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Abstract—We are motivated by newly proposed methods for
data mining large-scale corpora of scholarly publications, such
as the full biomedical literature, which may consist of tens of
millions of papers spanning decades of research. In this setting,
analysts seek to discover how concepts relate to one another. They
construct graph representations from annotated text databases
and then formulate the relationship-mining problem as one
of computing all-pairs shortest paths (APSP), which becomes
a significant bottleneck. In this context, we present a new
high-performance algorithm and implementation of the Floyd-
Warshall algorithm for distributed-memory parallel computers
accelerated by GPUs, which we call DSNAPSHOT (Distributed
Accelerated Semiring All-Pairs Shortest Path). For our largest
experiments, we ran DSNAPSHOT on a connected input graph
with millions of vertices using 4,096 nodes (24,576 GPUs) of
the Oak Ridge National Laboratory’s Summit supercomputer
system. We find DSNAPSHOT achieves a sustained performance
of 136×1015 floating-point operations per second (136 petaflop/s)
at a parallel efficiency of 90 % under weak scaling and, in
absolute speed, 70 % of the best possible performance given
our computation (in the single-precision tropical semiring or
“min-plus” algebra). Looking forward, we believe this novel
capability will enable the mining of scholarly knowledge corpora
when embedded and integrated into artificial intelligence-driven
natural language processing workflows at scale.

Index Terms—Shortest path problem, High Performance Com-
puting, Parallel Algorithms

I. GORDON BELL JUSTIFICATION

We computed All-Pairs Shortest Path on a graph with

4.43 million vertices using 4,096 Summit nodes (24,576 GPUs)

in 21.3 minutes or 136 petaflop/s (90 % parallel efficiency

and 70 % machine-peak for single-precision tropical semir-

ing GEMM). We also processed a 6 million vertex graph,

constructed from medical documents between 2010-2015, in

80 minutes.
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TABLE I
GORDON BELL PERFORMANCE ATTRIBUTES

Attributes Category Details

Category Peak Performance 136 petaflop/s
of achievement Scalability Weak scaling to

6 million vertices

Type of N/A N/A
method used

Results reported Whole application End-to-end APSP

on the basis of except I/O and Init

Precision Single (FP32)

System scale Measured 90 % of Summit
(4,096 nodes
24,576 GPUs)

Measurement Timers Direct timer
mechanism instrumentation

II. OVERVIEW OF THE PROBLEM

The scientific literature is expanding at incredible rates, which

were recently estimated to be in the millions of new articles per

year [1] and growing exponentially [2]. Extracting information

from such vast stores of knowledge is an urgent need, as

exemplified by the recent open release of materials relevant to

the current SARS-CoV-2 pandemic [3]. Given that the volume

of information is easily beyond the capacity of any one person,

analysts have been strongly motivated to develop automated

knowledge-mining methods and extraction tools [4]–[6].

In this context, our work seeks to develop highly efficient

algorithms and software for the analysis and mining of

knowledge graphs at scale. Knowledge graph construction

concerns the acquisition and integration of information into

an ontology from which new information can be uncovered.

The work in this paper is based more specifically on the

process of literature-based discovery [7], [8]. It has been shown

that previously unknown relationships exist in the scientific

literature that can be uncovered by finding concepts that link

disconnected entities [7]–[9]. This process, called Swanson
Linking [10], is based on the familiar idea of transitivity: if

there is no known direct relation between entities A and C,

but there are published relations between A and B, and B and
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C, then one can hypothesize that there is a plausible, novel,

yet unpublished indirect relation A-C [8]. For instance, in

1986, Swanson applied this concept to propose a connection

between dietary fish oil (A) and Raynaud’s disease (C) through

high blood viscosity (B), which fish oil reduces [11]. This

connection was validated in a clinical trial three years later.

To begin replicating this idea at the full scale of a large

corpus, we have created a graph dataset based on Semantic

MEDLINE [12], a dataset of biomedical concepts and rela-

tions between them extracted from the PubMed database of

biomedical literature maintained by the U.S. National Library

of Medicine. We have enriched the graph with data extracted

from the new COVID-19 Open Research Dataset1 (CORD-19)

[13], of research literature on COVID-19, SARS-CoV-2, and

other coronaviruses, which was released by the White House

in March of this year [3]. This dataset consists of 18.5 million

vertices representing over 290 thousand unique biomedical

concepts and the publication abstracts from which these

concepts were extracted. The roughly 213 million relations

between these vertices represent 1) existing published relations

between biomedical concepts, 2) relations between concepts

and publication abstracts in which they appear, and 3) citation

relations between the abstracts.

The analysis of this dataset presents several challenges. The

graph is not only extremely large, but is also constantly growing.

For example, adding research articles on COVID-19 published

just this year enlarged the graph by several thousand vertices

and tens of thousands of new edges. To aid the analysis of

such a large graph, we are developing an enterprise architecture

for biomedical knowledge graph analytics whose overall

workflow appears in Figure 1. It incorporates (a) streaming

publication data from different sources and the knowledge

graph representation of these biomedical texts; (b) various client

services like natural language processing and visualization; and

(c) a backend query engine for operating on the knowledge

graph, which invokes operations such as All-Pairs Shortest

Path (APSP), which is the bottleneck of this paper’s application

case study (Section VI-C).

For this paper’s application, the central bottleneck is APSP.

We develop a scalable algorithm for it, which we call the

Distributed Accelerated Semiring All-Pairs Shortest Path

(DSNAPSHOT) algorithm. It implements a GPU-accelerated,

distributed-memory parallel version of the Floyd-Warshall (FW)

algorithm targeted at the Summit supercomputer system at Oak

Ridge National Laboratory. Our approach can perform well

because at the heart of FW lies matrix-multiplication-like (level-

3 BLAS-like) operations, which are well-suited to GPUs [14]

and distributed memory systems [15].

In its best configuration, DSNAPSHOT achieves 136 Petaflop/s

in single-precision. It takes 21.3 minutes to process a large

graph composed of 4.43 million vertices, which required

execution of 170 exa−floating−point operations. Based on our

1https://www.semanticscholar.org/cord19

Fig. 1. Workflow for biomedical knowledge graph analytics

performance model (Section V-C) and experiments, we estimate

that for the 18 million vertex biomedical knowledge graph, it

will take about 18 hours to compute the APSP.

The key enabling ideas in our work are as follows.

• Our approach leverages GPU acceleration and commu-

nication optimizations for a two-dimensional distributed

FW algorithm, which enabled scaling of APSP to inputs

with millions of vertices.

• We show, for the first time, performance of 136 PF/s on

the world’s fastest supercomputer, Summit, for a graph

analysis algorithm based on state-of-the-art practices.

