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Underwater Soft Robot Modeling and Control with
Differentiable Simulation

Tao Du*1, Josie Hughes*1, Sebastien Wah2, Wojciech Matusik1, and Daniela Rus1

Abstract—Underwater soft robots are challenging to model
and control because of their high degrees of freedom and their
intricate coupling with water. In this paper, we present a method
that leverages the recent development in differentiable simulation
coupled with a differentiable, analytical hydrodynamic model to
assist with the modeling and control of an underwater soft robot.
We apply this method to Starfish, a customized soft robot design
that is easy to fabricate and intuitive to manipulate. Our method
starts with data obtained from the real robot and alternates
between simulation and experiments. Specifically, the simulation
step uses gradients from a differentiable simulator to run system
identification and trajectory optimization, and the experiment
step executes the optimized trajectory on the robot to collect new
data to be fed into simulation. Our demonstration on Starfish
shows that proper usage of gradients from a differentiable
simulator not only narrows down its simulation-to-reality gap
but also improves the performance of an open-loop controller in
real experiments.

Index Terms—Modeling, Control, and Learning for Soft
Robots, Model Learning for Control, Learning from Experience,
Calibration and Identification.

I. INTRODUCTION

DEVELOPMENTS in marine robotics provide many ad-
vantages for tasks such as underwater exploration, sam-

ple collection, and observation of marine wildlife [1]. Aquatic
animals demonstrate the advantages of having a soft-body
structure for swimming and navigating aquatic environments,
highlighting how compliance and flexibility is a key compo-
nent for efficient underwater locomotion [2] and motivating
the design of soft robotic swimmers. Although a wide variety
of methods have been developed for such robots [3]–[5],
modeling and controlling them is still an open problem due
to the infinite degrees of freedom of soft systems and the
problem’s computational overhead.

There has been a significant body of research focusing
on the modeling of soft underwater systems. This includes
modeling soft-body swimmers using discrete elastic rod sim-
ulation [6] and applying the Cosserat model to Cephalopod
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inspired soft robots [7]. Dynamic models have also been
proposed for soft fish by combining bending beam theory
with hydrodynamic and damping models [8], combining beam
theory with fluidic models for modeling a compliant tail [9],
and modeling fish bodies as multiple compliant rigid segments
with hydrodynamic forces [10]. This body of work highlights
the complexity of modeling not only the deformation of
the compliant robot, but also accounting for the intricate
solid-fluid coupling between a robot and water. The complex
dynamics of both soft robots and their interaction with their
aqueous environment typically leads to a significant reality
gap between simulation and real experiments. To leverage the
power of simulation, such a gap must be reduced. This will
allow for increasingly reliable transfer of robot controllers and
designs to the real world.

In this work, we present a method for modeling and
controlling underwater soft robots with a focus on narrowing
the simulation-to-reality gap (Fig. 1). Our core idea is to
embed a differentiable simulator into a pipeline that alter-
nates between simulated and real experiments. With gradient
information readily available from a differentiable simulator,
previous papers have demonstrated promising results in vari-
ous soft-robot applications, including system identification and
controller design [11]–[15]. However, results from existing
differentiable simulators are primarily focused on simulated
robots, and demonstrations on real underwater soft robots
have yet to be seen. Our work attempts to fill this gap
by coupling differentiable simulation with a differentiable,
analytical hydrodynamic model, to enable improved modeling
and optimization of water-based soft systems.

Our pipeline starts by collecting motion data from a real
underwater soft robot with synthetic control signals (Fig. 1,
left). A dynamic model of the soft robot, including its actuators
and its hydrodynamic forces, is initialized in simulation. The
initial values of the model parameters are obtained from
measurements on the soft robot and estimation from previous
papers. Next, our pipeline compares the collected data and
the motion predicted by the dynamic model in simulation,
and gradients of the model parameters with respect to the
error between the model and real world are automatically
computed by the simulator to reduce the modeling error
(Fig. 1, lower right). With an improved dynamic model in
simulation, the pipeline then runs trajectory optimization to
propose a new open-loop controller (Fig. 1, upper right), which
is then executed on the hardware platform to collect more data
for the next iteration (Fig. 1, left). The output of our pipeline
is a calibrated dynamic model and an optimized open-loop
controller that can be directly used on a real robot.
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Fig. 1. An overview of the iterative, real-to-sim pipeline. Real-world motion
data is captured from the robot for a given control input (left). This data is
transferred to the differentiable simulator where system identification narrows
the gap between reality (four green spheres bottom right) and simulation
(four blue spheres bottom right) after which trajectory optimization is used to
generate a new control sequence. Through iterative transfer we show trajectory
optimization and reduction of the reality gap.

