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Recent advances in computing algorithms and
hardware have rekindled interest in developing high-
accuracy, low-cost surrogate models for simulating
physical systems. The idea is to replace expensive
numerical integration of complex coupled partial
differential equations at fine time scales performed
on supercomputers, with machine-learned surrogates
that efficiently and accurately forecast future system
states using data sampled from the underlying
system. One particularly popular technique being
explored within the weather and climate modelling
community is the echo state network (ESN), an
attractive alternative to other well-known deep
learning architectures. Using the classical Lorenz 63
system, and the three tier multi-scale Lorenz 96
system (Thornes T, Duben P, Palmer T. 2017 Q. J.
R. Meteorol. Soc. 143, 897–908. (doi:10.1002/qj.2974))
as benchmarks, we realize that previously studied
state-of-the-art ESNs operate in two distinct regimes,
corresponding to low and high spectral radius
(LSR/HSR) for the sparse, randomly generated,
reservoir recurrence matrix. Using knowledge of
the mathematical structure of the Lorenz systems
along with systematic ablation and hyperparameter
sensitivity analyses, we show that state-of-the-art
LSR-ESNs reduce to a polynomial regression model
which we call Domain-Driven Regularized Regression
(D2R2). Interestingly, D2R2 is a generalization of the
well-known SINDy algorithm (Brunton SL, Proctor JL,
Kutz JN. 2016 Proc. Natl Acad. Sci. USA 113, 3932–
3937. (doi:10.1073/pnas.1517384113)). We also show
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experimentally that LSR-ESNs (Chattopadhyay A, Hassanzadeh P, Subramanian D. 2019
(http://arxiv.org/abs/1906.08829)) outperform HSR ESNs (Pathak J, Hunt B, Girvan M, Lu
Z, Ott E. 2018 Phys. Rev. Lett. 120, 024102. (doi:10.1103/PhysRevLett.120.024102)) while D2R2
dominates both approaches. A significant goal in constructing surrogates is to cope with
barriers to scaling in weather prediction and simulation of dynamical systems that are imposed
by time and energy consumption in supercomputers. Inexact computing has emerged as a novel
approach to helping with scaling. In this paper, we evaluate the performance of three models
(LSR-ESN, HSR-ESN and D2R2) by varying the precision or word size of the computation
as our inexactness-controlling parameter. For precisions of 64, 32 and 16 bits, we show that,
surprisingly, the least expensive D2R2 method yields the most robust results and the greatest
savings compared to ESNs. Specifically, D2R2 achieves 68× in computational savings, with
an additional 2× if precision reductions are also employed, outperforming ESN variants by a
large margin.

This article is part of the theme issue ‘Machine learning for weather and climate modelling’.

1. Introduction
Despite impressive advances in hardware and algorithms, modelling many real-world physical
systems (such as climate and weather) has proven to be computationally intractable at high
spatial resolution, such as a 100 by 100 metre grid. This is due in part to the extreme
computational requirements of (a) numerically integrating coupled, high-dimensional, nonlinear
partial differential equations for subsystems exhibiting multiple temporal and spatial scales,
(b) insufficient data or unknown parameters characterizing sub-processes, and, in some cases,
(c) no knowledge of the governing subsystem of equations. In the context of weather prediction,
chaotic dynamical systems such as Lorenz 96 [1] have served as an important benchmark,
providing the larger community with a ‘toy’ system that enables fast experimentation while still
exhibiting the most important physical phenomena that drive computational cost. Motivated by
the reasons above and spurred on by the availability of ‘toy’ models, there has been a recent surge
in studies of machine learning models [2–7] which produce accurate predictions of the system
while requiring less computation or data. The success of largely data-driven deep learning models
yielding excellent results on difficult perceptual and prediction tasks such as image classification,
speech recognition, medical outcome prediction and handwriting classification have inspired this
trend. In addition, machine learning (ML) models offer the ability to learn dynamics directly from
(massive quantities of) observational data, and the ability to, when combined with principled
causal experimentation, identify the true underlying model—the holy grail in science. Ideally,
this should allow for useful domain knowledge providing a baseline, before the ‘gaps’ are filled
in by sophisticated ML techniques, as has previously been done in [8], where the form of a model
is specified but not the exact parameters. More broadly, this follows from the theory of combining
generative and discriminative techniques, allowing models to learn to describe systems while
constrained by example data and broad domain knowledge [9].

Popular approaches in ML for learning models from time-series data derived from dynamical
systems include backpropagation through time based recurrent neural networks (RNNs), such
as Long Short-Term Memory systems (LSTMs) and Gated Recurrent Units (GRUs). Even though
these models have much higher expressive power and the ability to ingest massive amounts of
data, several recent works have surprisingly found that echo state networks (ESNs), an older and
simpler class of RNN [10] substantially outperform LSTMs in prediction tasks involving chaotic
dynamical systems [11,12]. The main historical motivation for ESNs was to avoid the pitfalls of
classical deep architectures such as RNNs, namely slow and surprisingly unstable training due to
undesirable bifurcations [13] and vanishing/exploding gradients [14]. By contrast, ESNs offer a
fast, stable and simple alternative training algorithm via regularized linear regression. ESNs solve
a convex optimization problem in closed form, with optimality guarantees. The key disadvantage
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of ESNs as compared to other RNNs, is the need for augmenting reservoir states with ad-hoc
nonlinear combinations to obtain models with good predictive power [3].

In this paper, we present the results of some experiments applying ESNs [2,15] to the prediction
of chaotic dynamical systems, and try to gain insight into why they may or may not work in
different situations. The benchmark systems used to test our hypothesis are the fully observed
Lorenz 63 [16] and the partially observed Lorenz 96 [17] models. We probe ESNs with ablation
and perturbation experiments in order to understand their reported successes in the context of
Lorenz-based models. Additionally, we provide a simple but rigorous characterization of the
deeper reason behind the successes of LSR-ESNs, which leads us to a much simpler surrogate
model. Our main contributions can be summarized as follows.

(a) Main contributions
First, we show in a mathematically rigorous manner that in the regimes where ESNs are successful
as surrogates for the Lorenz systems of interest to us, a greatly simplified ESN with an identity
reservoir, thus rendering the system feedforward, actually captures all of the essential features
of the ESN. We will refer to this simplified method as the domain-driven regularized regression
(D2R2). Given the alluring possibility of being able to simplify the structure of an ESN without
compromising prediction quality which our mathematical development suggests, we performed
experiments to explore this opportunity. Specifically, we will take as our starting point two recent
papers using ESNs to model dynamical systems [3,11] and the variants used therein. For technical
reasons which will be made clear later, the two variants of ESNs from these papers will be referred
to as the low spectral radius or LSR-ESN [11] and high spectral radius or HSR-ESN [3], respectively.

Our experiments show that D2R2 outperforms both the more sophisticated LSR- and HSR-
ESN architectures by a notable margin. For example, D2R2 has a mean prediction horizon of 1.60
Model Time Units (MTU) in the context of Lorenz 96, whereas the mean prediction horizon was
10+ MTUs (entire testing trajectory) for Lorenz 63. By contrast, the respective values using LSR-
ESN were 1.25 MTUs and 5 MTUs. Thus, D2R2 achieves an improvement of 28% in the L96 case
prediction horizon, and greater than or equal to 100% in the Lorenz 63 case. Using FLOP counting,
we can show that D2R2 is 496× more efficient than either form of ESN for Lorenz 96 and 77.7×
more efficient in the context of Lorenz 63.

