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Abstract. The probability distribution of a function of a subsystem condi-
tioned on the value of the function of the whole, in the limit when the ratio
of their values goes to zero, has a limit law: It equals the unconditioned
marginal probability distribution weighted by an exponential factor whose
exponent is uniquely determined by the condition. We apply this theorem
to explain the canonical equilibrium ensemble of a system in contact with
a heat reservoir. Since the theorem only requires analysis at the level of
the function of the subsystem and reservoir, it is applicable even without
the knowledge of the composition of the reservoir itself, which extends the
applicability of the canonical ensemble. Furthermore, we generalize our
theorem to a model with strong interaction that contributes an additional
term to the exponent, which is beyond the typical case of approximately
additive functions. This result is new in both physics and mathematics,
as a theory for the Gibbs conditioning principle for strongly correlated
systems. A corollary provides a precise formulation of what a temperature
bath is in probabilistic terms.

Mathematics Subject Classification. 60F05, 60F10, 82B05, 82B30.

1. Introduction

The canonical ensemble with mechanical energy distribution in an exponential
form is the centerpiece of equilibrium statistical mechanics. It represents a
weight for a microstate of a system in thermal equilibrium with its surrounding
heat bath at a fixed temperature, where the bath is usually considered much
larger in comparison. The theory has wide applications from condensed matter
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physics to biophysical chemistry [4,11]. In textbooks, there are currently two
heuristic justifications for the exponential factor. One is the original derivation
by Boltzmann in 1877 based on an ideal gas [31], another is based on the
notion of a large heat bath and a small system within, extensively discussed
by Gibbs in his 1902 magnum opus [17]. After an extensive discussion of the
properties of an invariant measure including demonstrating it has to be a
function of the mechanical energy; however, Gibbs did not attempt to derive
the canonical distribution; rather he simply stated that an exponential form
“seems to represent the most simple case conceivable.”

Boltzmann’s derivation was based on the idea of most probable frequency
under the constraint of given total energy. In the process he recognized the
entropy S = −N

∑
i fi log fi from the multinomial distribution, where N is the

number of gas molecules, and i represents a distinct molecule state with kinetic
energy ei. This derivation preceded both the modern theory of large deviations
[8,37] as well as the principles of maximum entropy (MaxEnt) championed by
Jaynes [20,29]. In terms of the contraction principle in the former, Boltzmann
computed the large-deviation rate function for a sample frequency conditioned
on a given sample mean of energy instead of obtaining the rate function for the
random variable. This approach has now been made rigorous under the heading
of the Gibbs conditioning principle [8,33]. MaxEnt, on the other hand, plays a
pivotal role in information theory and machine learning [1,19]. In the 1980s,
Boltzmann’s logic was also rigorously developed into providing a connection
between maximum entropy and conditional probability [39,43].

Gibbs’ theory for the canonical distribution was based on the concept of
heat bath. In [17], he noted that the distribution with the exponential form
had “the property that when the system consists of parts with separate en-
ergies, the laws of the distribution in the phase of the separate parts are of
the same nature.” Having energy EA for the microstate A of the small system
and EB for the microstate B of the heat bath, Gibbs assumed the phase-space
distributions follow (i) additivity: P (A,B) = P (A + B) (ii) independence:
P (A,B) = P (A)P (B). Under those two assumptions, the only possible prob-
ability distribution for A is exponential: P (A) ∝ eλEA . Furthermore, all small
systems in contact with the same bath share the same parameter λ, which
means they are of the “same nature.” By assuming that every small system
follows the conjugate distribution laws (a family of single parameter exponen-
tial priors), Khinchin [21] rigorously proved Gibbs’ assertion of the common λ
and further showed that it is determined by the given total energy.

The aim of the paper is to find a rigorous origin of the exponential weight
itself for the canonical distribution from the standpoint of a heat bath. We
were inspired by a very widely used derivation in standard statistical physics
textbooks—based on Taylor’s expansion of the entropy function of a heat bath
[18,22,26]. The present work formulates this approach rigorously in probabilis-
tic terms and then gives a proof. We indeed have obtained a rather general new
mathematical theorem. The results can be applied back to particular scenar-
ios in statistical physics under corresponding assumptions. Our theorems have
clarified the notions of additivity, independency, and the vague “same natures
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of systems.” The last is actually a corollary of the existence and uniqueness
of a single parameter in the exponential form of the canonical distribution,
and independency is equivalent to additivity of energy functions of two sys-
tems during the map from a phase space to its corresponding energy space.
We shall emphasize that independency of two systems is a special case of our
theorem; the parameter then only depends on fluctuations of the heat bath
but independent of the small system.

Our results are obtained based on two mathematical ideas: conditional
probability and asymptotics. We use a Gedankenexperiment to illustrate the
crucial role of the former—conditional probability—in our theorems: Let Z :=
X + Y , where X is a random variable for some function (e.g., energy) of a
subsystem and Y describes the same quantity in the heat bath. If one is only
interested in the static statistics of X, there is a way to set up an experiment:
Let Z(t) be a fluctuating total mechanical energy as a function of time, and
its distribution has a support on D ⊆ R

+, but one selects only those mea-
surements for X(t) that simultaneously have Z(t) ∈ I ⊆ D. In the language
of mathematics, this thought experiment is about the conditional probability
of X(t) conditioned on the event Z(t) ∈ I. Why is this thought experiment
regarding conditional probability very much in line with the physicist’s picture
of a canonical ensemble? The answer is in the idea of time-scale separation,
which involves three different time scales. The first time scale is for the subsys-
tem X(t) to reach its equilibrium, the second time scale is to restrict the total
system Z(t) to be fluctuating inside a finite interval I, and the third time
scale is for Z(t) to reach its equilibrium. And the first one is much shorter
than the second one, which is much shorter than the third one. Based on this
framework of time-scale separation, the canonical ensemble is the statistical
ensemble that represents the possible outcomes of the system of interest on
the second time scale, i.e., when the subsystem has reached its equilibrium,
but the total system is still “constrained” in a certain interval.

In fact, having its own stationary distribution of the total system (if it
evolves long enough) is very significant for the theory of conditional probability
for two reasons: (1) knowing the fluctuation of the large system is necessary
to define the conditional probability mathematically and (2) to perturb the
given condition of the total system to see how it has effects on the subsystem
is the essence of our theory of the canonical distribution. In other words,
even though the original problem is only about the behavior of X(t) when
Z(t) ∈ I, if we have more information of Z(t) outside of I, we are able to seek
a deeper understanding of the original problem. Not only for the canonical
ensemble, this idea of treating a given constraint (parameter) as a variable
with distribution has also been widely used in many other fields, for example,
comparing the quenched and annealed invariance principles for the random
conductance model [3], and in studying the initial-condition naturalness in the
case of statistical mechanics [41].

Mathematically using conditional probability to understand Gibbs mea-
sure has a long history, see Lanford [23], Vasicek [40], Georgii [16], and Touchette
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[38]. In particular, on the basis of Boltzmann’s logic, using asymptotic condi-
tional probability to describe the canonical ensemble has been well established
through the Gibbs conditioning principle [8,33]. More discussion of this is
provided in Sect. 2 for a contradistinction with our own work. In brief, the
Gibbs conditioning principle addresses this question: Given a set A ∈ R and a
constraint Zn ∈ A, what are the limit points of the conditional probability

P (X1 ≤ x | Zn ∈ A) as n → ∞ ? (1.1)

In Eq. (1.1), Zn = 1
n

∑n
i=1 Xi, where Xi are independent and identically

distributed random variables (i.i.d. random variables). We can identify that
(1.1) is very similar to our setup for the canonical distribution if we consider
Zn := X1

n + Yn, where Yn = 1
n

∑n
i=2 Xi is the measurable function of the heat

bath in our approach. However, Yn in our setup could be defined in a much
more general way: we only require that Yn converges to some random variable
Y in distribution (or the law of Yn satisfies a large deviation principle) rather
than has a special form as the sum of independent and identically distributed
random variables. In other words, the present work is not a simple refinement
of the Gibbs conditioning principle. Here, we give a concrete example to which
our theorems can be applied but not the Gibbs conditioning principle: Let
ζ̃n = ξ1 + ηn and ηn =

∑n
i=2 ξi, where {ξi}n

i=1 are strongly correlated and not
identically distributed, and let ζn be ζ̃n with appropriate shifting and scaling
such that ζn has a limiting distribution (or satisfies a large deviation princi-
ple). Subject to these conditions, the Gibbs conditioning principle would not
be applicable to find the limit points of the conditional probability

P (ξ1 ≤ x | ζn ∈ A) as n → ∞. (1.2)

The present work will show that the canonical distribution in this non-i.i.d. ex-
ample could still exist as a good approximation (Corollary 3.1) or the limiting
distribution (Corollaries 3.2, 3.3) of the conditional probability (1.2). In fact,
the setup for our theorems is very general in statistical mechanics: (i) a sub-
system in contact with a relatively large heat bath, which is including but not
limited to the model of a sum of many independent and identical subsystems,
and (ii) the subsystem and the heat bath can have weak or strong interaction.

Back to Eq. (1.1), it seems that either using the Gibbs conditioning prin-
ciple or using our approach to derive the canonical distribution, both sides are
asking a very similar question: what is the asymptotic behavior of a conditional
probability? However, based on the more general setup of the conditional prob-
ability, our approach to the asymptotic behavior of this conditional probability
is very different from the Gibbs conditioning principle. For the Gibbs condi-
tioning principle, it transforms the original problem to a sampling problem:
what are the limit points of

E [Ln | Ln ∈ Γ ] as n → ∞ ? (1.3)

In Eq. (1.3), Ln = 1
n

∑n
i=1 δXi

is the corresponding empirical measure for Zn

and Γ = {γ :
∫

xγ(dx) ∈ A} is the corresponding constraint of Zn. In fact,
even though this approach is called the “Gibbs” conditioning principle, its
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logic exactly follows Boltzmann’s derivation of the canonical ensemble. As a
consequence of the Gibbs conditioning principle, it provides a mathematical
foundation of why using the maximum entropy principle with certain con-
straint works to find the canonical distribution [39,43].

On the other hand, our approach is direct to find the asymptotic behav-
ior of conditional probability (1.1) on the basis of two things: (i) a measurable
function of the subsystem is asymptotically small relative to the function of
the whole and (ii) the distribution of the measurable function of the heat bath
converges to a limiting distribution by appropriate shifting and scaling. Intu-
itively, under this framework, the distribution of the measurable function of
the subsystem shall consist of its unconditional distribution and a weight from
a linear approximation of the limiting distribution of the measurable function
of the heat bath. As we mentioned above, our approach follows Gibbs’ theory
for the canonical distribution, which involved the idea of “heat bath” that
contributes a “bias” to the system. The common point of our approach and
the Gibbs conditional principle is that both sides started with a very simi-
lar question of fundamental importance in statistical mechanics and adopted
the concept of conditional probability to describe that problem. However, the
method of solving the problem on each side has a very different philosophy, the
Gibbs conditional principle is about counting statistics by Boltzmann’s logic,
and ours is inspired by the idea of a heat bath from Gibbs.

Besides the conditional probability, we adopt a very powerful mathe-
matical technique in our theory: asymptotics. Indeed, asymptotics is not only
a mathematical technique but also the essence of statistical mechanics. The
purpose of statistical mechanics is to derive equilibrium properties of a macro-
scopic system with enormous numbers of molecules N and occupying a very
large volume V , then that macroscopic equilibrium thermodynamics is an
emergent phenomenon in the limiting case when N → ∞ and V → ∞. Follow-
ing on from this concept, we shall show that the emergence of an exponential
factor in the canonical ensemble is also a result of a limit law according to
the probability theory. Take an analogy, our limit theorem is to the exponen-
tial form of the canonical distribution what the central limit theorem is to a
normal distribution. As with every limit theorem, we have to define how our
assumptions depend on n carefully. In our work, as n increases, a measurable
function of the subsystem becomes “relatively small” compared with the to-
tal system. Based on this main assumption, we obtain two significant results:
(i) For a sufficiently large n, a conditional distribution can be well approx-
imated by its unconditional distribution weighted by an exponential factor,
and (ii) a sequence of conditional distributions converges to a limit which is
the unconditional distribution weighted by a unique exponential factor.

We obtain two theorems regarding the first result in Sect. 3.2, and they
provide the existence of the canonical distribution when a system is contained
in a finitely large total system (n is sufficiently large). Furthermore, we obtain
two limit theorems regarding the second result in Sect. 3.3, and they provide
the existence of a unique canonical distribution when the system is contained
in an infinitely large total system (n → ∞). In comparison with Sect. 3.3,
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Sect. 3.2 only requires weaker conditions, but the exponential form in the
canonical distribution may not be unique since there could be more than one
sequence having the same asymptotic behavior. On the other hand, Sect. 3.3
requires stronger conditions, but it gives us a unique canonical distribution
in the limit, and this distribution can be applied back to approximate the
conditional probabilities for all finitely large n. This result can be regarded as
an example that the limit theorems from probability predict the laws of nature.
Here, we would like to quote from Anderson [2] “Starting with the fundamental
laws and a computer, we would have to do two impossible things—solve a
problem with infinitely many bodies, and then apply the result to a finite
system—before we synthesized this behavior.” Our idea echoes Anderson’s
view: To find the limiting behavior of a sequence of conditional probability
distributions and apply it back to the distribution of a subsystem contained in
a finitely large total system with some fluctuations, and this is how it is used
as a scientific theory.

1.1. The Equivalence of Ensembles

Our work is another way to consider the theory of equivalence of ensembles. As
far as we know, Khinchin’s derivation of the canonical ensembles in 1949 [21]
for a subsystem of a large isolated system by a local central limit theorem was
the origin of the equivalence of ensembles. Then, Dobrushin and Tirozzi in 1977
[12] extended Khinchin’s result from a classical idea gas to a Gibbs random
field. In 1979, Martin-Löf [25,26] further related the microcanonical, canonical,
and grand canonical ensembles in the thermodynamic limit when the volume
of classical lattice systems tends to infinity. In the 1990s, beyond the scale
of the central limit theorem, Deuschel et al. [10] and Georgii [15] showed the
equivalence of ensembles on the scale of the large deviation principle. Tasaki
[35] recently established the equivalence on the level of local states for large but
finite quantum spin systems. A comprehensive introduction to infinite-volume
Gibbs measures can be found in Chapter 6 in the textbook by Friedli and
Velenik [14], and the discussion of the equivalence of ensembles is in Section
6.14.1.

Recently, a full survey of the equivalence of ensembles at the levels of
thermodynamic, macrostates, and measures was presented by Touchette [38].
We shall note that discussions on the equivalence of ensembles at the ther-
modynamics level can also be traced back to the textbook on statistical me-
chanics by Hill [36]. In the book, Hill showed the thermodynamic equivalence
of ensembles for systems having only a single most probable energy value. In
Touchette’s recent work, the equivalence was extended to other macrostates,
e.g., the mean magnetization of a spin system. This extension was given by
the superposition of a mixture of microcanonical ensembles to represent the
canonical ensemble of macrostates. Under certain conditions, the equivalence
at the macrostate level and the equivalence at the measure level are equiva-
lent. In the language of modern probability, the correspondence between the
equivalence at the macrostate level and the equivalence at the measure level
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is by the Portmanteau theorem [5] for equivalent statements of weak conver-
gence of measures. We shall emphasize that the conditional distribution of the
state of a small subsystem converging to the canonical distribution becomes a
corollary of the equivalence of ensembles between the microcanonical ensemble
and canonical ensemble at the measure level based on the assumption that the
state of a small subsystem is chosen at random with a uniform distribution in
the large whole system.

The essential difference between our approach and the previous approaches
for equivalence of ensembles is that we don’t assume a uniform distribution
of the state of a small subsystem in the large container. This assumption is
equivalent to say that the heat bath (the large container− the subsystem) has
to be considered as identical copies of the subsystems, which was usually given
in the previous work for classical ideal gas systems or Gibbs random fields. In
contradistinction to this assumption, our theorems treat the subsystem and
its heat bath as two random variables via a measurable function, i.e., we only
care about the effect of the “whole” heat bath on the subsystem with respect
to that function.

We want to indicate that applying our mathematical theory to physics is
new and original since it extends the applicability of the canonical ensemble:
by the pushforward measure (up to a prefactor) via a measurable function,
we can derive the canonical distribution of a subsystem without assuming a
uniform structure of the whole system. For example, we can apply our results
to approximate the distribution of certain measurable functions of a small
defect within a material. We only require the subsystem (the defect) is small
relative to its heat bath with respect to the values of the measurable functions,
which is different from treating the heat bath as infinitely large n copies of the
subsystem, interacting or not, in order to apply the microcanonical ensemble to
the canonical ensemble. In biophysics, our theory can predict the distribution
of side-chain conformational variations in protein structure [6,27,42]. Proteins
in general have a non-uniform structure, so the canonical distribution of side-
chain conformational variations can be justified by our theory but not the
other approaches based on a uniform structure of the whole system.

We further generalize our theorem to a model when a subsystem and its
heat bath have strong interaction (the function is not additive), which is be-
yond the weakly interacting system (the function is approximately additive).
This result is new in both physics and mathematics, as a theory for the Gibbs
conditioning principle for strongly correlated systems. The present work for-
mulates our theory rigorously in probabilistic terms in Sect. 3, and then gives
a proof in Sect. 4.

In Sect. 5.1, we apply our theory to concrete examples in statistical me-
chanics, under two situations when a subsystem and its heat bath are inde-
pendent or strongly correlated. Since our theory also provides a sharp and
precise bound of the convergence rate of conditional probabilities, we use it
to approximate the conditional Poisson distribution in Sect. 5.2. To build a
connection with the equivalence of ensembles using the techniques of the large
deviation principle (LDP) [24] and the central limit theorem (CLT) [12], we
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applied our theory back to particular scenarios when the heat bath can be
treated as a sum of identical random variables. The LDP in Sect. 5.3 or the
CLT in Sect. 5.4 gives us a convergence of a sequence of random variables for
the heat bath. Nevertheless, we want to emphasize that our theory does not
require the LDT or the CTL in general. By proper scaling and shifting, if there
exists a convergence of the heat-bath random variable with a smooth limiting
distribution, our theory is still applicable. In Sect. 5.5, we provide a precise
formulation of what a temperature bath is in probabilistic terms.

1.2. Organization of the Paper

We provide some useful theorems and definitions and explain our motivation
in this problem in Sect. 2. In Sect. 3, we state and explain our main results.
Proofs of the main results are provided in Sect. 4. In Sect. 5, we present several
applications of our main theorems.

Notations. Throughout the paper, we will adopt the notations an = o(bn)
when limn→∞ an

bn
= 0, and an = O(bn) when |an/bn| is bounded by some

constant C > 0.
For a set Ω, we use C(Ω) to represent the set of all continuous real func-

tions on Ω, Cb(Ω) to represent the set of all bounded continuous functions on
Ω, and Ck(Ω) to represent the set of all functions with continuous derivatives
of order k on Ω.

We sometimes use brief notations of probabilities in our proofs, e.g.,
PXn|Zn

(x; I) = P (Xn = x | Zn ∈ I). We always use Xn, Yn, Zn to denote
sequences of random variables, whose definitions might change in different
theorems, but we will give their exact definitions before stating the theorems.

2. Preliminaries

2.1. Maximum Entropy and Conditional Probability

We first recall the following classical results. Here, we don’t specify the regular-
ity conditions in the statements of the two theorems below. For more details,
see the original references.

Theorem 2.1 [43]. Let {Xn}n∈N be a sequence of independent and identically
distributed (i.i.d.) random variables with continuous density f(x), then under
appropriate regularity conditions, we have

lim
n→∞ P (X1 ≤ x | Sn = nμ + cn) = P (X1 ≤ x) , (2.1)

where Sn := X1 + X2 + · · · + Xn, μ := E[X1], s2n := Var [Sn], and cn = O(sn).

