E[XiXj| ∩t
j=T j,t] = P

(
i, j ∈ Wt+1,2| ∩t

j=T j,t
)

=
2∑

r=0

P
(
i, j ∈ Wt+1,2|Er

ij,∩t
j=Tj,t

)
P(Er

ij| ∩t
j=T j,t).

The three terms in the sum can be estimated separately in the same way as before. By using the upper

bound C𝛼t−T log n ≤ St ≤ C0𝛼
t−T log n for some C, C0 > 0, and use the same argument for the case

when t=T , we have the following three inequalities for some constants C1, C2, C3 > 0:

P
(
i, j ∈ Wt+1,2|E0

ij,t
)

P(E0
ij| ∩t

j=T j,t) ≤
C2

1𝛼
4(t−T)log4n

n4
,

P
(
i, j ∈ Wt+1,2|E1

ij,t
)

P(E1
ij| ∩t

j=T j,t) ≤
C3

2𝛼
3(t−T)log3n

n4
,

P
(
i, j ∈ Wt+1,2|E2

ij,t
)

P(E2
ij| ∩t

j=T j,t) ≤
C3𝛼

2(t−T)log2n
n4

.

This implies E[XiXj| ∩t
j=T j,t] ≤

C′𝛼4(t−T)log4n
n4

for some C′ > 0. Taking conditional expectation in

(8.46), we have

E
[|Wt+1,2|2 − |Wt+1,2|| ∩t

j=T j,t
]
≤

C′𝛼4(t−T)log4n
n2

.

Then by Markov inequality and (8.41), similar to (8.35), there exists a constant C > 0 such that for any

𝜆 = Ω(𝛼−(t−T)),

P
(|Wt+1,2| > 𝜆St| ∩t

j=T j,t
)
≤

C𝛼2(t−T)log2n
𝜆2n2

.

Take 𝜆 = (𝛼−𝛽)𝜀t
4

. Since c log(𝛼) < 1∕4, we have 𝛼l < n1∕4, and

P

(|Wt+1,2| > (𝛼 − 𝛽)𝜀t
4

St| ∩t
j=T j,t

)
≤

C𝛼2(t−T)log2n
n2

≤ n−1−𝛾

for any 𝛾 ∈ (0, 1∕2).
For each |Wt+ 1, i| for i≥ 3, we have for sufficiently large n, there exists a constant C4 > 0

E[|Wt+1,i|| ∩t
j=T j,t] ≤ n

( n
𝑑 − 2

)i
Si

t

⎛⎜⎜⎝ a ∨ b(
n

𝑑−1

)⎞⎟⎟⎠
i

≤ n
(

C4𝛼
t−T log n

n

)i

.
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For the rest of the terms, we have for some constant C′
4 > 0,

E

[∑
i≥3

|Wi|| ∩t
j=T j,t

]
≤ n

∞∑
i=3

(
C4𝛼

t−T log n
n

)i

≤
C′

4𝛼
3(t−T)log3(n)

n2
.

By Markov’s inequality,

P

(∑
i≥3

|Wi| ≥ (𝛼 − 𝛽)𝜀t
4

St| ∩t
j=T j,t

)
≤

C5𝛼
2.5(t−T)log2(n)

n2
≤ n−1−𝛾

for any 𝛾 ∈ (0, 3∕8). Together with the estimate on Wt+ 1, 2, we have

∑
i≥2

|W+
t+1,2| ≤ (𝛼 − 𝛽)𝜀t

2
St ≤

𝜀t
2

(
𝛼 + 𝛽

2
U+

t + 𝛼 − 𝛽

2
U−

t

)
with probability 1 − 2n−1−𝛾 for any 𝛾 ∈ (0, 3∕8).

With (8.28) and (8.25), U+
t+1 ≥ (1 − 𝜀t)

(
𝛼+𝛽

2
U+

t + 𝛼−𝛽
2

U−
t

)
with probability 1 − O(n−1−𝛾 ). By

symmetry, the argument works for U−
T+1. Therefore conditioned on T ,… ,t, with probability 1 −

O(n−1−𝛾 ) for any 𝛾 ∈ (0, 3∕8),

U±
t+1 ≥ (1 − 𝜀t)

(
𝛼 + 𝛽

2
U±

t + 𝛼 − 𝛽

2
U∓

t

)
. (8.47)

This finishes the proof the lower bound part of Step 2.

Recall (8.38). With (8.47) and (8.45), we have shown that conditioned on T , … ,t, with

probability 1 − O(n−1−𝛾 ), t+1 holds. This finishes the induction step. Finally, for fixed i∈ [n] and

𝛾 ∈ (0, 3∕8),

P

( l⋂
t=T

t

)
= P(T )

l∏
t=T+1

P(t|t−1,… ,T )

≥ (1 − Cn−2−𝛾 )(1 − Cn−1−𝛾 )l ≥ 1 − C6 log(n)n−1−𝛾 ,

for some constant C6 > 0. Taking a union bound over i∈ [n], we have shown t holds for all T ≤ t≤ l
and all i∈ [n] with probability 1−O(n−𝛾 ) for any 𝛾 ∈ (0, 3∕8). This completes the proof of Theorem 8.4.

▪

With Theorem 8.4, the rest of the proof of Theorem 4.2 follows similarly from the proof of Theorem

2.3 in [32]. We include it for completeness.

Proof of Theorem 4.2. Assume all the estimates in statement of Theorem 8.4 hold. For t≤ l, if t≤ T ,

from the definition of T , we have St, |Dt| = O(log n). For t> T , from [32], M satisfies

Mk = 1

2

[
𝛼k + 𝛽k 𝛼k − 𝛽k

𝛼k − 𝛽k 𝛼k + 𝛽k

]
.
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Using (8.14) and (8.15), we have for t> t′ ≥T ,

St ≤

( t−1∏
s=t′

(1 + 𝜀s)

)
(1, 1)Mt−t′U⃗t′ ≤

( t−1∏
s=t′

(1 + 𝜀s)

)
𝛼t−t′St′ , (8.48)

St ≥

( t−1∏
s=t′

(1 − 𝜀s)

)
(1, 1)Mt−t′U⃗t′ ≥

( t−1∏
s=t′

(1 − 𝜀s)

)
𝛼t−t′St′ . (8.49)

Setting t′ =T in (8.48), we obtain

St ≤

( t−1∏
s=T

(1 + 𝜀s)

)
𝛼t−TST = O(𝛼t−T log n) = O(𝛼t log n).

Therefore (4.1) holds. Let t= l in (8.48) and (8.49), we have for all T ≤ t′ < l,( l−1∏
s=t′

(1 − 𝜀s)

)
𝛼l−t′St′ ≤ Sl ≤

( l−1∏
s=t′

(1 + 𝜀s)

)
𝛼l−t′St′ .

And it implies ( l−1∏
s=t′

(1 − 𝜀s)

)
St′ ≤ 𝛼t′−lSl ≤

( l−1∏
s=t′

(1 + 𝜀s)

)
St′ . (8.50)

Note that

max

{ l−1∏
s=t′

(1 + 𝜀s) − 1, 1 −
l−1∏
s=t′

(1 − 𝜀s)

}
= O(𝜀t′ ) = O(𝛼−t′∕2).

Together with (8.50), we have for all T ≤ t′ < l,

|St′ − 𝛼t′−lSl| ≤ O(𝛼−t′∕2)St′ = O(𝛼t′∕2 log n). (8.51)

On the other hand, for t≤T , we know St = O(log n). Let t′ =T in (8.51), we have

|ST − 𝛼T−lSl| = O(𝛼T∕2 log n). (8.52)

So for 1≤ t≤T ,

|St − 𝛼t−lSl| = O(log n) + 𝛼t−T (ST + O(log(n)𝛼T∕2))
= O(log n) + O(𝛼t−T∕2 log n) = O(𝛼t∕2 log n). (8.53)

The last inequality comes from the inequality t−T/2≤ t/2. Combining (8.51) and (8.53), we have

proved (4.3) holds for all 1≤ t≤ l.
Using (8.14) and (8.15), we have

Dt+1 = U+
t+1 − U−

t+1 ≤ 𝛽(U+
t − U−

t ) + 𝛼𝜀t(U+
t + U−

t ) = 𝛽Dt + 𝛼𝜀tSt.
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Similarly, 𝛽Dt − 𝛼𝜀tSt ≤ Dt+1 ≤ 𝛽Dt + 𝛼𝜀tSt. By iterating, we have for l≥ t> t′ ≥T ,

|Dt − 𝛽 t−t′Dt′| ≤ t−1∑
s=t′

𝛼𝛽 t−1−s𝜀sSs. (8.54)

Recall Ss = O(log(n)𝛼s−T ), |DT | = O(log n), and 𝜀s = 𝛼−(s−T)∕2. Taking t′ =T in (8.54), for t>T ,

|Dt| = O
(
log(n)𝛽 t) + O

( t−1∑
s=T

𝛼𝛽 t−1−s log(n)𝛼(s−T)∕2

)
.