We demonstrate the efficacy of our pipeline on Starfish,
a customized underwater soft robot design made of silicone
foam and actuated with four tendons. Like many other existing
soft robot designs, Starfish leverages non-symmetric placement
of tendons or wires to achieve bending. Similar approaches
have been shown to be effective in soft jellyfish robots [16],
[17], and for undulating fish swimmers [18] including micro
robot swimming fish [19]. Starfish is connected to a rail in
a water tank to limit its motion to horizontal motion only.
We find that our pipeline manages to not only narrow down
the simulation to reality gap but also produce an effective
open-loop controller after a few iterations, whose performance
is increased significantly when compared to a handcrafted
baseline controller.

II. RELATED WORK
Modeling and controlling soft robots with assistance from

simulation tools has been explored in a number of previous
papers. For system identification, Real2Sim [14] is able to
accurately reproduce motions of a real deformable specimen in
simulation. However, gradients are derived with respect to ma-
terial parameters only, limiting their capability of optimizing
control signals. Conversely, large-scale simulation-to-reality
transfer has been demonstrated for soft modular robots [20].
Trajectory optimization for soft robots is discussed in [21]
with a special focus on terrestrial robots and locomotion
tasks. Their work uses sensitivity analysis to obtain gradients
from the dynamic equations but conducts system identification
through trial and error. Finally, [15] proposes to control a soft
tendon with a learned differentiable model. Compared to our
pipeline, [15] uses a neural network model and assumes the
motion is quasi-static, while our pipeline removes the quasi-
static assumption and leverages an analytic dynamic model.

Our work is also closely related to prior efforts to designing
and controlling soft fish [3]–[5]. With hydrodynamic forces

playing an important role in the motion, obtaining an accurate
dynamic model is even more difficult and existing papers rely
heavily on design heuristics and trial and error for system
identification. Our method connects differentiable simulation
to this field, particularly for optimizing parameters in a hy-
drodynamic model. Our idea of differentiating an analytical
hydrodynamic model is inspired by [22], which presents a
differentiable Stokes flow simulator but does not consider soft
robot applications.

Finally, our pipeline draws inspirations from recent ad-
vancements on narrowing the simulation-to-reality gap in
the machine learning community [23]–[27]. In particular, the
alternation between hardware and software in our pipeline
shares similarities with model-based deep reinforcement learn-
ing methods in [27] or [23], but we leverage full gradient
information from an analytic dynamic model in simulation.
Another commonly used strategy for closing the reality gap is
domain randomization, which trains the controller with ran-
domized models in simulation [24], [25]. Essentially, domain
randomization attempts to absorb modeling errors by training
a robust but conservative controller. Our method is different
from this family of methods in that we attempt to directly
reduce modeling errors by improving the model parameter
estimation.

III. SIMULATION

We now describe our simulation model for Starfish as well
as its implementation in a differentiable simulator. We choose
to base our simulator implementation on DiffPD [11], a recent
differentiable soft-body simulator that supports fast and robust
implicit time integration with contact handling. We augment
DiffPD by implementing a differentiable actuator and hydro-
dynamic model with trainable parameters in optimization. It
is worth mentioning that our pipeline is agnostic to the choice
of differentiable simulators.

