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Abstract Modeling open quantum systems is a difficult task for many experiments.
A standard method for modeling open system evolution uses an environment that is
initially uncorrelated with the system in question, evolves the two unitarily, and then
traces over the bath degrees of freedom to find an effective evolution of the system.
This model can be insufficient for physical systems that have initial correlations.
Specifically, there are evolutions ρS = trE (ρSE ) → ρ ′

S = trE (UρSEU †) which can-
not be modeled as ρS = trE (ρSE ) → ρ ′

S = trE (UρS ⊗ ρEU †). An example of this is
ρSE = ∣∣Φ+〉 〈

Φ+∣∣ and USE = CNOT with control on the environment. Unfortunately,
there is no known method of modeling an open quantum system which is completely
general. We first present some restrictions on the availability of completely positive
(CP) maps via the standard prescription. We then discuss some implications a more
general treatment would have for quantum control methods. In particular, we pro-
vide a theorem that restricts the reversibility of a map that is not completely positive
(NCP). Let Φ be NCP and Φ̃ be the corresponding CP map given by taking the
absolute value of the coefficients in Φ. The theorem shows that the CP reversibility
conditions for Φ̃ do not provide reversibility conditions for Φ unless Φ is positive
on the domain of the code space.
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1 Introduction

Precise modeling and control of quantum systems will be required for quantum tech-
nologies. This includes quantum computers, quantum cryptography, and quantum
simulation of quantum systems. Unfortunately, even though great progress has been
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made in this area, there are still questions concerning the types of possible evolutions
and how to describe them. In the case that the system and environment have no prior
correlations, there is a standard prescription for describing the evolution. Let the
system (environment) state be ρS (ρE ). Supposing that the two evolve under a joint
unitary transformation USE , then a map can be defined by

Φ(ρS) = trE (USEρS ⊗ ρEU †
SE ). (1)

This map is not only positive (It maps all positive operators to positive operators.),
it is also completely positive (The extended map In ⊗ Φ(ρ) is positive for all n and
any positive input ρ.). This also provides a way to model a quantum system.

However, not all evolutions of a quantum system are able to be described this
way. In particular, the assumption of an initial product state may not be satisfied. In
this case, some discussions have arisen in the literature about what one should do if
the standard assumption of an initially uncorrelated state no longer applies [1–13].
This is very relevant given that such examples are not difficult to find [14].

In general, the evolution of a system can be defined by a dynamical map, A, where
we first vectorize the system density matrix [15]. The vectorization is done by writing
all the elements as a column vector. For a single qubit state, this is given by

vec(ρ) =

⎡
⎢⎢⎣

ρ00

ρ01

ρ10

ρ11

⎤
⎥⎥⎦ . (2)

The transformation is then done on this vectorized form and is given by

ρ ′ = Aρ. (3)

Using the restrictions for a valid density matrix, it being Hermitian, positive semi-
definite and having trace one, the restrictions on the A matrix are given by

Ars,r ′s ′ = (Asr,s ′r ′)∗, (4)

∑
rsr ′s ′

x∗
r xs Ars,r ′s ′ yr ′ y∗

s ′ ≥ 0, (5)

and ∑
r

Arr,r ′s ′ = δr ′s ′ , (6)

respectively.
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These conditions can be translated to an equivalent B matrix by just relabeling.
Let

Brr ′,ss ′ ≡ Ars,r ′s ′ . (7)

Then, the conditions are hermiticity

Brr ′,ss ′ = (Bss ′,rr ′)∗, (8)

positivity

∑
rsr ′s ′

z∗
rr ′ Brr ′,ss ′ zss ′ ≥ 0, (9)

and trace preserving

∑
r

Brr ′,rs ′ = δr ′s ′ . (10)

Since B is Hermitian, it has an eigenvector/eigenvalue decomposition

Br ′r,s ′sρrs =
∑

α

γ (α)Cα
r ′rρrs(C

α
s ′s)

∗,

where the C are the eigenvectors and γ the eigenvalues.
One may also write this as

Φ(ρ) = Bρ =
∑

α

ηα Aαρ A†
α

(
=

∑
α

Aαρ A†
α,∀ηα = 1

)
, (11)

where Aα ≡ √|γ |Cα so that ηα = ±1. It is known that the map is completely positive
(CP) if and only if all ηα = 1.

This form is often called the “Operator-Sum representation”, or “Kraus decom-
position” and is often used to describe open-system quantum dynamics.