Since 1 < 𝛼 < 𝛽2, it follows that

t−1∑
s=T

𝛼𝛽 t−1−s log(n)𝛼(s−T)∕2 = 𝛽 t−1𝛼1−T∕2 log(n)
t−1∑
s=T

(
𝛼

𝛽2

)s∕2

= 𝛽 t−1𝛼1−T∕2 log(n)O(𝛼T∕2𝛽−T ) = O(log(n)𝛽 t).

So we have |Dt| = O(log n𝛽 t). The right side of (8.54) is of order

t−1∑
s=t′

𝛼𝛽 t−1−s𝛼(s−T)∕2 log(n) = O(log(n)𝛽 t−t′𝛼t′∕2).

Thus setting t= l in (8.54), for l> t′ ≥ T , we obtain Dl − 𝛽 l−t′Dt′ = O(log(n)𝛽 l−t′𝛼t′∕2). Therefore

Dt′ = 𝛽 t′−lDl + O(log(n)𝛼t′∕2) holds for all T ≤ t′ < l. For t′ <T , we have Dt′ = O(log n) and

|Dt′ − 𝛽 t′−lDl| ≤ O(log n) + 𝛽 t′−T (|DT | + O(log(n)𝛼T∕2))
= O(log n) + O(𝛽 t′−T𝛼T∕2 log n) = O(𝛼t′∕2 log n),

where the last estimate is because 𝛽 t′−T < 𝛼(t′−T)∕2 under the condition that t′ <T . Altogether we have

shown (4.4) holds for all 1≤ t′ ≤ l. This completes the proof of Theorem 4.2. ▪

9 PROOF OF THEOREM 4.6

We first state the following lemma before proving Theorem 4.6. The proof is included in Appendix

A.7.

Lemma 9.1. For all m∈ {1,… , l} with l = c log n, c log 𝛼 < 1∕4, it holds asymptotically almost
surely that

sup||x||2=1,x⊤B(l)1=x⊤B(l)𝜎=0

||1⊤B(m−1)x||2 = O(
√

n𝛼(m−1)∕2 log n), (9.1)

sup||x||2=1,x⊤B(l)1=x⊤B(l)𝜎=0

||𝜎⊤B(m−1)x||2 = O(
√

n𝛼(m−1)∕2 log n). (9.2)
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Proof of Theorem 4.6. Using matrix expansion identity (3.2) and the estimates in Theorem 3.1, for

any l2-normalized vector x with x⊤B(l)1 = x⊤B(l)𝜎 = 0, we have for sufficiently large n, asymptotically

almost surely

||B(l)x||2 =
‖‖‖‖‖‖Δ(l)x +

l∑
m=1

(Δ(l−m)AB(m−1))x −
l∑

m=1

Γ(l,m)x
‖‖‖‖‖‖2

≤ 𝜌(Δ(l)) +
l∑

m=1

𝜌(Δ(l−m))||AB(m−1)x||2 + l∑
m=1

𝜌(Γ(l,m))

≤ 2n𝜀𝛼l∕2 +
l∑

m=1

n𝜀𝛼(l−m)∕2||AB(m−1)x||2, (9.3)

where A = En [A|𝜎]. We have the following expression for entries of A. If i≠ j and 𝜎i = 𝜎j = +1,

Aij =
a(
n

𝑑−1

) (n+ − 2

𝑑 − 2

)
+ b(

n
𝑑−1

) (( n − 2

𝑑 − 2

)
−
(

n+ − 2

𝑑 − 2

))
=∶ ã+

n .

If i≠ j and 𝜎i = 𝜎j = −1,

Aij =
a(
n

𝑑−1

) (n− − 2

𝑑 − 2

)
+ b(

n
𝑑−1

) (( n − 2

𝑑 − 2

)
−
(n− − 2

𝑑 − 2

))
=∶ ã−

n .

If 𝜎i ≠ 𝜎j,

Aij =
b(
n

𝑑−1

) ( n − 2

𝑑 − 2

)
∶= b̃n.

We then have ã+
n , ã−

n , b̃n = O(1∕n). Conditioned on the event {|n± − n∕2| ≤ log(n)
√

n}, we obtain

ã−
n − ã+

n = a − b(
n

𝑑−1

) ((n− − 2

𝑑 − 2

)
−
(

n+ − 2

𝑑 − 2

))
= O

(
log n
n3∕2

)
.

Let R be a n× n matrix such that

Rij =

{
1 𝜎i = 𝜎j = −1 and i ≠ j,
0 otherwise.

We then have ||R||2 ≤
√∑

ijR2
ij ≤ n. The following decomposition of A holds.

A = ã+
n

[
1

2
(1 ⋅ 1⊤ + 𝜎𝜎⊤) − I

]
+ b̃n

2
(1 ⋅ 1⊤ − 𝜎𝜎⊤) + (ã−

n − ã+
n )R (9.4)

= ã+
n + b̃n

2
1 ⋅ 1⊤ + ã+

n − b̃n
2

𝜎𝜎⊤ +
(
(ã−

n − ã+
n )R − ã+

n I
)
. (9.5)
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Since

||(ã−n − ã+
n )R − ã+

n I||2 ≤ |ã−
n − ã+

n | ⋅ ||R||2 + |ã+
n | = O(log n∕

√
n),

by (9.5), we have

||AB(m−1)x||2 = O
(

1

n

) ||1 ⋅ 1⊤B(m−1)x||2 + O
(

1

n

) ||𝜎𝜎⊤B(m−1)x||2 + O

(
log n√

n

)||B(m−1)x||2.
By Cauchy inequality,

||1 ⋅ 1⊤B(m−1)x||2 ≤
√

n||1⊤B(m−1)x||2, ||𝜎𝜎⊤B(m−1)x||2 ≤
√

n||𝜎⊤B(m−1)x||2.
Therefore,

||AB(m−1)x||2 = O(n−1∕2)(||𝜎⊤B(m−1)x||2 + ||1⊤B(m−1)x||2) + O(log n∕
√

n)||B(m−1)x||2.
Using (9.1) and (9.2), the right hand side in the expression above is upper bounded by

O(𝛼(m−1)∕2 log n) + O(||B(m−1)x||2 ⋅ log n∕
√

n). (9.6)

Since B(m− 1) is a nonnegative matrix, the spectral norm is bounded by the maximum row sum (see

Theorem 8.1.22 in [26]), we have that

||B(m−1)x||2 ≤ 𝜌(B(m−1)) ≤ max
i

n∑
j=1

B(m−1)
ij .

By (4.1), (4.5) and (4.7), the right hand side above is O(𝛼m−1 log n). Combing (9.6) and noting that

𝛼m−1∕
√

n = o(n−1∕4), it implies

||AB(m−1)x||2 = O(𝛼(m−1)∕2 log n) + O(𝛼m−1log2n∕
√

n) = O(𝛼(m−1)∕2 log n). (9.7)

Taking (9.7) into (9.3), we have for any 𝜀 > 0, with high probability, ||B(l)x||2 = O(n𝜀𝛼l∕2log2n) ≤
n2𝜀𝛼l∕2 for n sufficiently large. This completes the proof. ▪

10 PROOF OF THEOREM 5.2

The proof in this section is a generalization of the method in [33] for sparse random graphs. We now

prove the case where 𝜎i = +1, and the case for 𝜎i = −1 can be treated in the same way. Recall the

definition of Vt from Definition 4.1. Let At be the event that no vertex in Vt is connected by two distinct

hyperedges to Vt− 1. Let Bt be the event that there does not exist two vertices in Vt that are contained

in a hyperedge e ⊂
(

Vt
𝑑

)
.
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We can construct the multi-type Poisson hypertree (T , 𝜌, 𝜏) in the following way. For a vertex v∈ T ,

Let Y (r)
v , 0 ≤ r ≤ 𝑑 − 1 be the number of hyperedges incident to v which among the remaining d − 1

vertices, r of them have the same spin with 𝜏(v). We have

Y (𝑑−1)
v ∼ Pois

(
a

2𝑑−1

)
, Y (r)

v ∼ Pois

⎛⎜⎜⎝
(

𝑑−1

r

)
b

2𝑑−1

⎞⎟⎟⎠ , 0 ≤ r ≤ 𝑑 − 2.