Theorem 2.2 [39]. Let {Xn}n∈N and Sn follow definitions in Theorem 2.1. Let
α ∈ R and let f(x) be the density function of X1, then under appropriate
regularity conditions,

lim
n→∞ P (X1 ≤ x | Sn = nα) =

(∫ x

−∞
eλsf(s)ds

)

/c(λ), (2.2)
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where

c(λ) = E
[
eλX1

]
< ∞ and α =

(∫

xeλxf(x)dx

)

/c(λ). (2.3)

Note that the parameter λ is determined by the constraint

α =
(∫

xeλsf(x)dx

)

/c(λ), (2.4)

and the density g(x) = eλxf(x)/c(λ) maximizes the entropy relative to the
density f(x) of X1 given by

H(X1) = −
∫

g(x) log
g(x)
f(x)

dx, (2.5)

with respect to the constraint that
(∫

xg(x)dx

)

= α. (2.6)

We see that Theorem 2.1 implies the convergence of the conditional prob-
ability distribution of X1 to its unconditional distribution. In this case, the
sum of Xi is conditioned on the scale of Gaussian fluctuations: Sn = nμ + cn,
where nμ is the mean of Sn and cn is in the order of standard deviation of
Sn. On the other hand, we see that Theorem 2.2 implies the convergence of
the conditional probability distribution of X1 to the (normalized) product of
its unconditional distribution and the maximal entropy distribution eλx. The
parameter λ is determined by the condition Sn = nα, which is on the scale of
large deviations when α �= E[X1].

Theorem 2.2 is a particular case of the Gibbs conditioning principle, which
is the meta-theorem [9] regarding the conditional probability of Xi given on
the empirical measure of an i.i.d. {Xi}n

i=1

Ln =
1
n

n∑

i=1

δXi
(2.7)

belonging to some rare event such as
∫

xLn(dx) =
1
n

n∑

i=1

Xi = α and α �= E[X1]. (2.8)

Using the empirical measure defined in (2.7) conditioned on the rare event
(2.8) to find the limit of conditional probability in Theorem 2.2 turns out to
be equivalent to find the limit

γ∗ := lim
n→∞E [Ln | Ln ∈ Γ ] , Γ =

{

γ :
∫

xγ(dx) = α

}

. (2.9)

By the Gibbs conditioning principle, under appropriate regularity conditions,
γ∗ minimizes the relative entropy

H(γ | μX) :=
∫

dγ log
(

dγ

dμX

)

,
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where γ ∈ Γ and μX is the law of X1. In fact, this result implies the limit law
derived in Theorem 2.2.

One of the most successful approaches to the Gibbs conditioning prin-
ciple is through the theory of large deviations [9,33]. This approach involves
Sanov’s theorem [30] that provides the large-deviation rate function of the
empirical measure induced by a sequence of i.i.d. random variables and the
contraction principle [13] that describes how continuous mappings preserve
the large deviation principle from one space to another space. In short, these
theorems regarding counting and transformation in the theory of large devi-
ations yield the Gibbs conditioning principle and provide the foundation of
using the maximum entropy distribution under certain constraints to find the
limit of a sequence of conditional probabilities.

2.2. Large Deviation Theory

Let {Xn}n∈N be a sequence of i.i.d. absolutely integrable (i.e., E|X1| < ∞)
real random variables with mean μ := E[X1], and let

Xn :=
1
n

n∑

i=1

Xi (2.10)

By the weak law of large numbers,

Xn
P−→ μ when n → ∞. (2.11)

That is, for any ε > 0,

lim
n→∞ P

(∣
∣
∣Xn − μ

∣
∣
∣ > ε

)
= 0. (2.12)

To study the question how fast this probability tends to zero, Harald
Cramér obtained the following theorem in 1938:

Theorem 2.3 (Cramér’s theorem [7]). Assume that

A(λ) := logE
[
eλX1

]
< ∞, λ ∈ R.

Then,

(i) lim
n→∞

1
n

log P
(
Xn ≥ y

)
= −φ(y) when y > μ,

(ii) lim
n→∞

1
n

log P
(
Xn ≤ y

)
= −φ(y) when y < μ,

where φ is defined by

φ(y) := sup
λ∈R

[yλ − A(λ)] for x ∈ R. (2.13)

The function A is called the logarithmic moment generating function. In
the applications of the large deviation theory to statistical mechanics, A is also
called the free energy function and the function φ is called the rate function
of large deviations [37]. We can recognize that φ(y) is the Legendre transform
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of A(λ) (A is a convex function). Therefore, φ = A∗ (the convex conjugate of
A) and it leads to the following pair of reciprocal equations

dA(λ)
dλ

= y if and only if
dφ(y)

dy
= λ. (2.14)

Now, we can apply this equivalence (2.14) to Theorem 2.2: The parameter
λ of the maximum entropy distribution eλs is implicitly solved by (2.4), which
gives rise to λ determined by

d log
∫

eλsf(s)ds

dλ
= α. (2.15)

By the definition of A(λ) and (2.14) and (2.15), we have

dA(λ)
dλ

= α if and only if
dφ(α)

dα
= λ. (2.16)

Therefore, this result (2.16) shows that λ not only can be determined implicitly
by the free energy function A but also can be founded explicitly by the rate
function φ.

One of our main theorems (Theorem 3.4) can be applied to a particular
type of heat bath as the sum of i.i.d. random variables (Theorem 5.3), then we
directly show that λ is uniquely determined by the first derivative of the rate
function φ given on the condition α. In this case, we apply the large deviation
principle directly to the distribution of the heat bath

Yn =
1
n

n∑

i=2

Xi

rather than use the large deviation principle for the empirical measure

Ln =
1
n

n∑

i=1

δXi
.

In fact, the former (our approach) actually follows Gibbs’ logic of the canon-
ical distribution through the heat bath method; The later (Gibbs condition-
ing principle) follows Boltzmann’s logic of the canonical distribution through
counting statistics. The reason to call the “Gibbs” conditioning principle was
in order to comprehend Gibbs’ prediction of the canonical distribution from a
mathematical standpoint [33]; however, in our opinion, it is closer to the idea
of Boltzmann’s derivation of the canonical distribution.

From our perspective, choosing the maximum entropy distribution to
approximate the conditional probability is a natural consequence of the emer-
gence of eλxf(x) when the finite subsystem is contained in an infinitely large
system with a value far from its mean. In other words, (normalized) eλxf(x) is
the density of the limit of a sequence of conditional probabilities and it maxi-
mizes the relative entropy (2.5) as an inevitable corollary from the setup of the
heat bath method. In comparison with the Gibbs conditioning principle, our
logic provides a very different point of view of why the maximum entropy prin-
ciple works to find the limit of conditional probabilities. Even though these two
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approaches have very different philosophies, in terms of mathematics, they are
connected by the reciprocal equations (2.14) through the Legendre transform.

2.3. Asymptotic Behavior of Probabilities

In order to define how “good” of an approximation of conditional probability
is, we first need to decide which metric we would use in the space of measures.
In what follows, let Ω denote a measurable space with σ-algebra F and let P,
Q denote two probability measures on (Ω,F).

Definition 2.1 (KL-divergence). For two probability distributions of a contin-
uous random variable, P and Q, the KL-divergence is defined by

DKL(P ‖ Q) :=
∫ +∞

−∞
p(x) log

(
p(x)
q(x)

)

dx, (2.17)

where p, q are the density functions of P,Q, respectively. For two probability
distributions of a discrete random variable, P and Q, the Kullback–Leibler
divergence between them can be written as

DKL (P ‖ Q) =
∑

k∈Ω

P (k) log
(

P (k)
Q(k)

)

, (2.18)

where P,Q are the probability mass functions of P,Q, respectively, and Ω is
a countable space. By continuity arguments, the convention is assumed that
0 log 0

q = 0 for q ∈ R and p log p
0 = ∞ for p ∈ R\{0}. Therefore, the KL-

divergence can take values from zero to infinity.

Definition 2.2 (total variation). The total variation distance between two prob-
ability measures P,Q on a sigma-algebra F is defined by

δ(P,Q) := sup
A∈F

|P(A) − Q(A)|.

It’s well known that we have the following relation between KL-divergence
and total variation by Pinsker’s inequality [28]:

δ(P,Q) ≤
√

1
2
DKL(P ‖ Q). (2.19)

Definition 2.3 (convergence of measures in total variation). Given the above
definition of total variation distance, let {Pn}n∈N be a sequence of measures
on (Ω,F). The sequence is said to converge to a measure P on (Ω,F) in total
variation distance if

lim
n→∞ δ(Pn,P) = 0

and it is equivalent to

lim
n→∞ sup

‖f‖∞≤1

∣
∣
∣
∣

∫

fdPn −
∫

fdP
∣
∣
∣
∣ = 0.
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Definition 2.4 (weak convergence of measures). Let {Pn}n∈N be a sequence of
probability measures on (Ω,F). We say that Pn converges weakly to a proba-
bility measure P on (Ω,F) if

lim
n→∞

∫

fdPn =
∫

fdP,

for all f ∈ Cb(Ω).

From the two definitions above, total variation convergence of measures
always implies weak convergence of measures.

Definition 2.5 (convergence in distribution). A sequence {Xn}n∈N of random
variables is said to convergence in distribution to the random variable X if

μXn
→ μX weakly,

where μXn
is the law of Xn and μ is the law of X.

Even though the KL-divergence is not a metric, by the inequality (2.19),
if the KL-divergence of one sequence of measures from another sequence of
measures converges to zero, then the two sequences of measures have to con-
verge to zero in total variation. So they must converge to zero weakly. Fol-
lowing this line of implication, in the present work, we start with defining the
KL-divergence between two sequences of measures then understand what con-
ditions guarantee it converges to zero. Once we have that, we will attain both
strong convergence and weak convergence of the two sequences of measures to
zero under those conditions.

Furthermore, we mention two classical theorems (see reference [32]) re-
garding the convergence of probability distributions which we will use in our
proofs.

Theorem 2.4 (Berry–Esseen theorem). Let X have mean zero, E[X2] = σ2,
and E|X|3 < ∞. Let Zn = (X1 + · · · + Xn) /

√
nσ, where X1, . . . , Xn are i.i.d.

copies of X. Then, we have

|P (Zn < z) − P (G < z)| = O

(
E|X|3√

n

)

(2.20)

for all z ∈ R, where G ∼ N(0, 1).

Theorem 2.5 (Slutsky’s theorem). Let {Zn}n∈N, {Wn}n∈N be sequences of ran-
dom variables. If Zn converges in distribution to a random variable X and Wn

converges in probability to a constant c, then

Zn + Wn → X + c in distribution. (2.21)

Corollary 2.1. Let X have mean zero, E[X2] = σ2, and E|X|3 < ∞. For some
finite k ∈ N, let Wn = (X1 + · · · + Xk) /

√
nσ and Zn = (Xk+1 + · · · + Xn+k) /√

nσ, where X1, . . . , Xn+k are i.i.d. copies of X. Let Z̃n = Zn + Wn, then we
have

Z̃n → G in distribution, G ∼ N(0, 1). (2.22)
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Furthermore,
∣
∣
∣P
(
Z̃n < z

)
− P (G < z)

∣
∣
∣ = O

(
E|X|3√

n

)

(2.23)

for all z ∈ R.

This corollary follows from Theorems 2.4 and 2.5. The proof is provided
in Appendix 6.2.

3. Main Results

3.1. Setup

In Sect. 1 of introduction, we have already provided our philosophy of adopt-
ing the conditional probability to derive the canonical ensemble. In this section
of the main results, we are going to rigorously show: when a measurable func-
tion of the subsystem is “small” relative to the whole system, the “canonical
distribution” is a “good” approximation of that conditional distribution. For
the sake of simplicity, we will use the terms: “subsystem,” “heat bath,” and
“whole system” to represent a measurable function of those systems, respec-
tively. Within this framework, we first need to define three things rigorously:

1. A relatively small subsystem.
2. Canonical probability distributions.
3. Good approximations.

For the definition of (1): a relatively small subsystem, we consider a sequence
of conditional densities

fX|Z̃n
(x;En), En := μn + I/βn, (3.1)

where Z̃n := X + Ỹn, X is a nonnegative continuous random variable and
Ỹn is a sequence of continuous random variables, I is a finite interval and
μn, βn are positive sequences. Note that we here use Ỹn, Z̃n instead of Yn, Zn

because we will do transformations for Ỹn, Z̃n later, so Yn, Zn will be used
to define transformed Ỹn, Z̃n. The formula of En is to represent two kinds
of transformations that we can do for the interval I: μn is the parameter of
shifting and βn is the parameter of scaling. Through different combinations of
μn and βn, the given condition of Z̃n will be on certain significant scales. For
two examples,

1. Assume μn := E[Z̃n] = nμ, μ is a constant and βn = 1/
√

n, then Z̃n is
conditioned to be inside the interval En = nμ +

√
nI. The interval En

is then around E[Z̃n] with a scale of the Gaussian fluctuations in central
limit theorem.

2. Assume βn = 1/n, then Z̃n is conditioned to be inside the interval En =
nμ + nI. The interval En is then around E[Z̃n] with a scale of the large
deviations.
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In our theorems, we will assume that

E[Xj ] < ∞, for some finite j, and βn = o(1). (3.2)

Therefore, the definition (3.1) of conditional densities is a sequence of den-
sities for the nonnegative continuous random variable X with E[Xj ] < ∞
conditioned on the event Z̃n ∈ En with En → ∞ (βn → 0). In this way, the
positive sequence βn characterizes that the subsystem is relatively “small” to
the given condition of the whole system.

Then, we will extend our definition of a “small” subsystem to the case
when we have discrete random variables. Consider a sequence of conditional
probability functions

P
(
K = k | H̃n ∈ En

)
, En = μn + I/βn, (3.3)

where H̃n := K + L̃n, K is a nonnegative discrete random variables and we
assume that

E[Kj ] < ∞, for some finite j, and βn = o(1), (3.4)

and L̃n is a sequence of discrete random variables and H̃n := K + L̃n.
For the definition of (2): canonical probability distributions, we are in-

troducing a general form of the canonical probability distribution as follows:
Let I be the interval in the setup (3.1). We consider a sequence of functions
ζn : A × R → R, where A is the set of all finite intervals on R. For the canon-
ical probability distribution of a nonnegative continuous random variable X,
its density can be represented by

fX(x)e−ζn(I;x)x

∫

R+
fX(x)e−ζn(I;x)xdx

and 0 ≤ ζn(I;x) < ∞, for all x ∈ R
+. (3.5)

Consider a sequence of functions ζ̂n : A×R → R. For the canonical probability
distribution of a nonnegative discrete random variable K, it can be represented
by

P (K = k)e−ζ̂n(I;k)k

∑
k∈S P (K = k)e−ζ̂n(I;k)k

and 0 ≤ ζ̂n(I; k) < ∞, for all k ∈ S, (3.6)

where S is a set of the support of P (K = k).
For the definition of (3): good approximations, “good” is defined by a

sufficiently small distance of two distributions in total variation (2.19). In
most of our results, we prove that two sequences of distributions converge to
zero in KL-divergence, by Pinsker’s inequality, it implies those two sequences
converge to zero in total variation, i.e., one sequence is a good approximation
of the other one.

3.2. Approximation of Conditional Probabilities

Based on the definitions of (1), (2), and (3) in the setup, we provide two
approximation theorems to show the existence of the canonical distributions
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as good approximations of conditional distributions when the subsystem is
sufficiently small relative to the whole systems.

Based on the setup (3.1), let Xn := βnX and take j = 2 for the assump-
tion (3.2), i.e.,

E[X2] < ∞, and βn = o(1). (3.7)

Let an := β2
nE[X2], hence we have that

E[X2
n] = an, an = o(1). (3.8)

Let Yn := βn

(
Ỹn − μn

)
and Zn := Xn + Yn. Note that Yn, Zn are the linear

transformations of Ỹn, Z̃n, respectively, and recall that Z̃n = X + Ỹn and the
parameters of the transformation, βn, μn, are from En = μn + I/βn in the
conditional density (3.1). Since we assume I is a finite interval in (3.1), we can
define it explicitly as I = [h, h + δ], h, δ ∈ R and δ > 0.

Based on the definitions given above, let P(n)
I be a sequence of probability

measures with density functions

fX(x)e−βnψn(I;βnx)x

∫

R+
fX(x)e−βnψn(I;βnx)xdx

,

ψn(I;βnx) :=
∂ log P

(
Yn ∈ [y, y + δ] | Xn = βnx

)

∂y

∣
∣
∣
∣
y=h

. (3.9)

And let Q
(n)
I be a sequence of probability measures with density functions

fX|Z̃n

(
x;En

)
.

Our first theorem for continuous random variables is as follows:

Theorem 3.1. Assume there exist positive constants C1, C2, a positive sequence
bn = o(1), and an open interval D such that the following holds:

1. For all x ∈ R
+, y ∈ R,

∣
∣
∣
∣
∣

∂2P
(
Yn ∈ [y, y + δ] | Xn = x

)

∂y2

∣
∣
∣
∣
∣
≤ C1,

∣
∣
∣
∣
∣

∂2 log P
(
Yn ∈ [y, y + δ] | Xn = x

)

∂y2

∣
∣
∣
∣
∣
≤ C2. (3.10)

2. For all x ∈ R
+ and every [y, y + δ] ⊂ D, there exist positive constants

δ1, C3 depending on y such that

P
(
Yn ∈ [y, y + δ] | Xn = x

) ≥ δ1, 0 ≤ ∂ log P
(
Yn ∈ [y, y + δ] | Xn = x

)

∂y
≤ C3,

(3.11)
∣
∣P
(
Yn ∈ [y, y + δ] | Xn = x

)− P
(
Yn ∈ [y, y + δ]

)∣
∣ ≤ bnP

(
Yn ∈ [y, y + δ]

)
.

(3.12)
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3. For every [z, z + δ] ⊂ D, there exists a positive constant δ2 depending on
z such that

P
(
Zn ∈ [z, z + δ]

) ≥ δ2. (3.13)

Given an interval I ⊂ D, then

DKL

(
P
(n)
I ‖ Q

(n)
I

)
= O(an + bn), (3.14)

and P
(n)
I satisfies the definition of the canonical probability distributions in

(3.5).

Remark 3.1. By Pinsker’s inequality, Theorem 3.1 implies that

δ
(
P
(n)
I ,Q

(n)
I

)
= O

(√
an + bn

)
.

Remark 3.2. Interpretations of Theorem 3.1 for statistical mechanics: the se-
quence an = o(1) represents that the second moment of the function of the
subsystem X scaled by the size of the given condition of the whole system
asymptotically goes to zero. And the sequence bn = o(1) represents that Xn

and Yn are asymptotically independent. By our approximation theorem, using
the canonical distribution to approximate the conditional distribution results
in a very small error O(

√
an + bn) when n is sufficiently large, i.e.,

1. The subsystem is small relative to the whole system.
2. The subsystem has weak interaction with its surrounding.

Note that these conditions (1) and (2) echo the physicist’s setup of the canon-
ical ensemble in statistical mechanics.

For Theorem 3.1, we require the condition 3.12 and the sequence bn

in that condition is asymptotic to zero. As Remark 3.2, it means that the
subsystem and the heat bath are asymptotically independent. In the following
corollary, we are going to extend Theorem 3.1 to the case when the subsystem
Xn and its surrounding (the heat bath) Yn are not asymptotically independent.