There are essentially two main reasons for considering the use of machine learned surrogates in
the context of predictive modelling of dynamical systems specifically, and in the context of models
based on differential equations more generally. The first reason, which is a central theme of the
work presented here, is motivated by the cost of computing the model at scale. The second reason
is that surrogates may enable feasible solutions in settings where a fundamental understanding
or mathematical model of a physical process is lacking, as in vision or autonomous navigation, or
even when available data is insufficient to use a principled approach. In this paper, we are focused
on both of these goals, with our experiments involving Lorenz 96 representing the second goal,
and the precision reduction experiments representing the first.

Energy efficiency as a barrier to scaling has become a major impediment as device densities
in supercomputers have grown and the concomitant energy and cooling needs grew alongside
to unmanageable levels. In response, inexact computing [18,19] has evolved into an attractive
prospect, especially in the context of weather prediction [15,20]. While early work [15,21,22]
advocated for the use of customized hardware, commercial off-the-shelf processors afforded a
more limited set of design choices, notably through word-size or precision [23]. The overarching
goal of all of these efforts was to ‘ trade off a small amount of quality in the desired solution for
disproportionately large savings in energy and execution time’.

In this paper, our second contribution is to explore the role of inexactness through precision
and we consider the three standard and commercially available sizes of 64 bits, 32 bits and 16 bits.
Again, to our surprise, we discovered that D2R2 provides gains through inexactness with the least
amount of degradation in ‘quality’. As a notable example, we show that starting with a prediction
horizon of 1.6 MTUs, D2R2 degraded by 13.1% in quality to 1.39 MTUs using 16 bit words for a
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factor of four in savings. For the same change in word size or precision, the better performing
ESN (LSR-ESN) degraded from 1.25 MTUs to 0.563 MTUs, representing a degradation of 55.0%
in quality. And finally, we show that D2R2 is much more efficient, yielding an improvement of
147% in prediction horizon compared to LSR-ESN at 16 bits of precision.

(b) Outline of paper
The remainder of this paper is organized as follows: §2 reviews related work in using ML
methods for predicting dynamical systems and a brief history of inexactness with an emphasis
on its use in dynamical systems and weather prediction. Section 2(a) discusses previous work
on understanding ESNs, and how our approach differs. Section 3 details our ablation studies
and other experiments to understand ESN performance. Section 4 is the technical anchor for
this paper, and provides a simple yet mathematically rigorous piece of evidence supporting the
surprising result that ESNs in the LSR regime are equivalent to a much simpler regularized
regression linear model, with domain-driven input features/predictors. Section 5 details this
simpler model, termed D2R2, and provides comparisons with respect to previous ESN regimes.
Finally, in §6 we examine our previous results through the lens of inexactness, evaluating the costs
and benefits of using lower-precision approximations in the various models.

2. Related work
The idea of using tools from ML to derive the dynamics of physical systems directly from
data, is not new [2,5,24–26]. One appeal of a data-driven approach is that effective surrogate
models trained on high-fidelity simulation data can be used to accelerate and improve prediction
and simulation of complex dynamical systems. Furthermore, for dynamical systems for which
equations are unknown, and only observational data are available, models learned from data
offer a viable alternative to purely physics-based approximations [7].

Recent advances in deep learning have revived interest in surrogate modelling of complex
dynamical systems by providing a variety of new representations and new training paradigms.
Earlier studies used deep learning architectures, both feedforward and recurrent, including
variants such as LSTMs and GRUs, all of which are trained using the computationally expensive
backpropagation through time [4,27] algorithm. However, several recent studies have found that
a simpler technique, ESNs, may have comparable to superior performance [3,11]. ESNs are an
older technique, developed simultaneously and independently by Herbert Jaeger as ESNs and by
Wolfgang Maass as Liquid State Machines [28,29]. In both cases, a large, fixed recurrent reservoir
of units (characterized by a sparse, randomly generated recurrence matrix A) is driven by an
input signal randomly projected through a fixed matrix Win into the reservoir state space, while
the target is re-constructed by learning a weighted sum of reservoir unit activations.

Training ESNs is significantly faster and cheaper than training an LSTM or other modern
RNN using backpropagation through time. ESN performance is known to depend on the Echo
State Property, which requires that the influence of the initial conditions of an ESN decays
asymptotically to zero with time. An ESN with the Echo State Property, can be proven to be a
universal function approximator [30]. Among the classes of ESNs explored within the weather
community, one class has the reservoir matrix A with LSR (e.g. maximum eigenvalue, low in
this case being ≈ 0.1) [11] which is the LSR regime, while the other is the HSR regime allowing
A’s with higher spectral radius generally close to 1 [3]. Both ESN types rely on basis function
expansion of the reservoir states for good predictive performance.

In addition to the references cited above, the foundational ideas that led to inexactness with
emphasis on energy consumption and trading the concomitant cost for quality can be found in
[31–34]. Impressive results in using precision as a mechanism for inducing inexactness in weather
models have been reported [35–37]. To reiterate, a survey of earlier papers and a broad perspective
on inexactness can be found in [1,18] and the reader is referred there to explore additional works
that laid the foundation of the field during its early stages of development.
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(a) Understanding ESNs: cracking open the black box
Several previous attempts have been made towards developing formal explanations for the
performance of ESN systems [6,10,38–40]. Herbert Jaeger [10] had early on drawn parallels
between the structure of an ESN and Taken’s embedding theorem [41], which proves that
a sufficient number of previous observations of a dynamical systems forms an embedding
with dynamics identical to the original system. However, it has been known in practice that
embeddings using the Taken’s formulation are often brittle and of limited utility for real
world tasks. Recent work by Eftekhari et al. [38] has better characterized ‘stable’ embeddings,
which must be geometry preserving. Work by Lu et al. [6] uses the concept of generalized
synchronization to determine general conditions under which the ESN may provide a good short
term (prediction) or longer term (climate) approximation of the target system. Recent and ongoing
work by Hart et al. [40], closely following the Whitney formulation of Taken’s embedding theorem
[42], almost proves that an generic ESN is an embedding such that output weights exist that can
predict the next step ahead arbitrarily well. However, at present one critical step is incomplete,
with the current version only proving that the probability that an ESN mapping is an embedding
of an underlying dynamical system is positive. It does not bound this probability, nor does it
provide a procedure for selecting key hyperparameters of the ESN algorithm to obtain a stable
embedding with high probability. Unfortunately, providing probability bounds may not be of
practical utility. Taken’s Theorem, despite provably producing an embedding, is notorious for
producing unstable embeddings which are of limited use for prediction. Instead, the goal of
our work is to first find a more empirically driven explanation, and second, distil a theoretical
understanding from it.

3. Experiments for understanding ESNs
For completeness, we will briefly review the architecture of an ESN first. As shown in figure 1, an
ESN is an RNN with a sparsely connected hidden layer called a reservoir. The connectivity and
weights A of the reservoir neurons are fixed and randomly assigned. The input to the network is
projected into the hidden layer by a fixed random mapping Win.The hidden layer is recurrent and
evolves nonlinearly as a function (σ ) of the previous reservoir state and the current (projected)
input. The weights of output neurons Wout can be adjusted so that the network can reproduce
temporal patterns in the input data stream. Typically, the reservoir state is subject to a nonlinear
transform ψ before being used for prediction. The only weights that are modified during training
are the ones that connect the hidden neurons to the output neurons (Wout). Wout can be computed
analytically in closed-form using a convex optimization algorithm.