Note that (T , 𝜌, 𝜏) can be entirely reconstructed from the label of the root and the sequence {Y (r)
v } for

v∈V(T), 0≤ r ≤ d − 1.

We define similar random variables for (H, i, 𝜎). For a vertex v∈Vt, let X(r)
v be the number of

hyperedges incident to v, where all the remaining d − 1 vertices are in Vt+ 1 such that r of them have

spin 𝜎(v). Then we have

X(𝑑−1)
v ∼ Bin

⎛⎜⎜⎝
(|V𝜎(v)

>t |
𝑑 − 1

)
,

a(
n

𝑑−1

)⎞⎟⎟⎠ ,
X(r)

v ∼ Bin

⎛⎜⎜⎝
(|V𝜎(v)

>t |
r

)( |V−𝜎(v)
>t |

𝑑 − 1 − r

)
,

b(
n

𝑑−1

)⎞⎟⎟⎠ , 0 ≤ r ≤ 𝑑 − 2

and conditioned on t (recall the definition of t from (8.6)) they are independent. Recall

Definition 5.1. We have the following lemma on the spin-preserving isomorphism. The proof of

Lemma 10.1 is given in Appendix A.8.

Lemma 10.1. Let (H, i, 𝜎)t, (T , 𝜌, 𝜏)t be the rooted hypergraph truncated at distance t from i, 𝜌
respectively. If

(1) there is a spin-preserving isomorphism 𝜙 such that (H, i, 𝜎)t−1 ≡ (T , 𝜌, 𝜏)t−1,
(2) for every v∈Vt− 1, X(r)

v = Y (r)
𝜙(v) for 0≤ r ≤ d − 1,

(3) At, Bt hold,

then (H, i, 𝜎)t ≡ (T , 𝜌, 𝜏)t.

To make our notation simpler, for the rest of this section, we will identify v with 𝜙(v). Recall the

event Ωt(i) = {St(i) ≤ C log(n)𝛼t} where the constant C is the same one as in Theorem 4.2. Now

define a new event

Ct ∶=
⋂
s≤t

Ωs(i). (10.1)

From the proof of Theorem 4.2, for all t≤ l, Pn (Ct) = 1 − O(n−1−𝛾 ) for any 𝛾 ∈ (0, 3∕8). Note that

conditioned on Ct, there exists C′ > 0 such that

|V≤t| ≤∑
s≤t

C log(n)𝛼t ≤ C′log2(n)𝛼t. (10.2)

We now estimate the probability of event At, Bt conditioned on Ct. The proof is included in

Appendix A.9.
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Lemma 10.2. For any t≥ 1,

P(At|Ct) ≥ 1 − o(n−1∕2), P(Bt|Ct) ≥ 1 − o(n−1∕2).

Before proving Theorem 5.2, we also need the following bound on the total variation distance

between binomial and Poisson random variables, see for example Lemma 4.6 in [33].

Lemma 10.3. Let m, n be integers and c be a positive constant. The following holds:

‖‖‖‖Bin
(

m,
c
n

)
− Pois(c)

‖‖‖‖TV

= O
(

1 ∨ |m − n|
n

)
.

Proof of Theorem 5.2. Fix t and suppose that Ct holds, and (T , 𝜌)t ≡ (H, i)t. Then for each v∈Vt,

recall

X(𝑑−1)
v ∼ Bin

⎛⎜⎜⎝
(|V𝜎(v)

>t |
𝑑 − 1

)
,

a(
n

𝑑−1

)⎞⎟⎟⎠ , X(r)
v ∼ Bin

⎛⎜⎜⎝
(|V𝜎(v)

>t |
r

)( |V−𝜎(v)
>t |

𝑑 − 1 − r

)
,

b(
n

𝑑−1

)⎞⎟⎟⎠
and

Y (𝑑−1)
v ∼ Pois

(
a

2𝑑−1

)
, Y (r)

v ∼ Pois

⎛⎜⎜⎝
(

𝑑−1

r

)
b

2𝑑−1

⎞⎟⎟⎠ , 0 ≤ r ≤ 𝑑 − 2.

Recall |n± − n∕2| ≤√n log n. We have the following bound for V±
>t:

|V±
>t| ≥ n± − |V≤t| ≥ n

2
−
√

n log(n) − O(log2(n)𝛼2t) ≥ n
2
− 2
√

n log(n),

|V±
>t| ≤ n± ≤

n
2
+
√

n log(n).

Therefore |V±
>t − n

2
| ≤ 2

√
n log n. Then from Lemma 10.3,

||X(𝑑−1)
v − Y (𝑑−1)

v ||TV ≤ C

||||( |V𝜎(v)
>t |

𝑑−1

)
− 1

2𝑑−1

(
n

𝑑−1

)||||
1

2𝑑−1

(
n

𝑑−1

) = O(n−1∕2 log n),

||X(r)
v − Y (r)

v ||TV = O(n−1∕2 log n), 0 ≤ r ≤ 𝑑 − 2.

We can couple X(r)
v with Y (r)

v , 0 ≤ r ≤ 𝑑 − 1 such that P

(
X(r)

v ≠ Y (r)
v

)
= O(n−1∕2 log n). Taking a

union bound over all v∈Vt, and 0≤ r ≤ d − 1 and recall (10.2), we can find a coupling such that with

probability at least

1 − O(log3(n)𝛼ln−1∕2) ≥ 1 − o(n−1∕4),

X(r)
v = Y (r)

v for every v∈Vt and 0≤ r ≤ d − 1.
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Lemma 10.2 implies At, Bt, Ct hold simultaneously with probability at least 1− o(n−1/4). Altogether

we have that assumptions (2),(3) in Lemma 10.1 hold with probability 1− o(n−1/4), which can be

written as

P

(
(H, i, 𝜎)t+1 ≡ (T , 𝜌, 𝜏)t+1,Ct+1

|||(H, i, 𝜎)t ≡ (T , 𝜌, 𝜏)t,Ct

)
≥ 1 − o(n−1∕4).

Since we can certainly couple i with 𝜌 from our construction, we have P ((H, i, 𝜎)0 ≡ (T , 𝜌, 𝜏)0,C0) = 1.

Therefore for large n,

P((H, i, 𝜎)l ≡ (T , 𝜌, 𝜏)l)

=
l∏

t=1

P

(
(H, i, 𝜎)t ≡ (T , 𝜌, 𝜏)t,Ct

|||(H, i, 𝜎)t−1 ≡ (T , 𝜌, 𝜏)t−1,Ct−1

)
⋅ P ((H, i, 𝜎)0 ≡ (T , 𝜌, 𝜏)0,C0)

≥ (1 − o(n−1∕4))l ≥ 1 − n−1∕5.

This completes the proof. ▪

11 PROOF OF THEOREM 6.1

The proof of the following Lemma 11.1 follows in a similar way as Lemma 4.4 in [32], and we include

it in Appendix A.10.

Lemma 11.1. For l = c log(n), c log(𝛼) < 1∕4, the following hold asymptotically almost surely

||B(l)1 − S⃗l||2 = o(||B(l)1||2), (11.1)||B(l)𝜎 − D⃗l||2 = o(||B(l)𝜎||2), (11.2)⟨B(l)1,B(l)𝜎⟩ = o
(||B(l)1||2 ⋅ ||B(l)𝜎||2) . (11.3)

The next lemma estimate ||B(l)x||2 when x = B(l)𝜎 and B(l)1. The proof of Lemma 11.2 is provided

in Appendix A.11.

Lemma 11.2. Assume 𝛽2 > 𝛼 > 1 and l = c log(n) with c log(𝛼) < 1∕8. Then for some fixed 𝛾 > 0

asymptotically almost surely one has

Ω(𝛼l)||B(l)1||2 ≤ ||B(l)B(l)1||2 ≤ O(𝛼l log n)||B(l)1||2, (11.4)

Ω(𝛽 l)||B(l)𝜎||2 ≤ ||B(l)B(l)𝜎||2 ≤ O(n−𝛾𝛼l)||B(l)𝜎||2. (11.5)

Together with Lemmas 11.1 and 11.2, we are ready to prove Theorem 6.1.

Proof of Theorem 6.1. From Theorem 4.6 and Lemma 11.2, the top two eigenvalues of B(l) will be

asymptotically in the span of B(l)1 and B(l)𝜎. By the lower bound in (11.4) and the upper bound in

(11.5), the largest eigenvalue of B(l) will be Θ(𝛼l) up to a logarithmic factor, and the first eigenvector

is asymptotically aligned with B(l)1.