• We model the Semantic MEDLINE dataset as a matrix

suitable for HPC algorithms, thereby enabling the extrac-

tion of useful information at scale.

• We show that APSP algorithms offer the potential to

uncover novel relations from biomedical knowledge graphs

at scale.

The data [16] used in these experiments are being publicly

released in an open-source form.

III. CURRENT STATE-OF-THE-ART

Summaries of closely related state-of-the-art in algorithms for

biomedical knowledge graphs and APSP appear below.

A. Biomedical Knowledge Graph Mining

In the biomedical field, the relations between biomedical

concepts—such as drugs, diseases, symptoms, proteins, and

genes—play an important role in tasks like drug discovery

and repurposing [17], [18]. Much previous work has focused

on leveraging natural language models for speeding up these

tasks [9], [19], [20]. However, these methods are often black

boxes that require significant additional work to provide an

explanation [20]. Furthermore, these methods are often limited

to providing results for a specific query (for example, a specific

drug and a disease) [9], [21], significantly limiting their scope

and increasing the work and background knowledge required

to use them.

Consequently, there is interest in mining knowledge graphs

created from scholarly literature. Many different approaches



TABLE II
GORDON BELL JUSTIFICATION. FASTEST AND BIGGEST RUNS OF DSNAPSHOT ON 4096 SUMMIT NODES. FOR METRICS REFER SECTION VI-3

Nodes MPI (P ) Row (Px) Col (Py) Vertices (n) Memory(in TB) Time PFlop/s Fraction of Parallel
(in Secs) Peak Efficiency

Biggest Real World Graph (See VI-C1)
4,096 147,456 384 384 5.95 × 106 393 4.79 × 103 89.96 46 % 60 %

Fastest Run
4,096 24,576 192 256 4.43 × 106 209 1.28 × 103 135.9 70 % 90 %

have been applied with the goal of performing automated

hypothesis generation and literature-based discovery, such

as statistical methods and pattern matching [7], link predic-

tion [22], association rule mining [23], manually constructed

queries [24], and graph statistics [25]. A recent survey reviews

literature-based discovery and hypothesis generation [5].

Several previous works have explored using shortest-path com-

putations for discovering novel connections between biomedical

concepts [21], [26], [27]. Like our method, these approaches

use shortest path calculation to discover pathways between

pairs of entities that do not otherwise have a direct connection

between them. However, these approaches need a starting

query (a pair of entities) [21]; or reduce the size of the graph

to specific types of nodes and connections [26] or to specific

topics [27]. To the best of our knowledge, DSNAPSHOT is

the first method capable of calculating shortest path between

all pairs of entities in a biomedical knowledge graph, thereby

enabling the discovery of meaningful relations across the whole

of biomedical knowledge.

B. Distributed Semiring-based All-Pairs Shortest Path

The seminal work of Carre and others establishes the equiva-

lence between finding shortest paths and solving a system of

linear equations [28], [29]. There are several modern treatments

of this subject as well [30]–[32].

While APSP is the semiring-equivalent of matrix inversion, no

truly sub-cubic (Strassen-like) algorithm for APSP is known.

The best known complexity of APSP for the dense case is

O(
n3−o(1)

)
[33] and O

(
mn
logn

)
for sparse graphs [34]. For the

parallel case, the complexity is O(log n) due to Tishkin [35].

A recent distributed 2.5-dimensional APSP for a CPU-only

cluster exhibited excellent strong scaling [15]. But in absolute

performance, it achieved only about 10–25 % of peak, with

maximum tested problem sizes of n = 65,536. A distributed

GPU APSP showed good performance for smaller clusters [36].

However, possibly due to their centralized communication

scheme, they do not scale beyond clusters of 64 GPUs.

IV. BACKGROUND

Many path problems in graph analysis can be described

succinctly in a semiring algebra. We review this formalism and

the resulting classical and blocked FW algorithms for APSP,

below.

TABLE III
NOTATION

Symbol Type Symbol Description

Process

P Number of MPI Processes
Px, Py Row and Column Processes
Px(k) (k mod Px)-th Process Row
Py(k) (k mod Px)-th Process Column
N Number of physical nodes

Matrix
A Adjacency matrix of a graph

A(:, k) A(k : n, k)
A(k, :) A(k, k + 1 : n) : k-th A panels

Graphs

G Input graph as in Figure 3
V Vertex set
E Edge set
n Number of vertices
m Number of edges

a) Notation and terminology: Let G = {V,E,W} be an

undirected weighted graph with a vertex set V containing

n = |V | vertices or nodes, edge set E with m = |E| edges,

and weights W , defined below. Say, ei,j is the edge between

i-th vertex by vi and an edge between vi and vj . The weights

are represented by W , a sparse symmetric matrix and whose

entry wi,j denotes the distance between vertices vi and vj if

ei,j ∈ E; otherwise, wi,j = ∞. We are also presenting the

relevant notations used in the paper frequently in Table III.

A. Classical FW algorithm

Algorithm 1 FW algorithm for APSP

1: function FLOYDWARSHALL(G = (V,E)):
2: Let n ← dim(V )

3: Let Dist[i, j] =

{
wi,j if(i, j) ∈ E

∞ otherwise

4: for k = {1, 2 . . . , n} do:
5: for i = {1, 2 . . . , n} do:
6: for j = {1, 2 . . . , n} do:
7: Dist[i,j] = min {Dist[i,j], Dist[i,k]+Dist[k,j]}
8: Return Dist

During the computation of APSP, FW maintains and updates

a 2-D array of distances, Dist. At any kth iteration, FW

maintain the invariance that Dist[i, j] holds the current shortest

distance between vi and vj with all intermediate vertices

k ∈ (v1, v2, · · · , vk) so far. This is realized by the following



update equation in FW.

Distk[i, j] ← min
{
Distk−1[i, j],Distk−1[i, k] + Distk−1[k, j]

}
.

The above invariance is always satisfied when there are no

cycles of negative weight sum. In the case of negative cycles,

it is trivial to say that the shortest path length will be ∞.

When we have explored all paths between any two pairs of

vertices vi to vj with all the vertices as intermediaries (i.e.,

∀k ∈ V ), then Dist[i, j] will be the APSP. The computation can

be done in-place, obviating the need for two separate copies,

Distk−1 and Distk. This is realized as Algorithm 1.

For analysis purposes, we will assume G is a single connected

component, i.e., that there exists a path between any pair of

two vertices vi and vj resulting in a fully dense Dist matrix.