Recall that I = [h, h + δ], h, δ ∈ R and δ > 0 and Q
(n)
I is a sequence

of probability measures with density functions fX|Z̃n

(
x;En

)
. Let P̂

(n)
I be a

sequence of probability measures with density functions

fX(x)e−βnφn(I)x

∫

R+
fX(x)e−βnφn(I)xdx

,

where

φn(I) :=
∂ log P

(
Yn ∈ [y, y + δ] | Xn = 0

)

∂y

∣
∣
∣
∣
y=h

− ∂ log P
(
Yn ∈ [y, y + δ] | Xn = 0

)

∂x

∣
∣
∣
∣
y=h

. (3.15)

Corollary 3.1. Assume there exist positive constants C1, C2, and an open in-
terval D such that the following holds:
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1. For all x ∈ R
+, y ∈ R,

∣
∣
∣∂(2)P

(
Yn ∈ [y, y + δ] | Xn = x

)∣∣
∣ ≤ C1,

∣
∣
∣∂(2) log P

(
Yn ∈ [y, y + δ] | Xn = x

)∣∣
∣ ≤ C2, (3.16)

where ∂(2) denotes all the second-order partial derivatives.
2. For all x ∈ R

+ and every [y, y + δ] ⊂ D, there exist positive constants
δ1, C3 depending on y such that

P
(
Yn ∈ [y, y + δ] | Xn = x

) ≥ δ1,

0 ≤ ∂(1) log P
(
Yn ∈ [y, y + δ] | Xn = x

) ≤ C3, (3.17)

where ∂(1) denotes all the first-order partial derivatives.
3. For every [z, z + δ] ⊂ D, there exists a positive constant δ2 depending on

z such that

P
(
Zn ∈ [z, z + δ]

) ≥ δ2. (3.18)

Given an interval I ⊂ D, then

DKL

(
P̂
(n)
I ‖ Q

(n)
I

)
= O(an), (3.19)

and P̂
(n)
I satisfies the definition of the canonical probability distributions in

(3.5).

The proof of Corollary 3.1 basically follows from the proof of Theorem
3.1, and we provide the details of the proof in Appendix 6.4.

Remark 3.3. Here, we want to emphasize the difference between Theorem 3.1
and Corollary 3.1: On the one hand, Corollary 3.1 requires a stronger condition
that those partial derivatives in the conditions (3.16) and (3.17) have to be
bounded both in the x and y directions; however, Theorem 3.1 only requires
that the partial derivatives in the conditions (3.10) and (3.11) are bounded in
the y direction. On the other hand, Corollary 3.1 does not require the con-
dition (3.12) in Theorem 3.1, which is to define the asymptotic independence
between Xn and Yn. Based on the difference of those conditions, Theorem 3.1
and Corollary 3.1 give rise to distinct parameters of the exponential factors.
The parameter of the exponential factor (3.15) in Corollary 3.1 includes one
additional term which involves the partial derivative with respect to x.

Note that the parameter of the exponential factor (3.15) can be rewritten
as

φn(I) =
∂ logP

(
Yn ∈ [y, y + δ]

)

∂y

∣
∣
∣
∣
y=h

+

(
∂ logC(x, y)

∂y
− ∂ logC(x, y)

∂x

)∣
∣
∣
∣
(x=0,y=h)

,

(3.20)

where

C(x, y) =
P
(
Yn ∈ [y, y + δ] | Xn = x

)

P
(
Yn ∈ [y, y + δ]

) . (3.21)
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Corollary 3.1 with the parameter represented by (3.20) has a critical interpre-
tation in statistical mechanics: For a system in contact with a heat bath, if the
interaction are not weak (i.e., the correlation in mathematical terms does not
approach zero), then the effect of this interaction will appear in the parameter
of the exponential factor as the function of C(x, y) in (3.20) for the canonical
distribution. This result is different from the standard example in statistical
mechanics: in the limit where the interaction goes to zero, the parameter only
includes the effect of the fluctuations of heat bath (the first term on the right
side of (3.20)) without any effect from the correlation (the second term on the
right side of (3.20)).

Now we extend our approximation theorem to discrete random variables
based on the setup (3.3). Recall that H̃n = K + L̃n and En = μn + I/βn

defined in the conditional probability mass function (3.3). Take j = 2 for the
assumption (3.4), i.e.,

E[K2] < ∞, (3.22)

and by the definition (3.6), we have a set S such that

S := {k ∈ R : P (K = k) > 0}. (3.23)

Let Kn := βnK be a sequence of nonnegative discrete random variables
and let an := β2

nE[K2]. By (3.22) and (3.23), we have that

E[K2
n] = an, an = o(1), (3.24)

and a sequence of sets Sn such that

Sn := {βnk ∈ R : P (Kn = βnk) > 0}. (3.25)

By shifting with μn and scaling with βn, we can define a linear transfor-
mation of L̃n, Ln := βn

(
L̃n − μn

)
, and let Hn := Kn + Ln. Furthermore, let

Yn be a sequence of continuous random variables and Zn := Kn + Yn. Based
on the given definitions, our second theorem for discrete random variables is
as follows:

Theorem 3.2. Assume the following conditions hold:

1. All conditions in Theorem 3.1 hold for Kn, Yn, Zn on an open interval
D.

2. There exists a set D′ ⊂ D and a positive sequence cn = o(1) such that
for every interval I ′ ⊂ D′,

sup
βnk∈Sn

∣
∣
∣
∣P
(
Kn = βnk | Hn ∈ I ′)− P

(
Kn = βnk | Zn ∈ I ′)

∣
∣
∣
∣ = O(cn). (3.26)

Given an interval I ⊂ D′, then

sup
k∈S

∣
∣
∣
∣P
(
K = k | H̃n ∈ En

)− BnP (K = k)e−βnψ̂n(I;βnk)k

∣
∣
∣
∣ = O

(
cn +

√
an + bn

)
,

(3.27)
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where
1

Bn
:=

∑

k∈S

P (K = k)e−βnψn(I;βnk)k and

ψ̂n(I;βnk) :=
∂ log P

(
Yn ∈ [y, y + δ] | Kn = βnk

)

∂y

∣
∣
∣
∣
y=h

,

and bn is defined in condition (3.12) of Theorem 3.1. Furthermore,

BnP (K = k)e−βnψ̂n(I;βnk)k (3.28)

satisfies the definition of the canonical probability distribution in (3.6).

Note that the given assumption (1) in Theorem 3.2: all conditions in
Theorem 3.1 hold for Kn, Yn, Zn on an open interval D, in which Kn is corre-
sponding to Xn in Theorem 3.1, and all conditions defined for “all x ∈ R

+”
in Theorem 3.1 become defined for “all x ∈ Sn” for Theorem 3.2. In this way,
even Kn is a sequence of discrete random variables, all conditions in Theorem
3.1 are well defined.

Remark 3.4. In Theorems 3.1 and 3.2, X and K are defined as a nonnegative
random variable. In the following two points, we extend our approximation
theorem to the case when X (or K) is bounded from below (shifting property)
and the case when X (or K) is a nonpositive random variable (reflection
property):

1. (Shifting property) Let X be a continuous random variable bounded from
below. By change of variables, let X̂n := βn(X −C), where C is the finite
lower bound, since βn = o(1), we still have

E[X̂2
n] = o(1). (3.29)

In addition, assume that the conditional probability

P
(
Yn ∈ [y, y + δ] | X̂n = x

)

satisfies all of the conditions in Theorem 3.1, then we can apply Theorem
3.1 to obtain the canonical distribution for X. We call this the shifting
property of the canonical distributions. For the discrete random variable
K, its canonical probability distribution has this property as well. This
shifting property can be interpreted as the extension of the cases restricted
to nonnegative quantities (e.g., energy and number of molecules) for the
canonical ensemble and the grand canonical ensemble in statistical me-
chanics: the canonical distribution can be generalized to represent the
possible values of a function which is bounded from below of the subsys-
tem in thermal equilibrium with the heat bath at a positive temperature
(In Theorem 3.1, we choose the condition I such that 0 ≤ ψn(I;βnx) < ∞
).

2. (Reflection property) Let X be a nonpositive continuous random variable.
Assume the condition (3.11) in Theorem 3.1 becomes

P
(
Yn ∈ [y, y + δ] | Xn = x

) ≥ δ1,
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− C3 <
∂ log P

(
Yn ∈ [y, y + δ] | Xn = x

)

∂y
≤ 0, (3.30)

for all x ∈ R
−. And assume all of the other conditions in Theorem 3.1

are satisfied, then Theorem 3.1 can be applied to an interval I = [h, h +
δ] ⊂ D such that −∞ < ψn(I;βnx) ≤ 0, for all x ∈ R

−. We call this
reflection property of the canonical distributions. For the discrete random
variable K, its canonical probability distribution has this property as
well. Here is our interpretation of this reflection property for statistical
mechanics: When a given condition I of the whole system gives rise to
a negative parameter (−∞ < ψn(I;βnx) ≤ 0) in the exponential weight
of the canonical distribution, our approximation theorem can be applied
to the case of a nonpositive function of the subsystem. In combination
with this property with the shifting property, the canonical distribution
can represent the possible values of a function which is bounded from
above of the subsystem in thermal equilibrium with the heat bath at a
negative temperature (Here, we choose the condition I such that −∞ <
ψn(I;βnx) ≤ 0).

3.3. Limit Theorems for Conditional Probabilities

In this section, we provide two limit theorems to show that a sequence of
conditional distributions converges to a unique canonical distribution by ap-
propriate shifting and scaling, where the convergence is also in a corresponding
scaling of the KL-divergence of this sequence of conditional distributions from
its limit distribution. In contrast to Sect. 3.2, here we obtain a unique canon-
ical distribution at the appropriate scale when a system is conditioned on an
infinitely large total system (n → ∞). It is different from Sect. 3.2 in which
we derive the canonical distribution for each finitely large n directly.

Recall that from Sect. 3.2, for a sufficiently large n, we know that Q
(n)
I

with density function

fX|Z̃n
(x;En)

can be well approximated by P
(n)
I with density function

fX(x)e−βnψn(I;βnx)x

∫

R+
fX(x)e−βnψn(I;βnx)xdx

and

ψn(I;βnx) :=
∂ log P

(
Yn ∈ [y, y + δ] | Xn = βnx

)

∂y

∣
∣
∣
∣
y=h

. (3.31)

Note that the parameter of the exponential function ψn(I;βnx) in (3.31) de-
pends on n and x.

Through our limit theorems in this section, we show that the sequence of
measures Q

(n)
I can be well approximated by a unique (sequence of) canonical

distribution(s) with density function(s)
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fX(x)e−λn(I)x

∫

R+
fX(x)e−λn(I)xdx

(3.32)

in one of the cases:
1. λn(I) = βnψ(I), where βn = o(1), and ψ : A → R is a function such that

A is the set of all finite intervals on R, and 0 < ψ(I) < ∞.
2. λn(I) = ϕ(I), where ϕ : A → R is a function satisfying 0 < ϕ(I) < ∞.

Note that ψ(I) and ϕ(I) are independent of x and n in comparison with
ψn(I;βnx) in (3.31). One of the main ideas behind the proof of our limit
theorems is as follows: Let P̃

(n)
I be a sequence of probability measures with

density functions (normalized) fX(x)e−βnψ(I)x, and let PI be a probability
measure with density function (normalized) fX(x)e−ϕ(I)x. With DKL defined
as KL-divergence, Case (1) can be considered as

DKL

(
P̃
(n)
I ‖ Q

(n)
I

)
→ 0 as n → ∞; (3.33)

Case (2) can be considered as

DKL

(
PI ‖ Q

(n)
I

)
→ 0 as n → ∞. (3.34)

Note that in Case (1), since βn = o(1), the sequence λn(I) → 0 for any bounded
ψ(I). Therefore, we have to scale the distance DKL by some function of βn to
guarantee the uniqueness of ψ(I). More details are provided in Theorem 3.3.

Furthermore, we require stronger conditions than the conditions for (3.31)
in order to apply Lemmas 4.2 and 4.3 to the proof of our limit theorems. Here
is the essence of those two lemmas: under appropriate regularity conditions,
the sequence λn(I) in (3.32) is uniquely determined by a linear approximation
of the following sequence

log

(
fX|Z̃n

(x;En)

fX(x)

)

. (3.35)

Therefore, most of the conditions in our limit theorems are required to guar-
antee that (3.35) is well approximated by a linear function and the remainder
term converges to zero fast enough.

Recall that Xn := βnX, Yn := βn

(
Ỹn − μn

)
, and Zn := Xn + Yn,

where βn, μn are positive sequences and βn = o(1), and En = μn + I/βn,
I = [h, h + δ], h, δ ∈ R and δ > 0.

Our first limit theorem for Case (1): λn(I) = βnψ(I) is as follows

Theorem 3.3. Consider a function ψ : B (R) → R such that 0 < ψ(I) < ∞
for the given interval I. Let P̃

(n)
I be a sequence of probability measures with

density functions

fX(x)e−βnψ(I)x

∫

R+
fX(x)e−βnψ(I)xdx

. (3.36)

Assume the following conditions hold:
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1. X is a nonconstant random variable with E[X3] < ∞ and
fX|Z̃n

(x;En)

fX(x)
is uniformly bounded on R

+.
2. Yn → Y in distribution. The distribution function of Y is bounded on

R
+ and satisfies

log P (Y ∈ [y, y + δ]) ∈ C2(D) and 0 <
∂ log P (Y ∈ [y, y + δ])

∂y

∣
∣
∣
∣
h

< ∞,

(3.37)

where D is an open interval containing h.
3. There exists a sequence of functions gn : R → R with

∣
∣gn(x)e−βnξx

∣
∣

uniformly bounded on R
+ for any ξ > 0 and E

[
gn(X)2

] → 0 such that

on In = [0, dn] with dn = O
(

1
βn

)
,

log
(

P (Yn ∈ I − βnx | Xn = βnx)
P (Zn ∈ I)

)

= log
(

P (Y ∈ I − βnx)
P (Y ∈ I)

)

+ βngn(x).

(3.38)

Then,

lim
n→∞

DKL

(
P̃
(n)
I ‖ Q

(n)
I

)

β2
n

= 0 if and only if ψ(I) =
∂ log P (Y ∈ [y, y + δ])

∂y

∣
∣
∣
∣
h

.

And P̃
(n)
I satisfies the definition of the canonical probability distributions in

(3.5).

Our second limit theorem for Case (2): λn(I) = ϕ(I) is as follows

Theorem 3.4. Let ϕ : B (R) → R be a function such that 0 < ϕ(I) < ∞ for
the given interval I. Let PI be a probability measure with density function

fX(x)e−ϕ(I)x

∫

R+
fX(x)e−ϕ(I)xdx

.

Assume the following conditions hold:

1. X is a nonconstant random variable with E[X] < ∞ and
fX|Z̃n

(x;En)

fX(x)
is uniformly bounded on R

+.
2. Yn → μ in probability, for some constant μ /∈ I. The sequence of laws of

Yn satisfies a large deviation principle with speed 1/βn and rate function
φ ∈ C2(D), where D is an open interval containing I, and −∞ < φ′(y) <
0 for all y ∈ I.

3. There exists a sequence of functions rn : R → R with
∣
∣rn(x)e−ξx

∣
∣ uni-

formly bounded on R
+ for any ξ > 0 and E

[
rn(X)2

] → 0 such that on
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In = [0, dn] with dn = O
(

1
βn

)
,

log
(

P (Yn ∈ I − βnx | Xn = βnx)
P (Zn ∈ I)

)

= log

⎛

⎝
exp

[
− 1

βn
φ (y∗ − βnx)

]

exp
[
− 1

βn
φ (y∗)

]

⎞

⎠+ rn(x),

(3.39)

y∗ =
{

y : inf
y∈I

φ(y)
}

. (3.40)

Then,

lim
n→∞ DKL

(
PI ‖ Q

(n)
I

)
= 0 if and only if ϕ(I) = −φ′(y∗).

And PI satisfies the definition of the canonical probability distributions in (3.5).

The following is the discussion about the circumstances when the condi-
tion (3.38) (or the condition (3.39)) for Theorem 3.3 (or Theorem 3.4) could
hold. Here, we only discuss the condition (3.38) but it is applied to the condi-
tion (3.39) as well. We can consider three circumstances

1. When Yn → Y in distribution.
2. When Xn → 0 in probability.
3. When Xn and Yn are asymptotically independent.

Even though the condition (3.38) and the combination of circumstances (1)–(3)
are not the exact same, they are very close; therefore, these three circumstances
provide us an insight regarding three elements of the condition (3.38): Circum-
stance (1) means the heat bath has a limiting distribution; Circumstance (2)
means the subsystem is relatively small in comparison with the whole system;
Circumstance (3) means those two systems have weak interaction.

As Corollary 3.1 for the approximation theorem 3.1, we are going to
extend our limit theorems to the case when Xn and Yn are not asymptotically
independent.

Corollary 3.2. Let G : A × R → R be a function such that A is the set of all
finite intervals. For the given interval I, G(I; 0) = 1 and log G(I, ξ) ∈ C2(R+)
with respect to ξ. Assume the condition (3.38) in Theorem 3.3 becomes

log
(

P (Yn ∈ I − βnx | Xn = βnx)
P (Zn ∈ I)

)

= log
(

P (Y ∈ I − βnx) · G(I;βnx)
P (Y ∈ I)

)

+ βngn(x), (3.41)

and the other conditions in Theorem 3.3 hold. Then,

lim
n→∞

DKL

(
P̃
(n)
I ‖ Q

(n)
I

)

β2
n

= 0 if and only if

ψ(I) =
∂ log P (Y ∈ [y, y + δ])

∂y

∣
∣
∣
∣
h

− ∂ log G(I; ξ)
∂ξ

∣
∣
∣
∣
0

.
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And P̃
(n)
I satisfies the definition of the canonical probability distributions in

(3.5).

Remark 3.5. The function G in (3.41) can be considered as an approximation:

P (Yn ∈ I − ξ | Xn = ξ)
P (Yn ∈ I − ξ)

≈ G(I; ξ),

in which the left side is equivalent to the joint probability of Xn, Yn divided by
the products of their marginal probabilities. Therefore, G could represent an
estimation of the correlation of Xn and Yn; in information theory, the function
G is closely related to the mutual information between Xn and Yn.

Corollary 3.3. Let R : A × R → R be a function, for the given interval I,
R(I; 0) = 1 and log R(I, ξ) ∈ C2(R+) with respect to ξ. Assume the condition
(3.39) in Theorem 3.4 becomes

log
(

P (Yn ∈ I − βnx | Xn = βnx)
P (Zn ∈ I)

)

= log

⎛

⎝
exp

[
− 1

βn
φ (y∗ − βnx)

]
· (R(I;βnx))

1
βn

exp
[
− 1

βn
φ (y∗)

]

⎞

⎠+ rn(x), (3.42)

y∗ =
{

y : inf
y∈I

φ(y)
}

, (3.43)

and the other conditions in Theorem 3.4 hold. Then,

lim
n→∞ DKL

(
PI ‖ Q

(n)
I

)
= 0 if and only if ϕ(I) = −φ′(y∗) − ∂ log R(I; ξ)

∂ξ

∣
∣
∣
∣
0

.

And PI satisfies the definition of the canonical probability distributions in (3.5).

Remark 3.6. The function R in (3.42) can be considered as an approximation:

P (Yn ∈ I − ξ | Xn = ξ)
P (Yn ∈ I − ξ)

≈ (R(I, ξ))
1

βn .

In comparison with Corollary 3.2, when the sequence of laws of Yn satisfies
a large deviation principle with speed 1/βn, the correlation of the subsystem
and its heat bath has to be in O(R

1
βn ) to contribute an additional term in the

parameter of the exponential weight. Otherwise, if the correlation is just in
O(R) as the order in Corollary 3.2, then it has no influence on the canonical
distribution.

The proof of Corollary 3.2 (Corollary 3.3) basically follows from the proof
of Theorem 3.3 (Theorem 3.4). We provide the details of proof in Appendix
6.4.

As our approximation theorems in Sect. 3.2, we can extend our limit
theorems to discrete random variables, random variables bounded below, and
random variables bounded above as follows:
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1. Discrete random variables: Theorems 3.3 and 3.4 can also be applied
to the case when we have a nonnegative discrete random variable K, a
sequence of discrete random variables L̃n, and H̃n := K + L̃n. It is said
that the sequence of conditional probabilities P (K = k | H̃n ∈ En) has a
limit (by appropriate scaling)

P (K = k)e−λn(I)k

∑
k∈S P (K = k)e−λn(I)k

. (3.44)

The case of λn(I) = βnψ(I) follows from Theorem 3.3; The case of
λn(I) = ϕ(I) follows from Theorem 3.4. Furthermore, the probability
function (3.44) satisfies the definition of the canonical probability distri-
bution in (3.6).