From (11.1), B(l)1 is also asymptotically aligned with S⃗l, therefore our statement for the first eigen-

value and eigenvector holds. Since B(l)1 and B(l)𝜎 are asymptotically orthogonal from (11.3), together
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with (11.5), the second eigenvalue of B(l) is Ω(𝛽 l) and the second eigenvector is asymptotically aligned

with B(l)𝜎.

From (11.2), B(l)𝜎 is asymptotically aligned with D⃗l. So the statement for the second eigenvalue and

eigenvector holds. The order of other eigenvalues follows from Theorem 4.6 and the Courant minimax

principle (see [26]). ▪
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APPENDIX A

A.1 Proof of Lemma 4.3

Proof. The two sequences (U±
k (i))k≤l, (U±

k (j))k≤l are independent conditioned on the event

{V≤l(i)∩V≤l(j)=∅}. It remains to estimate Pn

(
{V≤l(i) ∩ V≤l(j) = ∅}

)
. Introduce the events

k ∶ =
⋂
t≤k

{St(i) ∨ St(j) ≤ C log(n)𝛼t}, k ∶= {V≤k(i)
⋂

V≤k(j) = ∅},

where the constant C is the same one as in the statement of Theorem 4.2. For any vertex

v∈ [n] \ (V≤k(i)∪V≤k(j)), Conditioned on k and k, there are two possible situations where v is

included in Vk+ 1(i)∩Vk+ 1(j):

1. There is a hyperedge containing v and a vertex in Vk(i), and a different hyperedge containing v and

a vertex in Vk(j).
2. There is a hyperedge containing v, one vertex in Vk(i), and another vertex in Vk(j).

https://doi.org/10.1002/rsa.21006
https://doi.org/10.1002/rsa.21006
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There exists a constant C1 > 0 such that Case (1) happens with probability at most

Sk(i)Sk(j)
( n
𝑑 − 2

)2⎛⎜⎜⎝ a ∨ b(
n

𝑑−1

)⎞⎟⎟⎠
2

≤ C1log2(n)𝛼2k∕n2,

and Case (2) happens with probability at most

Sk(i)Sk(j)
( n
𝑑 − 3

) a ∨ b(
n

𝑑−1

) = C1log2(n)𝛼2k∕n2.

Since 𝛼2l = n2c log 𝛼 = o(n1∕2), we have for large n,

Pn (v ∈ Vk+1(i) ∩ Vk+1(j)|k,k) ≤ 2C1log2(n)𝛼2l∕n2 < n−1.5.

Taking a union bound over all possible v, we have for some constant C3 > 0,

Pn (Vk+1(i) ∩ Vk+1(j) = ∅|k,k) ≥ 1 − C3n−1∕2.

From the proof of Theorem 4.2, for all 0≤ k≤ l, PHn(k) = 1−O(n−1−𝛾 ) for any 𝛾 ∈ (0, 3∕8). We then

have

Pn (Vk+1(i) ∩ Vk+1(j) = ∅|k) ≥Pn(Vk+1(i) ∩ Vk+1(j) = ∅|k,k) Pn (k) ≥ 1 − O(n−1∕2).

Finally, for large n,

Pn

(
{V≤l(i) ∩ V≤l(j) = ∅}

)
= Pn (l) ≥ Pn (Vl(i) ∩ Vl(j) = ∅|l−1)Pn (l−1)

≥ Pn (0)
l−1∏
k=0

Pn (Vk+1(i) ∩ Vk+1(j) = ∅|k)

≥ (1 − O(n−1∕2))l ≥ 1 − n−1∕3.

This completes the proof. ▪

A.2 Proof of Lemma 4.4

Proof. Consider the exploration process of the neighborhood of a fixed vertex i. Conditioned on

k−1, there are two ways to create new cycles in V≥k− 1(i):

(1) Type 1: a new hyperedge e⊂V≥k− 1(i) containing two vertices in Vk− 1(i) may appear, which

creates a cycle including two vertices in Vk− 1(i).
(2) Type 2: two vertices in Vk− 1(i) may be connected to the same vertex in V≥k(i) by two new distinct

hyperedges.
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Define the event

Ωk−1(i) ∶= {Sk−1(i) ≤ C log(n)𝛼k−1}, (A1)

where the constant C is the same one as in Theorem 4.2. From the proof of Theorem 4.2, Pn (Ωk(i)) =
1 − O(n−1−𝛾 ) for some 𝛾 ∈ (0, 3∕8).

Let E(1)
k (i) be the number of hyperedges of type 1. Conditioned on k−1, E(1)

k (i) is stochastically

dominated by Bin

((
Sk−1(i)

2

)(
n

𝑑−2

)
,

a∨b(
n

𝑑−1

)) . Then for some constant C1 > 0,

En[E
(1)
k (i)|Ωk−1(i)] ≤ C1log2(n)𝛼2k−2∕n ≤ C1log2(n)𝛼2l∕n.

By Markov’s inequality,

Pn({E(1)
k (i) ≥ 1}) ≤ Pn({E(1)

k (i) ≥ 1}|Ωk−1(i)) + Pn (Ω
c
k−1(i))

≤ En [E
(1)
k (i)|Ωk−1(i)] + O(n−1−𝛾 ) = O(log2(n)𝛼2l∕n).

Taking the union bound, the probability that there is a type 1 hyperedge in the l-neighborhood of i is

Pn

( l⋃
k=1

{E(1)
k (i) ≥ 1}

)
≤

l∑
k=1

Pn ({E(1)
k (i) ≥ 1}) = O(log3(n)𝛼2l∕n).

The number of hyperedge pair (e1, e2) of Type 2 is stochastically dominated by

Bin

⎛⎜⎜⎜⎝nS2
k−1

( n
𝑑 − 2

)2

,

⎛⎜⎜⎝ a ∨ b(
n

𝑑−1

)⎞⎟⎟⎠
2⎞⎟⎟⎟⎠ ,

which conditioned on Ωk−1(i) has expectation O(log2(n)𝛼2l∕n). By a Markov’s inequality and a union

bound, in the same way as the proof for Type 1, we have the probability there is a type 2 hyperedge

pair in the l-neighborhood of i is O(log2(n)𝛼2l∕n). Altogether the probability that there are at least one

cycles within the l−neighborhood of i is O(log3(n)𝛼2l∕n).
Let Zi be the random variable such that Zi = 1 if l-neighborhood of i contains one cycle and Zi = 0

otherwise. From the analysis above, we have E[Zi] = O(log3(n)𝛼2l∕n). By Markov’s inequality,

Pn

(∑
i∈[n]

Zi ≥ 𝛼2llog4(n)

)
≤

∑
iE[Zi]

log4(n)𝛼2l
= O(log3(n)𝛼2l)

𝛼2llog4(n)
= O(log−1(n)).

Then asymptotically almost surely the number of vertices whose l-neighborhood contains one cycle at

most log4(n)𝛼2l.

It remains to show H is l-tangle free asymptotically almost surely. For a fixed vertex i∈ [n], there

are several possible cases where there can be two cycles in V≤l(i).
(1) There is one hyperedge of Type 1 or a hyperedge pair of Type 2 which creates more than one

cycles. We discuss in the following cases conditioned on the event ∩l
t=1Ωt(i).

(a) The number of hyperedge of the first type which connects to more than two vertices in

Vk− 1 is stochastically dominated by Bin

((
Sk−1

3

)(
n

𝑑−3

)
,

a∨b(
n

𝑑−1

)) . The expectation is at most

O(𝛼3llog3(n)∕n2).
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(b) If the intersection of the hyperedge pair of Type 2 contains 2 vertices in V≥k, it will

create two cycles. The number of such hyperedge pairs is stochastically dominated by

Bin

((
n
2

)
S2

k−1

(
n

𝑑−3

)2

,

(
a∨b(

n
𝑑−1

))2
)

with mean O(log2(n)𝛼2l∕n2).

Then by Markov’s inequality and a union bound, asymptotically almost surely, there is no V≤l(i)
such that its neighborhood contains Type 1 hyperedges or Type 2 hyperedge pairs which create more

than one cycles.

(2) The remaining case is that there is a V≤l(i) where two cycles are created by two Type 1 hyper-

edges or two Type 2 hyperedge pairs or one Type 1 hyperedge and another hyperedge pairs. By the

same argument, under the event ∩l
t=1Ωt(i), the probability that such event happens is O(log6(n)𝛼4l∕n2).