B. MIN-PLUS Matrix Multiply or “SemiRing GEMM”

APSP may be understood algebraically as computing the matrix

closure of the weight matrix, W , defined over the tropical

semiring [37]–[39]. In more basic terms, let ⊕ and ⊗ denote

the two binary scalar operators

x⊕ y := min(x, y)
x⊗ y := x+ y,

where x and y are real values or ∞. Next, consider two matrices

A ∈ R
m×k and B ∈ R

k×n. The MIN-PLUS product C of A
and B is

Cij ←
⊕∑
k

Aik ⊗Bkj = min
k

(Aik +Bkj) . (1)

Sao et al. [32] discuss in detail the connections between the

semiring GEMM and the APSP.

C. Baseline: A 2D Distributed Floyd Warshall

We can design a baseline FW algorithm using the Message

Passing Interface (MPI) for expressing the distributed memory

parallelism. The MPI processes are logically arranged in a

two-dimensional (2D) process grid. On this 2D process grid,

DSNAPSHOT distributes the input matrix A in a block cyclic

fashion.

In the Figure 2, we show various MPI communicator and

communication patterns involved in the Algorithm 2. We show

the k-th process row Px(k) and process column Py(k) by

dotted rectangles in the Figure 2. In k-th diagonal update step,

process pkk performs a local FW computation and broadcast it

across Py(k) and Px(k). In k-th panel broadcast, each process

in Px(k) broadcast calculated A(:, k) panel to their process

column Py(k), and similarly each process in Px(k) broadcast

the calculated A(k, :) panel to their process row Px(k).

On obtaining the k-th panels, A(k, :) and A(:, k), a process

can update the blocks of A(k+1 : ns, k+1 : ns) that it owns.

This update is the MIN-PLUS Outer Product, and it invokes the

proposed Semi-Ring GEMM kernel (Section V-A) on GPU.

Fig. 2. Communication patterns in DSNAPSHOT

Algorithm 2 A Baselines 2D Distributed Block FW

1: Input: Distributed sparse matrix A;
2: On each MPI process pid do in parallel:
3: for k = 1, 2, 3 . . . nb do
4: Synchronize all processes

Diagonal Update
5: if pid owns A(k, k) then
6: A(k, k) ← FW (A(k, k))
7: Send A(k, k) to Px(k) and Py(k)

Panel Update
8: if pid ∈ Py(k) then
9: Wait for A(k, k)

10: A(k, :) ← A(k, :)
⊕

A(k, k)⊗A(k, :)
11: Send A(k, :) blocks to needed processes in Px(:)
12: else
13: Receive A(k, :) blocks if needed

14: if pid ∈ Px(k) then
15: Wait for A(k, k)
16: A(:, k) ← A(:, k)

⊕
A(:, k)⊗A(k, k)

17: Send A(:, k) blocks to required processes in Py(:)
18: else
19: Receive A(:, k) blocks if required

MinPlus Outer Product
20: for i = {1, 2 . . . , nb} , i �= k do:
21: for j = {1, 2 . . . , nb} , j �= k do:
22: A(i, j) ← A(i, j)

⊕
A(i, k)⊗A(k, j)

D. Biomedical Knowledge Graph

As mentioned in Section II, our biomedical knowledge graph

was constructed using the Semantic MEDLINE2 database [12].

The latest version of Semantic MEDLINE (semmedVER40_R
as of April 28, 2020) contains nearly 98 million predications

(concept-to-concept relations) extracted using the SemRep

library3 from over 18 million biomedical abstracts. We have

enriched the dataset with concepts and relations extracted

using SemRep from the CORD-19 dataset4 of publications

on COVID-19, SARS-CoV-2, and other coronaviruses [3].

Specifically, we have used the version from June 30, 2020,

which contains over 130 thousand publication abstracts. Here

we describe the construction of the graph from the two datasets.

The graph is composed of two types of nodes:

1) Concept nodes: represent unique biomedical terms, for

example, drugs, genes, diseases, and symptoms (there are 127

2https://skr3.nlm.nih.gov/
3https://semrep.nlm.nih.gov/
4https://www.semanticscholar.org/cord19



different concept types). There are over 290 thousand unique

concept nodes.

2) Abstract nodes: represent the 18 million PubMed abstracts

and 130 thousand CORD-19 abstracts.

As shown in Figure 3, the nodes can be connected in three

different ways:

1) Concept to concept relations: The connections between

concepts represent relationships described in these abstracts, for

example, the sentence, “Zika virus is a member of the family

Flaviviridae,” would result in a “part of” relation between

“Zika” and “Flavivirida,” while both concepts would be tagged

with “virus” label. In the Semantic MEDLINE database, these

relations are represented as predications. There are 14 million

unique concept to concept relations in the graph which were

extracted from the 98 million Semantic MEDLINE predications.

For the shortest path computation, we assign these edges

Jaccard similarity score of the connected concepts, which is

calculated as the number of times the two concepts appear

together in a predication divided by the total number of

predications these concepts appear in. These connections are

represented in blue in Figure 3.

2) Concept to abstract relations: The connections between

abstracts and concepts represent occurrence of concepts in

abstracts. For example, if the above sentence, “Zika virus is a

member of the family Flaviviridae,” appeared in abstract with

PubMed ID 111, there would be a connection between the ab-

stract node “PMID111” and concepts “Zika” and “Flaviviridae.”

There are 196 million unique concept to paper connections in

the graph. For the shortest path computation, we assign these

edges a weight representing the number of times a concept c
appears in abstract p divided by the total number of concepts

appearing in p. These connections are represented in red in

Figure 3.

3) Abstract to abstract relations: The connections between

abstracts represent citation relations between them. For example,

if an abstract with PubMed ID 111 cited an abstract with

PubMed ID 222, there would be a connection between those

two abstracts in the graph. There are 3 million citation

relations in the graph. For the shortest path computation, we

treat citations as undirected edges and assign them a weight

calculated as 1/(Np1
+ Np2

), where N represents the total

number of citation relations of p. These relations are represented

in yellow in Figure 3.

In total, the graph is composed of nearly 18.5 million nodes

(over 290 thousand unique concepts and over 18 million

publications), and 213 million edges. Figure 3, which was

extracted from the graph, shows both types of nodes and all

three types of relations. Additional information about how the

graph was produced is provided in our data read me [16].