A. Governing Equations

We model the body of Starfish using the finite element
method (FEM) with a tetrahedral discretization. An implicit
Euler time-stepping scheme is used because of its numerical
robustness and large time steps. Let n be the number of nodes
after discretization and let xi ∈R3n and vi ∈R3n be the nodal
positions and velocities at the i-th time step. The governing
equations can be written as follows:

xi+1 =xi +hvi+1, (1)

vi+1 =vi +
h
m
[fe(xi+1)+ fh(xi,vi)+ fa(xi+1,ai)]. (2)

Here, h is the time step (1/60 second in our simulation), m the
mass of a node, fe the elastic force computed from the material
model, fh the hydrodynamic force, and fa the actuation force
dependent on the action ai at this time step. Eqns. (1) and
(2) contain parameters whose values need to be determined
from the real system to build an accurate dynamic model.
These include the material parameters in fe, the hydrodynamic
parameters in fh, and the actuator parameters in fa, which are
described in detail in the following three subsections.
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B. Material Model

We use the same material model as described in [11]
and [28], which is based on the corotated linear material
model [29]. The material model has three parameters that
require either a direct measurement or a reliable estimation:
its density, its Young’s modulus, and its Poisson’s ratio. We
compare these parameters to the product specification [30] of
the silicon foam used (SomaFoam 25) to identify its density
(400kg/m3) and Poisson’s ratio (0.48) reliably. The Young’s
modulus E is not included in the product specification, so we
estimate its value based on the reported shore hardness and the
Gent’s relation [31]. Since this is an empirical estimation with
a possibly large uncertainty, we make E a trainable parameter
in our optimization.

C. Hydrodynamic Forces

We model hydrodynamic effects as external and explicit
forces added to the system. For the sake of speed and sim-
plicity in gradient computation, we choose to compute thrust
and drag from water with a widely used approximation in
aerodynamics [11], [26], [28]:

fd =
1
2

ρACd(α)‖vrel‖2vrel , (3)

ft =−
1
2

ρACt(α)‖vrel‖2
2n. (4)

Here, fd and ft represent the drag and thrust forces evaluated
on every triangle on the surface of Starfish after discretization.
We use ρ to represent the density of water and A the area of the
triangle. vrel ∈R3 is the relative velocity between Starfish and
the flow of water, and α is the angle of attack. Cd and Ct are
scalar functions computing the drag and thrust coefficients. For
aerodynamic applications, Cd and Ct are typically measured
by conducting wind tunnel experiments. For our underwater
experiments, however, a direct measurement of Cd and Ct
is difficult. Therefore, we represent Cd and Ct as B-splines
and make their control points trainable in our optimization.
We initialize the B-splines with the curves suggested in [28]
and optimize their shapes with the gradients calculated in the
differentiable simulator.

D. Actuators

As we use tendons inside foam to actuate Starfish, we
model the actuation with an anisotropic elastic energy which
exerts large forces along the tendon direction [11], [28]. For
a tetrahedron through which the tendon passes, the associated
anisotropic elastic energy is defined as follows:

Ea =
w
2
‖(1−ai)Fm‖2

2 (5)

where w is a prespecified stiffness, F is the deformation
gradient, m is the direction of the tendon, and ai ∈ [0,1] is
the control signal. Smaller ai indicates greater contraction
along the tendon direction. The actuation force fa for each
node is then computed by aggregating Ea from its adjacent
tetrahedrons and calculating its spatial gradients. Our actuator
model has one trainable parameter w in our optimization.

IV. OPTIMIZATION

Our ultimate goal is to find an open-loop controller for
Starfish that maximizes its forward velocity. In this section,
we describe how we combine the simulation model and real
motion data to achieve this goal. Our core idea is to leverage
the gradients from the differentiable simulator to improve both
the dynamic model (i.e., system identification) and the open-
loop control signals via trajectory optimization.

A. Problem Definition

We abstract the simulation model in Sec. III as follows:

si+1 = DiffSim(si,ai;θ) (6)

where si = (xi,vi) represents the state of the robot at the i-
th time step, ai is the actuation signal as described before, θ

represents model parameters, and DiffSim can be any black-
box differentiable simulator that computes si+1, the new state
of the system after one time step. The model parameters θ

consists of all trainable parameters in Sec. III, which we
summarize in Table I.

The decision variables to be optimized in our problem are
the model parameters θ and the sequence of actions ai. For
optimizing θ , we consider minimizing the following objective
Lθ :

min
θ

Lθ (7)

s.t. Lθ = ∑
i
‖si− s∗i ‖2 (8)

si+1 = DiffSim(si,a∗i ;θ); s0 = s∗0 (9)

where s∗i and a∗i refer to the state and the action signal from
the measurement at the i-th time step. In short, we adjust θ

to match the motion of Starfish in reality to its counterpart in
simulation.