2 Freedom in the Operator-Sum Representation

It is important to realize that the operator-sum decomposition, Eq. (11), is not unique
and this non-uniqueness can be useful for finding different operator bases. This
freedom is often called the “unitary freedom” [16].

Unitary Theorem: The form of a completely positive Hermiticity-preserving map,
Φ(ρ) = ∑

α Aαρ A†
α , defined by operators {Aα} is not unique, but the operators {Fβ}
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give the same map, if and only if there is a unitary matrix with elements uαβ such
that Fβ = ∑

α uβα Aα, ∀β.

This theorem can be used to prove the error-correcting code conditions below.
The more general map, the map that may be not completely positive (NCP), has

a freedom in it as well. This is called the “pseudo-unitary freedom” [17].

Pseudo-Unitary Theorem: The form of a Hermiticity-preserving map,

Φ(ρ) =
∑

α

ηα Aαρ A†
α,

defined by {Aα} and {ηα} is not unique, but the operators {Fβ} give the same map,
if and only if there is a pseudo-unitary matrix with elements uαβ such that Fα =∑

β uαβ Aβ, ∀α. The signature of the matrix (uαβ) ∈ U (p, q) is determined by the
number of input and output elements in the sets {Aα} and {Fβ}.

Note that a unitary matrix, V , is defined by the equation V I V † = I , whereas a
pseudounitary matrix, U , is defined by the equation UηU † = η. In general, there are
many choices for η. However, in our case, η = diag(1, 1, . . . , 1,−1,−1, . . . ,−1)

where there are p ones and q minus ones.

3 Modeling Open Quantum Systems

The standard prescription, Eq. (1), is used to justify completely positive maps, and
often suffices for modeling quantum systems. However, it is clear that it is not the
most general possible evolution. Many people, including the recent work of Pechukas,
which spurred much discussion [1], have pointed out that a more general evolution
may be derived from a potentially correlated system and environment:

Φ(ρS) = trE (USEρSEU †
SE ). (12)

Finding examples which do not obey the assumption of an uncorrelated system
and environment is not difficult. Consider the following two qubit example. Suppose
that initial and final states of the system are known to be, respectively,

ρS = (1/2)

(
1 0
0 1

)

and

ρ ′
S =

(
1 0
0 0

)
.

Further assume that it is known that they evolve according to a system-environment
coupling
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USE = (1/
√

2)

⎛
⎜⎜⎝

−i 0 0 −i
0 −i −i 0
−i 0 0 i
0 −i i 0

⎞
⎟⎟⎠ .

Then it is easy to show that there is no state ρE such that Eq. (1) is satisfied. This
example can be shown to be robust to initial condition variations, as well as variations
in the unitary transformation. This makes it experimentally verifiable.

Furthermore, finding such examples is not difficult. Consider a transformation
from

ρS = TrE (ρSE )

to
ρ ′

S = TrB(USEρSEU †
SE ).

We say this is U-generated by USE . The set of local unitary transformations will be
denoted LU, the set of unitaries that are equivalent via local unitaries to the swap
unitary will be denoted as SWAP, and the set of unitary transformations that are
equivalent via local unitaries to a controlled unitary will be denoted UC2. Then we
have the following theorem [14].

Theorem: Suppose that the system and environment consist of two qubits. Every U -
generated physical transformation ρS → ρ ′

S can be U -generated by a product state
iff U belongs to LU ∪ SWAP. If U belongs to UC2, the transformation can be U -
generated by a quantum-classical state. On the other hand, if U does not belong to LU
∪ SWAP ∪ UC2, then there exist physical transformations that cannot be U -generated
by any initial separable state.

Therefore, there are plenty of examples where the standard prescription fails.
This is our motivation for studying evolutions that do not necessarily correspond to
a completely positive map.

4 Reversing a Quantum Operation Corresponding
to a Completely Positive Map

The reversibility of a quantum operation depends on the operation elements satisfying
certain conditions. These conditions are known as the quantum error correcting code
conditions. There are several ways to state these conditions, one is to consider a map
of the form of Eq. (11) when the map is completely positive with operation elements
Aα , and some logical (encoded states) |iL〉, | jL〉 [18]

〈iL |A†
α Aβ | jL〉 = mαβδi j .
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This has an intuitive interpretation as a “disjointness condition.” It states that one
state |iL〉 acted on by one operator Aα cannot have any overlap with another state
| jL〉 acted on by another error Aβ .