V. INNOVATIONS REALIZED: DISTRIBUTED ACCELERATED

SEMIRING ALL-PAIRS SHORTEST PATH (DSNAPSHOT)

Our algorithm, Distributed Accelerated Semiring All-Pairs

Shortest Path, is the 2-D distributed-memory FW variant of

Algorithm 2 that offloads semiring GEMM computations to

Fig. 3. Example knowledge graph generated from Semantic MEDLINE. In
the figure, yellow nodes represent publication abstracts, which are identified by
their PubMed ID. All the other nodes are concepts, with concepts of different
types (e.g. virus, syndrome) distinguished by color. The thickness of the edges
represents edge weight.

the GPU. We perform computations on the GPU or CPU

based on their nature and offloading costs. The SemiRing

GEMM (SRGEMM) of Section IV-B has the same acceleration

opportunities of classical GEMM due to its high arithmetic

intensity and identical data access pattern. However, the

diagonal update is performed on smaller portions of the

matrix and involves sequential computation that are difficult

to accelerate on a GPU. Hence, all panel updates and the

MIN-PLUS outer product are performed on the GPU using the

SRGEMM described in Section V-A.

DSNAPSHOT is flexibly implemented so that it can perform

communication from both CPU and GPU. In Algorithm 3, we

explain the conventional model of communication from the

CPU. Even though the panel updates are performed on the

GPU, to broadcast it on the process rows Px(k) or Py(k), there

is a memory transfer to CPU involved In the experiments, we

call this variant of algorithm as DSNAPSHOT and any additional

communication optimizations are named appropriately.

A. GPU Acceleration

As detailed in Section IV, the primary compute kernel in our

blocked Floyd-Warshall algorithm is matrix multiplication over

the tropical semiring. Although this (min,+) SRGEMM kernel

is semantically different from the traditional level-3 BLAS

multiply-accumulate GEMM operation, it lends itself to the

same acceleration opportunities due to its very high arithmetic

intensity and identical data access pattern. We implement our

MIN-PLUS SRGEMM by extending the NVIDIA Cutlass open-

source linear algebra framework [40].

We wish to modify the traditional BLAS GEMM of the form

C = αAB+βC with semiring GEMM. We made the following

modifications to Cutlass to be able to implement our SRGEMM

kernel,



Algorithm 3 Distributed Accelerated Semiring All-Pairs Short-

est Path (DSNAPSHOT)
1: Input: Distributed sparse matrix A;
2: On each MPI process pid do in parallel:
3: for k = 1, 2, 3 . . . nb do
4: Synchronize all processes

Diagonal Update
5: if pid owns A(k, k) then
6: Copy Diagonal Blocks from GPU AGPU(k, k) to CPU A(k, k)
7: A(k, k) ← FW (A(k, k))
8: Send A(k, k) to Px(k) and Py(k)

Panel Update
9: if pid ∈ Py(k) then

10: Wait for A(k, k)
11: Copy A(k, k) from CPU to GPU AGPU(k, k)
12: SRGEMM GPU(AGPU(k, k), AGPU(k, :), AGPU(k, :)) � //

AGPU(k, :) ← AGPU(k, :)
⊕

AGPU(k, k)⊗AGPU(k, :)
13: Copy AGPU(k, :) from GPU to CPU A(k, :)
14: Send A(k, :) blocks to needed processes in Px(:)
15: else
16: Receive A(k, :) blocks if needed

17: if pid ∈ Px(k) then
18: Wait for A(k, k)
19: Copy A(k, k) from CPU to GPU AGPU(k, k)
20: SRGEMM GPU(AGPU(:, k), AGPU(k, k), AGPU(:, k)) � //

AGPU(:, k) ← AGPU(:, k)
⊕

AGPU(:, k)⊗AGPU(k, k)
21: Copy AGPU(:, k) from GPU to CPU A(:, k)
22: Send A(:, k) blocks to required processes in Py(:)
23: else
24: Receive A(:, k) blocks if required

MinPlus Outer Product
25: for i = {1, 2 . . . , nb} , i �= k do:
26: for j = {1, 2 . . . , nb} , j �= k do:
27: SRGEMM GPU(AGPU(i, k), AGPU(k, j), AGPU(i, j)) � //

A(i, j) ← A(i, j)
⊕

A(i, k)⊗A(k, j)

• Semiring Operators in Matrix Multiplication: Support

for overriding the ring operators in matrix multiply for

other semiring operators in a composable fashion.

• Identity Values: Support for custom initialization and

padding values as identity values of ring operations. This

involves initializing registers with ∞ instead of the default

zero.

• Epilogue Operator: Addition of semiring BLAS epilogue

operator in the tropical semiring (min,+) for an element-

wise min with the C matrix.

Performance of GPU SRGEMM Kernel: Fused Multiply Accu-

mulate instruction such as FFMA on Volta perform the GEMM

multiply and accumulate operations in a single instruction.

Volta micro-architecture does not support a similar fused min-

plus instruction in hardware. As a result, both ring operations

must be issued individually, halving the peak possible flop rate

from 15.6 TF/s to 7.83 TF/s at single precision for an SXM2

V100. Our SRGEMM implementation achieves 6.81 TF/s at

single precision, corresponding to 87% of the peak performance

on our target hardware for this workload.

B. Communication Optimizations

The DSNAPSHOT Algorithm 3, performs high volume of

communication in the O( n
2

Px
+ n2

Py
). The communication

complexity is explained in the next section V-C. This means,

during scaling to large nodes, we will spend more time

in communication over computation. In order to tame this

communication, we propose the alleviation techniques (a)

Lookahead - accelerating the critical path of diagonal update

and broadcast (b) Ring broadcast protocol (c) Rank Mapping

and (d) optimizing intranode communication.

1) Lookahead Technique: The main objective of the lookahead

technique is to accelerate the execution of the critical path in the

computation and to overlap communication with computation.

The diagonal and the panel update lies in this critical path.

When the A(k, :) in iteration k has been updated by the column

processes Py and broadcast to row processes Px as in Figure

2(b), the globally next urgent job is to perform both the diagonal

and panel update and communication of the of A(k + 1, k +
1), A(k + 1, :) by the next column process Py+1. A similar

argument is also applicable for row process Px for block

A(:, k + 1).

In the case of lookahead DSNAPSHOT, as soon as Pk+1,k+1

receive the A(k, :) and A(:, k) panels, Pk+1,k+1 perform a

SRGEMM using these panels to obtain A(k + 1, k + 1). The

diagonal update on A(k+1, k+1) is performed and broadcast

to row and column processes in Px+1 and Py+1 respectively.

Then for, Px+1 and Py+1, has the panels A(k, :) and A(:, k)
and along with the updated diagonal block A(k + 1, k + 1) to

perform the panel updates/broadcast A(k + 1, :), A(:, k + 1)
using SRGEMM before the MIN-PLUS Outer Product on kth

iteration. By this, the diagonal and panel broadcast can be

advanced and the global critical path is accelerated.

The lookahead DSNAPSHOT, requires some small block

SRGEMM to be invoked and also additional buffer manage-

ment.