Since 𝛼4l = o(n), by taking a union bound over i∈ [n], we have H is l-tangle-free asymptotically almost

surely.
▪

A.3 Proof of Lemma 4.5

Proof. Let i ∉  whose l-neighborhood contains no cycles. For any k∈ [n] and any m≤ l, there is a

unique self-avoiding walk of length m from i to k if and only if d(i, k)=m, so we have B(m)
ik = 1𝑑(i,k)=m.

For such i we have

(B(m)1)i = Sm(i), (B(m)𝜎)i = Dm(i).

Then (4.5), (4.6) follows from Theorem 4.2.

By Lemma 4.4, asymptotically almost surely all vertices in  have only one cycle in

l-neighborhood. For any m ≤ l, i ∈ , since (B(m)1)i =
∑

k∈[n]B
(m)
ik , and only vertices at distance at

most m from i can be reached by a self-avoiding walk of length m from i, which will be counted in

(B(m)1)i. Moreover, for any k∈ [n] with B(m)
ik ≠ 0, since the l-neighborhood of i contains at most one

cycle, there are at most 2 self-avoiding walks of length m between i and k. Altogether we know∑
k∈[n]

B(m)
ik ≤ 2

m∑
t=0

St(i) = O(𝛼m log n)

asymptotically almost surely. Then (4.7) follows. ▪

A.4 Proof of Lemma 5.3

Proof. Recall the definitions of 𝛼, 𝛽 from (1.3). From (5.1)–(5.3),

E(W+
t+1|t) =

𝑑−1∑
r=0

rE(W (r)
t+1|t) =

𝑑−2∑
r=1

r
⎛⎜⎜⎝

b
(

𝑑−1

r

)
2𝑑−1

(W−
t + W+

t )
⎞⎟⎟⎠ + (𝑑 − 1)

(
a

2𝑑−1
W+

t + b
2𝑑−1

W−
t

)
= 𝛼 + 𝛽

2
W+

t + 𝛼 − 𝛽

2
W−

t = 𝛼t+1

2
Mt +

𝛽 t+1

2
Δt.

Similarly, E[W−
t+1|t] = 𝛼t+1

2
Mt − 𝛽 t+1

2
Δt. Therefore

E[Mt+1|t] = 𝛼−t−1
E[W+

t+1 + W−
t+1|t] = Mt,

E[Δt+1|t] = 𝛽−t−1
E[W+

t+1 − W−
t+1|t] = Δt.

It follows that {Mt}, {Δt} are martingales with respect to t. From (5.1)–(5.4),

Var(Mt|t−1) = Var(𝛼−t(W+
t + W−

t )|t−1) = 𝛼−2tVar

(
(𝑑 − 1)

𝑑−1∑
r=0

W (r)
t |t−1

)
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= (𝑑 − 1)2𝛼−2t ⋅
𝛼

𝑑 − 1
(W+

t−1 + W−
t−1) = (𝑑 − 1)𝛼−tMt−1.

Sine EM0 = 1, by conditional variance formula,

Var(Mt) = Var(E[Mt|t−1]) + EVar(Mt|t−1) = Var(Mt−1) + (𝑑 − 1)𝛼−t.

Since Var(M0)= 0, we have for t≥ 0, Var(Mt) = (𝑑 − 1) 1−𝛼−t

𝛼−1
. So {Mt} is uniformly integrable for

𝛼 > 1.

Similarly,

Var(Δt|t−1) = Var(𝛽−t(W+
t − W−

t )|t−1) = 𝛽−2t
𝑑−1∑
r=0

(2r − 𝑑 + 1)2Var(W (r)
t |t−1)

= (𝛼∕𝛽2)tMt−1(𝑑 − 1)𝛼−1 ⋅
(𝑑 − 1)a + (2𝑑−1 + 1 − 𝑑)b

2𝑑−1
=∶ 𝜅(𝛼∕𝛽2)tMt−1,

where 𝜅 ∶= (𝑑−1)(a−b)+2𝑑−1b
a+(2𝑑−1−1)b

.

And we also have the following recursion:

Var(Δt) = Var(E[Δt|t−1]) + EVar(Δt|t−1) = Var(Δt−1) + 𝜅𝛽−2t𝛼t.

Since Var(Δ0) = 0, we have for t> 0,

Var(Δt) = 𝜅 ⋅
1 − (𝛽2∕𝛼)−t

𝛽2∕𝛼 − 1
. (A2)

So {Δt} is uniformly integrable if 𝛽2 > 𝛼. From the martingale convergence theorem, EΔ∞ = Δ0 = 1,

Var(Δ∞) = 𝜅

𝛽2∕𝛼−1
, and (5.5) holds. This finishes the proof. ▪

A.5 Proof of Lemma 5.4

Proof. From Theorem 5.2, For each i∈ [n], there exists a coupling such that with probability 1 −
O(n−𝜀) for some positive 𝜀, 𝛽−l𝜎(i)Dl(i) = Δl and we denote this event by . When the coupling fails,

by Theorem 4.2, 𝛽−l𝜎(i)Dl(i) = O(log(n)) with probability 1 − O(n−𝛾 ) for some 𝛾 > 0.

Recall the event

Ωk−1(i) ∶= {Sk−1(i) ≤ C log(n)𝛼k−1}. (A3)

We define Ω ∶=
⋂n

i=1 Ω(i),Ω(i) ∶=
⋂

k≤lΩk(i). We have

E

(
1

n

n∑
i=1

𝛽−2lD2
l (i)|Ω) = O(log2(n))n−𝜀 + E(Δ2

l 1|Ω). (A4)

Moreover,

|E(Δ2
l 1|Ω) − E(Δ2

∞)| = |||||E(Δ
2
l 1 − E(Δ2

l 11Ω) − P(Ω)E(Δ2
∞)

P(Ω)

|||||
≤
|E(Δ2

l − Δ2
∞)|

P(Ω)
+ 1 − P(Ω)

P(Ω)
E(Δ2

∞) +
|E(Δ2

l 1

) − E(Δ2

l 1
∩Ω)|

P(Ω)
. (A5)
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Since we know P(Ω∩) → 1 and (5.5), the first two terms in (A5) converges to 0. The third term also

converges to 0 by dominated convergence theorem. So we have

E

(
1

n

n∑
i=1

𝛽−2lD2
l (i)|Ω)→ E(Δ2

∞).

We then estimate the second moment. Note that

E

(
1

n

n∑
i=1

𝛽−2lD2
l (i)|Ω)2

= 1

n2
E

( n∑
i=1

𝛽−4lD4
l (i)|Ω) + 2

n2

∑
i<j

𝛽−4l
E(Dl(i)2D2

l (j)|Ω), (A6)

and from Theorem 4.2, the first term is O(log4(n)∕n) = o(1). Next, we show the second term satisfies

2

n2

∑
i<j

𝛽−4l
E(Dl(i)2D2

l (j)|Ω) = 2

n2

∑
i<j

𝛽−4l 1

P(Ω)
E(1ΩDl(i)2D2

l (j)) = o(1). (A7)

Since P(Ω) = 1 − O(n−𝛾 ), it suffices to show

2

n2

∑
i<j

𝛽−4l
E(1ΩDl(i)2D2

l (j)) = o(1).

Consider 𝛽−4lE(1Ω(i)∩Ω(j)D2
l (i)D2

l (j)). From Lemma 4.3, when i≠ j, Dl(i), Dl(j) are asymptotically inde-

pendent. On the event that the coupling with independent copies fails (recall the failure probability is

O(n−𝛾 )), we bound D2
l (i)D2

l (j) by O(𝛽4llog4(n)). When the coupling succeeds,

𝛽−4l
E(1Ω(i)∩Ω(j)Dl(i)2D2

l (j)) = 𝛽−4l
E(1Ω(i)Dl(i)2)E(1Ω(j)Dl(j)2).

Then from (5.6),

2

n2

∑
i<j

𝛽−4l
E(1Ω(i)∩Ω(j)Dl(i)2D2

l (j)) = O

(
1

n2

∑
i<j

𝛽−4l
E(1Ω(i)Dl(i)2)E(1Ω(j)Dl(j)2) + O(n−2𝛾 log4n)

)
= O

(
(E(Δ2

∞))2
)
= O(1). (A8)

Therefore from (A6), (A7), and (A8),

E

(
1

n

n∑
i=1

𝛽−2lD2
l (i)|Ω)2

= O(1).