Overall, ESNs act as a black-box model for modelling dynamical systems, where the system
output x̂n+1 is determined by a combination of a hidden reservoir state rn+1 and input xn. The
key difference between ESNs and similar models is that in an ESN, the hidden state is a fixed
(non-trainable), random projection function of the input history.

Specifically, we will take as our starting point two recent papers using ESNs to model
dynamical systems, [3,11]. Both papers use a nearly identical ESN formulation, which we
standardize mathematically as follows:

The reservoir update and prediction functions are given by

rn+1 = σ (Arn + Winxn) ∈R
N , r0 = rn=0 = 0 (3.1)

r̃n+1 = ψ(rn+1) ∈R
N (3.2)

and x̂n+1 =Woutr̃n+1 ∈R
D, (3.3)

with data dimension D and reservoir dimension N, where xn ∈R
D is the current input data, Win ∈

R
N×D is the fixed input projection matrix, σ (u) := tanh(u) is the reservoir recurrent update function

and r̃= ψ(r) is a simple elementwise nonlinearity, chosen typically to increase the span of the
nonlinear features rn. Wout ∈R

D×N is a matrix of parameters that linearly combines the elements
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input layer
Winxn

rn

x̂n+1

Wout

output layer

reservoir

A

Figure 1. The architecture of an ESN. Inputs x ∈R
D are fed into the reservoir through input connectivity matrixWin ∈R

N×D.
The reservoir has hidden state r ∈R

N , and recurrent connections given byA ∈R
N×N . Output ŷ is generated by taking reservoir

states rmultiplied with output connectivity matrixWout ∈R
D×N . In autonomousmode, predictions x̂ are fed back as inputs to

the next time step in order to predictmultiple time steps into the future. Note that in an ESNWin and A are fixedmatrices—only
Wout is trained. Figure adapted from [43]. (Online version in colour.)

of r̃n to generate an output prediction x̂n+1 of the state of the target dynamical system at the next
timestep n + 1, where the hat denotes an estimate. Note that this ESN is a discrete time system,
not a continuous one, although continuous ESNs are also possible and commonly employed [44].

(a) Training task: teacher forcing
The task for which all ESNs will be trained is to predict the system state at the next time step
given the current reservoir state and the ground truth current system state. This is known as
teacher forcing since intuitively a teacher provides ground truth xt as the external driving force to
the reservoir. The optimization and loss function are

Ŵout := argmin
Wout

�TF
tr (θESN;Dtr) + α‖Wout‖2

2

and

�TF
tr (θESN;Dtr) :=

Str∑
n=1

‖x̂TF
n − xn‖2

2,

where superscript TF refers to the Teacher Forcing task. Note that the only ESN parameter trained
is Wout, such that θESN = {Wout}, over the Str training samples from dataset Dtr := {(xn)}Str

n=1. Note
also that the optimization amounts to a simple ridge (linear) regression, where the trade-off
between goodness-of-fit and parsimony is controlled by the regularization strength α. The size
of the reservoir N is usually taken to be a few hundred to a few thousand units, depending on
the complexity of the target system. After training on some dataset Dtr, we often want to test the
performance of our ESN on some testing set Dte. There are two ways to do this evaluation.

(b) Testing Task 1: teacher forcing
In the teacher forcing (TF) task, a new rn is generated by replacing input Dtr with a testing set
Dte := {(xn)}Ste

n=q, q< 0. We ‘warm up’ the reservoir, by running several iterations with inputs prior
to x1 (e.g. from q to 0), allowing us to have a realistic r0. After populating the reservoir, we then
compare Woutr̃ to x from Dte. That is, our test/evaluation loss for Task 1 is

�TF
te (Dte) :=

Ste∑
n=1

‖x̂TF
n − xn‖2

2,
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where r is generated from
rn+1 = σ (Arn + Winxn), rn ∈R

N .

Recall that x̂TF
n is computed from r̃n, e.g. the nonlinearity ψ is still applied. Essentially, this testing

task is the same as the training task, except with data set Dtr replaced with Dte, and with no
updating of the Wout parameter. Note that in every testing step, the system is provided with
ground truth data.

(c) Testing Task 2: student forcing
In contrast to the TF task, in the student forcing (SF) task the input xn is instead replaced with x̂n,
the predicted output from the previous timestep. This yields an evaluation loss of the form

�SF
te (Dte) :=

Ste∑
n=1

‖x̂SF
n − xn‖2

2,

the same as in the TF task. However, the reservoir state r in SF mode is generated according to

rn+1 = σ (Arn + Winx̂n), rn ∈R
N ,

where the Student’s prediction x̂ is produced according to

x̂SF
n =Woutψ(rn).

Thus, the SF task only begins with the true testing data in its first time step, and must then
correctly predict future time steps using the Student’s own previous predictions. Hence in the
SF task prediction errors can accumulate over time, rendering it a much more difficult task. This
is similar to the task of designing an accurate numerical integrator wherein small but systematic
prediction errors can accumulate over time. The key difference is that here we are training a flexible
data-driven model to predict the next state, as opposed to a principled but rigid theory-driven
model.

In summary, we will train our ESN models on the TF task but test them on the TF and, most
importantly, SF task.

(d) Target dynamical systems: ODEs for weather applications
We will primarily test on a pair of ODE systems that emerge naturally in the modelling of weather:
Lorenz 63 (L63) [16] and Lorenz 96 (L96) [17]. L63 is a simple three-dimensional system, with
dynamics given by

dx
dt

= σ (y − x), (3.4)

dy
dt

= x(ρ − z) − y (3.5)

and
dz
dt

= xy − βz, (3.6)

with parameters ρ = 28, σ = 10 and β = 8
3 chosen such that the system is in the chaotic regime.

For the multi-scale L96 system, the dynamics are governed by

dXk

dt
=Xk−1(Xk+1 − Xk−2) + F − hc

b

∑
j

Yj,k, (3.7)

dYj,k

dt
= −cbYj+1,k(Yj+2,k − Yj−1,k) − cYj,k + hc

b
Xk − he

d

∑
i

Zi,j,k (3.8)

and
dZi,j,k

dt
= edZi−1,j,k(Zi+1,j,k − Zi−2,j,k) − geZi,j,k + he

d
Yj,k, (3.9)
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where indices i, j, k ∈ [6]. Thus, there are 8 Xk, 64 Yj,k and 512 Zi,j,k elements. F = 20 is a large forcing
term, while b= c= e= d= g= 10 and h= 1 are tuned to give appropriate dynamics, such that X
has a slower timescale than Y and Y has a slower timescale than Z. L96 is interesting because it
is frequently used as a prototype system of equations for weather modelling, where X represents
large-scale weather systems, while Y and Z represent faster eddies and small-scale convection.
Similar comparisons can be made to oceanography or other multiscale physical systems. In many
of these systems, the variable of interest is the slower-time variable X, while Y and Z may be
unobserved or more difficult to measure. In order to replicate this, when testing on L96 our ESN
will have as inputs x=X, i.e. the 8 dimensional variable, and will not have access to the Y or
Z variables needed to exactly reconstruct X’s dynamics. This setting is simultaneously (i) more
difficult due to missing observations about Y and Z and (ii) computationally faster/cheaper since
we observe far less information, and thus do not simulate the fine time scale variations of Y and
Z. We start with L63 as it is a simpler test case and can yield deeper understanding, and then we
move on to L96 as a more complex and meaningful test case. Data for L63 are generated by using
Runge–Kutta 4 (RK4) to integrate forward for 50 000 training steps plus an additional 200 000
testing steps from a starting condition of [1, 1, 1]. We use the same data generation technique
for L96 as detailed in [11], taking 500 000 training steps, and an additional 500 000 testing steps
(where we take 100 trials, each testing 2000 non-overlapping time steps from the testing steps).
In all cases, this meant that the surrogate system (D2R2 or ESN) began with the correct internal
state/inputs, and all errors are thus solely due to model deficiencies.