2) Ring Broadcast over Tree Based Broadcast: The traditional

library provided MPI BCast may not be most efficient for our

application since it uses a kd-tree pattern (also called hyper-cube

algorithm) that costs logP (α+ wβ) for broadcasting w units

of data among P processes. Such an algorithm balances latency

(α term) and bandwidth (β term) costs. In contrast, bandwidth

is of greater concern for our application thus a broadcast based

on ring-pattern that costs (P − 1)α+wβ, which is optimal in

bandwidth and worst in latency costs. The latency cost in the

ring broadcast can be hidden by pipelining broadcasts from

different iterations. We implemented a non-blocking version

of the ring-broadcast that we use in the DSNAPSHOT.

3) Optimal Rank Placement: When creating a two-dimensional

logical process grid using MPI, by default all the MPI ranks

within a node will be placed in a process row or process column.

However, this rank placement is not optimal considering data

transfer via the network interface card (NIC) in a single node.

To minimize the data transfer via NIC, we must have ranks

within a node arranged in a 2D grid with the same aspect ratio

as the logical process grid. In other words, if Qr×Qc ranks per

physical node with a total of Px × Py logical MPI processes,

then NIC data transfer is minimized when Qr

Px
≈ Qc

Py
. In Summit

supercomputer, we achieve this using the so-called explicit

resource file (ERF). The optimal Rank placement benefited

all DSNAPSHOT variants except LA+Ring. We observed that



ERF increased the synchronization time for diagonal and panel

update of DSNAPSHOT negating the benefits of ring broadcast.

4) Optimizing Intra-Node communication: To minimize data

transfer via NIC, it is imperative that we efficiently exploit

architectural features for intranode communication. For optimal

intranode GPU to GPU transfer, we must use NVlink, and

within node CPU to CPU transfer, we use hyper transport.

We use GPUDirect for efficient intranode communication. We

also observed that GPUDirect did not improve performance

over CPU based ring broadcast. This is because GPUDirect

does not work well with look-ahead and limits amount of

communication and computation overlap.

C. DSNAPSHOT Analysis

We present the computation, communication and total cost

analysis of DSNAPSHOT in this section.

1) Computation Cost: In the blocked FW algorithm, the total

number of floating-point operations is 2n3 distributed among P
processes. Since the computation is uniform and load-balanced,

hence the cost of floating-point operations is 2n3

P γ, where γ
is the cost of unit floating-point operations.

Tcomp =
2n3

P
γ (2)

2) Communication Cost: If b is the block-size used for block-

cyclic data distribution, then algorithm-2 performs the n
b

outer loop iterations. In each of the iterations, each process

participates in two broadcasts nb
Px

across process row and nb
Py

across process column. In the ring broadcast, the total cost of

the two broadcast is 2α+ β( nb
Px

+ nb
Py

), where α is the setup

cost of sending a message and β is cost of sending a unit float

word. Since the outer iteration runs for n
b iterations, hence the

total communication cost is 2n
bα+ β( n

2

Px
+ n2

Py
).

Tcomm = 2
n

b
α+ βn2

(
1

Px
+

1

Py

)
(3)

3) Total Cost: Depending on n and P , either Tcomp or Tcomm

will dominate the total cost of computation. In the ideal case, we

can completely overlap the communication with computation

or vice-versa. In that case, the total cost is given by:

Tideal = max

{
2n3

P
γ, 2

n

b
α+ β

(
n2

Px
+

n2

Py

)}
. (4)

On the other hand of the spectrum, in the worst case,

communication and computation will not overlap at all, in

which case the total cost is given by:

Tworst = Tcomp + Tcomm =
2n3

P
γ + 2

n

b
α+ β

(
n2

Px
+

n2

Py

)
.

(5)

These models acted as guidelines to validate the scaling

experiments. Most of the experiments was cross validated

against this model and in Section VI-B6, we present the

application of the model on the weak scaling experiments.

VI. HOW PERFORMANCE WAS MEASURED - EXPERIMENTS

The aim of our experiments is to understand DSNAPSHOT

performance in the context of the growth trends in scientific

articles, which is generally accepted to grow exponentially

with time [2]. This number doubles about every nine years [2],

and in 2014, it has been estimated that the number of English

scientific articles in existence is at least 114 million [41].

To assess DSNAPSHOT’s ability to respond to this growth,

we consider several categories of experiments. First, we look

at DSNAPSHOT’s single-node efficiency compared to other

APSP baselines (Sections VI-2) on a variety of real-world

graphs that fit within a node (Section VI-4). These experiments

help establish whether node-local code is a good building

block for the distributed implementation. Secondly, we conduct

strong-scaling experiments, which allows us to estimate how

efficiently DSNAPSHOT can process a fixed-size corpus with

increasing numbers of processing nodes and GPUs. Lastly,

we conduct weak-scaling experiments, in which we fix the

per-node problem size of O(n3/p). These correspond to the

growing literature and the efficiency with which DSNAPSHOT

can scale to accommodate that growth.

1) Test Bed: The Summit system consists of 4,608 nodes nodes.

Each node has two 22-core IBM POWER9 processors and

six NVIDIA Volta V100 GPUs, connected by NVLINK-2,

which has a peak performance bidirectional bandwidth of

100 GB/s. V100 GPU has 5,120 cores operating at 1.53 GHz,

which translates to theoretical peak of 7.85 TF/s and with

FMA, the single precision peak is 15.7 TF/s. The peak memory

bandwidth of each V100 GPU is 900 GB/s. Each node contains

512 GB main memory, while each GPU contains 16 GB HBM2

memory. The nodes are connected with a Mellanox Infiniband

fat-tree interconnect. Each node is equipped with a 1.6 TB

NVMe burst buffer device.

2) APSP Baselines: There are no off-the-shelf distributed

scalable FW algorithms available in the public domain. Hence,

we compare the single-node performance of our algorithm with

the following single-node implementations:

• BLOCKEDFW-CPU (BFW-CPU) : This implementation

is an efficient multithreaded OpenMP variant, which

performs n3 operations.

• DIJKSTRA: This algorithm performs a single-pair shortest

path from all the vertices. It has the lowest asymptotic

complexity of all the methods considered herein. Hence,

we consider this as the baseline in Figure 5 for comparison

against other baseline algorithms.

• BOOSTDIJKSTRA (Boost-D): This APSP implementation

uses Dijkstra’s algorithm from the popular Boost Graph

Library (BGL) [42]. BGL also provides a BFW that is

slower than BOOSTDIJKSTRA, so we omit it.

• Δ-STEP: We use the parallel Δ-stepping variant of

Dijkstra’s algorithm [43] for computing the single-source-

shortest path in Johnson’s algorithm. We use the parallel

Δ-stepping algorithm from the Galois Graph library [44].