2. Random variables bounded below: As Remark 3.4, we can extend those
limit theorems to the case when X is bounded below. By change of vari-
able, let X̂n := βn(X − C), where C is the finite lower bound, we still
have

E[(X − C)j ] < ∞, j = 1 or 3. (3.45)

Note that j = 3 is for Theorem 3.3 and j = 1 is for Theorem 3.4. In
addition, assume

log
(

P (Yn ∈ I − βnx | Xn = βnx)
P (Zn ∈ I)

)

satisfies the condition of linear approximation in (3.38) and (3.39), for
Theorems 3.3 and 3.4, respectively. Then, we can apply those limit the-
orems to obtain a unique canonical distribution of X. Therefore, as the
point (1) in Remark 3.4, a unique canonical distribution derived by the
limit of a sequence of conditional distributions has the “shifting prop-
erty.” For the discrete random variable K, its unique canonical distribu-
tion has this property as well.

3. Random variables bounded above: Let X be a nonpositive continuous
random variable and the corresponding canonical distribution be a se-
quence of distributions with density functions

fX(x)e−λn(I)x

∫

R−
fX(x)e−λn(I)xdx

, −∞ < λn(I) < 0. (3.46)

When λn(I) = βnψ(I), Theorem 3.3 can be applied to an interval I such
that −∞ < ψ(I) < 0; When λn(I) = ϕ(I), Theorem 3.4 can be applied
to an interval I such that −∞ < ϕ(I) < 0. Therefore, as the point (2)
in Remark 3.4, a unique canonical distribution derived by the limit of
a sequence of conditional distributions has the “reflection property.” For
the discrete random variable K, its unique canonical distribution has this
property as well. This reflection property provides us an explanation of
the possibility of negative temperature: For some given condition of the
whole system which arises a negative parameter (−∞ < λn(I) < 0) in
the exponential weight, a unique canonical distribution for a function
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bounded from above of the subsystem emerges as the limit of a sequence
of conditional distributions.

4. Proofs of Main Results

4.1. Proofs of Theorems 3.1 and 3.2

4.1.1. Proof of Theorem 3.1.

Proof. We first prove for the case: {x : fXn
(x) > 0} = R

+. In this case,
P (Zn ∈ I | Xn = x) is well defined for all x ∈ R

+. Let

I = [h, h + δ] ⊆ D, I − x := {y − x : y ∈ I} ,

with condition (3.13): for I ⊆ D, P
(
Zn ∈ [h, h + δ]

) ≥ δ2, we can derive the
following conditional density by Bayes’ theorem

fXn|Zn
(x; I) =

fXn
(x)P (Zn ∈ I | Xn = x)

P (Zn ∈ I)

=
fXn

(x)P (Yn ∈ I − x | Xn = x)
P (Zn ∈ I)

, for x ∈ R
+. (4.1)

Note that P (Yn ∈ I − x | Xn = x) = P (Yn ∈ [h − x, h + δ − x] | Xn = x).
Define

Gδ(y, x) := P
(
Yn ∈ [y, y + δ] | Xn = x

)
.

By Taylor expansion and condition (3.10), we can expand Gδ(h−x, x) at (h, x)
to get

Gδ(h − x, x) = Gδ(h, x) − ∂Gδ(h, x)
∂y

x

+
∂2Gδ(h − αnx, x)

2∂y2
x2, for some αn ∈ (0, 1).

It implies that

P
(
Yn ∈ [h − x, h + δ − x] | Xn = x

)

= P
(
Yn ∈ [h, h + δ] | Xn = x

)

− ∂P
(
Yn ∈ [y, y + δ] | Xn = x

)

∂y

∣
∣
∣
∣
y=h

· x + rn(x)x2

= P
(
Yn ∈ [h, h + δ] | Xn = x

)
[1 − ψn(I;x) · x

+
rn(x)x2

P
(
Yn ∈ [h, h + δ] | Xn = x

)

]

= P
(
Yn ∈ [h, h + δ] | Xn = x

)
[

e−ψn(I;x)x − (ψn(I;x)x)2e−γn·ψn(I;x)x

2

+
rn(x)x2

P
(
Yn ∈ [h, h + δ] | Xn = x

)

]
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= P
(
Yn ∈ [h, h + δ] | Xn = x

) [
e−ψn(I;x)x + kn(x)x2

]
, (4.2)

where

ψn(I;x) =
∂ log P

(
Yn ∈ [y, y + δ] | Xn = x

)

∂y

∣
∣
∣
∣
y=h

, (4.3)

rn(x) =
1
2

∂2P
(
Yn ∈ [y, y + δ] | Xn = x

)

∂y2

∣
∣
∣
∣
y=h−αnx

, (4.4)

kn(x) =
rn(x)

P
(
Yn ∈ [h, h + δ] | Xn = x

) − ψn(I;x)2e−γn·ψn(I;x)x

2
, (4.5)

and we have applied Taylor’s expansion

eyn = 1 + yn +
(yn)2eγnyn

2
, for some γn ∈ (0, 1) and yn := ψn(I;x)x

to the third equation in (4.2). Note that by condition (3.11),

0 ≤ ψn(I;x) ≤ C3, (4.6)

and by Conditions (3.10) and (3.11), for all x ∈ R
+, kn(x) is uniformly

bounded. Therefore, by the results of (4.1) and (4.2), for all x ∈ R
+, we

obtain that

fXn|Zn

(
x; I

)
=

fXn
(x)P (Yn ∈ I | Xn = x)(e−ψn(I;x)x + kn(x)x2)

P (Zn ∈ I)
. (4.7)

In the following, we will use brief notations

PYn|Xn

(
I;x

)
:= P (Yn ∈ I | Xn = x), PZn

(
I
)

:= P (Zn ∈ I).

First, we let

An :=
1

∫

R+
fXn

(x)e−ψn(I;x)xdx

. (4.8)

Since
∫
R+ fXn

(x)dx = 1, from (4.6), we have
∫

R+
fXn

(x)e−ψn(I;x)xdx ≤ 1,

hence An ≥ 1 for all n ≥ 1. By definition Xn = βnX, βn → 0, we also have

lim
n→∞

1

An
= lim

n→∞

∫

R+
fXn

(x)e−ψn(I;x)xdx = lim
n→∞

∫

R+
fX(x)e−ψn(I;βnx)βnxdx = 1

by the dominated convergence theorem, so An is uniformly bounded from
above and from below.

Recall the definition of KL-divergence from (2.17), and the definitions of
P
(n)
I and Q

(n)
I from (3.9), we have

DKL

(
P
(n)
I ‖ Q

(n)
I

)

=

∫

R+
AnfX(x)e−ψn(I;βnx)βnx log

(
AnfX(x)e−ψn(I;βnx)βnx

fX|Z̃n
(x, En)

)

dx
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=

∫

R+
AnfXn

(x)e−ψn(I;x)x log

(
AnfXn

(x)e−ψn(I;x)x

fXn|Zn
(x, I)

)

dx (4.9)

=

∣
∣
∣
∣

∫

R+
AnfXn

(x)e−ψn(I;x)x log

(
fXn|Zn

(x, I)

AnfXn
(x)e−ψn(I;x)x

)

dx

∣
∣
∣
∣ . (4.10)

(4.9) is obtained by the change of variables Xn = βnX and the scale invariant
property of the KL-divergence. (4.10) is true because the KL-divergence is
nonnegative. With (4.1), the right-hand side in (4.10) can be written as

∣
∣
∣
∣
∣

∫

R+
AnfXn

(x)e−ψn(I;x) log

(
fXn

(x)PYn|Xn

(
I − x;x

)

PZn

(
I
) · 1

AnfXn
(x)e−ψn(I;x)x

)

dx

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫

R+
AnfXn

(x)e−ψn(I;x) log

(
PYn|Xn

(
I − x;x

)

PYn|Xn

(
I;x

)
e−ψn(I;x)x

· PYn|Xn

(
I;x

)

PZn

(
I
)
An

)

dx

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∫

R+
AnfXn

(x)e−ψn(I;x) log

(
PYn|Xn

(
I;x

)

PZn
(I)An

)

dx

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫

R+
AnfXn

(x)e−ψn(I;x) log

(
PYn|Xn

(
I − x;x

)

PYn|Xn

(
I;x

)
e−ψn(I;x)x

)

dx

∣
∣
∣
∣
∣
. (4.11)

From the expression of fXn|Zn

(
x; I

)
in (4.7), we have the following identity

1 =
∫

R+
fXn|Zn

(
x; I

)
dx

=

∫

R+
fXn

(x)e−ψn(I;x)xPYn|Xn

(
I;x

)
dx

PZn

(
I
)

+

∫

R+
fXn

(x)kn(x)x2PYn|Xn

(
I;x

)
dx

PZn

(
I
) . (4.12)

For the second term in (4.12), Conditions (3.10) and (3.11) imply that
PYn|Xn

(
I;x

)
and kn(x) are uniformly bounded and condition (3.13) implies

that PZn

(
I
)

is uniformly bounded from below. Then, by the assumption E[X2
n] =

an, the first term in (4.12) satisfies
∣
∣
∣
∣
∣
∣
∣
∣

∫

R+
fXn

(x)e−ψn(I;x)xPYn|Xn

(
I;x

)
dx

PZn

(
I
)

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

∫

R+
fXn

(x)kn(x)x2PYn|Xn

(
I;x

)
dx

PZn

(
I
) − 1

∣
∣
∣
∣
∣
∣
∣
∣

= 1 + O(an). (4.13)
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With condition (3.11), (4.13) implies

1
PZn

(
I
)
An

=

∫

R+
fXn

(x)e−ψn(I;x)xdx

PZn

(
I
) ≤ 1

δ1
+ O(an). (4.14)

By Conditions (3.11) and (3.12):
∣
∣PYn|Xn

(
I;x

) − PYn

(
I
)∣
∣ ≤ bnPYn

(
I
)

with
bn → 0, therefore

PYn

(
I
) ≤ PYn|Xn

(
I;x

)

1 − bn
≤ K1 (4.15)

for some constant K1 > 0. With (4.14) and (4.15) and recalling the definition
of An in (4.8), we have

∣
∣
∣
∣
∣
∣
∣
∣

∫

R+
fXn

(x)e−ψn(I;x)xPYn|Xn

(
I;x

)
dx

PZn

(
I
) − PYn

(
I
)

PZn

(
I
)
An

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

∫

R+
fXn

(x)e−ψn(I;x)x
(
PYn|Xn

(
I;x

)− PYn

(
I
))

dx

PZn

(
I
)

∣
∣
∣
∣
∣
∣
∣
∣

≤

∫

R+
fXn

(x)e−ψn(I;x)x
∣
∣PYn|Xn

(
I;x

)− PYn

(
I
)∣
∣dx

PZn

(
I
)

≤
bnPYn

(
I
)
∫

R+
fXn

(x)e−ψn(I;x)xdx

PZn

(
I
) =

bnPYn

(
I
)

PZn

(
I
)
An

≤ K1bn

(
1
δ1

+ O(an)
)

= O(bn). (4.16)

And similarly,
∣
∣
∣
∣
PYn|Xn

(
I;x

)

PZn

(
I
)
An

− PYn

(
I
)

PZn

(
I
)
An

∣
∣
∣
∣ ≤ bnPYn

(
I
)

PZn

(
I
)
An

= O(bn). (4.17)

By the triangle inequality, from (4.13), (4.16), and (4.17), we have

PYn|Xn

(
I;x

)

PZn

(
I
)
An

= 1 + O(an + bn).

Since log(1 + x) ≤ x for all x > −1, for sufficiently large n, we have

log

(
PYn|Xn

(
I;x

)

PZn

(
I
)
An

)

= O(an + bn). (4.18)
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Note that the term O(an + bn) in (4.18) is independent of x. Therefore, for the
first term in (4.11) we have

∣
∣
∣
∣
∣

∫

R+
AnfXn

(x)e−ψn(I;x)x log

(
PYn|Xn

(
I;x

)

PZn

(
I
)
An

)

dx

∣
∣
∣
∣
∣

≤ sup
x

∣
∣
∣
∣
∣
log

(
PYn|Xn

(
I;x

)

PZn

(
I
)
An

)∣
∣
∣
∣
∣

∫

R+
AnfXn

(x)e−ψn(I;x)xdx

= sup
x

∣
∣
∣
∣
∣
log

(
PYn|Xn

(
I;x

)

PZn

(
I
)
An

)∣
∣
∣
∣
∣
· 1 = O(an + bn). (4.19)

Define

Ĝδ(y, x) := log P
(
Yn ∈ [y, y + δ] | Xn = x

)
.

Then, by Taylor expansion and the conditions (3.10), (3.11), we can expand
Ĝδ(h − x, x) at (h, x) to get

Ĝδ(h − x, x) = Ĝδ(h, x) − ∂Ĝδ(h, x)
∂y

x

+
∂2Ĝδ(h − α̂nx, x)

2∂y2
x2, for some α̂n ∈ (0, 1),

= Ĝδ(h, x) − ψn(I;x)x + qn(x)x2, (4.20)

where qn(x) :=
1
2

∂2 log P
(
Yn ∈ [y, y + δ] | Xn = x

)

∂y2

∣
∣
∣
∣
y=h−α̂nx

. Therefore, for

the second term in (4.11), by (4.20), we can get

log

(
P
(
Yn ∈ [h − x, h + δ − x] | Xn = x

)

P
(
Yn ∈ [h, h + δ] | Xn = x

)
e−ψn(I;x)x

)

= Ĝδ(h − x, x) − Ĝδ(h, x) + ψn(I;x)x = qn(x)x2.

And by condition (3.10), for all x ∈ R
+, there is a constant K2 > 0 such that

|e−ψn(I;x)xqn(x)| ≤ K2. (4.21)

In the following, we use a brief notation PYn|Xn

(
En−x;x

)
= P

(
Yn ∈ [y, y+δ] |

Xn = x
)
. By (4.21), and the uniform boundedness of An, and the assumption:

E
[
X2

n

]
= an, the second term in (4.11) satisfies

∣
∣
∣
∣
∣

∫

R+
AnfXn

(x)e−ψn(I;x)x log

(
PYn|Xn

(
I − x;x

)

PYn|Xn

(
I;x

)
e−ψn(I;x)x

)

dx

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫

R+
Ane−ψn(I;x)xfXn

(x)qn(x)x2dx

∣
∣
∣
∣
∣

≤ M

∣
∣
∣
∣
∣

∫

R+
fXn

(x)e−ψn(I;x)xqn(x)x2dx

∣
∣
∣
∣
∣
≤ MK2E

[
X2

n

]
= O(an). (4.22)



1592 Y.-C. Cheng et al. Ann. Henri Poincaré

Combining (4.10), (4.11), (4.19) and (4.22),

DKL

(
P
(n)
I ‖ Q

(n)
I

)
= O(an + bn). (4.23)

For the case Sn := {x : fXn
(x) > 0} ⊂ R

+, we can only define P (Zn ∈
I | Xn = x) on Sn. But we can still define the KL-divergence on R

+ since the
part of KL-divergence on R

+\Sn is 0. Therefore, in the same way as (4.9),

DKL

(
P
(n)
I ‖ Q

(n)
I

)
=
∫

R+
AnfXn

(x)e−ψn(I;x)x log
(

AnfXn
(x)e−ψn(I;x)x

fXn|Zn
(x, I)

)

dx

=
∫

Sn

AnfXn
(x)e−ψn(I;x)x log

(
AnfXn

(x)e−ψn(I;x)x

fXn|Zn
(x, I)

)

dx

=
∣
∣
∣
∣

∫

Sn

AnfXn
(x)e−ψn(I;x)x log

(
fXn|Zn

(x, I)
AnfXn

(x)e−ψn(I;x)x

)

dx

∣
∣
∣
∣ .

(4.24)

Then, we can follow every step from the step (4.10) in our proof for the case
{x : fXn

(x) > 0} = R
+ to get

DKL

(
P
(n)
I ‖ Q

(n)
I

)
= O(an + bn). (4.25)

Furthermore, let ζn(I;x) := βnψn(I;βnx), by the condition (3.11), there is a
constant C > 0 such that for all x ∈ R

+, 0 ≤ ζn(I;x) < C. Therefore, P(n)
I

with the density function AnfX(x)e−βnψn(I;βnx)x satisfies the definition of the
canonical probability distributions in (3.5). �

4.1.2. Proof of Theorem 3.2. For a finite interval I = [h, h + δ], h, δ ∈ R and
δ > 0, let

P̂
(n)
I = P (Kn = βnk | Zn ∈ I) and Q̂

(n)
I = BnP (Kn = βnk)e−ψ̂(I;βnk)βnk,

where
1

Bn
:=

∑

βnk∈Sn

P (Kn = βnk)e−ψ̂(I;βnk)βnk

and

ψ̂n(I;βnk) :=
∂ log P

(
Yn ∈ [y, y + δ] | Kn = βnk

)

∂y

∣
∣
∣
∣
y=h

.

We first state the following lemma. The proof follows from the proof of Theo-
rem 3.1 with the definition of KL-divergence for discrete probability distribu-
tions in (2.18).

Lemma 4.1. Assume there exist positive constants δ1, δ2, {Ci, 1 ≤ i ≤ 3}, a
sequence bn = o(1), and an open interval D such that the conditions (3.10)–
(3.13) in Theorem 3.1 hold for Kn, Yn, and Zn. Then,

DKL

(
P̂
(n)
I ‖ Q̂

(n)
I

)
= O(an + bn), for every I ⊆ D. (4.26)

Now we are ready to prove Theorem 3.2.
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Proof of Theorem 3.2. All of the conditions in Theorem 3.1 hold for Kn, Yn, Zn

by the assumptions, hence Lemma 4.1 can be applied. Therefore, we obtain
the following relation between total variation and KL-divergence from (2.19):
for every I ⊆ D,

sup
βnk∈Sn

∣
∣
∣
∣P
(
Kn = βnk | Zn ∈ I

)− BnP (Kn = βnk)e−ψ̂n(I;βnk)βnk

∣
∣
∣
∣

≤ δ
(
P̂
(n)
I , Q̂

(n)
I

)
≤ 1

2

√

DKL

(
P̂
(n)
I ‖ Q̂

(n)
I

)
= O

(√
an + bn

)
. (4.27)

With (3.26) and (4.27), the conclusion (3.27) follows from the change of vari-
able Kn = βnK and the triangle inequality:

sup
k∈S

∣
∣
∣
∣P
(
K = k | H̃n ∈ En

)− BnP (K = k)e−βnψ̂n(I;βnk)k

∣
∣
∣
∣

= sup
βnk∈Sn

∣
∣
∣
∣P
(
Kn = βnk | Hn ∈ I

)− BnP (Kn = βnk)e−ψ̂n(I;βnk)βnk

∣
∣
∣
∣

≤ sup
βnk∈Sn

∣
∣
∣
∣P
(
Kn = βnk | Zn ∈ I

)− BnP (Kn = βnk)e−ψ̂n(I;βnk)βnk

∣
∣
∣
∣

+ sup
βnk∈Sn

∣
∣
∣
∣P
(
Kn = βnk | Hn ∈ I

)− P
(
Kn = βnk | Zn ∈ I

)
∣
∣
∣
∣

= O(cn +
√

an + bn).

Furthermore, let ζ̂n(I; k) := βnψ̂n(I;βnk). We can check that 0 ≤ ζ̂n(I; k) <

C for all k ∈ S and a constant C > 0. Therefore, BnP (K = k)e−βnψ̂n(I;βnk)k

satisfies the definition of the canonical probability distributions in (3.6). �

4.2. Proofs of Theorems 3.3 and 3.4

Let X be a nonnegative continuous random variable and with E[X] < ∞ and
let Zn be a sequence of real-valued continuous random variables. Given a Borel
measurable set E ∈ B (R) and a function ψ : B (R) → R with 0 < ψ(E) < ∞,
let PE be a probability measure with density function

AfX(x)e−ψ(E)x,
1
A

:=
∫

R+
fX(x)e−ψ(E)xdx.