The objective for optimizing ai is defined as La below:

min
ai

La (10)

s.t. La =COM(sN)−COM(s0) (11)
si+1 = DiffSim(si,ai;θ); s0 = s∗0 (12)

where N is the index of the last time step considered in this
trajectory optimization problem and COM(s) computes the x
coordinate of the center of mass from state s. We define the
center of mass as the average of all vertices from s. Since the
forward direction of our Starfish is along the negative x axis,
minimizing La will maximize the traveling distance as desired.
Note that θ is fixed in this optimization problem.

For a standard differentiable soft-body simulator, the proce-
dure of computing the gradients with respect to θ and ai is well

TABLE I
A SUMMARY OF ALL TRAINABLE MODEL PARAMETERS

Name Definition Initial guess
E Young’s modulus 0.9MPa, estimated from [30].
w The actuator’s stiffness 2MPa, from [11].

PCd Four control points of Cd From [28], Fig. 2.
PCt Four control points of Ct From [28], Fig. 2.
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documented in previous work [12], which interested readers
can refer to for more details. We use L-BFGS, a gradient-based
quasi-Newton method to solve the two optimization problems
above.

B. Optimization Algorithm

We now present an alternating scheme to improve both
the model parameter θ and the sequence of actions ai. Our
optimization process starts with an initial guess of θ (Table I)
and ai (a synthetic control signal). We execute ai on the hard-
ware and collect the measurement (s∗i ,a∗i ). Note that a∗i and
ai differ slightly because the motor quantizes the real number
ai into integers. We then use a∗i and s∗i to minimize Eqn. (7)
and obtain an improved model parameter θ . Next, with the
optimized dynamic model, we run trajectory optimization to
update ai. Finally, we test ai on the hardware, initiating the
next round of experiment and closing the optimization loop
in our pipeline. Alg. 1 summarize the whole optimization
algorithm in pseudo-code.

Algorithm 1: Co-optimize model (θ ) and actions (ai)

Input: Initial θ and ai;
Output: Optimized θ and ai;
while experiments do not converge do

// Hardware experiment;
Execute ai on the hardware to collect s∗i and a∗i ;
// Check convergence;
Use s∗N and s∗0 to compute Lai ;
if Lai is similar to the last iteration then

// Convergence;
break;

// System identification;
Minimize Lθ (Eqn. (7)) to update θ ;
// Trajectory optimization;
Minimize La (Eqn. (10)) to update ai;

V. RESULTS AND DISCUSSIONS

A. Hardware Setup

a) Fabrication: The fabrication method has been chosen
to allow for transfer from a 3D CAD model to a real-world
robot while minimizing the “fabrication gap” between the
real and simulated system. Starfish is fabricated by creating
an inverse mould into which silicone foam (SomaFoam 25,
SmoothOn) is cast. Silicone foam, a material widely used
for soft robotic fabrication [32], has been chosen as it allows
for rapid fabrication, shows elastic properties, and has natural
buoyancy. The “muscle fibers” or tendons can then be routed
into the soft structure along the bottom of each of the legs
of Starfish. The tendons are inserted using a thin metal tube
through which the tendon fibers (non-extensible fishing line)
can be inserted, and the tube removed. Each tendon is fixed
at the end of each leg using adhesive and connected to a
servo motor via an incompressible tube which runs through the
center of the body of Starfish where they are connected to the

servo by a pulley. The servo can contract the tendons, flexing
the legs inwards, and then extend the tendons, to flex the legs
to their initial position. The motion is highlighted in Fig. 2. It
is important that the tendon length can be set accurately for
effective sim-to-real transfer, as such the servo was chosen to
have a torque which is higher than the load. This was validated
by performing no-load and load tests and observing that the
servo position is not significantly affected by the load. The
servo position is controlled by a microcontroller which sets
the position via a PWM signal.

b) Experimental Setup: A tank-based experimental setup
has been created for testing the robot. To constrain the robot
in an orientation that allows for motion capture, the tank
system has been fitted with horizontal rails constructed from
fishing twine. Starfish has low friction PTFE tubing through
the body through which the guide rails run. The use of low
friction materials and the presence of water results in the
rails exhibiting low friction and enabling the robot to move
forwards while the orientation is fixed. The rails do provide
some negating frictional force potentially reducing the forward
velocity. However, we expect this to be minimal. The weight
of the robot has been adjusted such that it has approximately
neutral buoyancy at the depth the rails are within the tank.
Fig. 3 shows the experimental setup.