The Δ-stepping requires tuning a Δ parameter for each



TABLE IV
REAL WORLD DATASETS FROM SUITESPARSE MATRIX COLLECTION [45]

Dataset Label Rows NNZ Kind

Weighted Graphs

human_gene1 HG1 2.23 × 104 2.47 × 107 Undirected

mycielskian15 MY 2.46 × 104 1.11 × 107 Undirected

human_gene2 HG2 1.43 × 104 1.81 × 107 Undirected

appu APPU 1.40 × 104 1.85 × 106 Directed

vsp_msc VSP 2.20 × 104 2.44 × 106 Random

Scientific Problems

pkustk08 PS8 2.22 × 104 3.23 × 106 Structural

tsyl201 TSY 2.07 × 104 2.45 × 106 Structural

trdheim TRD 2.21 × 104 1.94 × 106 Structural

Zd_Jac3 ZD 2.28 × 104 1.92 × 106 Simulation

crystk03 C03 2.47 × 104 1.75 × 106 Materials

nd6k ND6K 1.80 × 104 6.90 × 106 2D/3D Mesh

pkustk07 PS7 1.69 × 104 2.42 × 106 Structural

input graph. Our Δ-STEP-based APSP is autotuned, i.e.,

we try different values of Δ during the first few SSSP

calls and pick the best Δ for rest of the execution.

• cuGraph: The NVIDIA RAPIDS cuGraph library is

a collection of GPU accelerated graph algorithms. We

implemented APSP based on the RAPIDS reference

documentation.5

3) Metrics: Theoretical Peak on 4,096 nodes of Summit: Given

that, we can execute no more than 7.85 TF/s FP32 min-plus

operations per GPU, so on 4,096 nodes with 24,576 GPUs, the

theoretical peak will be 193 PF/s. We report the performance

relative to this value as Fraction of Theoretical Peak.

Parallel Efficiency: We report the parallel efficiency relative

to best performance achieved on 16 nodes at 6.15 TF/s per

GPU shown in Figure 6c. The efficiency can be defined as

(achieved flop rate)/(N × 6× 6.15).
4) Test Graphs: Our graph datasets for the single-node

experiments use the real-world graphs shown in Table IV. We

have chosen the graphs to be sufficiently large while running in

a reasonable time on a single node. The Djikstra’s and Δ-STEP

algorithms work on graphs with positive edge weights, so we

modify the adjacency matrices from real world and synthetic

graphs to have only positive entries.

A. Environment

The software versions used are GCC 6.4.0, IBM Spectrum MPI

10.2.0.0, and CUDA 10.1.243. Summit’s jsrun tool is used

for application launch. No other proprietary software was used

in the execution. The entire software stack for the experiments

are shown in Figure 4.

B. Performance Results and Observations

1) Effect of Blocksize on SRGEMM Performance: Figure 6a

shows the relative performance of single GPU DSNAPSHOT

runs, normalized to the observed peak of 6.5 TF/s. We observe

increase in performance as block size increases from 1 to

5https://docs.rapids.ai/api/cugraph/stable/api

Fig. 4. DSNAPSHOT software stack

32 due to increase in the compute intensity for SRGEMM.

Beginning at block size 64, we achieve peak performance and

it flattens out. We obtain the best performance at block size

256, which is used for rest of the experiments. As expected,

we observe slight degradation in performance for block size

beyond 256, as SRGEMM performs better for outer product

type matrix multiplication (k 	 m,n). Higher block sizes

result in fewer global iteration of DSNAPSHOT, however, since

latency is not the bottleneck here, we choose block size of 256

for our experiments.

2) Single Node Performance Evaluation: We compared

SRGEMM against other single-node implementations using the

datasets of Table IV, which were taken from the SuiteSparse

Matrix Collection [45]. We either developed or obtained open-

source baselines for these experiments. The baselines were

chosen from different categories, such as sparse algorithms on

CPU, and dense algorithms on CPU or GPU implementations.

The CPU algorithms were executed on a full single node of

Summit with 42 OpenMP threads and the GPUs used only

one GPU. We are reporting the wallclock time in seconds. The

results appear in Figure 5.

None of the other implementations are competitive with DSNAP-

SHOT. Over the BFW-CPU, it is 32× faster on human_gene1,

with even the lowest speedup being 12× for appu and

human_gene2. We expect Δ-STEP to be slowest as it is neither

work optimal nor scalable. Similarly, BOOSTDIJKSTRA is not

competitive to our own implementation of Dijkstra. Dijkstra

can be better over FW for sparse graphs. In our case, most of

the datasets are relatively dense and Dijkstra does not perform

as well as GPU accelerated FW– DSNAPSHOT. While our

implementation of Dijkstra is CPU-based, we could not find

an efficient priority queue implementation on GPUs to realize

GPU Dijkstra. We observed poor performance from cuGraph

SSSP relative to other SSSP baselines. Perhaps this finding can

be attributed to the beta release nature of the library. Despite

the difference in the flop rates between CPU and GPU, we

believe the comparison reflects the availability of the current

state-of-the-art on different architectures.

3) DSNAPSHOT Variations: Having established the single-node

DSNAPSHOT as a strong baseline, we next benchmarked three

different variants of DSNAPSHOT. DSNAPSHOT is the algorithm

explained in the Listing 3. LA is extension of DSNAPSHOT with

the lookahead (LA) as detailed in Section V-B. Additionally,
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for MPI broadcast, we leveraged the ring broadcast called as

LA+Ring. In all three variants, DSNAPSHOT, LA, and LA+Ring,

all MPI communications were performed using host side buffers.

Any GPU device buffers required for communication were

staged through host memory via a device to host memory

copy. In the next two variants, we leveraged CUDA-aware

MPI communication, performing communication directly from

GPU device buffers. In both the cases, to take advantage of

GPUDirect communication, we directly pass the GPU buffer

as input for the MPI broadcast to the CUDA-aware IBM

spectrum MPI implementation. CUDA-aware MPI does not

take a separate GPU stream as input. Hence, to maintain

parallelism the SRGEMM kernel was invoked in a dedicated

stream. We refer to these two, CUDA-aware MPI broadcast,

and CUDA-aware MPI ring broadcast variants of DSNAPSHOT

as GPUDirect and GPUDirect+Ring respectively.

For both the weak and strong scaling up to 256 nodes, every

node had 12 MPI ranks and one GPU for every two ranks.

Each MPI rank was allocated six cores and the ratio of pr : pc
was maintained as 4:3 per node.