(e) Experimental details
For L63, ESNs had N = 100 units, and D= 3. The nonlinearity ψ used was odd-squaring, where
every other input was squared. A was chosen such that every unit had 3 outgoing connections,
and then had its spectral radius scaled to ρ = 0.1. Win was given a block structure such that each
reservoir unit received excitation from exactly one input, with connection strength randomly
chosen from a uniform distribution U (−σ , σ ) where σ = 0.5. Reservoir states r were initialized
to zero (r0 = 0). Regularization strength was chosen to be α = 10−4. All experiments were done
over 100 trials, with targets taken from the testing-steps regime of the data generation. For the
LSR- and HSR-ESNs, this necessitated ‘warming up’ the reservoir for 50 time steps before testing
began, by providing true inputs x−50 to x−1, before testing on x0 to x2000. All code is available
online at https://github.com/ankitpatel715/DomainDrivenRegReg.

(f) Experimental results: exploration, ablation and perturbation studies
ESNs perform surprisingly well in predicting chaotic dynamical systems [3], but why and
how remains poorly understood, primarily due to its blackbox nature. In order to elucidate
the underlying reasons for ESN performance, we focus on the ESN system with parameters
taken from [11], which improved upon the previous state of the art [3], as well as performing
exceptionally well on a more difficult multi-scale Lorenz model prediction task with only
partial observations of state available. We refer to this ESN as the LSR-ESN, due to having a
much smaller spectral radius of A than previous (HSR) ESNs. We then performed a series of
ablation and perturbation studies, wherein we systematically varied key features of the LSR-
ESN system/training parameters, namely N, A, Win, Wout, unit activation function σ (·), and
nonlinearity ψ(·).

(i) Reservoir features resemble inputs

First, we explore the reservoir features which are linearly combined to generate the prediction. For
L63, individual inputs follow an oscillating sinusoidal pattern. Reservoir features follow the same
pattern, with matching frequency but phase differences, skewness and/or varying magnitudes,
providing useful features for predictions (figure 2).
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reservoir traces, target (black) and output (red), train R2 = 1.00000

0 2000 4000 6000
training step

8000 10 000

Figure 2. Traces of activations of reservoir nodes over learning time for Lorenz 63. Top: Activation traces r̃ for a set of randomly
selected reservoir nodes. Bottom: Evolution of the first state component through time (x1,t , black) and reconstruction of that
state by linear combination (x̂1,t computed estimated viaWout) of all the reservoir traces (red). The reconstruction is essentially
perfect, with the red line coinciding exactly with the black one. (Online version in colour.)

(ii) Reservoir must be sufficiently large for good generalization performance

We begin by evaluating the impact of the reservoir size N on the system’s performance on the
L63 task. N controls the number of features available for the linear regression used to solve for
Wout, where the features come from the projected inputs Winx, further compounded with A every
update. Thus, we expect that below a critical N the span of the features will be insufficient to
fit the dynamics at all, with the span of the features saturating with large N (as all features
originally come from inputs x). This is in fact exactly what we see in figure 3a: performance
quickly improves up until about N = 50, and then improvement asymptotes as N continues to get
larger.

(iii) Reservoir unit nonlinearityσ is not necessary for good generalization

Next, we examine the effect of changing the unit activation function σ = tanh which is applied
to units at every update. The activation function (compounded throughout each time step)
is supposed to provide a critical nonlinearity to the reservoir’s features. This nonlinearity is
proposed to be the key reason why ESNs are able to model a wide variety of systems well.
However, we discovered that (figure 3b), in our parameter regime, removing the nonlinearity
entirely had only a minor (but positive) effect on overall performance!

(iv) Precision is most critical inWout andWin, least in A

For our next test, we consider perturbing the various matrices within the model (A,Win,Wout,
Win) by a small amount during testing (here 1%) , e.g. the perturbations are applied after training.
As expected, even small changes/errors in Wout accumulate over repeated predictions, rapidly
decreasing the accuracy. Changes to Win have a similar effect. Surprisingly, perturbing A has a
relatively smaller effect (compared to others perturbations) (figure 3c), despite the commonplace
intuition that the reservoir’s recurrent nonlinear update should provide useful features for
prediction.
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Figure 3. All plots averaged over 100 testing trials. (a) ESN performance on the Lorenz63 task as the number of reservoir nodes
N increases. ESN performance is measured by normalized or relative error in state estimation on the y-axis and the autonomous
or free prediction horizon the x-axis. Once N crosses a (dynamical system-dependent) threshold, performance gains asymptote.
(b) ESNPerformancewith orwithout tanhunit activation. Despite canonically being the core nonlinearity thatmakes ESNswork,
it has a limited effect on our task, and removing it actually increases performance. (c) ESN performance with various testing
perturbations. Perturbations to Wout and Win are extremely detrimental, as expected. Surprisingly, perturbations to A have a
lesser effect, despite changing the effective recurrent nonlinearity applied each time step. (d) ESN performance with various
feature expansion nonlinearitiesψ . All changes lead to a minor to moderate performance drop compared to the default ‘odd
squaring’—including changing the power from 2 to 1.8 or 2.2. (Online version in colour.)

(v) Feature expansion nonlinearityψ is critical

One non-standard part in many of the recent ESNs [3,11] (compared to the original ESN/LSTM)
formulation, is the additional nonlinearity ψ , which is applied to the reservoir unit activations
before they are used to make predictions. Both [3,11] used a nonlinearity which implements
‘odd squaring’, where every other element is squared (even elements remain unchanged). Both
papers note that this extra nonlinearity ψ is critical to their final performance on their test cases.
We consider various perturbations and choices for this ψ , from changing the order of the odd
polynomial (to 1.8 or 2.2), as well as changing the odd function to be a tanh, exp or sin rather than
a quadratic (figure 3d). Nearly every considered change moderately degraded performance (with
odd exponential being the least degraded). Most surprisingly, even the variations in the power
(e.g. taking a 1.8 or 2.2 power) lead to notable drops in performance.

(vi) A reservoir-free ESN achieves nearly identical performance

Taken together, the surprising results above suggest that we try a simplified ESN model, in which
the unit nonlinearity σ = tanh is changed to identity (i.e. removed), and the adjacency matrix
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Figure 4. ESN Performance compared to ‘simple’ ESN, averaged over 100 testing trials. Despite removing both A and the tanh
nonlinearity (e.g. the main components that typically drive reservoir nonlinearity), performance remains extremely similar.
(Online version in colour.)