To capture motion data from the soft robot, a high-speed
camera (Logitech BRIO) has been fixed outside the tank. Four
black markers were attached to one side of Starfish at locations
which capture the most dynamic information about the robot.
To capture the 2D motion data from these markers, the video
feed was calibrated using a standard checkerboard and the
marker locations extracted by tracking features corresponding
to the makers throughout the video. In each experiment, the
motion of the robot and the control sequence (i.e. the length

Fig. 2. The fabricated soft robot (top) showing the servo-based mechanism
and the inset figure showing the underside and the tendon routing. The
contracted and relaxed pose of the robot are shown in the bottom pictures.
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of contraction of the tendon) is recorded at 60Hz.

B. Experimental Verification

To verify the experimental setup and ensure that the inter-
action between the fluid and Starfish is the direct cause of any
resultant forward motion, we show in Fig. 4 the motion of
Starfish when the tank is both full of water and empty with
a given cyclic sequence of actions. The fact that the robot
barely moved without water shows the influence of solid-fluid
interaction and the necessity of calibrating the hydrodynamic
model.

In addition to verifying the experimental setup, the repeata-
bility and reliability of the experiments must be demonstrated
to show that experiments are representative. To show this, we
ran the robot with a cyclic sequence of actions and observed
cyclic motions were established after the initial transient state
of water (Fig. 4), indicating that repeated control signals lead
to reproducible motions in our experiments.

C. Baseline Algorithms

To better evaluate the performance of our algorithm, we
propose two baselines for comparison: bl-ctrl and bl-one-iter.
Both baselines provide an open-loop controller that attempts
to maximize the traveling distance of Starfish, which is our
ultimate goal in physical experiments. The bl-ctrl baseline
proposes to use a sinusoidal sequence of actions with an
educated guess on its frequency and amplitude without further
optimization. The role of this baseline is to understand if
the problem can be solved trivially by a carefully chosen
handcrafted solution. The bl-one-iter baseline simply runs our
pipeline for 1 iteration and terminates, i.e., it conducts system
identification and optimizes ai exactly once. Comparing our
pipeline to bl-one-iter will evaluate the necessity of alternating
between system identification and trajectory optimization for
multiple iterations. To ensure a fair comparison, we use bl-ctrl
as the initial guess of ai in both bl-one-iter and our pipeline
(Alg. 1).

Fig. 3. Experimental setup showing the tank with the horizontal rails and the
robot. The high-speed camera and markers allow the motion of the robot to
be captured.

D. Optimization Results

We now report the progress of our optimization pipeline and
the performance of the optimized controller both in simulation
and in reality. Note that the progress of our pipeline also covers
the performance of the two baselines above. This is because
bl-ctrl and bl-one-iter can be interpreted as terminating our
pipeline at the beginning and after 1 iteration, respectively. We
optimize a 3-second-long sequence of action in simulation and
test it on Starfish for 30 seconds by repeating the sequence 10
times. Table II summarizes the system identification loss Lθ ,
the trajectory optimization loss La, and the average velocity of
the robot in the simulation environments (vs) and the physical
experiments (vr). At each iteration, lower Lθ and La and higher
vr are better. We have also reported the optimized Young’s
modulus E, the actuator stiffness w, and the control points
of Cd and Ct at each iteration in Table II. To visualize the
optimized results, we render the motion of the simulated robot
before and after each iteration’s optimization in Fig. 5 and plot
the optimized control signals in Fig. 7. Finally, we show the
performance of our optimized open-loop controller in real-
world experiments in Fig. 8.