With (A4), by Chebyshev’s inequality, conditioned on Ω, in probability we have

lim
n→∞

1

n

n∑
i=1

𝛽−2lD2
l (i) = E(Δ2

∞).

Since P(Ω) → 1, (5.6) follows.
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We now establish (5.7). Without loss of generality, we discuss the case of + sign. Since 𝜏 is a

continuous point of the distribution of Δ∞, for any fixed 𝛿 > 0, we can find two bounded K-Lipschitz

function f , g for some constant K > 0 such that

f (x) ≤ (1x≥𝜏) ≤ g(x), x ∈ R, 0 ≤ E(g(Δ∞) − f (Δ∞)) ≤ 𝛿.

Consider the empirical sum
1

n

∑
i∈ + f (x(n)i

√
nE(Δ2

∞), we have

||||||1n
∑

i∈ +

f (x(n)i

√
nEΔ2

∞) −
1

n
∑

i∈ +

f (𝛽−lDl(i))
||||||

≤
K
n
∑

i∈ +

|(x(n)i − y(n)i )
√

nEΔ2
∞| + K

n
∑

i∈ +

|y(n)i

√
nEΔ2

∞ − 𝛽−lDl(i)|.
The first term converges to 0 by the assumption that ||x− y||2 → 0 in probability. The second term

converges to 0 in probability from (5.6). Moreover,
1

n

∑
i∈ + f (𝛽−lDl(i)) converges in probability to

1

2
Ef (Δ∞). So we have

lim
n→∞

1

n
∑

i∈ +

f (x(n)i

√
nEΔ2

∞) =
1

2
Ef (Δ∞),

and the same holds for g. If follows that

lim sup
n→∞

||||||1n
∑

i∈[n]∶𝜎i=+
1{

x(n)i ≥𝜏∕
√

nE[Δ2
∞]
} − 1

2
P(Δ∞ ≥ 𝜏)

|||||| ≤ 𝛿

for any 𝛿 > 0. Therefore (5.7) holds. ▪

A.6 Proof of Lemma 7.2

Proof. For any n× n real matrix M, we have 𝜌(M)2k ≤ tr[(MM⊤)k], therefore

En [𝜌(Γ
(l,m))2k] ≤ En

[
tr
(
Γ(l,m)Γ(l,m)⊤

)k
]

(A9)

=
∑

i1,… ,i2k∈[n]
En

[
Γ(l,m)

i1i2 Γ(l,m)
i3i2 … Γ(l,m)

i2k−1i2k
Γ(l,m)

i1i2k

]
.

Recall the definition of Γ(l,m)
ij from (7.2), the sum in (A9) can be expanded to be the sum over all circuits

w= (w1, … w2k) of length 2kl which are obtained by concatenation of 2k walks of length l, and each

wi, 1≤ i≤ 2k is a concatenation of two self-avoiding walks of length l−m and m− 1. The weight that

each hyperedge in the circuit contributes can be either Ae
ij − Ae

ij,Ae
ij or Ae

ij. For all circuits w in (A9)

with nonzero expected weights, there is an extra constraint that each wi intersects with some other wj,

otherwise the expected weight that wi contributes to the sum (A9) will be 0. We want to bound the

number of such circuits with nonzero expectation.

Let v, h denoted the number of distinct vertices and hyperedges traversed by the circuit. Here we

don’t count the hyperedges that are weighted by Ae
ij. We associate a multigraph G(w) for each w as
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before, but the hyperedges with weight Ae
ij are not included. Since En [Γ

(l,m)
ij ] = 0 for any i, j∈ [n], if

the expected weight of w is nonzero, the corresponding graph G(w) must be connected.

We detail the proof for circuits in Case (1), where

• each hyperedge label in {ei}1≤ i≤ h appears exactly once on G(w);

• vertices in ei ∖ end(ei) are all distinct for 1≤ i≤ h, and they are not vertices with labels in V(w),

and the cases for other circuits follow similarly from the proof of Lemma 7.1.

Let m be fixed. For each circuit w, there are 4k self-avoiding walks, and each wi is broken into

two self-avoiding walks of length m− 1 and l−m, respectively. We adopt the way of encoding each

self-avoiding walk as before, except that we must also include the labels of the endpoint j after the

traversal of an edge e with weight from Ae
ij, which gives us the initial vertex of the self-avoiding walk of

length l−m within each wi. These extra labels tell us how to concatenate the two self-avoiding walks

of length m− 1 and l−m into the walk wi of length l. For each wi, label is encoded by a number from

{1, … , v}. So all possible such labels can be bounded by v2k. Then the upper bound on the number of

valid triplet sequences with extra labels for fixed v, h is now given by v2k[(v+ 1)2(l+ 1)]4k(2+ h− v).

The total number of circuits that have the same triplet sequences with extra labels is at most

nv
(

n
𝑑−2

)h+2k
where h+ 2k is the total number of distinct hyperedges we can have in w, including the

hyperedges with weights from Ae
ij.

We also need to bound the possible range of v, h. There are overall 2k(l− 1) hyperedges traversed

in w (remember we don’t count the edges with weights from Ae
ij). Out of these, 2k(l−m) hyperedges

(with multiplicity) with weights coming from Ae
ij −Ae

ij must be at least doubled for the expectation not

to vanish. Then the number of distinct hyperedges in w excluding the hyperedge weighted by some Ae
ij,

satisfies h≤ k(l−m)+ (2k(l− 1)− 2k(l−m))= k(l+m− 2). We have v ≥ max{m, l−m+1} since each

self-avoiding walk of length m− 1 or l−m has distinct vertices. Moreover, since G(w) is connected,

h≥ v− 1, so we have v− 1≤ h≤ k(l+m− 2). And the range of v is then given by max{m, l−m+ 1} ≤

v ≤ k(l + m − 2) + 1.

The expected weight that a circuit contributes can be estimated similarly as before. From (7.14),

the expected weights from v− 1 many hyperedges that corresponds to edges on T(w) is bounded by(
𝛼

(𝑑−1)
(

n
𝑑−1

))v−1

. Similar to (7.10), the expected weights from h− v+ 1+ 2k many hyperedges that

corresponds to edges on G(w) ∖ T(w) together with hyperedges whose weights are from Ae
ij is bounded

by

(
a∨b(

n
𝑑−1

))h−v+1+2k

.

Putting all estimates together, for fixed v, h, the total contribution to the sum is bounded by

nv
( n
𝑑 − 2

)h+2k
v2k[(v + 1)2(l + 1)]4k(2+h−v)

⎛⎜⎜⎝ 𝛼

(𝑑 − 1)
(

n
𝑑−1

)⎞⎟⎟⎠
v−1⎛⎜⎜⎝ a ∨ b(

n
𝑑−1

)⎞⎟⎟⎠
h−v+1+2k

=nv
(

𝛼

𝑑 − 1

)v−1( 𝑑 − 1

n − 𝑑 + 2

)h+2k
v2k Q(k, l, v, h),

where Q(k, l, v, h) ∶= [(v + 1)2(l + 1)]4k(2+h−v)(a ∨ b)h−v+1+2k.

Let S1 be the contribution of circuits in Case (1) to the sum in (A9). We have

S1 ≤

k(l+m−2)+1∑
v=m∨(l−m+1)

k(l+m−2)∑
h=v−1

nv
(

𝛼

𝑑 − 1

)v−1( 𝑑 − 1

n − 𝑑 + 2

)h+2k
v2k Q(k, l, v, h). (A10)
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Taking l = O(log n), similar to the discussion in (7.16), the leading term in (A10) is given by the term

with h= v− 1. So for any 1≤m≤ l, and sufficiently large n, there are constants C1, C2 > 0 such that

S1 ≤

k(l+m−2)+1∑
v=m∨(l−m+1)

2n1−2k((𝑑 − 1)v)2k[(v + 1)2(l + 1)]4k𝛼v−1(a ∨ b)2k

≤C2log14k(n) ⋅ n1−2k𝛼k(l+m−2).