A is removed entirely, i.e. A= 0 and σ (r) = r. For this setting, we also had to change the Win
matrix from block structure to fully dense in order to get decent performance. Surprisingly, this
drastically simplified LSR-ESN had performance that is virtually indistinguishable from the state
of the art in [11] (figure 4)! This is despite removing both the unit nonlinearity and the reservoir
recurrence matrix, which are typically thought to be essential components in an ESN.

4. Empirical observations distilled: LSR-ESN simplifies to polynomial regression
The previous experiments yield interesting insights into the LSR-ESN model. To summarize, the
reservoir size N is fairly inconsequential once it exceeds a critical number Nc of units, endowing
the model with sufficient capacity. Changes to Win and A have a relatively minor effect, while the
system is significantly more sensitive to changes in Wout. The tanh nonlinearity is of relatively
low importance, and can even be replaced with the identity function. In stark contrast, the precise
form of ψ is critical: even small changes away from odd-squaring such as odd-exponential (ψ(r) =
exp(r)) or odd-2.1 power (ψ(r) = r2.1) result in dramatic failure. Surprisingly, the hyperparameter
configuration that performs best on L63 is A= 0 with no reservoir unit nonlinearity, i.e. σ (r) = r.

How can we explain this surprising result? We can gain some intuition by substituting these
conditions into the original ESN equation (3.1), resulting in a reservoir-free ESN of the form

rn+1 =Winxn

and x̂n+1 =Woutr̃n+1 =Woutψ(Winxn).

}
(4.1)

In this special case, the ESN model reduces to a (ridge) linear regression model with nonlinear
input featuresψ(Winx). Since the nonlinearity ψ is the odd-squaring operation (ψ(ri) = ri if i is even
and ψ(ri) = r2

i if i is odd), these are quadratic polynomial input features. Note that in the teacher
forcing task, the nonlinearity ψ does not get iterated over time in the ESN dynamics because it is
only used to generate the prediction x̂n+1 but this prediction is not the next input xn. In contrast,
in the student forcing task, the next input is xn+1 := x̂n+1 and so in this case ψ would iterate.
However, note that in this paper we only train the ESN on the teacher forcing task. (We test it on
the student forcing task.)

More generally, for the LSR-ESNs we used from [3,11], we cannot ignore the dependence on
A as A �= 0. But intuitively the LSR condition ρ(A) := ‖A‖∗ ≈ 0.1 < 1 implies that the dependence

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

13
 S

ep
te

m
be

r 2
02

1 



12

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200246

................................................................

of the reservoir state rk on past inputs xk−τ decays exponentially quickly in lag time τ , i.e. scaling
as ρ(A)τ . Thus the reservoir has a very short memory, or equivalently, the influence of each new
input sample xk decays exponentially quickly with half-life τ1/2 := − ln 2/ ln ρ(A). This result is
formalized in the following Lemma.

Lemma 4.1. Let E be an ESN with reservoir activation function set to identity σ (r) = r. Consider the
regime where the spectral radius of the reservoir recurrence matrix A is low, i.e. ρ(A) = ‖A‖2 � 1. Then
the reservoir state of E at time T for the teacher forcing task can be written as a series

rt =
t∑

τ=1

Aτ−1Winxt−τ + Atr0,

and the operator norm of the input–output sensitivity matrix St,τ := ∂rt/∂xt−τ ∈R
N×N decays

exponentially quickly in the spectral radius of A:

ρ(St,τ ) ≤ ρ(A)τ−1ρ(Win).

Proof. Substituting σ (r) = r into the definition of an ESN (equation (3.1)) yields a linear
dynamical system of the form

rk+1 =Ark + Winxk, ∀ k ∈N+.

Iterating this recurrence relation gives us the series form for rt above, as desired. As mentioned
above, in the teacher forcing task ψ only affects the prediction for x̂k+1 but not the reservoir state
(see equation (3.1)). Taking a gradient with respect to xt−τ yields input-output sensitivity St,τ =
Aτ−1Win. Taking the operator norm ρ(·) = ‖ · ‖2 of both sides and invoking the fact that matrix
norms induced by vector norms are submultiplicative (‖AB‖ ≤ ‖A‖‖B‖) yields the desired result.

�

Note that applying this lemma to the reservoir-free case A= 0 immediately yields the earlier
result above:

Corollary 4.2. Let E be an ESN with no reservoir i.e. A= 0. Then the reservoir state dynamics and
output predictions for E reduce to equation (4.1).

This simplification explains why either Win being dense or A being non-zero helped
performance: either condition alone was sufficient to mix the parameters, allowing for multiple
polynomial terms of various orders which greatly increase predictive power. Even if the spectral
radius of A is non-zero, small spectral radii may perform similar to the ρ(A) = 0 case. In order
to test this potential explanation, we fit the L63 and L96 systems directly using regularized
polynomial regression and compare their performance to that of ESNs.

5. Regularized regression with domain-driven features

(a) Experimental details
For L96, LSR-ESN had N = 1500 units, and D= 8. The nonlinearity ψ used was odd-multiplication
of previous two inputs, where every other input x(k) was replaced with x(k − 1) · x(k − 2). A was
chosen sparsely such that every unit had three outgoing connections, and then had its spectral
radius scaled to ρ = 0.1. Win was given a block structure such that each reservoir unit received
excitation from exactly one input, with connection strength randomly chosen to be sampled from
a uniform distribution U (−σ , σ ) where σ = 0.5. Reservoir states r were initialized such that r0 = 0
and the regularization strength was chosen to be α = 10−4. Note that 200 testing steps is equal to
one Model Time Unit (MTU), a standard measure in L96, and thus we measure divergence times
in MTUs, not testing steps, where divergence time is defined when normalized error exceeds 0.3
(a standard L96 metric).

We also compared to the previous [3] HSR-ESN, with the following changes: the sparsity of
A was set to 6, spectral radius ρ(A) = 1.2, and Win connection strength σ = 0.1.
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Figure 5. ESN Performance compared to D2R2, averaged over 100 trials. As is expected in this case (where the true update is
in the span of polynomial features), D2R2 performs near optimally. (Online version in colour.)

(b) Regularized regression with low-degree polynomial features
For the D2R2, we directly solve for Wout as

Wout = argmin
W

‖Wg(xn−1) − xn‖ + α‖W‖2
2

e.g. x̂n =Woutg(xn−1), where g is a function that that performs basis function expansion of xn−1.
For polynomial regression, g := gm returns all polynomial terms up to a specified order m, e.g.
g2({x, y}) = {1, x, y, x2, y2, xy}. Unsurprisingly, this method works exceptionally well on L63 for
orders between 2 and 4, as Lorenz (equation (3.4)) has a quadratic right-hand side update equation
(yielding a quadratic if updated with forward Euler, and a quartic if solved via RK4). D2R2 has
performance notably superior to the original LSR-ESN ESN [11] (figure 5).