E. Discussion

a) Comparisons to baselines: By comparing the quanti-
tative results between different methods in Table II, we reach
the following conclusions: First, the control signal proposed by
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Fig. 4. Top row: The trajectories of Starfish running the same cyclic control
sequence with water (left) and without water (right). The robot made little
progress when water was not present. Bottom three: A cyclical control input
(upper middle) is applied to the robot, with the outer most markers (marker
1 and marker 4) positions recorded. The tracked horizontal marker position
(lower middle) and vertical marker position (bottom) show that after some
initial transients, repeatable and cyclical movement is achieved.
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Fig. 5. Left two columns: the motion of our simulated Starfish before (column 1) and after system identification (column 2) for the 1st to 5th iterations.
The blue and green spheres indicate the 4 marker’s locations in simulation and from real experiments, respectively. We visualize the motion of the robot at
t = 0 and t = 9 seconds. The goal of this optimization is to narrow the distance between each pair of blue and green spheres. Right two columns: the motion
before (column 3) and after trajectory optimization (column 4). The goal of this optimization is to push the robot towards its left as much as possible. Note
that we assume the motion to be solved in trajectory optimization is cyclic with a period of 3 seconds.

bl-ctrl performs poorly without further system identification or
trajectory optimization. The real robot travelled at 0.21cms−1,
corresponding to only 6 centimeters during the 30-second-long
test time. This shows that finding an open-loop controller for
an underwater soft robot is not a trivial task. Second, and more
importantly, we noticed that the traveling velocity measured in
real experiments increases monotonically with each iteration
until the optimization process converges. After 1 iteration, the
traveling velocity from bl-one-iter (0.48cms−1) is more than
twice that of bl-ctrl (0.21cms−1). This trend continues until
the algorithm convergences after three more iterations with

TABLE II
THE OPTIMIZATION PROGRESS OF ALG. 1

Iter. Lθ La vs (cms−1) vr (cms−1) E w
0 (bl-ctrl) 9.2e-2 -1.2e-2 0.01 0.21 9.0e5 2.0e6

1 (bl-one-iter) 2.9e-2 -3.8e-2 0.83 0.48 5.0e5 4.1e6
2 7.7e-2 -3.4e-2 0.68 0.56 1.0e6 1.4e6
3 5.1e-2 -3.5e-2 0.66 0.67 4.3e5 4.8e6
4 5.2e-2 -3.9e-2 0.77 0.75 4.0e5 5.7e6
5 7.5e-2 -3.9e-2 0.75 0.75 3.8e5 5.8e6

Iter. P1
Cd

P2
Cd

P3
Cd

P4
Cd

0 0.1 0.1 1.9 2.1
1 0.0 0.0 0.5 2.0
2 0.2 0.2 0.7 2.4
3 0.0 0.0 0.9 2.5
4 0.0 0.0 0.8 2.2
5 0.0 0.0 0.8 2.2

Iter. P1
Ct

P2
Ct

P3
Ct

P4
Ct

0 -0.8 -0.5 0.1 2.5
1 -0.5 0.0 1.0 3.0
2 -0.5 -0.2 0.7 3.0
3 -0.6 -0.5 0.0 3.0
4 -0.6 -0.2 0.5 3.0
5 -0.6 -0.2 0.5 3.0

a velocity of 0.75cms−1. Such an improvement after each
iteration highlights the value of running Alg. 1 for multiple
iterations.

b) Simulation-to-reality gap: Another metric of success
in our experiments is whether the sim-to-real gap has been
narrowed after optimization. The sim-to-real gap measures the
discrepancy between the dynamic model in simulation and the
robot in real experiments, which can be understood by answer-
ing two questions: First, does the dynamic model fit the given
measurement data well? Second, can the model predict new
behaviors accurately? Such questions can also be motivated
from the classic bias-variance tradeoff in machine learning,
which aims to explain the expressiveness and generalizability
of a model.

To answer the first question, we refer readers to the second
column of Fig. 5. By definition, the distance between the
measured and simulated marker positions (green and blue
spheres respectively) is a direct, quantitative metric of the
fitting error of our model (see also the Lθ column in Table II).
By comparing column 1 and 2, we can see that our system
identification step manages to explain the measurement data
well, as indicated by the closer distance between blue and
green spheres after optimization.