For circuits not in Case (1), similar to the proof of Lemma 7.1, their total contribution is bounded by

C′
2n1−2k𝛼k(l+m−2)log14kn for a constant C′

2 > 0. This completes the proof of Lemma 7.2. ▪

A.7 Proof of Lemma 9.1

Proof. Let  be the set of vertices such that their l-neighborhood contains a cycle. Let x be a normed

vector such that x⊤B(l)1= 0. We then have

1⊤B(m−1)x =
∑
i∈[n]

xi(B(m−1)1)i =
∑
i∉

xiSm−1(i) +
∑
i∈

xi(Bm−11)i

=
∑
i∈[n]

xi(𝛼m−1−l(B(l)1)i + O(𝛼
m−1

2 log n))

−
∑
i∈

xi(𝛼m−1−l(B(l)1)i + O(𝛼
m−1

2 log n)) +
∑
i∈

xi(B(m−1)1)i. (A10)

Since we have 1⊤B(l)x= 0, the first term in (A10) satisfies||||||
∑
i∈[n]

xi(𝛼m−1−l(B(l)1)i + O(𝛼
m−1

2 log n))
|||||| =
||||||
∑
i∈[n]

xiO(𝛼
m−1

2 log n)
|||||| = O(

√
n𝛼

m−1

2 log n),

where the last inequality above is from Cauchy inequality.

From Lemma 4.4, || = O(𝛼2llog4n). For the second term in (A10), recall from (4.7), for m≤ l,|(B(m)1)i| = O(𝛼m log n), then by Cauchy inequality|||||
∑
i∈

xi(𝛼m−1−l(B(l)1)i + O(𝛼
m−1

2 log n))
||||| ≤
√||O(𝛼m−1 log n) = O(𝛼l+m−1log3n).

Similarly, the third term satisfies|||||
∑
i∈

xi(B(m−1)1)i
||||| = O(𝛼l+m−1log3n).

Note that 𝛼l+m−1 = o(n1∕2), altogether we have

|1⊤B(m−1)x| = O(
√

n𝛼
m−1

2 log n + 𝛼l+m−1log3n) = O(
√

n𝛼
m−1

2 log n). (A11)

(9.1) then follows. Using the property x⊤B(l)𝜎 = 0 instead of x⊤B(l)1= 0 and following the same

argument, (9.2) holds. ▪
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A.8 Proof of Lemma 10.1

Proof. Conditioned on (H, i, 𝜎)t−1 ≡ (T , 𝜌, 𝜏)t−1, if At holds, it implies that hyperedges generated

from vertices in Vt− 1 do not overlap (except for the parent vertices in Vt− 1). If Bt holds, vertices in Vt
that are in different hyperedges generated from Ht− 1 do not connect to each other. If both At Bt holds,

(H, i, 𝜎)t is still a hypertree. Since X(r)
v = Y (r)

𝜙(v) for v∈Vt− 1, we can extend the hypergraph isomorphism

𝜙 by mapping the children of v∈Vt to the corresponding vertices in the tth generation of children of

𝜌 in T , which keeps the hypertree structure and the spin of each vertex. ▪

A.9 Proof of Lemma 10.2

Proof. First we fix u, v∈Vt. For any w∈V>t, the probability that (u, w), (v, w) are both connected

is O(n−2). We know |V>t|≤n and |V≤t| = O(log2(n)𝛼t) conditioned on Ct. Since 𝛼2t ≤ 𝛼2l = o(n1∕2),
taking a union bound over all u, v, w we have

P(At|Ct) ≥ 1 − O(log4(n)𝛼2tn−1) = 1 − o(n−1∕2). (A12)

For the second claim, the probability of having an edge between u, v∈Vt is O(n−1). Taking a union

bound over all pairs of u, v∈Vt implies

P(Bt|Ct) ≥ 1 − O(log4(n)𝛼2tn−1) = 1 − o(n−1∕2). (A13)

▪

A.10 Proof of Lemma 11.1

Proof. In (11.1), the coordinates of two vectors on the left hand side agree at i if the l-neighborhood

of l contains no cycle. Recall  is the set of vertices whose l-neighborhood contains a cycle, from

Lemma 4.4, and (4.7), we have asymptotically almost surely,

||B(l)1 − S⃗l||2 ≤
√||O(log(n)𝛼l) = O(log3(n)𝛼2l) = o(

√
n). (A14)

From (5.6) we have ||D⃗l||2 = Θ(
√

n𝛽 l) (A15)

asymptotically almost surely, and ||B(l)1||2 ≥ ||D⃗l||2, therefore (11.1) follows.

Similar to (A14), we have||B(l)𝜎 − D⃗l||2 = o(
√

n), ||B(l)𝜎||2 = ||D⃗l||2 + o(
√

n) = Θ(
√

n𝛽 l). (A16)

Then (11.2) follows.

It remains to show (11.3). Using the same argument as in Theorem 5.4, we have the following

convergence in probability

lim
n→∞

1

n
∑
i∈[n]

𝛼−2lS2
l (i) = EM2

∞, (A17)

where M∞ is the limit of the martingale Mt. Similarly, the following convergences in probability hold

lim
n→∞

1

n
∑
i∈[n]

𝛼−l𝛽−lSl(i)Dl(i) = lim
n→∞

1

n
∑

i∈ +

𝛼−l𝛽−lSl(i)Dl(i) + lim
n→∞

1

n
∑

i∈ −

𝛼−l𝛽−lSl(i)Dl(i)

= 1

2
EM∞D∞ − 1

2
EM∞D∞ = 0.
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Thus ⟨S⃗l, D⃗l⟩ = o(n𝛼l𝛽 l) asymptotically almost surely.

From (A17) we have ||S⃗l||2 = Θ(
√

n𝛼l), (A18)

therefore together with (A15), we have ||S⃗l||2 ⋅ ||D⃗l||2 = Θ(n𝛼l𝛽 l). With (11.1) and (11.2), (11.3) holds.

▪

A.11 Proof of Lemma 11.2

Proof. For the lower bound in (11.4), note that B(l) is symmetric, we have

||B(l)1||22 = ⟨B(l)1,B(l)1⟩ = ⟨1,B(l)B(l)1⟩ ≤ ||1||2||B(l)B(l)1||2. (A19)

Therefore from (A18) and (11.1),

||B(l)B(l)1||2 ≥
||B(l)1||22||1||2 = Θ(𝛼l)||B(l)1||2. (A20)

For the upper bound in (11.4), from (4.1) and (4.7), the maximum row sum of B(l) is O(𝛼l log n). Since

B(l) is nonnegative, the spectral norm 𝜌(B(l)) is bounded by the maximal row sum, hence (11.4) holds.

The lower bound in (11.5) can be proved similarly as in (11.4), from the inequality ||B(l)𝜎||22 ≤||𝜎||2||B(l)B(l)𝜎||2 together with (A15) and (11.2).

Recall  is the set of vertices whose l-neighborhood contains cycles. Let  = [n]∖. Since(
B(l)B(l)𝜎

)
i =
∑
j∈[n]

B(l)
ij (B

(l)𝜎)j,

we can decompose the vector B(l)B(l)𝜎 as a sum of three vectors z+ z′ + z′ ′
, where

zi ∶= 1

(i)
∑

j∶𝑑(i,j)=l
Dl(j)1

(j), z′i ∶= 1

(i)
∑

j∶𝑑(i,j)=l
O(𝛼l log n)1(j),

z′′i ∶= 1(i)O(𝛼2llog2n).

The decomposition above depends on whether i, j ∈  and the estimation follows from (4.7). From

Lemma 4.4,  = O(𝛼2llog4(n)) asymptotically almost surely, so one has

||z′||22 =
n∑

i=1

(z′i)2 =
∑
i∈

∑
j∶𝑑(i,j)=l

∑
j′∶𝑑(i,j′)=l

O(𝛼2llog2n)1(j)1(j′)

=
∑
j∈

∑
j′∈

∑
i∈

𝑑(i,j)=𝑑(i,j′ )=l

O(𝛼2llog2n) =
∑

j,j′∈
O(𝛼3llog3n) = O(𝛼7llog11n),

which implies ||z′||2 = O(𝛼7l∕2log11∕2n). And similarly ||z′′||2 = O(𝛼3llog2n).
We know from (A16), ||B(l)𝜎||2 = Θ(𝛽 l

√
n), and since c log 𝛼 < 1∕8, we have 𝛼5l∕2 = n−𝛾 ′

√
n for

some 𝛾 ′ > 0, therefore

||z′ + z′′||2 = O(𝛼7l∕2log11∕2n) = o(𝛼5l∕2𝛽2l) = O(n−𝛾 ′𝛽 l||B(l)𝜎||2). (A21)
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It remains to upper bound ||z||2. Assume the 2l-neighborhood of i is cycle-free, then the ith entry of

B(l)B(l)𝜎, denoted by Xi, can be written as

Xi ∶= (B(l)B(l)𝜎)i =
n∑

k=1

B(l)
ik (B

(l)𝜎)k =
n∑

k=1

1𝑑(i,k)=l

n∑
j=1

1𝑑(j,k)=l𝜎j

=
l∑

h=0

∑
j∶𝑑(i,j)=2h

𝜎j|{k ∶ 𝑑(i, k) = 𝑑(j, k) = l}|. (A22)

We control the magnitude of Xi in the corresponding hypertree growth process. Since 2l = 2c log n
and 2c log(𝛼) < 1∕4, the coupling result in Theorem 5.2 can apply.