And let Q
(n)
E be a probability measure with density function fX|Zn

(x;E). We
obtain the following lemma for the case (2) of the canonical distribution (3.32):

Lemma 4.2. Assume the following conditions hold:

1. (Boundedness)
∣
∣
∣
∣
fX|Zn

(x;E)
fX(x)

∣
∣
∣
∣ and

∣
∣
∣
∣e

−ξx log
(

fX|Zn
(x;E)

fX(x)

)∣
∣
∣
∣, for any ξ >

0, are uniformly bounded on R
+.

2. (Linear approximation) There exist constants b, c ∈ R, 0 < c < ∞, and
a sequence of functions qn : R → R with

E
[
qn(X)2

]
= γn → 0
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such that on an interval In = [0, dn] with dn → ∞,

log
(

fX|Zn
(x;E)

fX(x)

)

= b − cx + qn(x). (4.28)

Then,

lim
n→∞ DKL

(
PE ‖ Q

(n)
E

)
= 0 if and only if c = ψ(E).

Furthermore, assume E[X3] < ∞ and X is not a constant random vari-
able, let P̃

(n)
E be a probability measure with density function

ÃnfX(x)e−βnψ(E)x,
1

Ãn

:=
∫

R+
fX(x)e−βnψ(E)xdx, (4.29)

in which βn > 0, βn = o(1). We obtain the following lemma for the case (1)
of the canonical distribution (3.32):

Lemma 4.3. Assume the following conditions hold :

1. (Boundedness)
∣
∣
∣
∣
fX|Zn

(x;E)
fX(x)

∣
∣
∣
∣ and

∣
∣
∣
∣e

−βnξx log
(

fX|Zn
(x;E)

fX(x)

)∣
∣
∣
∣, for any

ξ > 0, are uniformly bounded on R
+.

2. (Linear approximation) There exist constants b, c ∈ R, 0 < c < ∞, and
a sequence of functions qn : R → R with E

[
qn(X)2

] → 0 such that on

In = [0, dn] with dn = O
(

1
βn

)
,

1
βn

log
(

fX|Zn
(x;E)

fX(x)

)

= b − cx + qn(x). (4.30)

Then,

lim
n→∞

DKL

(
P̃
(n)
E ‖ Q

(n)
E

)

β2
n

= 0 if and only if c = ψ(E).

Remark 4.1. In particular, if we choose Zn = βnX + βn(Ỹn − μn), where
Ỹn, βn, μn are given in the definitions in Sect. 3.2, and choose the Borel set E
to be a finite interval I, by Eq. (3.1), those general results of Lemmas 4.2 and
4.3 for fX|Zn

(x,E) can be applied to fX|Z̃n
(x,En), which is the conditional

density defined in Sect. 3.2.

4.2.1. Proof of Lemma 4.2.

Proof. Note that for any uniformly bounded function |bn(x)| on R
+:

∣
∣
∣
∣
∣

∫

R+\In

fX(x)bn(x)dx

∣
∣
∣
∣
∣
≤ ‖bn(x)‖∞

∫

R+\In

fX(x)dx = ‖bn(x)‖∞P (X ≥ dn)

≤ ‖bn(x)‖∞

(
E [X]
dn

)

= O(εn), (4.31)

for a sequence εn → 0 since dn → ∞ by condition (2) and E[X] is bounded by
the assumption.
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We first prove c = ψ(E) ⇒ DKL

(
PE ‖ Q

(n)
E

)
→ 0.

By condition (2),

log
(

fX|Zn
(x;E)

fX(x)

)

= b − ψ(E)x + qn(x) on In, (4.32)

therefore, we have

log
(

AfX(x)e−ψ(E)x

fX|Zn
(x;E)

)

= log A − b − qn(x) on In. (4.33)

Since
∫
R+ fX(x)dx = 1, there exists a bounded closed set D ⊂ R

+ such that∫
D

fX(x)dx > 0. Hence,

A =
1

∫

R+
fX(x)e−ψ(E)xdx

≤ 1
∫

D

fX(x)e−ψ(E)xdx

≤ 1

inf
x∈D

∣
∣
∣e−ψ(E)x

∣
∣
∣

∫

D

fX(x)dx

< ∞. (4.34)

Furthermore, we can derive

1 =
∫

R+
fX|Zn

(x;E)dx =
∫

In

fX(x)
fX|Zn

(x;E)
fX(x)

dx

+
∫

R+\In

fX(x)
fX|Zn

(x;E)
fX(x)

dx

=
∫

In

fX(x)eb−ψ(E)x+qn(x)dx + O(εn), (4.35)

in which the last equality is from Eq. (4.32), and the result of (4.31) applied

to the uniformly bounded function |bn(x)| =
∣
∣
∣
∣
fX|Zn

(x;E)
fX(x)

∣
∣
∣
∣ on R

+ (condition

(1)). Multiplying by e−b on both sides in (4.35), we have

e−b =
∫

In

fX(x)e−ψ(E)x+qn(x)dx + O(εn). (4.36)

Then, we can apply Taylor’s expansion to eqn(x) to get

e−b =
∫

In

fX(x)e−ψ(E)xdx +
∫

In

fX(x)e−ψ(E)x (qn(x)

+
qn(x)2

2
eαn·qn(x)

)

dx + O(εn), (4.37)

for some sequence αn ∈ (0, 1). Note that we use the formula

ey = 1 + y +
eα(y)·y

2
y2, α(y) ∈ (0, 1)

and let y = qn(x), αn = α(qn(x)). Combined with Eq. (4.32) and condition
(1), it implies there exists a constant M > 1 independent of n such that
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e−ψ(E)x+qn(x) ≤ M for all x ∈ In. Since αn ∈ (0, 1) and ψ(E) > 0 in the
assumption,

e−ψ(E)x+αn·qn(x) ≤ Mαne−(1−αn)ψ(E)x ≤ M for all x ∈ In. (4.38)

Hence, e−ψ(E)x+αnqn(x) is uniformly bounded on In. Then,
∫

In

fX(x)e−ψ(E)x

(
qn(x)2

2
eαn·qn(x)

)

dx

≤
∥
∥
∥
∥

e−ψ(E)x+αn·qn(x)

2

∥
∥
∥
∥

∞

∫

In

fX(x)qn(x)2dx

≤ ME
[
qn(X)2

]
= O(γn), (4.39)

where O(γn) → 0 by condition (2). By Equations (4.37) and (4.39),

e−b ≤
∫

In

fX(x)e−ψ(E)xdx +
∫

In

fX(x)e−ψ(E)xqn(x)dx + O(γn) + O(εn)

=
∫

R+
fX(x)e−ψ(E)xdx −

∫

R+\In

fX(x)e−ψ(E)xdx

+
∫

In

fX(x)e−ψ(E)xqn(x)dx + O(γn) + O(εn)

=
1
A

+
∫

In

fX(x)e−ψ(E)xqn(x)dx + O(γn) + O(εn), (4.40)

where the last equation is from the result of (4.31). And since A is bounded
by the result (4.34), we have

Ae−b ≤ 1 +
∫

In

AfX(x)e−ψ(E)xqn(x)dx + O(γn) + O(εn). (4.41)

Using the inequality log(1 + x) ≤ x for all x > −1, we find a bound

log A − b ≤
∫

In

AfX(x)e−ψ(E)xqn(x)dx + O(γn) + O(εn). (4.42)

Furthermore, by condition (1),
∣
∣
∣e−ψ(E)x log

(
fX|Zn (x;E)

fX(x)

)∣
∣
∣ is uniformly bounded

on R
+, so we can check that

∣
∣
∣
∣e

−ψ(E)x log
(

AfX(x)e−ψ(E)x

fX|Zn
(x;E)

)∣
∣
∣
∣ is uniformly bounded on R

+as well. (4.43)

Recall that

log
(

AfX(x)e−ψ(E)x

fX|Zn
(x;E)

)

= log A − b − qn(x) on In

by (4.33). With the result of (4.42), we can get

DKL

(
PE ‖ Q

(n)
E

)

=
∫

In

AfX(x)e−ψ(E)x log
(

AfX(x)e−ψ(E)x

fX|Zn
(x;E)

)

dx
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+
∫

R+\In

AfX(x)e−ψ(E)x log
(

AfX(x)e−ψ(E)x

fX|Zn
(x;E)

)

dx

=
∫

In

AfX(x)e−ψ(E)x (log A − b) dx −
∫

In

AfX(x)e−ψ(E)xqn(x)dx + O(εn)

= (log A − b) −
∫

R+\In

AfX(x)e−ψ(E)x (log A − b) dx

−
∫

In

AfX(x)e−ψ(E)xqn(x)dx + O(εn)

= log A − b + O(εn) −
∫

In

AfX(x)e−ψ(E)xqn(x)dx + O(εn)

= O(γn) + O(εn), (4.44)

where the O(εn) terms are from the result of (4.31) applied to the bounded
function (4.43). Therefore, by (4.34) and (4.44), we get

DKL

(
PE ‖ Q

(n)
E

)
→ 0.

Next we prove

DKL

(
PE ‖ Q

(n)
E

)
→ 0 ⇒ c = ψ(E). (4.45)

By condition (2), there exists a constant b̂ and a sequence of functions q̂n(x)
such that

log
(

fX|Zn
(x;E)

fX(x)

)

= b − cx + qn(x) on In. (4.46)

Similar to the derivation of (4.33), we have

log

(
ÂfX(x)e−cx

fX|Zn
(x;E)

)

= log Â − b − qn(x) on In, (4.47)

where

Â =
1

∫

R+
fX(x)e−cxdx

< ∞, (4.48)

which can be proved by a similar approach as in (4.34). Then, following the
previous proof from (4.35) to (4.44), we can get

DKL

(
P̂E ‖ Q

(n)
E

)
→ 0, (4.49)

where P̂E is a probability measure with density function ÂfX(x)e−cx. By the
assumption (4.45), we also know

DKL

(
PE ‖ Q

(n)
E

)
→ 0. (4.50)

By Pinsker’s inequality (2.19), we have that the total variation distance de-
noted by δ(·, ·) satisfies

δ(P̂E ,Q
(n)
E ) → 0 and δ(PE ,Q

(n)
E ) → 0. (4.51)
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Then, by the triangle inequality, δ(P̂E ,PE) = 0. It implies
∫ x

0

(
ÂfX(s)e−csds − AfX(s)e−ψ(E)s

)
ds = 0, for all x ∈ R

+.

Hence,

ÂfX(x)e−cx = AfX(x)e−ψ(E)x holds almost everywhere on R
+.

Since Â and A are both independent of x and there exists an interval such
that fX(x) > 0, we obtain c = ψ(E). �

4.2.2. Proof of Lemma 4.3.

Proof. Note that for any uniform bounded function |bn(x)| on R
+:

∣
∣
∣
∣
∣

∫

R+\In

fX(x)bn(x)dx

∣
∣
∣
∣
∣
≤ ‖bn(x)‖∞

∫

R+\In

fX(x)dx = ‖bn(x)‖∞P (X ≥ dn)

≤ ‖bn(x)‖∞

(
E
[
X3

]

d3n

)

= O(β3
n), (4.52)

where the existence of O(β3
n) is due to dn = O( 1

βn
) by condition (2) and

E[X3] < ∞ by the assumption.

We first prove c = ψ(E) ⇒
DKL

(
P̃
(n)
E ‖ Q

(n)
E

)

β2
n

→ 0. By condition (2),

log
(

fX|Zn
(x;E)

fX(x)

)

= βn (b − ψ(E)x + qn(x)) on In, (4.53)

Therefore, we have

log
(

AnfX(x)e−βnψ(E)x

fX|Zn
(x;E)

)

= log An − βnb − βnqn(x) on In. (4.54)

Following the proof in (4.34), for each n, we have

An =
1

∫

R+
fX(x)e−βnψ(E)xdx

< ∞, (4.55)

and we can check that limn→∞
∫

R+
fX(x)e−βnψ(E)xdx → 1, hence, An is uni-

formly bounded.
We can apply a similar proof as for Lemma 4.2 to Eq. (4.54). Substituting

b by βnb, ψ(E)x by βnψ(E)x, qn(x) by βnqn(x) and A by An, then every step
from Eq. (4.35) to Eq. (4.44) follows. Therefore, we can get.

DKL

(
P̃
(n)
E ‖ Q

(n)
E

)
= O(β2

nγn) + O(β3
n),

where the O(β2
nγn) term follows from the derivation of the O(γn) term in

Lemma 4.2, the O(β3
n) term follows from Eq. (4.52) and the derivation of the
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O(εn) term in Lemma 4.2. It implies

DKL

(
P̃
(n)
E ‖ Q

(n)
E

)

β2
n

= O(γn) + O(βn) → 0.

Next we prove
DKL

(
P̃
(n)
E ‖ Q

(n)
E

)

β2
n

→ 0 ⇒ c = ψ(E). Similar to the

proof for Lemma 4.2, we can show

DKL

(
P̂
(n)
E ‖ Q

(n)
E

)

β2
n

→ 0, (4.56)

where P̂
(n)
E is a probability measure with density function ÂnfXe−βncx. By the

assumption, we also know

DKL

(
P̃
(n)
E ‖ Q

(n)
E

)

β2
n

→ 0. (4.57)

Therefore, by Pinsker’s inequality, we have that the total variation distance
denoted by δ(·, ·) satisfies

1
βn

δ(P̂E ,Q
(n)
E ) → 0 and

1
βn

δ(P̃E ,Q
(n)
E ) → 0. (4.58)

Then, by the triangle inequality, 1
βn

δ(P̂E , P̃E) → 0. It implies

lim
n→∞

1
βn

(∫ x

0

ÂnfX(s)e−βncsds

−
∫ x

0

AnfX(s)e−βnψ(E)sds

)

= 0, for all x ∈ R
+. (4.59)

We can apply Taylor’s expansion to e−βncs and e−βnψ(E)s to get

e−βncs = 1 − βncs + O(β2
ns2) and e−βnψ(E)s = 1 − βnψ(E)s + O(β2

ns2).
(4.60)

By the results of (4.60), Eq. (4.59) can be written as

lim
n→∞

∫ x

0

1
βn

(
Ãn − An −

(
Ãnc − Anψ(E)

)
βns

+O(β2
ns2)

)
fX(s)ds = 0, for all x ∈ R

+. (4.61)

Since E[X2] < ∞ from the fact E[X3] < ∞, we know
∫ x

0

s2fX(s)ds < ∞ on

R
+. Therefore, the O(β2

ns2) in Eq. (4.61) can be dropped and we obtain

lim
n→∞

∫ x

0

1

βn

(
Ãn − An −

(
Ãnc − Anψ(E)

)
βns

)
fX(s)ds = 0, for all x ∈ R

+.

(4.62)
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By the dominated convergence theorem,

Ân =
1

∫
R+ fX(x)e−βncxdx

→ 1 and An =
1

∫
R+ fX(x)e−βnψn(E)xdx

→ 1.

(4.63)

Also we have

lim
n→∞

1
βn

(∫

R+
fX(x)e−βnψn(E)xdx −

∫

R+
fX(x)e−βncxdx

)

= lim
n→∞

1
βn

(∫

R+

(
(c − ψ(E)) βnx + O(β2

nx2)
)
fX(x)dx

)

= (c − ψ(E))E[X] + lim
n→∞ O(βnE[X2]) = (c − ψ(E))E[X], (4.64)

where in the first equality we apply Taylor’s expansion (4.60) again. By (4.63)
and (4.64), we have

lim
n→∞

Ãn − An

βn
= lim

n→∞
1
βn

⎛

⎜
⎜
⎝

∫

R+
fX(x)e−βnψn(E)xdx −

∫

R+
fX(x)e−βncxdx

∫

R+
fX(x)e−βncxdx

∫

R+
fX(x)e−βnψn(E)xdx

⎞

⎟
⎟
⎠

= (c − ψ(E))E[X]. (4.65)

Therefore, from (4.62) and (4.65),

lim
n→∞

∫ x

0

(
Ãnc − Anψ(E)

)
sfX(s)ds = (c − ψ(E))

∫ x

0

sfX(s)ds, for all x ∈ R
+.

(4.66)

Therefore, we can apply the results of (4.65) and (4.66) to Eq. (4.62) to
get

(c − ψ(E))
∫ x

0

E[X]fX(s)ds = (c − ψ(E))
∫ x

0

sfX(s)ds, for all x ∈ R
+.

(4.67)

Since X is not a constant random variable by our assumption, (4.67) is only
true when c = ψ(E). �

4.2.3. Proof of Theorem 3.3.

Proof. The proof follows from Lemma 4.3. By the condition (2) in Theorem
3.3, we have

log
(

P (Yn ∈ I − βnx | Xn = βnx)
P (Zn ∈ I)

)

= log
(

P (Y ∈ I − βnx)
P (Y ∈ I)

)

+ gn(x)

= −∂ log P (Y ∈ [y, y + δ])
∂y

∣
∣
∣
∣
h

βnx + O(β2
nx2) + βngn(x). (4.68)

We now check whether all conditions in Lemma 4.3 are satisfied:
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1. (Boundedness):
∣
∣
∣
fX|Zn (x;I)

fX(x)

∣
∣
∣ =

∣
∣
∣
fX|Z̃n

(x;En)

fX(x)

∣
∣
∣ , which is uniformly bounded

on R
+ by the condition (2) in Theorem 3.3. And from (4.68), for any

ξ > 0,
∣
∣
∣
∣e

−βnξx log
(

fX|Zn
(x; I)

fX(x)

)∣
∣
∣
∣ =

∣
∣
∣
∣e

−βnξx log
(

P (Yn ∈ I − βnx | Xn = βnx)
P (Zn ∈ I)

)∣
∣
∣
∣

≤ ∣
∣e−βnξxO(βnx + β2

nx2)
∣
∣+

∣
∣e−βnξxgn(x)

∣
∣ ,

where the first term is uniformly bounded on R
+, and the second term

is uniformly bounded on R
+ by the condition (3) in Theorem 3.3.

2. (Linear approximation): Following (4.68), we have

1
βn

log
(

fX|Zn
(x;E)

fX(x)

)

=
1
βn

log
(

P (Yn ∈ I − βnx | Xn = βnx)
P (Zn ∈ I)

)

= −∂ log P (Y ∈ [y, y + δ])
∂y

∣
∣
∣
∣
h

x + O(βnx2) + gn(x)

on In = [0, dn] with dn = O
(

1
βn

)
. Therefore, we obtain

c =
∂ log P (Y ∈ [y, y + δ])

∂y

∣
∣
∣
∣
h

and qn(x) = O(βnx2) + gn(x)

and we can check that E[qn(X)2] → 0 since E[gn(X)2] → 0 by the condi-
tion (3).

Therefore, applying Lemma 4.3, we have

lim
n→∞

DKL

(
P̃
(n)
I ‖ Q

(n)
I

)

β2
n

= 0 if and only if ψ(I) =
∂ log P (Y ∈ [y, y + δ])

∂y

∣
∣
∣
∣
h

.