One can show that this condition is equivalent to the following condition [19]

P A†
α Aβ P = cαβ P,

where P is a projector onto the code space and c is a Hermitian matrix.

5 Reversing a Quantum Operation that Is Not
a Completely Positive Map

We first show that it is possible to reverse a map that is NCP.

Example 1 Let the NCP map be the three qubit map

Φ(ρ) = c0ρ + c1

∑
i

XiρXi − c2 |010〉 〈010| ρ |010〉 〈010| , (13)

where Xi is the Pauli matrix σx acting on qubit i and c0 + 3c1 = 1 and 0 < c2 < 1.
Thus, Φ is a trace decreasing map. Suppose we know that Φ has occurred. Then, the
projector onto the code space is

P = |000〉 〈000| + |111〉 〈111| (14)

and the recovery map is

R(ρ) = Pρ P +
∑

i

P XiρXi P. (15)

It is easy to check that any state Pρ P in the code space is recovered.

CP and NCP maps are closely related and in the paper by Shabani and Lidar [20],
they state:

Corollary 1 Consider a Hermitian noise map

ΦH (ρ) =
N∑

i=1

ηi Aiρ A†
i

and associate to it a CP map

Φ̃C P(ρ) =
N∑

i=1

|ηi |Aiρ A†
i .
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Then any quantum error correcting code and corresponding CP recovery map for
Φ̃C P(ρ) are also a quantum error correcting code and CP recovery map for ΦH (ρ).

Their corollary gives a result which is proportional to the original density operator
on average. However, the standard procedure for a quantum error correction, which
reverses a quantum operation, proceeds in two steps. The first is to measure an error
syndrome which identifies the error. The second step is the recovery operation. Since
the first projects out one of the terms in the sum, the terms in the sum should all be
positive if they are independent. Otherwise, they can give a negative result for the
measurement, which corresponds to a negative probability for the result to occur. We
deem this nonphysical.

Theorem 1 Suppose, using the pseudo-unitary (PU) degree of freedom, that

P F†
i Fj P = di j P

and
Φ(ρ) = Φ1(ρ) − Φ2(ρ),

where Fi = ui j A j , {ui j } ∈ PU, Φ2(Pρ P) �= 0, and {di j } is diagonal. Then Φ(Pρ P)

is not positive, i.e., the code space is not in the domain of the error map.

Sketch of Proof : Let our input density matrix be Pρ P , i.e., in the code space. The
proof relies on the orthogonality of the rotated code space. The code space projector
P , when acted on by the individual operators Fi are rotated to a set of orthogonal
projectors due to the error correcting condition. From the polar decomposition, we
have

Fi P = Ui

√
P F†

i Fi P = √
diiUi P (16)

This is actually a rotation on P . Thus, we can define

Pi ≡ Ui PU †
i (17)

and when i �= j we get

Pj Pi = 0. (18)

This means that we can pick out individual terms in the map.
Any NCP map can be written as the difference of two completely maps because

we can group the negative terms and factor out the minus sign. Since the map
Φ(ρ) = Φ1(ρ) − Φ2(ρ) and Φ2(Pρ P) �= 0, we can get a measurement result Pi

which corresponds to an outcome Pi UiρU †
i Pi by measuring the output density matrix

in the {Pk} basis. For PiUiρU †
i Pi ∈ Φ2(Pρ P), this measurement probability is neg-

ative because the probability is given by
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tr(− |dii | PiUiρU †
i Pi ) = − |dii | . (19)

Since valid density matrices are positive semi-definite, the code space is not in the
domain of Φ(ρ).

6 Discussion/Conclusions

The general problem of reversing the open-system evolution of a quantum system
is an important open problem. Here we have provided a restriction on the ability to
perform such an operation. In particular, we have shown that it is possible to arrive at
a nonphysical result when attempting to use the same recovery operation for a map
that is not completely positive as for the corresponding positive one. Furthermore,
our theorem shows that there is a general restriction on the type of encoding that one
may hope to use for reversing the quantum operations.

The general problem of how to reverse a quantum operation is still unsolved.
However, we hope to present results elsewhere that can, in particular instances,
enable the reversibility. Since the control of quantum systems is required for reliable
quantum devices, we hope the results presented here, and in our future work, will
help with the development of strategies for quantum control.
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