4) Strong Scaling: In the case of strong scaling experiment,

we ran with V = 300,000 vertices. Overall, LA+Ring shows

the best strong scaling even though LA may be slightly

faster for smaller numbers of processors. GPUDirect did not

improve performance over CPU based ring broadcast. This is

because GPUDirect with asynchronous communication does

not work well on IBM Spectrum MPI and limits amount of

communication and computation overlap.

5) Weak Scaling: In the case of the weak scaling experiment,

we kept the compute per MPI rank fixed. That is, we maintain

O(n3/p) flops per rank across different run.

All of the implementations achieve at least 75 % efficiency

when weak-scaling to 16× as many processes. In contrast to

the strong-scaling experiment, where LA+Ring achieved the

best scaling, for weak-scaling the LA implementation achieves

marginally better efficiency on fewer nodes.

Summit’s relatively fat nodes can achieve petaflop/s on as

few as 20 nodes, which should be favorable for both strong

and weak scaling. Throughout the weak scaling experiments,

we always remain compute-bound. By contrast, at a scale of

256 nodes, strong scaling achieved only 35 % of the efficiency

of the semiring GEMM kernel, even when using the best

grid configuration. This observation is consistent with the cost

model of Section V-C. In this challenging scaling regime, where

even minimal extra communication can hurt the performance,

we have achieved 136 PF/s on 4,096 nodes of Summit (or

24,576 GPUs), achieving 90 % of the parallel efficiency (i.e.,

out of 151 PF/s). If we consider parallel efficiency relative to

the smallest 16-node run, which achieves 6.12 TF/s per GPU,

DSNAPSHOT attains 92 % parallel efficiency at 256 nodes.

6) Cost Model Validation: We compared the experiments

against the cost model discussed in Section V-C. Let the

best case flop rate be Γideal = 2n3

Tideal
and the worst case

flop rate be Γworst =
2n3

Tworst
, where the best- and worst-case

execution times, Tideal and Tworst, are as defined in Equation (4)

and Equation (5), respectively. The experimental flop rate

is computed as Γ = 2n3

T , where T is measured execution

time. Table V presents these three flop rates for our weak

scaling experiments. Observe that the experiment always lies

in between the best and the worst case rates, and effectively

demonstrates the degree to which we were able to overlap

computation and communication. Therefore, we can use this

model for estimating the running time on the entire 18.5 million

vertex biomedical knowledge graph.

C. Case study

We perform two further experiments on the biomedical knowl-

edge graph described in Section IV-D. We share the complete

DSNAPSHOT results obtained on the CORD-19 dataset online
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TABLE V
COST MODEL VALIDATION FOR A WEAK-SCALING EXPERIMENT. THE Γ,
Γworst , AND Γideal VALUES ARE SHOWN IN PF/s; SEE SECTION VI-B6.

N P Px Py n Γ Γworst Γideal

16 192 12 16 300,000 0.55 0.4 0.7
32 384 16 24 378,624 1.05 0.8 1.3
64 768 24 32 476,928 2.06 1.6 2.7

128 1536 32 48 600,576 4.07 3.0 5.4
256 3072 48 64 756,480 7.69 5.7 10.8

for use by the community6 [16].

1) Large knowledge graph: In the first experiment, we use

DSNAPSHOT to process a biomedical knowledge graph ex-

tracted from research articles published between 2010 to 2015.

This graph is composed of 5,953,712 vertices and 445,236,526

edges. To show that APSP can uncover unestablished concept

relations, we want to compare historic data with a newer

version of the dataset where some new relations appear only

in the later literature. To this end, we compute APSP on data

from 2010-2015 and plan to use 2015-2020 for validation in a

future study. DSNAPSHOT’s performance on this biomedical

knowledge graph is described in Table II.

2) CORD-19 graph: In the second experiment, we analyze

the shortest paths obtained for a knowledge graph built from

the CORD-19 dataset [3] (Section IV-D). After removing

duplicates (these were identified using their DOI indices), there

are 155,771 articles in the dataset. We processed this dataset

using SemRep and created a graph from it using the procedure

described in Section IV-D. We split the dataset into two subsets:

research articles published up until 2005 (12,863 articles) and a

version containing all articles published up until now. The size

of both graphs appears in Table VI. Next, we study how many

direct new connections between pairs of concepts have formed

since 2005, and measure the characteristics of the shortest

paths between these pairs of concepts in the 2005 version of

the graph. Specifically, we investigate whether shorter paths

indicate direct connections forming in the future. For this

analysis, we consider only those concepts that existed in the

2005 version of the dataset. (From Table VI, it can be seen

that more than 28 thousand new concepts were added since

6https://doi.org/10.13139/OLCF/1646608

TABLE VI
SIZE OF GRAPHS BASED ON CORD-19 DATA.

Graph version 2005 2020

Concept vertices 16,427 56,029
Paper vertices 12,863 155,771
Concept-concept edges 25,297 172,254
Concept-paper edges 140,095 1,535,064
Paper-paper edges 1,638 18,666

Fig. 7. Example potential path found in 2005 CORD-19 subset.

2005.)

Between 2005 and 2020, there appeared 42,077 new direct

edges between all 16,427 concepts that existed in 2005. Figure 7

presents an example path that was not present in our dataset

as of 2005 and was established later in a paper published in

2007. We would like to note that this example is based on

the CORD-19 dataset; it is possible that the A-C connection

presented in Figure 7 represents common knowledge which

hasn’t been recorded in writing, or that other literature not

included in our dataset exists that established this connection

earlier. The figure serves to demonstrate what an example path

from DSNAPSHOT looks like.

To understand whether shorter paths are indicative of future

connections, we extract the following two sets of shortest

paths from the 2005 graph: 1) shortest paths between pairs

of concepts that do not have an edge between them in the

2005 version of the graph but do have a direct edge in the

2020 version of the graph (there are 42,077 such paths); and



Fig. 8. Path length distribution for node pairs which have formed a direct
connection between 2005 and 2020 (top) and pairs of nodes which have not
(bottom).

2) shortest paths between random pairs of concepts that do

not have a direct connection between them in either version

of the graph (we select 42,077 such paths to match the size

of the first set). Figure 8 shows the distribution of path length

and number of edges in both sets. It can be seen the first set

is slightly skewed towards shorter paths, while the second set

is skewed in the opposite direction. Furthermore, very short

paths do not appear in the second set. To confirm that the two

distributions are different, we apply the Kolmogorov-Smirnov

test for two samples, which can be used to test whether two

probability distributions differ. The K-S statistic obtained from

the test is 0.6323 and the p-value is 0.0; therefore, we reject

the null hypothesis that the samples are drawn from the same

distribution.