Furthermore, since 0 < ∂ log P (Y ∈[y,y+δ])
∂y

∣
∣
∣
∣
h

< C for a constant C > 0, P̃
(n)
I

satisfies the definition of the canonical probability distributions in (3.5). �

4.2.4. Proof of Theorem 3.4.

Proof. The proof follows from Lemma 4.2. By the condition (2) in Theorem
3.4, we have

log
(

P (Yn ∈ I − βnx | Xn = βnx)
P (Zn ∈ I)

)

= log

⎛

⎝
exp

[
− 1

βn
φ (y∗ − βnx)

]

exp
[
− 1

βn
φ (y∗)

]

⎞

⎠+ rn(x)

= φ′(y∗)x + O(βnx2) + rn(x). (4.69)

To check that all conditions are satisfied:

1. (Boundedness):
∣
∣
∣
fX|Zn (x;I)

fX(x)

∣
∣
∣ =

∣
∣
∣
fX|Z̃n

(x;En)

fX(x)

∣
∣
∣ , which is uniformly bounded

on R
+ by the condition (1) in Theorem 3.4. And by (4.69), for any ξ > 0,
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∣
∣
∣
∣e

−ξx log
(

fX|Zn
(x; I)

fX(x)

)∣
∣
∣
∣ =

∣
∣
∣
∣e

−ξx log
(

P (Yn ∈ I − βnx | Xn = βnx)
P (Zn ∈ I)

)∣
∣
∣
∣

≤ ∣
∣e−ξxO(x + βnx2)

∣
∣+

∣
∣e−ξxrn(x)

∣
∣ ,

where the first term is uniformly bounded on R
+, and the second term

is uniformly bounded on R
+ by the condition (3) in Theorem 3.4.

2. (Linear approximation): As follows from (4.69), we have

log
(

fX|Zn
(x;E)

fX(x)

)

= log
(

P (Yn ∈ I − βnx | Xn = βnx)
P (Zn ∈ I)

)

= φ′(y∗)x + O(βnx2) + rn(x)

on In = [0, dn] with dn = O
(

1
βn

)
. Hence, we obtain

c = −φ′(y∗) and qn(x) = O(βnx2) + rn(x),

and we can check that E[qn(X)2] → 0 since E[rn(X)2] → 0 by the condi-
tion (3).

Therefore, by applying Lemma 4.2, we have

lim
n→∞ DKL

(
PI ‖ Q

(n)
I

)
= 0 if and only if ϕ(I) = −φ′(y∗).

Since 0 < −φ′(y∗) < ∞, PI satisfies the definition of the canonical probability
distributions in (3.5). �

5. Applications

5.1. Gibbs Measure on the Phase Space

Definition 5.1. Consider a probability space (Ω,F ,P), let V = (V1, V2, ..., Vn) :
Ω → R

n be a measurable function and let π1, π2, and π be three projection
maps defined on R

n such that

π1(V) = U = (V1, V2, ..., Vk), π2(V) = W = (Vk+1, Vk+2..., Vn), π(V) = V.
(5.1)

Assume there exist measurable functions e1 : Rk → R
+, e2 : Rn−k → R

+, and
e : Rn → R

+ such that

(e1 ◦ π1)(V) = e1(U), (e2 ◦ π2)(V) = e2(W), (e ◦ π)(V) = e(V).

Therefore, random variables and induced measures can be defined through the
following maps:

(Ω,F ,P) V−→ (Rn,B(Rn), μ) π1−→ (Rk,B(Rk), ν1)
e1−→ (R+,B(R+), λ1)

(Ω,F ,P) V−→ (Rn,B(Rn), μ) π2−→ (Rn−k,B(Rn−k), ν2)
e2−→ (R+,B(R+), λ2).

Definition 5.2. Let e1 ◦π1, e2 ◦π2, and e◦π be the functions given in Definition
5.1. Define e1 ◦ π1 and e2 ◦ π2 to be additive on V if

e1 ◦ π1(V) + e2 ◦ π2(V) = e ◦ π(V). (5.2)
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Theorem 5.1. Suppose e1 ◦ π1 and e2 ◦ π2 are additive on V and suppose
e1(U), e2(W) are continuous nonnegative independent random variables. De-
note X := e1(U), Y := e2(W), Z := e(V) and let I = [h, h + δ] be a finite
interval. Assume the following conditions hold:
1. E[X2] = ε2n, where εn → 0.
2. For all y ∈ R

+, there exists a nonnegative integrable function Γ ∈ C2(R+)
such that

P (Y ∈ [y, y + δ]) =

∫ y+δ

y

Γ (s)ds

∫

R+
Γ (s)ds

and

∣
∣
∣
∣
∣

∂2 log P
(
Y ∈ [y, y + δ]

)

∂y2

∣
∣
∣
∣
∣
< ∞.

(5.3)

3. I ⊂ supp(Γ ) and Γ ′(y) ≥ 0, for y ∈ I.
Then, we have

sup
S∈B(R+)

∣
∣
∣
∣
∣
P (e1(U) ∈ S | Z ∈ I) −

∫

e1(u)∈S

Ae−ψ(I)e1(u)ν1(du)

∣
∣
∣
∣
∣
= O(εn),

(5.4)

where ψ(I) =
∂ log

∫ y+δ

y

Γ (s)ds

∂y

∣
∣
∣
∣
∣
y=h

.

Proof. Since the functions e1 ◦ π1, e2 ◦ π2 are additive on V, we have

X + Y = e1(U) + e2(W) = (e1 ◦ π1)(V) + (e2 ◦ π2)(V)

= (e ◦ π)(V) = e(V) = Z.

Since X + Y = Z and they are corresponding to Xn, Yn, Zn in Theorem 3.1,
respectively, it suffices to show that all the conditions in Theorem 3.1 are
satisfied for X,Y , and Z.

1. For all y ∈ R
+, since Γ (y) ∈ C2(R+),

∣
∣
∣
∣
∂2P (Y ∈ [y, y + δ])

∂2y

∣
∣
∣
∣ exists and is

bounded on R
+.

And
∣
∣
∣
∣
∂2 log P (Y ∈ [y, y + δ])

∂2y

∣
∣
∣
∣ is bounded on R

+ by (5.3). Therefore,

(3.10) holds.
2. Since I ⊂ supp(Γ ), there exists δ1 > 0 such that P (Y ∈ I) ≥ δ1. And we

can derive
∂ log P (Y ∈ [y, y + δ])

∂y

∣
∣
∣
∣
y=h

=
Γ (h + δ) − Γ (h)
∫ h+δ

h

Γ (s)ds

. (5.5)

Again, since I ⊂ supp(Γ ), and the nonnegative function Γ (y) ∈ C2(R+),
Γ ′(y) ≥ 0, for y ∈ I, we can check that there exists a positive constant
C such that
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0 ≤ ∂ log P
(
Y ∈ [y, y + δ]

)

∂y
≤ C for [y, y + δ] ⊂ I, (5.6)

hence (3.11) holds for D = I. Furthermore, since X and Y are indepen-
dent, bn = 0. Therefore, (3.12) holds.

3. Since X and Y are supported on R
+, there exists δ2 > 0 such that

P (Z ∈ [z, z + δ]) ≥ δ2 for [y, y + δ] ⊂ R
+,

hence (3.13) holds.
Therefore, all of the conditions hold for D = I in Theorem 3.1, we can

apply it with an = ε2n, bn = 0, and Pinsker’s inequality (2.19) to get

sup
S∈B(R+)

∣
∣
∣
∣P (X ∈ S | Z ∈ I) −

∫

x∈S

Ae−ψ(I)xfX(x)dx

∣
∣
∣
∣ = O(εn), (5.7)

where ψ(I) =
∂ log

∫ y+δ

y

Γ (s)ds

∂y

∣
∣
∣
∣
∣
y=h

. Then, applying a change of variables

∫

x∈S

Ae−ψ(I)xfX(x)dx =
∫

x∈S

Ae−ψ(I)xλ1(dx) =
∫

e1(u)∈S

Ae−ψ(I)e1(u)ν1(du)

(5.8)

to (5.7), we obtain Eq. (5.4). It completes the proof. �
In statistical mechanics, the induced measure ν1(du) in phase space is

often considered as the Lebesgue measure du normalized by the total volume
of the phase space Λ (Here, we assume it is finite). Therefore, for the random
vector U, we have its density

Âe−ψ(I)e1(u) with respect to du, (5.9)

where Â = A/Λ is the corresponding normalization factor.
The assumption ν1(du) = du/Λ for the phase space has already implied

that all microstates are equally probable when the system is unconstrained. It is
a reasonable prior probability for U by a symmetry of a physical system when
we do not have any previous information about it. For the random variable
X (e.g., energy), its density fX(x) is referred to prior probability for X when
it is unconstrained. Based on the principle of equal a priori probabilities of
microstates in the phase space, we can show that fX(x) = γ(x)/Λ, where γ(x)
is the Lebesgue measure of the surface area of microstates when the energy is
fixed on x (i.e., e1(U) = x). This can be verified by

∫

x∈S

fX(x)dx =
∫

e1(u)∈S

ν1(du) =
1
Λ

∫

e1(u)∈S

du

=
1
Λ

∫

x∈S

γ(x)dx for all S ∈ B(R+). (5.10)

Note that γ(x) is also known as the structure function of X. In Theorem 5.1,
we also make the same assumption for Y : fY (y) = Γ (y)/Λ, where Γ (y) is the
structure function of Y .
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Therefore, the density of X can be written as

Âe−ψ(I)xγ(x) with respect to dx, (5.11)

which can be interpreted as a uniform prior biased by an exponential weight
e−ψ(I)x when the system is conditioned on some extra information. Note that
Eq. (5.9) is known as the density of Gibbs measure on the phase space and Eq.
(5.11) is known as the density of Gibbs measure on the energy of the system
[16].

In the work of Khinchin [21], he assumed conjugate distribution laws for
all systems. It is said that

fX(x) =
e−αxγ(x)

∫
e−αsγ(s)ds

and fY (y) =
e−αyΓ (y)

∫
e−αsΓ (s)ds

(5.12)

for some constant α. Those priors are more general than the uniform prior
and they have some nice properties, e.g., for a proper α, it may guarantee
integrability of e−αsγ(s) when γ(s) itself is not integrable. However, we can
show that the choice of e−αx term does not have influence on our results. Here
is the proof sketch: Suppose δ = o(1),

ψ̂(I) :=
∂ log P (Y ∈ [y, y + δ])

∂y

∣
∣
∣
∣
∣
y=h

=
∂ log

∫ y+δ

y

Γ (s)e−αsds

∂y

∣
∣
∣
∣
∣
y=h

≈
∂ log

∫ y+δ

y

Γ (s)ds

∂y

∣
∣
∣
∣
∣
y=h

− α = ψ(I) − α.

(5.13)

By (5.12) and (5.13), we have

AfX(x)e−ψ̂(I)x = Âγ(x)e−αxe−(ψ(I)−α)x = Âγ(x)e−ψ(I)x. (5.14)

Therefore, to choose priors as the structure functions multiplied by the
exponential functions e−αx for integrability is irrelevant to Gibbs measure.
Indeed, it is the extra information (condition) giving rise to the exponential
weight in Gibbs measure and the parameter of the exponential function is
determined by

ψ(I) =
∂ log

∫ y+δ

y

Γ (s)ds

∂y

∣
∣
∣
∣
∣
y=h

,

where
∫ y+δ

y
Γ (s)ds represents the volume of microstates in the shell between

y and y + δ. The logarithm of it is known as the entropy of Y , denoted by
SY (y), hence we have

ψ(I) =
∂SY (y)

∂y

∣
∣
∣
∣
∣
y=h

. (5.15)
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By Eq. (5.15), we can identify 1
ψ(I) as the temperature defined in statistical

mechanics [18,22].

Remark 5.1. We can extend Theorem 5.1 to the model that the subsystem
and its heat bath have strong interaction defined by non-additivity of energy
functions in statistical mechanics. Assume there exists a measurable function
e3 : Rn → R

+ such that

(e3 ◦ π)(V) = e3(V),

which means that this energy function e3 could depend on the whole vector
V = (V1, V2, ..., Vn) in the phase space. And suppose

e1 ◦ π1(V) + e2 ◦ π2(V) + e3 ◦ π(V) = e ◦ π(V),

in which the existence of the extra term e3◦π(V) means that e1◦π1 and e2◦π2

are not additive on V by Definition 5.1. Denote that R := e3(V). Recall that
V = (U,W) and X = e1(U) = (e1 ◦π1)(V), Y = e2(W) = (e1 ◦π2)(V), Z =
e(V) = (e ◦ π)(V). Then, we have

X + Y + R = Z. (5.16)

In statistical mechanics, R is known as the interaction energy caused by inter-
action between the subsystem and its heat bath. Based on this setup, we can
define a new random variable Ŷ := Y +R, but X, Ŷ are no longer independent
since the random variable R may depend on both U,W in the phase space. If
we modify the condition (5.3) in Theorem 5.1 to guarantee the existence and
boundedness of

∣
∣
∣∂(k)P

(
Ŷ ∈ [y, y + δ] | X = x

)∣∣
∣ and

∣
∣
∣∂(k) log P

(
Ŷ ∈ [y, y + δ] | X = x

)∣∣
∣ , for k = 0, 1, 2, (5.17)

in which the partial derivatives are with respect to both x and y, then we are
able to apply Corollary 3.1 to this model. As the result (3.20) in Corollary
3.1, this model with strong interaction will give rise to a new parameter φ(I)
of the exponential weight which involves two terms: one is from fluctuations
of the energy of the “new” heat bath Ŷ (it combines the energy of the heat
bath Y without interaction and the interaction energy R), and the other one
is from the correlation of X and Ŷ .

5.2. Integer-Valued Random Variables and Conditional Poisson Distributions

In Theorem 5.2, we will show a limiting behavior of a sequence of conditional
probabilities for a nonnegative integer-valued random variables K, which is
conditioned on K + L̃n, L̃n is a sequence of sums of i.i.d random variables ξi.
This sequence of conditional probabilities has the same limiting behavior as its
unconditional probability P (K = k) weighted by an exponential factor. The
most important result of this theorem is that the parameter of this exponential
factor determined by a normal distribution rather than the distribution of ξi.
By this result, we provide a very simple formula with an approximation error to
approximate an intractable problem in calculating the conditional probability
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of an integer-valued random variable. And we give an example 1 to show an
approximation formula for calculating the conditional probability of a Poisson
random variable conditioned on the sum of that Poisson random variable with
another Poisson random variable.

Theorem 5.2. Let K be a nonnegative integer-valued random variable with
E[K] < ∞. Let L̃n =

∑n
i=1 ξi, where {ξi}n

i=1 are nonnegative i.i.d. random
variables. K and L̃n are independent and denote H̃n := K + L̃n. Let μ = E[ξi],
σ2 = Var(ξi) and assume E[(ξi − μ)3] < ∞. And let

Bn =
∞∑

k=0

1

P (K = k) exp
(

−ψ(I)k√
n

) ,

ψ(I) =
∂ log P

(
Y ∈ [y, y + δ]

)

∂y

∣
∣
∣
∣
y=−h

, and Y ∼ N(0, σ2).

For every fixed finite interval I = [−h,−h + δ], h, δ ∈ R
+, −h + δ ≤ 0, and

2δ/σ2 < ψ(I),

sup
k

∣
∣
∣
∣P (K = k | H̃n ∈ nμ +

√
nI) − BnP (K = k) exp

(−ψ(I)k√
n

)∣
∣
∣
∣ = O

(
1√
n

)

.

(5.18)

Proof. Let Kn := K√
n
, Ln := L̃n−nμ√

n
and Hn := H̃n−nμ√

n
. We have Kn +

Ln = Hn. By the Central Limit Theorem, Ln converges in distribution to Y .
Furthermore, since (ξi − μ) has finite second and third moments, by Berry–
Esseen Theorem 2.4,

sup
k

∣
∣
∣
∣PLn

(

I − k√
n

)

− PY

(

I − k√
n

)∣
∣
∣
∣ = O

(
1√
n

)

. (5.19)

Since E [Kn] → 0, we have Kn converges to 0 in probability. By Slutsky’s
Theorem 2.5, Hn converges to Y in distribution. By Corollary 2.1, we can also
get

PHn
(I) = PY (I) + O

(
1√
n

)

. (5.20)

By (5.19) and (5.20),

PK|H̃n

(
k;nμ +

√
nI
)

= PK|Hn
(k; I) = PK(k)

PLn

(
I − k√

n

)

PHn
(I)

= PK(k)
PY

(
I − k√

n

)
+ O

(
1√
n

)

PY (I) + O
(

1√
n

)

= PK(k)
PY

(
I − k√

n

)

PY (I)
+ O

(
1√
n

)

, (5.21)
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in which we use the fact Y ∼ N(0, σ2) and P (−h ≤ Y ≤ −h + δ) is bounded
from below. Moreover, since PK(k) ≤ 1, the term O

(
1√
n

)
in (5.21) is inde-

pendent of k. Let Ỹn ∼ N(nμ, nσ2) and Z̃n := K + Ỹn. Then, we have

Kn + Yn = Zn, where Yn :=
Ỹn − nμ√

n
and Zn :=

Z̃n − nμ√
n

. (5.22)

Note that Yn = Y ∼ N(0, σ2) and Zn converges in distribution to Y . Similar
to (5.21),

PK|Z̃n

(
k;nμ +

√
nI
)

= PK(k)
PY

(
I − k√

n

)

PY (I)
+ O

(
1√
n

)

. (5.23)

Applying the triangle inequality to (5.21) and (5.23), we finally obtain

sup
k

∣
∣
∣
∣PK|H̃n

(
k;nμ +

√
nI
)− PK|Z̃n

(
k;nμ +

√
nI
)
∣
∣
∣
∣ = O

(
1√
n

)

. (5.24)

Now, it remains to show that the convergence rate of

sup
k

∣
∣
∣
∣PK|Z̃n

(
k;nμ +

√
nI
)− BnPK(k) exp

(−ψ(I)k√
n

)∣
∣
∣
∣. (5.25)

Then, it suffices to show that all the conditions in Theorem 3.1 are satisfied
for Kn, Yn, Zn, then we can apply Theorem 3.2.

First, we can check that E[K2
n] = an, an = o(1):

E[K2
n] =

1
n
E[K2] = O

(
1
n

)

. (5.26)

Second, by change of variables,

PK|H̃n

(
k;nμ +

√
nI
)

= PKn|Hn

(
k√
n

; I
)

. (5.27)

And we can define the set S in terms of the value for K as below:

S = {k : k ∈ N, P(K = k) > 0}
such that for all k ∈ S, P (Kn = k√

n
) > 0. Choose d > 0 such that I =

[−h,−h+ δ] ⊆ D = (−d, 0). Below, we follow every steps in Theorem 3.1 with
slight modifications:

1. For all y ∈ R, Yn = Y ∼ N(0, σ2), by the formula of the density of normal
distribution, we have

∂2P
(
Y ∈ [y, y + δ]

)

∂y2
= f ′

Y (y + δ) − f ′
Y (y) (5.28)

and

∂2 log P
(
Y ∈ [y, y + δ]

)

∂y2
=

f ′
Y (y + δ) − f ′

Y (y)
P
(
Y ∈ [y, y + δ]

) −
(

fY (y + δ) − fY (y)
P
(
Y ∈ [y, y + δ]

)

)2

,

(5.29)
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so we can check (5.28) exist and are uniformly bounded. For (5.29), we
modify the boundedness slightly and the details of proof are provided in
Appendix 6.3. Therefore, (3.10) with a slight modification holds.

2. Since Yn = Y ∼ N(0, σ2), there exist positive constants δ1 and C depend-

ing on y such that P
(
Y ∈ [y, y+δ]

) ≥ δ1 and 0 ≤ ∂ log P
(
Y ∈ [y, y + δ]

)

∂y
≤

C for every [y, y + δ] ⊂ D. Therefore, (3.11) holds. Since Kn and Yn are
independent, we have bn = 0. Therefore, (3.12) holds.

3. Since Zn → Y in distribution where Y ∼ N(0, σ2), there exists εn(z) → 0
such that

P
(
Zn ∈ [z, z + δ]

)
= P

(
Y ∈ [z, z + δ]

)
+ εn(z).

Since P
(
Y ∈ [z, z + δ]

)
is bounded from below for [z, z + δ] ⊂ D, there

exists a positive constant δ2(z) such that P
(
Zn ∈ [z, z + δ]

) ≥ δ2 > 0 for
all [z, z + δ] ⊂ D. Then, the second inequality in (3.13) holds.