Let i be the event that coupling between 2l-neighborhood of i with the Poisson Galton–Watson

hypertree has succeeded and n−𝜀 be the failure probability of the coupling. When the coupling succeeds,

zi =Xi, therefore

E(||z||22|Ω) = ∑
i∈[n]

n−𝜀O(𝛼2l𝛽2llog2n) +
∑
i∈[n]

E(X2
i 1i |Ω)

= n1−𝜀O(𝛼2l𝛽2llog2n) +
∑
i∈[n]

E(X2
i 1i |Ω). (A23)

For any i, j∈ [n], t∈ [l], define D(t)
i,j ∶= |{k ∶ 𝑑(i, k) = 𝑑(j, k) = t}|. From (A22), we have

X2
i =

l∑
h,h′=0

∑
j∶𝑑(i,j)=2h

∑
j′∶𝑑(i,j′)=2h′

𝜎j𝜎j′D(l)
i,j D

(l)
i,j′ . (A24)

We further classify the pair j, j′ in (A24) according to their distance. Let 𝑑(j, j′) = 2(h + h′ − 𝜏) for

𝜏 = 0,… , 2(h ∧ h′). This yields

X2
i =

l∑
h,h′=0

2(h∧h′)∑
𝜏=0

∑
j∶𝑑(i,j)=2h

∑
j′∶𝑑(i,j′)=2h′

1𝑑(j,j′)=2(h+h′−𝜏)𝜎j𝜎
′
j D

(l)
i,j D

(l)
i,j′ .

Conditioned on Ω and i, similar to the analysis in Appendix H in [32], we have the following holds|{k ∶ 𝑑(i, k) = 𝑑(j, k) = l}| = O(𝛼l−h log n), (A25)|{k′ ∶ 𝑑(i, k′) = 𝑑(j′, k′) = l}| = O(𝛼l−h′ log n), (A26)|{j ∶ 𝑑(i, j) = 2h}| = O(𝛼2h log n), (A27)|{j′ ∶ 𝑑(i, j′) = 2h′, 𝑑(j, j′) = 2(h + h′ − 𝜏)}| = O(𝛼2h′−𝜏 log n). (A28)

We claim that

E[𝜎j𝜎j′|i] ≤
(
𝛽

𝛼

)𝑑(j,j′)−1

, (A29)

and prove (A29) in Cases (a)–(d).

(a) Assume j is the parent of j′ in the hypertree growth process. Then d(j, j′)= 1. Let r be the event

that the hyperedge containing j′ is of type r. Given r, by our construction of the hypertree process,

the spin of j′ is assigned to be 𝜎j with probability
r

𝑑−1
and −𝜎j with probability

𝑑−1−r
𝑑−1

, so we have

E[𝜎j𝜎j′ |i] =
𝑑−1∑
r=0

E[𝜎j𝜎
′
j |r,Ci]P[r|i] =

𝑑−1∑
r=0

( r
𝑑 − 1

− 𝑑 − 1 − r
𝑑 − 1

)
P[r|i].
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Recall P[𝑑−1|i] = (𝑑−1)a
𝛼2𝑑−1 and P[r|i] =

(𝑑−1)b
(

𝑑−1

r

)
𝛼2𝑑−1 for 0≤ r ≤ d − 2. A simple calculation implies

E[𝜎j𝜎j′ |i] = 𝛽

𝛼
≤ 1.

(b) Suppose d(j, j′)= t and there is a sequence of vertices j, j1,… , jt− 1, j′ such that j1 is a child of

j, ji is a child of ji− 1 for 1≤ i≤ t, and j′ is a child of jt− 1. We show by induction that for t≥ 1,

E[𝜎j𝜎j′ |i] =
(
𝛽

𝛼

)t
.

When t= 1 this has been approved in part (a). Assume it is true for all j, j′ with distance ≤t− 1. Then

when d(j, j′)= t, we have

E[𝜎j𝜎j′ |i] = E[𝜎j𝜎j′ |𝜎j1 = 𝜎j,i]P(𝜎j1 = 𝜎j|i) + E[𝜎j𝜎j′ |𝜎j1 = −𝜎j,i]P(𝜎j1 = −𝜎j|i)

=
(
𝛽

𝛼

)t−1

P(𝜎j1 = 𝜎j|i) −
(
𝛽

𝛼

)t−1

P(𝜎j1 = −𝜎j|i)

=
(
𝛽

𝛼

)t−1 𝛼 + 𝛽

2𝛼
−
(
𝛽

𝛼

)t−1 𝛼 − 𝛽

2𝛼
=
(
𝛽

𝛼

)t
.

Therefore E[𝜎j𝜎j′|i] ≤
(

𝛽

𝛼

)𝑑(j,j′)
≤
(

𝛽

𝛼

)𝑑(j,j′)−1

. This completes the proof for part (b).

(c) Suppose j, j′ are not in the same hyperedge and there exists a vertex k such that j, k satisfies the

assumption in Case (b) with d(j, k)= t1, and j′, k satisfy the assumption in Case (b) with d(j′, k)= t2.

Conditioned on 𝜎k, we know 𝜎j and 𝜎′
j are independent. Then we have

E[𝜎j𝜎j′ |i] = E[E[𝜎j𝜎j′𝜎
2
k |𝜎k,i]|i] = E

[
E[𝜎j𝜎k|𝜎k,i] ⋅ E[𝜎j′𝜎k|𝜎k,i]|i

]
=
(
𝛽

𝛼

)t1+t2
≤
(
𝛽

𝛼

)𝑑(j,j′)−1

,

where the last line follows from the triangle inequality d(j, k)+ d(j′, k)≥ d(j, j′) and the condition

𝛽 < 𝛼.

(d) If j, j′ are in the same hyperedge, then d(j, j′)= 1 and (A29) holds trivially.

Combining Cases (a)–(d), (A29) holds. From (A29) and (A25)–(A28), we have

E[X2
i 1Ω|i] ≤

l∑
h,h′=0

2(h∧h′)∑
𝜏=0

∑
j∶𝑑(i,j)=2h

∑
j′∶𝑑(i,j′)=2h′

1𝑑(j,j′)=2(h+h′−𝜏)E[𝜎j𝜎
′
j |i]R(l)

i,j R
(l)
i,j′

≤

l∑
h,h′=0

2(h∧h′)∑
𝜏=0

∑
j∶𝑑(i,j)=2h

O(𝛼2h′−𝜏 log n)
(
𝛽

𝛼

)2(h+h′−𝜏)−1

⋅ O(𝛼2l−h−h′ log2n)

=
l∑

h,h′=0

2(h∧h′)∑
𝜏=0

O(𝛼2l+h+h′−𝜏 log4n)
(
𝛽

𝛼

)2(h+h′−𝜏)−1

=
l∑

h,h′=0

2(h∧h′)∑
𝜏=0

O(𝛼2llog4n) ⋅ (𝛽2∕𝛼)h+h′−𝜏 = O(𝛽4llog4n). (A30)

From (A23) and (A30), we have for some 𝜀 > 0,

E(||z||22|Ω) = n1−𝜀O(𝛼2l𝛽2llog2n) + O(n𝛽4llog2n).
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Then by Chebyshev’s inequality, asymptotically almost surely,

||z||2 = O(n1∕2−𝜀∕2𝛼l𝛽 llog2n) + O(n1∕2𝛽2llog2n) = (
√

n𝛽 llog2n) ⋅ O(𝛽 l ∨ 𝛼ln−𝜀∕2).

Recall l = c log n. We have 𝛽 l = nc log 𝛽 , 𝛼l = nc log 𝛼. So 𝛽 l = n−𝜀′𝛼l for some constant 𝜀′ > 0. Since

from (A16), ||B(l)𝜎||2 = Θ(
√

n𝛽 l), we have

||z||2 = O(n−𝛾′′𝛼l||B(l)𝜎||2) (A31)

for some constant 𝛾 ′′ > 0. Combining (A21) with (A31), it implies for some constant 𝛾 > 0,

||B(l)B(l)𝜎||2 = ||z + z′ + z′′||2 = O(n−𝛾𝛼l)||B(l)𝜎||2.
Then the upper bound on ||B(l)B(l)𝜎||2 in (11.5) holds. ▪