We obtain similar results for L96 (equation (3.7)). Despite the true update for X not being
available (as it depends on terms from Y and Z which are not available), D2R2 (order 4) does
quite well, taking 50% longer to reach a relative error of 0.3 (figure 6). Thus, it is clear that D2R2
serves as an upper bound for the LSR-ESN performance, providing more evidence that in this
regime the ESN is just performing a noisy version of direct polynomial regression. However,
it is quite clear that the original ESNs (from now on, HSR-ESN) [3] are doing something quite
different. With a higher spectral radius, less critically depending on the nonlinearity ψ , it clearly
is not doing a polynomial regression on expanded reservoir activations. Nevertheless, D2R2 is
superior in the L63 case (where the exact solution is known and available, not shown), and also
in the L96 case (where the exact solution is not available in the feature span). D2R2 also compares
well with previous approaches [4].

What about more complicated systems, i.e. those that have nonlinearities that are not
polynomial? We run an additional test using the modified Chua attractor, which has a mix of
linear and trigonometric terms and is significantly harder to fit, even for D2R2 (now modified
so that g also returns trigonometric terms) figure 6b. Nevertheless, D2R2 still does better than an
LSR-ESN (with an odd sine nonlinearity f ) or a HSR-ESN. Note that the HSR-ESN did not need to
have its internal nonlinearity changed from odd squaring, although the LSR-ESN did require f to
be changed in order to work, suggesting the HSR-ESN may be more valuable in cases where the
family of the true dynamical system is unknown. However, if the family is known, D2R2 may be
a viable alternative in terms of speed, generalization accuracy and interpretability.
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Figure 6. Both plots are averages over 100 trials. (a) Lorenz 96 performance across varying algorithms. The direct polynomial
regression outperforms both types of ESNs. The horizontal line at 0.3 is used as a standardmeasure of error for L96 to determine
when a surrogate fails. (b) Modified Chua Task Performance across varying algorithms. The HSR ESN fails across most training
trials due to the model being in a different part of state-space than it was trained on. LSR ESN and D2R2 both do better, with
D2R2 being best overall. (Online version in colour.)

Table 1. Performancemetrics for the three algorithms (L96). There was one large training set Dtr, and then 100 smaller training
sets Dte for each algorithm. For L96 tasks, the prediction is considered diverged when normalized testing error (SF) exceeds 0.3.
Time until divergence is measured in model time units (MTU, 1MTU = 200�t), a standardized timescale for L96. The HSR-ESN
onlyworked on a subset of testing cases thatwere temporally distant fromgenerated trainingdata,while others instantly failed.
For this and future tables, results are given as mean± s.d. over 100 trials.

training error TF error SF error divergence time

LSR-ESN 1.80 × 10−4 4.33 × 10−2 ± 1.75 × 10−3 1.16 ± 1.06 × 10−1 1.25 ± 4.85 × 10−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HSR-ESN 7.10 × 10−5 4.08 × 10−1 ± 3.37 × 10−1 1.09 × 101 ± 8.62 4.53 × 10−1 ± 5.93 × 10−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D2R2 2.24 × 10−4 2.28 × 10−4 ± 2.11 × 10−5 1.13 ± 1.06 × 10−1 1.60 ± 5.31 × 10−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Finally, we did a larger scale study of performance of the three algorithms on L96, with 100
different testing sets considered for each model. 99 of the 100 testing sets were not (temporally)
adjacent to the training set Dtr, which provided a harder test of whether the surrogate system had
truly learned the target L96. LSR-ESN did well, but the D2R2 outperformed it in every testing
metric. The HSR-ESN did fairly poorly, mostly because approximately half the time it failed to
generate a useful prediction trajectory, instead immediately failing, showing that the HSR-ESN
has difficulty generalizing to novel training data Dte (that still comes from the same L96 system).
Even when it did work, it still performed inferior to our D2R2 (table 1).

(c) Asymptotic complexity analysis as a measure of cost
As a final way of comparing methods, we consider an analysis of the complexity of each of our
methods in the context of both the L63 and L96 systems when using LSR-ESN, HSR-ESN and
D2R2. For an ESN model where LSR or HSR will have the same asymptotic cost, one step of
inference is given by

x̂n+1 := x̂(tn+1) =Woutψ(σ (Arn + Winx̂n)), ∀ n ∈N+

Recall that here, we have previous state rn, previous output estimate x̂n, N by N adjacency matrix
A, and N × d dimensional Win and Wout and output nonlinearity ψ . Following conventions used
in asymptotic analysis of algorithms, floating point add, multiply or tanh take O(1) time. Then,
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Table 2. Complexity estimates of the ESN and D2R2 for our Lorenz family of systems, both asymptotic and exact, in terms of
FLOPs per testing iteration.

L63 estimate L63 exact L96 estimate L96 exact

ESN: O(N2) 1 × 104 2.12 × 104 2.25 × 106 4.55 × 106
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D2R2: O(dm+1) 2.43 × 102 2.73 × 102 3.28 × 104 9.18 × 103
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the number of operations is ((2N2 − N) + (4Nd − d − N) + 2N), where the N2 term is due to the
multiplication A × rn of an (N × N) matrix with a (N × 1) vector, The Nd terms are due to the
multiplications with Win and Wout where each is the product of a single (N × d) matrix with a
d dimensional vector. For our ESN tasks, N 
 d, so the overall asymptotic complexity is O(N2),
with an exact cost of 4,547,992 FLOPs per prediction step for L96 (with N = 1500, d= 8), and 21 197
FLOPs per prediction step for L63 (N = 100, d= 3).

By contrast, recall that D2R2 with ψ = gm may have a different number of nonlinear
transformations N2, each with their own cost. For our case of the polynomial features up to order
m, the number of features of gm will be N2 = ∑m

i=0((d + i − 1)!)/(i!(d − 1)!). The final inference
cost is therefore O(N2d) = O(d(d + d2 + · · · + dm)) =O(dm+1). This can be reduced further if more
information is known about the features. The cost of O(dm+1) above accounts for every polynomial
combination for orders up to m in the spirit of worst-case analysis. More precisely, for our
L96 experiment we use up to quartic (m= 4) terms, with a d= 8 dimensional input. Thus,
calculating the features takes 0 + 8 ∗ 0 + 36 ∗ 1 + 120 ∗ 2 + 330 ∗ 3 FLOPs, while the final output
multiplication takes an additional 2(1 + 8 + 36 + 120 + 330) ∗ (8) − 8), for a total of 9178 FLOPs
per prediction step. Similarly, for our L63 experiment we also use a quartic (m= 4), with d= 3, so
calculating features takes 0 + 3 ∗ 0 + 6 ∗ 1 + 10 ∗ 2 + 15 ∗ 3 FLOPs, and the final output takes an
additional 2(35) ∗ (3) − 3, for a total of 278 FLOPs per prediction step.

We compare both exact and asymptotic costs for specific experiments performed in the context
of L63 and L96, where N = 100, N2 = 35 and d= 3 in the former case, whereas N = 1500, N2 = 495
and d= 8 in the latter. Note however that m= 4 in both cases. As summarized in table 2, we note
that for these specific parameters, using required FLOPs as our metric, D2R2 is a factor of 77.7
times more efficient than an ESN in the context of L63, whereas when considering L96, it is a
factor of 496 times more efficient. Note that the asymptotic cost tends to underestimate the cost of
the ESNS and overestimate that of D2R2!

We are also currently completing a companion paper with detailed modelling and
measurement-based validations of these findings. There we employ realistic machine models
[23,45] and measurement counters that are built into modern processors.