To answer the second question, i.e., the generalizability of
our dynamic model after system identification, we compare the
simulated and actual motions of the robot with a sequence of
action not seen in the training process of the dynamic model.
Such a comparison is reflected in the first column of Fig. 5, i.e.,
the simulated and actual motions before system identification
at each iteration. Note that the simulated and actual motions
in this column execute the same sequence of action, but the
corresponding motion capture data have not been used to train
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Fig. 6. The motion of the robot’s center of mass in simulation and in the real
experiments with the identical control signal. The simulation data is computed
with the dynamic model after our algorithm converges.

the dynamic model yet (which is what the algorithm is about
to do afterwards). This also serves as a direct measurement
of the reality gap, i.e., if we run the simulated and actual
robot with exactly the same control signal, how different
could the motions be? To quantify the motion difference, we
report in Table II the average velocity from this motion in
simulation (the vs column) and the real experiments (the vr
column). It can be seen that the difference between vs and vr
becomes significantly smaller as the algorithm proceeds with
more iterations. Specifically, the two velocities become almost
identical after only 3 iterations, indicating our algorithm’s
good generalizability as well as its effort into narrowing the
sim-to-real gap. To visualize the motions more thoroughly,
we plot the location of the robot’s center of mass in these two
motions obtained at the last iteration of our algorithm in Fig. 6.
It can be seen that although the absolute location of the center
of mass still differs from time to time between simulation and
reality, the simulated motion exhibits local, oscillating patterns
that are very similar to its real-world counterpart. The full
motion sequences can be found in our video and in Fig. 8.
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Fig. 7. The optimized control sequences ai, reported as the tendon contraction
(dl in millimeters) from our method and two baselines.

c) Optimized controller: To better understand the opti-
mized control sequence, we plot the intermediate controllers
after each iteration in Fig. 7. Comparing to the baseline
controller proposed in bl-ctrl, we notice the optimizer made
two significant changes to the control sequence: First, it
increased its amplitude by about 16% (from 12mm to 14mm).

Second, it injects very high-frequency signals from time to
time. We believe that both changes allow Starfish to leverage
hydrodynamic forces more effectively and lead to the longer
traveling distance.

Fig. 8. Overlaid motion sequence showing the progress made by the robot in
the fixed time period (30 seconds) when using the baseline handcrafted control
sequence (top), the bl-one-iter baseline control sequence (upper middle), and
control sequences for the second to fourth iteration.

VI. CONCLUSIONS

Computational tools for dynamic modeling and controller
development of soft robotics have the potential to change how
we design and control soft robots. However, the modeling of
soft structures and environmental interactions make this chal-
lenging. Differentiable simulators offer potential advantages as
they expose gradient information and also show computation
efficiency. We proposed a pipeline for the development of
an open-loop controller for a swimming soft robot using a
differentiable simulator in which we iteratively loop between
the real and simulated worlds. We demonstrate this approach
on a simple four-legged starfish-shaped soft swimming robot.
Within four iterations, we show the forward swimming ve-
locity can be increased by a factor of 3.6 in comparison to
a handcrafted baseline. In addition, we show that the gap
between the simulated and real-world robot can be reduced,
with the simulation showing realistic dynamic behaviors.

While this approach demonstrates how the simulation-to-
reality gap can be qualitatively reduced, there still remains
a quantitative gap between the simulated and real world
performance, as can be seen from the discrepancy between
the simulated and actual center-of-mass motions in Fig. 6.
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We believe this is due to inaccuracies in hydrodynamic force
and actuator modeling. The pipeline concept we propose can
be used interchangeably with alternative simulators and other
robots. This could allow for simulators with alternative hydro-
dynamic models to be explored as a means as further reducing
the sim-to-real gap. However, despite this, we still demonstrate
how the performance of the robot can be improved, showing
that despite the existence of a “quantitative reality gap”, by
reducing the “qualitative reality” gap, optimization is still
successful and contributes to the performance improvement
observed in real experiments.

In this first demonstration of the iterative use of a dif-
ferentiable simulation for system identification and trajectory
optimization, we have considered a relatively simplistic robot
system. Our Starfish has only a single control signal for all
four limbs. For robots with an increased number of actuators,
the system identification and control problem becomes more
challenging. The iterative approach we propose may become
increasingly beneficial as it allows for a wider range of
conditions to be experienced which otherwise may not be
observed. This is a trade-off with the additional complexity.
Future work should investigate how the iterative nature of the
pipeline can be optimized by considering control sequences
not only optimized for forwards locomotion but also system
identification.
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