To apply Theorem 3.2, we then obtain

sup
k∈S

∣
∣
∣
∣PKn|Zn

(
k√
n

; I
)

− BnPKn

(
k√
n

)

exp
(

−ψ(I)
k√
n

)∣
∣
∣
∣ = O

(
1
n

)

, (5.30)

where

ψ(I) =
∂ log PY

(
[y, y + δ]

)

∂y

∣
∣
∣
∣
y=−h

and Y ∼ N(0, σ2). (5.31)

By change of variable, we then obtain

sup
k

∣
∣
∣
∣PK|Z̃n

(
k;nμ +

√
nI
)− BnPK(k) exp

(−ψ(I)k√
n

)∣
∣
∣
∣ = O

(
1
n

)

, (5.32)

where

Bn =
1

∑
k∈S PKn

(k/
√

n) exp (−ψ(I)k/
√

n)
=

1
∑

k PK(k) exp (−ψ(I)k/
√

n)
.

By applying triangle inequality to (5.24) and (5.32), we can obtain (5.18) in
the theorem.

Finally, we apply Theorem 5.2 to a concrete example.

Example 1. Let λ, μ > 0 be two constants. Consider two independent random
variables K ∼ Pois(λ) and L̃n ∼ Pois(nμ). Let H̃n := K + L̃n. For every fixed
finite interval I which follows from Theorem 5.2, we can show that

sup
k

∣
∣
∣
∣P
(
K = k | H̃n ∈ nμ +

√
nI
)

− BnP (K = k) exp
(−ψ(I)k√

n

)∣
∣
∣
∣ = O

(
1√
n

)

,

where Bn =
∞∑

k=0

1

P (K = k) exp
(

−ψ(I)k√
n

) and

ψ(I) =
∂ log P

(
Y ∈ [y, y + δ]

)

∂y

∣
∣
∣
∣
y=−h

, Y ∼ N(0, μ).
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Proof. By the property of Poisson random variables, we can decompose L̃n as
L̃n =

∑n
i=1 ξi, where {ξi, 1 ≤ n} are independent Poisson random variables

with mean μ and variance μ. We can check that all conditions are satisfies in
Theorem 5.2. Hence, Theorem 5.2 can be applied. �

5.3. Emergence of Temperature (Conditioned on the Scale of Large Devia-
tions)

In this section, we define the parameter 1
ϕ(I) in the exponential function e−ϕ(I)x

as the temperature of the canonical distribution. Consider a sequence of condi-
tional probabilities for a function of a subsystem represented by X in contact
with its heat bath represented by Ỹn =

∑n
i=2 Xi, where Xi are i.i.d. and Xi

has the same distribution as X, and Xi, X are independent. Suppose that the
total energy Z̃n = X + Ỹn is conditioned on the scale of large deviations from
its mean, we will show that the temperature 1

ϕ(I) is an emergent parameter

uniquely determined by the rate function of Ỹn

n .

Definition 5.3. Let X be a nonnegative and nonconstant continuous random
variable with E[X4] < ∞, and let Ỹn :=

∑n
i=2 Xi, where all random variables

in {Xi}n
i=2 ∪ {X} are i.i.d. Denote Z̃n := X + Ỹn. Consider an interval I =

[d, d + δ], d ∈ R, δ > 0 with E[X] /∈ I, and a function ϕ : I → R such
that 0 < ϕ(I) < ∞. Let PI be a probability measure with density function
AfX(x)e−ϕ(I)x, where

1
A

=
∫

R+
fX(x)e−ϕ(I)xdx.

Let Q
(n)
I be a sequence of probability measures with density functions

fX|Z̃n
(x;nI).

Theorem 5.3. Denote Yn := Ỹn

n ,Xn := X
n , and Zn := Xn+Yn, and let I− x

n =
{y − x

n , y ∈ I}. Assume the following conditions hold:

1.
∣
∣
∣
∣
fX|Zn

(x; I)
fX(x)

∣
∣
∣
∣ is uniformly bounded on R

+.

2. |log PYn
(I) − log PZn

(I)| converges to a finite constant as n → ∞.
3. There exists a function φ(y) ∈ C2(D), where D is an open interval con-

taining I, with −∞ < φ′(y) < 0, for y ∈ I, such that

log PYn

(
I − x

n

)
= −nφ

(
y∗ − x

n

)
+ sn

(
I − x

n

)
, for I − x

n
⊂ D, (5.33)

where y∗ = {y : inf
y∈I

φ(y)},

∣
∣
∣
∣
sn(I − x

n ) − sn(I)
sn(I)

∣
∣
∣
∣ = O

(x

n

)
, and |sn(I ′)| =

o(n) for all I ′ ⊂ D.
Then,

DKL

(
PI ‖ Q

(n)
I

)
→ 0 if and only if ϕ(I) = −φ′(y∗),

y∗ =
{

y : inf
y∈I

φ(y)
}

. (5.34)
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Remark 5.2. The conditions (1)–(3) formulated in Theorem 5.3 are technical,
so we would like to characterize and verbally describe the underlying meaning
and interpretation of them: The condition (1) can be written as

∣
∣
∣
∣
fX|Zn

(x; I)
fX(x)

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

fXn,Yn

(
x
n , I − x

n

)

fXn
( x

n )fYn
(I − x

n )

∣
∣
∣
∣
∣

is uniformly bounded on R
+,

in which the right-hand side is related to the correlation of Xn and Yn, there-
fore, this condition means that the interaction between Xn and Yn is regulated;
The condition (1) is corresponding to the setup that Xn is small relative to
Zn (hence the distributions of Yn and Zn have the same asymptotic behavior),
specifically, that finite constant can be chosen to be zero (we provide a more
general condition in this theorem); The condition (3) means that Yn converges
to a constant satisfying the large deviation principle with the rate function φ
and the remainder term sn.

Proof. The proof of Theorem 5.3 is just the application of Theorem 3.4, so
we will show that all conditions in Theorem 3.4 are satisfied. First, condition
(1) in Theorem 3.4 follows from condition (1), and E[X4] < ∞ is assumed
in this theorem. Second, condition (2) in Theorem 3.4 follows from (i) Yn →
E[X] in probability by the law of large numbers, (ii) E[X] /∈ I by Definition
5.3, and (iii) the condition (3) in this theorem.

Third, since I is closed and contained in an open interval D, there exists
a constant d ∈ R

+ such that I − x

n
⊂ D for x ∈ [0, nd]. Therefore, by condition

(3),

log PYn

(
I − x

n

)
= −nφ

(
y∗ − x

n

)
+ sn

(
I − x

n

)
, y∗ =

{

y : inf
y∈I

φ(y)
}

.

(5.35)

Since
[
y∗, y∗ − x

n

] ⊆ D and φ ∈ C2(D), by Taylor’s expansion,

φ
(
y∗ − x

n

)
= φ(y∗) − φ′(y∗)

x

n
+ O

(
x2

n2

)

for all x ∈ [0, nd]. (5.36)

By conditions (1) and (3), there exists a sequence εn → 0 and a constant k
such that

log PZn
(I) = log PYn

(I) + k + εn = −nφ(y∗) + sn(I) + k + εn. (5.37)

By condition (3), we have
∣
∣
∣sn

(
I − x

n

)
− sn(I)

∣
∣
∣ = |sn(I)| O

(x

n

)
= O(δnx), (5.38)

in which δn → 0. By the results of (5.35), (5.36), (5.37), and (5.38), we obtain

log

(
PYn

(
I − x

n

)

PZn
(I)

)

= log

(
exp

[−nφ
(
y∗ − x

n

)]

exp [−nφ(y∗)]

)

+ O

(
x2

n

)

+ O(δnx) + εn on In = [0, nd]. (5.39)
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Let rn(x) := O
(

x2

n

)
+O(δnx)+εn, we can check that (i)

∣
∣rn(x)e−ξx

∣
∣ uniformly

bounded on R
+ for any ξ > 0, and (ii) E

[
rn(X)2

] → 0 since E
[
X4

]
< ∞

by Definition 5.3. Hence, rn(x), dn, φ satisfy condition (3) in Theorem 3.4.
Therefore, we have checked that all of the conditions in Theorem 3.4 hold,
then we can apply it to get

DKL

(
PI ‖ Q

(n)
I

)
→ 0 if and only if ϕ(I) = −φ′(y∗). (5.40)

�

By Cramér’s Theorem 2.3, the existence of the function φ(y) in condition
(3) is from the existence of the rate function of Yn =

∑n−1
i=1 Xi/n. Let set

Dφ := {y ∈ R : φ(y) < ∞} and we can choose D = int (Dφ). By the properties
of rate functions in Appendix 6.1, we have

φ(y) ∈ C2(D) , φ(y) is convex on D, (5.41)

and −∞ < φ′(y) < 0 for y ∈ I ⊂ D if the interval I is chosen on the left side
of the mean of Yn. By Cramér’s Theorem, the rate function satisfies

log PYn

(
I − x

n

)
= −nφ

(
y∗ − x

n

)
+ o(n), for I − x

n
⊂ D. (5.42)

Comparing (5.42) with condition (3), Theorem 5.3 requires an explicit form of
the remainder:

log PYn

(
I − x

n

)
= −nφ

(
y∗ − x

n

)
+ sn

(
I − x

n

)
, for I − x

n
⊂ D, (5.43)

where
∣
∣
∣
∣
sn(I − x

n ) − sn(I)
sn(I)

∣
∣
∣
∣ = O

(x

n

)
, and |sn(I ′)| = o(n) for all I ′ ⊂ D. This

stronger condition guarantees the “if and only” if statement (5.34).
The following is our discussion on the connection between Theorem 5.3

and Van Campenhout and Cover’s Theorem 2.2. In Theorem 5.3, if the con-
dition is on the scale of large deviations, then the conditional density

fX|Z̃n
(x;nI), nμ �∈ nI

can be approximated by the (normalized) product of its unconditional density
fX(x) and an exponential function e−λx. This parameter λ = φ′(y∗) is unique
and determined by the first derivative of the rate function evaluated at y∗ =
infy∈I φ(y). It implies that we are able to find λ directly from the rate function
without using the maximum entropy principle. Furthermore, by the pair of
reciprocal equations (2.14):

φ′(y∗) = λ if and only if A′(λ) = y∗, (5.44)

which means the parameter λ we find by the derivative of the rate function
(left side of (5.44)) is also the solution of the derivative of the free energy
function A under the constraint = y∗ (right side of (5.44)).

Therefore, using the maximum entropy principle under the first moment
constraint to find good approximations of conditional density (Van Campen-
hout and Cover’s approach) is a natural consequence of the emergent behavior
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of

log

(
fX|Z̃n

(x;nI)

fX(x)

)

. (5.45)

And this emergent behavior gives rise to a large deviation function that uniquely
determines the parameter of the exponential weight. As we discussed in Sect. 2,
we apply the large deviation principle directly to the distribution of a the heat
bath

Yn =
Ỹn

n
=

1
n

n∑

i=2

Xi.

On the other hand, the Gibbs conditioning principle uses the large deviation
principle for empirical measures

Ln =
1
n

n∑

i=1

δXi
.

Denote that X1 := X. Then, the limit problem of the sequence of probability
measures Q

(n)
I with density functions

fX|Zn
(x; I), where Zn = X + Yn =

1
n

n∑

i=1

Xi,

and the limit problem of the sequence of empirical measures

E [Ln | Ln ∈ Γ ] , where Ln =
1
n

n∑

i=1

δXi
and Γ =

{

γ :
∫

xγ(dx) ∈ I

}

are just two sides of the same coin. Eventually, they both give arise to a limit
as a canonical distribution with the density

fX(x)e−λx.

In conclusion, our approach generates λ by the large-deviation rate function of
the heat bath Yn and the Gibbs conditioning principle solves λ by minimizing
the relative entropy which is the large-deviation rate function of sampling.
These two approaches are connected by the reciprocal equations (5.44) through
the Legendre transform.

5.4. Emergence of Temperature (Conditioned on the Scale of Gaussian Fluc-
tuations)

Similar to Sect. 5.3, in this section, we define the parameter 1
βnψ(I) in the

exponential function e−βnψ(I)x as the temperature of the canonical distribu-
tion and consider a sequence of conditional probabilities for a function of a
subsystem represented by X in contact with its heat bath represented by
Ỹn =

∑n
i=2 Xi, Xi are i.i.d. and Xi has a same distribution as X, and X, Xi

are independent. In comparison with Sect. 5.3, here we suppose that the total
energy Z̃n := X + Ỹn is conditioned on the scale of Gaussian fluctuations.
We will show that the temperature 1

βnψ(I) is an emergent parameter uniquely
determined by a normal distribution N(0, σ2), where σ2 is the variance of X.
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Definition 5.4. Let X be a nonnegative and nonconstant continuous random
variable with E[X4] < ∞, and let μ = E [X] , σ2 be the variance of X. Let
Ỹn =

∑n
i=2 Xi, where all random variables in {Xi}n

i=2 ∪ {X} are i.i.d. Denote
Z̃n := X + Ỹn. For an interval I = [d, d + δ], d ∈ R, δ > 0 and a function
ψ : I → R such that 0 < ψ(I) < ∞. Let P

(n)
I be a sequence of probability

measures with density functions AnfX(x)e− ψ(I)√
n

x, where
1

An
=
∫

R+
fX(x)e− ψ(I)√

n
xdx

and let Q
(n)
I be a sequence of probability measures with density functions

fX|Z̃n
(x;nμ +

√
nI).

Theorem 5.4. Denote Yn = Ỹn−(n−1)μ√
n

, Xn = X√
n
, Zn = Xn + Yn, and let

I − x√
n

=
{

y − x√
n
, y ∈ I

}
. Assume the following conditions hold:

1.
∣
∣
∣
∣
fX|Zn

(x; I)
fX(x)

∣
∣
∣
∣ is uniformly bounded on R

+.

2. Yn → Y in distribution and
∂ log P (Y ∈ [y, y + δ])

∂y

∣
∣
∣
∣
y=d

> 0, Y ∼ N(0, σ2).

3. There exists a sequence of functions gn : R → R with
∣
∣
∣gn(x)e− ξ√

n
x
∣
∣
∣ uniformly bounded on R

+, for any ξ > 0, and E
[
gn(X)2

] → 0

such that

log

⎛

⎝
P
(
Yn ∈ I − x√

n

)

P (Zn ∈ I)

⎞

⎠ = log

⎛

⎝
P
(
Y ∈ I − x√

n

)

P (Y ∈ I)

⎞

⎠+
gn(x)√

n
on In, (5.46)

in which In = [0, dn] with dn = O(
√

n).
Then,

nDKL

(
P
(n)
I ‖ Q

(n)
I

)
→ 0 if and only if ψ(I) =

∂ log P (Y ∈ [y, y + δ])
∂y

∣
∣
∣
∣
y=d

.

(5.47)

Remark 5.3. As Remark 5.2, the conditions (1)–(3) formulated in Theorem
5.4 are technical, so we would like to characterize and verbally describe the
underlying meaning and interpretation of them: As Theorem 5.3, the condition
(1) means that the interaction between Xn and Yn is regulated; The condition
(2) follows from the central limit theorem and we need to choose the interval
I = [d, d + δ] ⊂ R

− such that the partial derivative term is positive; The
condition (3) combines the setup Xn → 0 in probability and Yn → Y in
distribution, furthermore, the remainder term has a special form gn(x)√

n
.

The proof of Theorem 5.4 is just the application of Theorem 3.3. We can
check that all of the conditions in Theorem 3.3 are satisfied. Here, we want to
further discuss Eq. (5.46) in condition (3):



Vol. 22 (2021) Asymptotic Behavior of a Sequence of Conditional 1615

As the proof for Theorem 5.2, by Corollary 2.1 of Berry–Esseen theorem
and Slutsky’s theorem, we have

log

⎛

⎝
P
(
Yn ∈ I − x√

n

)

P (Zn ∈ I)

⎞

⎠ = log

⎛

⎝
P
(
Y ∈ I − x√

n

)

P (Y ∈ I)

⎞

⎠+ O

(
1√
n

)

on In.

(5.48)

However, it only guarantees the convergence of P
(n)
I and Q

(n)
I in ‖ · ‖∞ by

Theorem 5.2. Compare Eq. (5.48) with condition (2), Theorem 5.4 requires an
explicit form of the remainder:

log

⎛

⎝
P
(
Yn ∈ I − x√

n

)

P (Zn ∈ I)

⎞

⎠ = log

⎛

⎝
P
(
Y ∈ I − x√

n

)

P (Y ∈ I)

⎞

⎠+
gn(x)√

n
on In,

(5.49)

and E[gn(X)2] → 0. This explicit form of remainder guarantees the “if and
only” if statement (5.47).

We now discuss the connection between Theorem 5.4 and Zabell’s Theo-
rem 2.1. If the condition is on the scale of Gaussian fluctuations, Theorem 2.1
only tells us that the sequence of conditional distributions FX|Z̃n

(x;nμ+
√

nI)
should converge to its unconditional distribution FX(x). By our theorem 5.4,
we have an explicit formula for the canonical distribution to approximate the
conditional distribution well:

FX|Z̃n
(x;nμ +

√
nI) ≈

∫ x

−∞
AnfX(s)e− ψ(I)√

n
sdx,

for a sufficiently large n, and it converges to FX(x) as n → ∞ which is consis-
tent with Zabell’s Theorem 2.1. In addition, the parameter ψ(I)√

n
of the canon-

ical distribution is uniquely determined if we require that the approximation
is “good” enough, i.e., the KL-divergence of the conditional distribution from
the canonical distribution converges to zero in the rate o

(
1
n

)
.

5.5. Mathematical Definitions of the Heat Bath

In Sect. 3, we provided two limit theorems of a sequence of conditional proba-
bilities to derive a unique canonical distribution as an emergent phenomenon.
In Theorem 3.3, the emergent parameter in the exponential weight is uniquely
determined by the limiting distribution of the heat bath Yn → Y (note that
in Theorem 3.3, Yn follows from the appropriate shifting and scaling of the
original heat bath Ỹn) evaluated on the interval I = [h, h + δ] such as

ψ(I) =
∂ log P (Y ∈ [y, y + δ])

∂y

∣
∣
∣
∣
h

.

Similarly, in Theorem 3.4, the emergent parameter in the exponential weight
is uniquely determined by the large-deviation rate function of the heat bath
Yn → μ (note that in Theorem 3.4, Yn follows from the appropriate shifting
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and scaling of the original heat bath Ỹn) evaluated on the interval I = [h, h+δ]
such as

ϕ(I) = −φ(y∗),

where φ is the rate function of Yn and y∗ = {y : infy∈I φ(y)}.

If we choose an interval I ′ ⊂ I, the parameter in the exponential weight
may depend on I ′ in both of the limit theorems. However, since I ′ is just a
subinterval of I, we expect that a well-defined heat bath should give rise to
an invariant temperature of the canonical distribution by giving a constant
parameter in the exponential weight no matter what subinterval I ′ we choose
for it. In this section, we discuss two cases that follow from Theorems 3.3 and
3.4, respectively. Given a finite interval I, we first define the subinterval invari-
ant property of a sequence of conditional distributions, then we provide three
equivalent properties: (1) the subinterval invariant property of a sequence of
conditional distributions (2) the invariant temperature property of the canon-
ical distribution (3) the heat-bath property. Based on the equivalence of these
three properties, we truly define the concept of “heat bath” in the language of
mathematics.

Recall that X, Ỹn, and Z̃n := X + Ỹn, are random variables from the
definitions in Sect. 3. By proper shifting and scaling, let Xn := βnX, Yn :=
βn

(
Ỹn − μn

)
, and Zn := Xn + Yn, where μn, βn are positive sequences and

βn = o(1).
For a finite interval I = [h, h+δ], h ∈ R and δ > 0, let Q(n)

I be a sequence
of probability measures with density functions fX|Zn

(
x; I

)
. The sequence of

conditional probability measures Q
(n)
I represents our setup for the canonical

ensemble, which should have a “nice” property such that the limiting behaviors
of Q(n)

I′ and Q
(n)
I are the same for all subintervals I ′ ⊂ I. Hence, we define this

“nice” property as follows:

Definition 5.5. Note that δ (·, ·) represents the total variation distance of two
probability measures. For any given interval I ′ ⊂ I,

δ
(
Q

(n)
I′ ,Q

(n)
I

)

αn
→ 0, (5.50)

in which we take αn = βn for Theorem 3.3, and αn = 1 for Theorem 3.4.
Then, we say that the sequence of conditional probability measures Q

(n)
I has

the subinterval invariant property on the interval I.