6. Inexactness through precision variation
Recall that our goal here is to consider the efficacy of different ML models and their ability to serve
as surrogates in the context of dynamical systems. In keeping with the analysis in the previous
section, our next goal is to understand how much of the cost of a system can be lowered through
inexactness, while quality—defined to be the prediction accuracy—is maintained at acceptable
levels. There has been significant work done in understanding the role of inexactness in the
context of trading cost for quality in the Lorenz 96 system directly [23,46–49]. To reiterate, our
goal in this section is to further understand this in the context of how such an approach will
yield gains or savings in the context of machine learned surrogates. Using commercial-off-the-
shelf word sizes, we will explore double (64 bits), single (32 bits) and half (16 bits) precision
values in our analysis below. For the precision reduction experiments, we used standard software
emulation from the python numpy library to reduce the specified precision from double (64 bit)
to single (32 bit) or half (16 bit)—thus we cannot directly measure walltime speed-ups, we can
only estimate savings.
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Figure 7. ESNquality (L96 task)with error on the ordinate axis derived through inexactnesswhere all variables in the respective
systems are lowered in precision. HSR-ESN (a), LSR-ESN (b), D2R2 (c), where points marked (A,A’) (B,B’), (C,C’) show where the
0.3 mean error threshold is crossed for the (64 and 32 bit, 16 bit) version. Note that the 64 bit and 32 bit lines and crossing points
are indistinguishable, so they are marked with the same label, and that A and A’ (HSR) are at t = 0. (Online version in colour.)

Table 3. (L96) Details of comparing all threemethods at 32 bits of precisionwhere the divergence time in the last column is the
main point of conclusion.

training error TF error SF error divergence time

LSR-ESN 1.80 × 10−4 4.32 × 10−2 ± 1.75 × 10−3 1.18 ± 9.81 × 10−2 1.24 ± 4.74 × 10−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HSR-ESN 7.07 × 10−5 4.08 × 10−1 ± 3.37 × 10−1 1.09 × 101 ± 8.61 4.53 × 10−1 ± 5.93 × 10−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D2R2 2.24 × 10−4 2.28 × 10−4 ± 2.11 × 10−5 1.14 ± 1.06 × 10−1 1.60 ± 5.31 × 10−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Our ‘knob’ is precision, that is we control the amount of bit precision available to the different
components of a model (A, Win, Wout) and as before, we will be considering LSR-ESN, HSR-
ESN and D2R2. Since training can be viewed as a cost that is an initial investment which can
then be amortized over a multitude of predictive inference instances, our focus will be not to
alter training but rather consider precision variations during the prediction or inference phase.
Continuing, we will consider three different methodologies of lowering precision. First, the most
obvious method is to lower the precision of all variables used during inference. Next, guided by
our results from figure 3d showing that Wout has the largest perturbation sensitivity, we will
consider lowering the precision of Wout alone. Finally, we will, in contrast with this second
case, lower the precision of all variables except for Wout. We note that lowering precision from
64 to 32 bits had no effect on the quality of the solution, while lowering precision down to 16
bits did. Notably, the impact in the latter case was more pronounced for HSR-ESNs compared
to LSR-ESNs.

(a) Exploiting inexactness in the entire model
Let us consider (figure 7) where we illustrate the effect of lowering precision from 32 bits
down to 16 bits on prediction quality. D2R2 had the best performance at all precision levels.
As shown in figure 7, the divergence time—the time at which the normalized relative prediction
error exceeds 0.3—is labelled by points (A, A’), ( B, B’) and (C, C’) (mean ± s.d. shown). At
32 bits precision, the divergence time as shown in table 3 has a mean of 1.60 MTU for D2R2
whereas it is 1.24 MTU for LSR-ESN and 0.453 MTU for HSR-ESN. Also, as shown in table 4,
dropping precision further down to 16 bits degraded D2R2 less than 15% in prediction quality,
while LSR-ESN and HSR-ESN, respectively, degraded by 55% and 76%. Thus beyond the gains
reported in the previous section, for 13.1% degradation at 16 bits which is competitive in quality
(12% better) with LSR-ESN at 32 bits, D2R2 is more efficient by an additional multiplicative
factor of 2.
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Figure 8. ESN Performance (L96 task) w/ inexactness inWout across varying algorithms. (a) HSR-ESN, (b) LSR-ESN, (c) D2R2.
In all cases, dropping onlyWout to 32 bit had no discernible effect. Details same as previous figure. (Online version in colour.)

Table 4. (L96) Comparing the three methods with 16 bits of precision.

training error TF error SF error divergence time

LSR-ESN 6.70 × 10−4 4.32 × 10−2 ± 1.75 × 10−3 1.29 ± 8.58 × 10−2 5.63 × 10−1 ± 2.20 × 10−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HSR-ESN 9.87 × 10−4 4.09 × 10−1 ± 3.37 × 10−1 1.10 × 101 ± 8.56 1.06 × 10−1 ± 1.29 × 10−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D2R2 4.23 × 10−4 3.78 × 10−4 ± 1.70 × 10−5 1.16 ± 9.95 × 10−2 1.39 ± 5.14 × 10−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5. Performance (L96) metrics for the three algorithms, 32 bitsWout. Details the same as the previous overall comparison.
Once again, HSR-ESN fails a portion of trials, making its average time to cross 0.3 error highly variable.

training error TF error SF error divergence time

LSR-ESN 1.80 × 10−4 4.32 × 10−2 ± 1.75 × 10−3 1.17 ± 1.07 × 10−1 1.24 ± 4.75 × 10−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HSR-ESN 7.10 × 10−5 4.08 × 10−1 ± 3.37 × 10−1 1.09 × 101 ± 8.62 4.53 × 10−1 ± 5.93 × 10−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

polynomial fit 2.24 × 10−4 2.28 × 10−4 ± 2.11 × 10−5 1.14 ± 1.00 × 10−1 1.60 ± 5.31 × 10−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 6. Performance (L96) metrics for the three algorithms, 16 bitWout. Details the same as the previous overall comparison.
Once again, HSR-ESN fails a portion of trials.

training error TF error SF error divergence time

LSR-ESN 4.42 × 10−4 4.32 × 10−2 ± 1.75 × 10−3 1.24 ± 8.42 × 10−2 7.47 × 10−1 ± 2.72 × 10−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HSR-ESN 5.32 × 10−4 4.09 × 10−1 ± 3.37 × 10−1 1.10 × 101 ± 8.57 1.36 × 10−1 ± 1.68 × 10−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

polynomial fit 3.24 × 10−4 3.26 × 10−4 ± 1.86 × 10−5 1.16 ± 1.01 × 10−1 1.39 ± 5.21 × 10−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We remark in passing that HSR-ESN failed during some training trials at both precision values.
In order to better understand these differences, we next test the case of only reducing the precision
of Wout, which, to reiterate, had the most impact on the output.