We start with our first theorem which follows Theorem 3.3. Recall that
in Theorem 3.3, Y is a random variable such that Yn → Y in distribution.

Theorem 5.5. For a given interval I ′ = [h′, h′ +δ′], h′ ∈ R, δ′ > 0, and I ′ ⊂ I,
and a function ψ : I ′ → R, let P̃(n)

I′ be a sequence of probability measures with
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density functions

fX(x)e−βnψ(I′)x
∫

R+
fX(x)e−βnψ(I′)xdx

, (5.51)

where

ψ(I ′) =
∂ log P (Y ∈ [y, y + δ′])

∂y

∣
∣
∣
∣
h′

. (5.52)

Assume all of the conditions in Theorem 3.3 hold, then the following three
statement are equivalent:

1. Q
(n)
I has the subinterval invariant property on the interval I.

2. P̃
(n)
I′ has a unique parameter (the invariant temperature property) such

as

ψ(I ′) = ψ(I) for all I ′ ⊂ I.

3. Yn → Y in distribution and Y is a random variable with a distribution
function

P (Y ∈ [h′, h′ + δ′]) = α(δ′)eψ(I)h′
for all [h′, h′ + δ′] ⊂ I, (5.53)

where α : R+ → R is a function.

Proof. Since all of the conditions in Theorem 3.3 hold for all intervals I ′ ⊂ I
with (5.52), we can obtain that

lim
n→∞

DKL

(
P̃
(n)
I′ ‖ Q

(n)
I′

)

β2
n

= 0, for all I ′ ⊂ I. (5.54)

To prove ((1) ⇒ (2) ⇒ (3)): Assume the invariant temperature property
holds, by applying the triangle inequality and Pinsker’s inequality to Eq. (5.54)
and the assumption of the subinterval invariant property (5.50) with αn = βn,
we have that

δ
(
P̃
(n)
I′ , P̃

(n)
I

)

βn
→ 0, for all I ′ ⊂ I. (5.55)

Following every step from (4.59) to (4.67) in the proof 4.2.2 for Lemma 4.3,
we can get

ψ(I ′) = ψ(I), for all I ′ ⊂ I. (5.56)

By (5.52) and (5.56), we have

∂ log P (Y ∈ [y, y + δ′])
∂y

∣
∣
∣
∣
h′

≡ ψ(I), for all [h′, h′ + δ′] ⊂ I, (5.57)

which implies Y has a distribution

P (Y ∈ [h′, h′ + δ′]) = α(δ′)eψ(I)h′
, for all [h′, h′ + δ′] ⊂ I,

with some function α : R+ → R.
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To prove ((3) ⇒ (2) ⇒ (1)): By the assumption (3) that

P (Y ∈ [h′, h′ + δ′]) = α(δ′)eψ(I)h′
, for all [h′, h′ + δ′] ⊂ I,

with some function α : R+ → R, and Eq. (5.52), we can obtain that

ψ(I ′) = ψ(I), for all I ′ ⊂ I, (5.58)

therefore, it implies

δ
(
P̃
(n)
I′ , P̃

(n)
I

)

βn
= 0, for all I ′ ⊂ I. (5.59)

By applying the triangle inequality and Pinsker’s inequality to (5.59) and
(5.54), we have

δ
(
Q

(n)
I′ ,Q

(n)
I

)

βn
→ 0, for all I ′ ⊂ I. (5.60)

�

Next, we continue our analysis based on Theorem 3.4. Recall that in
Theorem 3.4, Yn → μ, for some constant μ, in probability and the sequence of
laws of Yn satisfies a large deviation principle with speed 1/βn and rate function
φ. The rate function φ ∈ C2(D), where D is an open interval containing I,
and

−∞ < φ′(y) < 0, for all y ∈ I. (5.61)

Theorem 5.6. For a given interval I ′ = [h′, h′ + δ′], h′, δ′ ∈ R, δ′ > 0, and
I ′ ⊂ I, and a function ϕ : I ′ → R, let PI′ be a probability measure with density
function

fX(x)e−ϕ(I′)x
∫

R+
fX(x)e−ϕ(I′)xdx

, (5.62)

where

ϕ(I ′) = −φ′(ŷ∗), ŷ∗ =
{

y : inf
y∈I′

φ(y)
}

. (5.63)

Assume all of the conditions in Theorem 3.4 hold, then the following three
statements are equivalent:

1. Q
(n)
I has subinterval invariant property on the interval I.

2. PI′ has a unique parameter (invariant temperature property) such as

ϕ(I ′) = ϕ(I) for all I ′ ⊂ I.

3. Let φ be the large-deviation rate function of Yn. φ is a linear function
such as

φ(y) = φ′(y∗)y + c, for all y ∈ I, (5.64)

where y∗ = {y : infy∈I φ(y)} and c is some constant.
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Proof. Since all of the conditions in Theorem 3.4 hold for all intervals I ′ ⊂ I
with (5.63), we can obtain that

lim
n→∞ DKL

(
PI′ ‖ Q

(n)
I′

)
= 0, for all I ′ ⊂ I. (5.65)

We first show ((1) ⇒ (2) ⇒ (3)). The proof of ((1) ⇒ (2)) follows from
the proof of ((1) ⇒ (2)) in Theorem 5.5, then we can get

ϕ(I ′) = ϕ(I), for all I ′ ⊂ I. (5.66)

By (5.63) and (5.66),

φ′(ŷ∗) = φ′(y∗), for all ŷ∗ =
{

y : inf
y∈I′

φ(y)
}

with I ′ ⊂ I.

With the assumption (5.61): −∞ < φ′(y) < 0, for all y ∈ I, and the properties
of the rate function φ in Appendix 6.1, we have that

φ′(y) ≡ φ′(y∗), for all y ∈ I,

which implies

φ(y) = φ′(y∗)y + c, for all y ∈ I, (5.67)

where c is some constant.
Next we prove ((3) ⇒ (2) ⇒ (1)). Eq. (5.64) implies

φ′(y) ≡ φ′(y∗), for all y ∈ I,

then we can obtain

φ′(ŷ∗) = φ′(y∗), for all ŷ∗ =
{

y : inf
y∈I′

φ(y)
}

with I ′ ⊂ I.

With (5.63), it implies

ϕ(I ′) = ϕ(I) for all I ′ ⊂ I.

Then, the proof of ((2) ⇒ (1)) follows from the proof of ((2) ⇒ (1)) in Theorem
5.5. �

Remark 5.4. The formula (5.53) for the third property (it is called the heat-
bath property) in Theorem 5.5 provides the precise formulation of what a heat
bath is in probabilistic terms when the heat bath Yn converges to Y on the
scale corresponding to Theorem 3.3; Similarly, the formula (5.64) for the third
property in Theorem 5.6 provides the precise formulation of what a heat bath
is in probabilistic terms when the heat bath Yn converges to a constant μ on
the scale corresponding to Theorem 3.4. Through these formulations and the
equivalence of the three properties: (1) the subinterval invariant property (2)
the invariant temperature property (3) the heat-bath property, we really define
an invariant temperature bath mathematically.
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6. Appendix

6.1. Properties of the Large-Deviation Rate Function

We include the following properties from [8]. Let L be the law of X1, let
μ := E[X1] and σ2 := Var(X1) and assume that σ > 0. Let

y− := inf(supp(L)), y+ := sup(supp(L))

and φ be the function defined in Theorem 2.3. Define

Dφ := {y ∈ R : φ(y) < ∞} and Uφ := int(Dφ). (6.1)

Then, the following holds:

1. φ(y) is convex and lower semi-continuous.
2. 0 ≤ φ(y) ≤ ∞ for all y ∈ R.
3. φ(y) = 0 if and only if y = μ.
4. Uφ = (y−, y+) and φ(y) is infinitely differentiable on Uφ.
5. φ′′(y) > 0 on Uφ and φ′′(μ) = 1/σ2.

6.2. Proof of Corollary 2.1

Proof. (2.22) follows from Theorem 2.5 since Zn → G in distribution and
Wn → 0 in probability. (2.23) basically follows from the proof for Berry–
Esseen Theorem (see for example Theorem 2.2.8. in [34]). We include a sketch
of the proof here.

Let φY be the characteristic function of a random variable Y and ε =
E|X|3/√

n. To prove (2.23), following every step in the proof given in [34], it
suffices to show that

∫

|t|<c/ε

|φZ̃n
(t) − φG(t)|
1 + |t| dt = O(ε), (6.2)

for some small constant c. We can show that
∣
∣φZ̃n

(t) − φG(t)
∣
∣ =

∣
∣
∣
∣exp

[−t2

2

(
n + k

n

)

+ O

(

ε|t|3
(

n + k

n

))]

− exp(−t2/2)
∣
∣
∣
∣

= O

(
t2

n
exp(−t2/4)

)

+ O
(
ε|t|3 exp(−t2/4)

)
. (6.3)
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Inserting this to (6.2), after integration, the first term in (6.3) has order O( 1
n )

and the second term has order O(ε). It completes the proof. �

6.3. Proof of the Boundedness of Eq. (5.29)

Denote that

A(y) :=
∂2 logP

(
Y ∈ [y, y + δ]

)

∂y2
=

f ′
Y (y + δ) − f ′

Y (y)

P
(
Y ∈ [y, y + δ]

) −
(

fY (y + δ) − fY (y)

P
(
Y ∈ [y, y + δ]

)

)2

.

(6.4)

We can recognize that

A(h − α̂nx) = 2qn(x),

in which the function qn(x) is defined in Eq. (4.20) for the proof of Theorem
3.1.

In the entire proof of Theorem 3.1, the only place that we use the con-
dition (3.10) regarding uniformly bounded A(y) when y ∈ R is just for the
proof of Eq. (4.21) to show that exp(−ψ(I)x) · qn(x) is uniformly bounded on
x ∈ R

+. Therefore, instead of proving uniformly bounded A(y) in the condi-
tion (3.10), it suffices to show the uniform boundedness of exp(−ψ(I)) · qn(x):
there exists a constant C such that

|exp(−ψ(I)x) · A(h − α̂nx)| ≤ C, α̂n ∈ (0, 1), for all x ∈ R
+. (6.5)

By the mean value theorem and the formula of the density of normal distri-
bution, we can show that there exists ŷ, ŷ ∈ (y, y + δ) such that the first term
on the right side of (6.4) can be written as

f ′
Y (y + δ) − f ′

Y (y)
P
(
Y ∈ [y, y + δ]

) = (y + δ) exp
[−y2 + ŷ2

2σ2

](

exp
[−2yδ − δ2

2σ2

]

− 1
)

+ δ exp
[−y2 + ŷ2

2σ2

]

= (y + δ) exp
[
(ŷ − y − δ)(ŷ + y + δ)

2σ2

]

− y exp
[
(ŷ − y)(ŷ + y)

2σ2

]

. (6.6)

Recall y < ŷ < y + δ. When ŷ + y + δ ∈ [0, 2h+ δ], (6.6) is uniformly bounded.
When ŷ + y + δ < 0, we can further have

∣
∣
∣
∣
∣

f ′
Y (y + δ) − f ′

Y (y)
P
(
Y ∈ [y, y + δ]

)

∣
∣
∣
∣
∣
≤ (h + δ) exp

[−δ(2y + δ)
2σ2

]

+ h exp
[−δy

σ2

]

.

Therefore,

exp(−ψ(I)x)

∣
∣
∣
∣
∣

f ′
Y (y + δ) − f ′

Y (y)
P
(
Y ∈ [y, y + δ]

)

∣
∣
∣
∣
∣

≤ [(h + δ) exp(−δ2/2σ2) + h] · exp
[−δy

σ2
− ψ(I)x

]

. (6.7)
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By plugging in y = h − α̂nx, α̂n ∈ (0, 1) in (6.7), since we have 2δ/σ2 < ψ(I)
from the assumptions in Theorem 5.2 , we can check the terms on the right-
hand side in (6.7) is uniformly bounded when x ∈ R

+.
The second term on the right side of (6.4) can be written as

(
fY (y + δ) − fY (y)
P
(
Y ∈ [y, y + δ]

)

)2

= exp
[−y2 + ŷ2

σ2

](

exp
[−2yδ − δ2

2σ2

]

− 1
)2

. (6.8)

When y + ŷ ∈ [0, 2h + δ], the right-hand side above is uniformly bounded.
When y + ŷ < 0, from (6.8) we have

exp(−ψ(I)x)

(
fY (y + δ) − fY (y)
P
(
Y ∈ [y, y + δ]

)

)2

≤ exp
[
(ŷ − y)(ŷ + y)

σ2
− ψ(I)x

](

exp
[−2yδ − δ2

2σ2

]

− 1
)2

≤ exp(−ψ(I)x)
(

exp
[−2yδ − δ2

2σ2

]

− 1
)2

= exp(−ψ(I)x)
(

exp
[−2yδ − δ2

σ2

]

− 2 exp
[−2yδ − δ2

2σ2

]

+ 1
)

. (6.9)

By plugging in y = h − α̂nx, α̂n ∈ (0, 1) in (6.9), since we have 2δ/σ2 < ψ(I),
we can check the terms on the right hand is uniformly bounded when x ∈ R

+.
Therefore, combining the estimates in two parts, (6.5) is uniformly bounded
for all x ∈ R

+.

6.4. Proof of Corollaries 3.1, 3.2, and 3.3

6.4.1. Proof of Corollary 3.1. This proof basically follows the proof in Sect. 4.1.1
for Theorem 3.1, so we only provide the details of the difference here. For the
derivation of Eq. 4.2, we do Taylor’s expansion with respect to x and y for this
corollary, so we will get Eqs. (4.3)–(4.5) as following:

φn(I) =
∂ log P

(
Yn ∈ [y, y + δ] | Xn = 0

)

∂y

∣
∣
∣
∣
y=h

− ∂ log P
(
Yn ∈ [y, y + δ] | Xn = 0

)

∂x

∣
∣
∣
∣
y=h

,

rn(x) =
1
2

∂2P
(
Yn ∈ [y, y + δ] | Xn = ξ

)

∂y2

∣
∣
∣
∣
y=h−αnx, ξ=αnx

+
1
2

∂2P
(
Yn ∈ [y, y + δ] | Xn = ξ

)

∂ξ2

∣
∣
∣
∣
y=h−αnx, ξ=αnx

− ∂2P
(
Yn ∈ [y, y + δ] | Xn = ξ

)

∂ξ∂y

∣
∣
∣
∣
y=h−αnx, ξ=αnx

. (6.10)
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With the remaining term

kn(x) =
rn(x)

P
(
Yn ∈ [h, h + δ] | Xn = 0

) − φn(I)2e−γn·φn(I)x

2
,

for some αn, γn ∈ (0, 1). Then, we obtain

fXn|Zn
(x; I) =

fXn
(x)P (Yn ∈ I | Xn = 0)(e−φ(I)x + kn(x)x2)

P (Zn ∈ I)
, for x ∈ R

+.

(6.11)

Based on these new expressions of Eqs. (4.3)–(4.5), Eq. (4.11) becomes
∣
∣
∣
∣
∣

∫

R+
AnfXn

(x)e−φn(I) log

(
fXn

(x)PYn|Xn

(
I − x;x

)

PZn

(
I
) · 1

AnfXn
(x)e−φn(I)x

)

dx

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫

R+
AnfXn

(x)e−φn(I) log

(
PYn|Xn

(
I − x;x

)

PYn|Xn

(
I; 0

)
e−φn(I)x

· PYn|Xn

(
I; 0

)

PZn

(
I
)
An

)

dx

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣log

(
Bn

An

)∣
∣
∣
∣+

∣
∣
∣
∣
∣

∫

R+
AnfXn

(x)e−φn(I) log

(
PYn|Xn

(
I − x;x

)

PYn|Xn

(
I; 0

)
e−φn(I)x

)

dx

∣
∣
∣
∣
∣
,

(6.12)

where

An :=
1

∫
R+ fXn

(x)e−φ(I)xdx
and Bn :=

PYn|Xn

(
I; 0

)

PZn
(I)

. (6.13)

From the expression of fXn|Zn

(
x; I

)
in (6.11), we have the following identity

1 =
∫

R+
fXn|Zn

(
x; I

)
dx =

Bn

An
+ Bn

∫

R+
fXn

(x)kn(x)x2dx. (6.14)

Equation (6.14) implies

log
(

Bn

An

)

= log
(

1 − Bn

∫

R+
fXn

(x)kn(x)x2dx

)

. (6.15)

Now it remains to show
∣
∣
∣
∣Bn

∫

R+
fXn

(x)kn(x)x2dx

∣
∣
∣
∣ (6.16)

is small for large n.
By the conditions in Corollary 3.1, PZn

(I) ≥ δ2 > 0, hence there exists a
constant M1 > 0 such that

Bn =
PYn|Xn

(I; 0)
PZn

(I)
≤ M1. (6.17)

And since kn(x) is uniformly bounded as proof 4.1.1 for Theorem 3.1, with the
assumption E[X2

n] = an, we can derive that
∣
∣
∣
∣Bn

∫

R+
fXn

(x)kn(x)x2dx

∣
∣
∣
∣ ≤ M1 · sup |kn(x)| · E[X2

n] = O(an). (6.18)
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Recall (6.15), since log(1 + x) ≤ x for all x > −1, for sufficiently large n,
we have

log
(

Bn

An

)

= log
(

1 − Bn

∫

R+
fXn

(x)kn(x)x2dx

)

≤ Bn

∫

R+
fXn

(x)kn(x)x2dx = O(an), (6.19)

which gives us that the first term in (6.11) is in order O(an).
The second term in (6.12) is also in order O(an) which follows from the

steps (4.20)–(4.22) in Sect. 4.1.1. Therefore, by the definition of KL-divergence
(2.17) and Bayes’ theorem for conditional probability and the inequality (6.12),
we finally obtain

DKL

(
P̂
(n)
I ‖ Q

(n)
I

)

=

∣
∣
∣
∣
∣

∫

R+
AnfXn

(x)e−φn(I) log

(
fXn|Zn

(
x; I

)

AnfXn
(x)e−φn(I)x

)

dx

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫

R+
AnfXn

(x)e−φn(I) log

(
fXn

(x)PYn|Xn

(
I − x;x

)

PZn

(
I
) · 1

AnfXn
(x)e−φn(I)x

)

dx

∣
∣
∣
∣
∣

= O(an). (6.20)

6.4.2. Proof of Corollaries 3.2 and 3.3. For the proof of Corollary 3.2, since
log G(I; 0) = 0 and log G(I; ξ) ∈ C(R+) with respect to ξ, we can do Taylor’s
expansion for it at zero to get

log G(I;βnx) =
∂ log G(I; ξ)

∂ξ

∣
∣
∣
∣
0

βnx + O(β2
nx2) for x ∈ R

+. (6.21)

And similarly, for the proof of Corollary 3.3, since
log R(I; 0) = 0 and log R(I; ξ) ∈ C(R+) with respect to ξ, we can do Tay-
lor’s expansion for it at zero to get

log (R(I;βnx))
1

βn =
1
βn

(
∂ log R(I; ξ)

∂ξ

∣
∣
∣
∣
0

βnx + O(β2
nx2)

)

for x ∈ R
+.

(6.22)

Then, the proof of Corollary 3.2 follows from the proof given in Sect. 4.2.3 with
an additional linear term ∂ log G(I;0)

∂ξ βnx in (4.68), and the proof of Corollary 3.3

follows from the proof in Sect. 4.2.4 with an additional linear term ∂ log R(I;0)
∂ξ x

in (4.69).
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