(b) Understanding the impact of inexactness onWout and prediction quality
We now consider the case where only the variable Wout has its precision lowered. In this case, the
precision of A and Win are unchanged, meaning that the recurrent updates of the ESN methods
will be significantly less affected. The D2R2 in figure 8 is essentially unchanged, showing that
Wout is the key term in D2R2. Looking at tables 5 and 6, we see that D2R2 is very similar in
prediction quality when compared to the previous case where all the variables were lowered
in precision, while both ESNs have much better prediction quality when Win and A are left
untouched. For example, with 16 bits of precision, the mean divergence time for LSR-ESN in this
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Table 7. Performance (L96) metrics for the three algorithms for this case with 32 bits of precision in all variables butWout.

training error TF error SF error divergence time

LSR-ESN 1.80 × 10−4 4.32 × 10−2 ± 1.75 × 10−3 1.17 ± 1.07 × 10−1 1.24 ± 4.77 × 10−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HSR-ESN 7.10 × 10−5 4.082 × 10−1 ± 3.37 × 10−1 1.09 × 101 ± 8.61 4.54 × 10−1 ± 5.94 × 10−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

polynomial fit 2.24 × 10−4 2.28 × 10−4 ± 2.11 × 10−5 1.13 ± 1.07 × 10−1 1.60 ± 5.31 × 10−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 8. Performance (L96) metrics for the three algorithms with 16 bits of precision in all variables butWout.

training error TF error SF error divergence time

LSR-ESN 4.95 × 10−4 4.33 × 10−2 ± 1.75 × 10−3 1.27 ± 8.87 × 10−2 5.99 × 10−1 ± 2.42 × 10−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HSR-ESN 8.19 × 10−4 4.08 × 10−1 ± 3.37 × 10−1 1.09 × 101 ± 8.61 2.01 × 10−1 ± 2.57 × 10−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

polynomial fit 3.03 × 10−4 2.28 × 10−4 ± 2.11 × 10−5 1.13 ± 1.07 × 10−1 1.60 ± 5.31 × 10−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

case is 0.747 MTUs, whereas it is 0.563 MTUs when all precisions were lowered (tables 4 and 6).
This confirms our observation that D2R2 is primarily sensitive to Wout, while the ESNs also have
a greater dependence on A or Win

(c) Prediction quality by preservingWout

Finally, we consider the opposite case where all variables but Wout have their precision reduced.
This revealed some interesting behaviour. Since Wout plays a dominant role in the D2R2, lowering
precision in other parts of the system has hardly any effect, which can be seen both visually (not
shown) and in the tables 7 and 8. However, in the case of ESNs, lowering the precision of A and
Win can still have a large effect (tables 7 and 8)! The ESNs sees a moderate decline, similar to their
performance in the case of reducing all variable precision.

Our results for this section show that the ESNs, in addition to being more expensive due to
their dependence on recurrence through A and Win, also require these variables to be relatively
high precision in order to maintain their performance. By contrast, D2R2 depends primarily on
Wout, and can better tolerate low precision (e.g. down to 16 bits) than other methods and is
therefore a very good candidate for exploiting inexactness.

Stepping back, our results suggest that employing the approach of inexactness could yield
significant savings in computational cost using D2R2 while producing acceptable accuracy.

7. Conclusion, limitations and future directions
ESNs and other ML techniques have been increasingly used to model dynamical systems, with the
goal of using these for tasks of real-world importance such as weather modelling or simulation of
physical systems. However, our experiments clearly reveal that the best performing ESN [11] on
the Lorenz 96 benchmark effectively does a direct polynomial regression in an implicit and more
computationally costly manner. This speaks to the importance of systematically analysing and
interpreting the performance of ‘blackbox’ models by executing sensitivity analyses and ablation
studies.

We find that the D2R2, which is quite similar to the data-driven system identification model
SINDy, a technique known to scale up to fluid flow simulations, is cheaper and faster than a
traditional ESN, with performance that is comparable or better. Thus, it may be that, for a wide
variety of physical dynamical systems, a simple linear regression model, with an appropriate
choice of domain-driven input features and expansion operator, may be superior (in both
performance and cost) to a state-of-the-art deep learning system. Of course, this technique is only
implementable when the form of the dynamics is at least partially known, such as the functional
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form of the PDEs or ODEs (if not their exact parameters), something that may be known in
practice for many physical systems.

We argue that a significant lesson learned here is that using knowledge about the
underlying system, typically from the domain of physics-informed mathematical models,
can help significantly with scaling. Thus knowing the structure of Lorenz 96 was key to
deriving D2R2 and therefore, can play an equally important role in general in innovating
machine learned surrogate models for ODE and PDE based multi-scale systems like weather
prediction.

Building on this line of thinking further, the power of using domain knowledge to
compensate for and perhaps overtake features derived from backpropagation in RNNs is an
intriguing possibility. Common wisdom dictates that once the cost hurdles to training with
backpropagation are overcome, then the resulting models should be more powerful than simpler
approaches such as ESNs, originally created to cope with training costs. However, much to
our surprise, our findings here suggest that returning to simpler models such as ESNs and
D2R2, augmented/guided by principled domain knowledge, can outperform methods based on
backpropagation. A systematic study of this hypothesis is warranted, especially in the context of
physics-informed multiscale mathematical models.

Surprisingly, we also showed the value of the simplification that D2R2 afforded over canonical
ESN solutions, in providing reductions in cost with little to no reduction in prediction quality. Our
next goal is to validate the gains claimed in this paper using detailed measurement methods of
energy and time at the hardware level [50]. Furthermore, significant additional reductions in cost
have been reported by judicious reinvestment of the savings in energy (and time) gleaned through
inexactness [45]. Such reinvestment strategies are also a significant direction worth pursuing, and
here we believe ensemble models will be a natural vehicle to explore.

Limitations and Future Work. This paper only dealt with relatively simple systems of ODEs: The
L63, L96, and modified Chua attractors. Although these capture many of the critical properties of
real-world weather dynamics (chaos, multiscale system (L96)), they are far simpler than a shallow
water model, for example.

The D2R2 model presented here relies on domain knowledge in a critical way: the true model
needs to be within the span of the domain-driven features. For more realistic weather models with
much greater complexity, and unknown equations of motions, this is an unrealistic assumption.
Instead, we propose that the basic formulation, wherein one combines knowledge-driven and
data-driven features, should still be valid. Such an approach would combine the benefits of both
strategies and leverage the massive amounts of data available today. In future work, we plan to
develop and apply this technique to more complex and realistic weather models, for example,
a shallow-water model. Note that here SINDy-style models have been successful [51], and so a
hybrid D2R2 approach should perform at least as well if not better.

Another interesting and important direction would be to develop a deeper understanding
of the role of each bit of precision in the surrogate model. Despite their importance, the nature
and quality of approximations induced by inexact (variable precision) methods remain poorly
understood. The inexact approach employed in this paper (the ablation study to determine the
most important bits in Wout) is in a certain sense ad hoc: the impact of additional bits of numerical
precision in such simulations is unclear. A rigorous characterization would provide answers to
several natural questions.

— How does pruning [21] or reducing bit precision impact the nature of the approximate
dynamics and the quality of the computed solution?

— How does precision impact approximation quality and performance when used in
conjunction with machine-learned surrogate models (e.g. neural networks)?

— How does the impact of a adding a bit to the state representation differ from a adding a bit
to the parameter representation in an ODE/PDE system? How should a computational
scientist adjudicate between the two alternatives?
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Answering these questions, with help from recent advances in understanding the representation
of neural networks [52–54], would enable us to develop an principled bit allocation scheme,
specialized for the domain of weather modelling.
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