These results help to validate the approach used in previous

work [21], [26], [27] and indicate that shortest path information

may aid in uncovering novel relations between concepts. In

contrast to previous work, our hope is that DSNAPSHOT will

enable the discovery of meaningful relations across the whole

of biomedical knowledge. As future work, we plan to further

investigate the properties of shortest paths in this graph. For

example, we are interested in studying whether the types of

nodes in the shortest paths (in addition to path length) are

indicative of novel relations. For instance, in pharmaceutical

research, chemical similarity of drugs can be indicative of

similar therapeutic properties, and we want to investigate

whether such similarity would be captured in the shortest path.

We are also interested in studying whether path information

can be used as features for training machine learning models

for predicting the most promising future relations.

In Section VI-B6, we validated the model discussed of

Section V-C against the weak scaling experiment. Based on the

cost model using Tworst and the experimental data, we estimate

that it will take at most 18 hours to compute the APSP for the

entire 18.5 million Biomedical Knowledge Graph.

VII. IMPLICATIONS

DSNAPSHOT is highly performant and scalable, achieving

an absolute performance of 136 PF/s, setting a new high-

watermark for FW-based APSP at the full-scale of Summit.

Looking forward, numerous additional challenges remain,

including I/O: the raw shortest paths output might consume

upwards of 324 TB for the biomedical knowledge graph needed

to mine for candidate molecules in the COVID-19 dataset. On

the algorithmic front, for truly sparse problems with larger

separators, we envision a distributed, communication-avoiding

supernodal realization of DSNAPSHOT based on prior results

for sparse Gaussian elimination [46]. We provide the results

obtained on the COVID-19 data for broader use in the scientific

community [16].

VIII. ACKNOWLEDGEMENTS

This material is based upon work supported by the U.S.

Department of Energy, Office of Science, Office of Advanced

Scientific Computing Research, Robinson Pino, program man-

ager, under contract number DE-AC05-00OR22725, as well as

by the National Science Foundation under Grant No. 1710371.

This research used resources of the Oak Ridge Leadership

Computing Facility, which is a DOE Office of Science User

Facility supported under Contract DE-AC05-00OR22725. This

material is based upon work supported by the U.S. National

Science Foundation (NSF) Award Numbers 1533768 and

1710371. We would like to thank Dr. Oded Green for his

help in analysing the performance of our GPU kernels.

REFERENCES

[1] E. Landhuis, “Scientific literature: information overload,” Nature, vol.
535, no. 7612, pp. 457–458, 2016.

[2] L. Bornmann and R. Mutz, “Growth rates of modern science: A
bibliometric analysis based on the number of publications and cited
references,” Journal of the Association for Information Science and
Technology, vol. 66, no. 11, pp. 2215–2222, 2015.

[3] Office of Science and Technology Policy, “Call to action to the tech
community on new machine readable COVID-19 dataset,” Online, 2020,
accessed: 2020-04-18.

[4] H.-T. Yang, J.-H. Ju, Y.-T. Wong, I. Shmulevich, and J.-H. Chiang,
“Literature-based discovery of new candidates for drug repurposing,”
Briefings in bioinformatics, vol. 18, no. 3, pp. 488–497, 2017.

[5] M. Thilakaratne, K. Falkner, and T. Atapattu, “A systematic review on
literature-based discovery: General overview, methodology, & statistical
analysis,” ACM Computing Surveys (CSUR), vol. 52, no. 6, pp. 1–34,
2019.

[6] B. D. T. Consortium et al., “Toward a universal biomedical data translator,”
Clinical and translational science, vol. 12, no. 2, p. 86, 2019.

[7] D. R. Swanson and N. R. Smalheiser, “An interactive system for finding
complementary literatures: a stimulus to scientific discovery,” Artificial
Intelligence, vol. 91, no. 2, pp. 183–203, apr 1997.

[8] D. R. Swanson, N. R. Smalheiser, and V. I. Torvik, “Ranking indirect
connections in literature-based discovery: The role of medical subject
headings,” Journal of the American Society for Information Science and
Technology, vol. 57, no. 11, pp. 1427–1439, 2006.

[9] V. Tshitoyan, J. Dagdelen, L. Weston, A. Dunn, Z. Rong, O. Kononova,
K. A. Persson, G. Ceder, and A. Jain, “Unsupervised word embeddings
capture latent knowledge from materials science literature,” Nature,
vol. 571, no. 7763, pp. 95–98, Jul. 2019. [Online]. Available:
https://www.nature.com/articles/s41586-019-1335-8



[10] J. Stegmann and G. Grohmann, “Hypothesis generation guided by co-
word clustering,” Scientometrics, vol. 56, no. 1, pp. 111–135, 2003.

[11] D. R. Swanson, “Fish oil, raynaud’s syndrome, and undiscovered public
knowledge,” Perspectives in biology and medicine, vol. 30, no. 1, pp.
7–18, 1986.

[12] T. C. Rindflesch, H. Kilicoglu, M. Fiszman, G. Rosemblat, and D. Shin,
“Semantic medline: An advanced information management application for
biomedicine,” Information Services & Use, vol. 31, no. 1-2, pp. 15–21,
2011.

[13] L. L. Wang, K. Lo, Y. Chandrasekhar, R. Reas, J. Yang, D. Eide, K. Funk,
R. Kinney, Z. Liu, W. Merrill et al., “Cord-19: The covid-19 open research
dataset,” arXiv preprint arXiv:2004.10706, 2020.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

We ran scaling experiments on Summit using gcc/6.4.0, cuda/10.1,

spectrum MPI, cmake. The code is behind ORNL’s firewall. But for

evaluation purpose, we have shared the code over a dropbox link.

The source code zip file has a README.pdf that shows step-by-step

process for recreating the experiments.

ARTIFACT AVAILABILITY

Software Artifact Availability: Some author-created software ar-

tifacts are NOT maintained in a public repository or are NOT avail-

able under an OSI-approved license.

Hardware Artifact Availability: There are no author-created hard-

ware artifacts.

Data Artifact Availability: All author-created data artifacts are

maintained in a public repository under an OSI-approved license.

Proprietary Artifacts: None of the associated artifacts, author-

created or otherwise, are proprietary.

Author-Created or Modified Artifacts:

Persistent ID: https://code.ornl.gov/gordon-bell-aps �

p/distfw2d.git↪→

Artifact name: DSNAPSHOT

Persistent ID: https://www.dropbox.com/s/dc0ytm9ytw4 �

08kl/snapshot-adae.zip?dl=0↪→

Artifact name: SNAPSHOT Code

BASELINE EXPERIMENTAL SETUP, AND

MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Summit, Nvidia Voltas, PowerPC

Operating systems and versions: Redhat Linux

Compilers and versions: gcc/6.4.0

Applications and versions: None

Libraries and versions: spectrum MPI, cuda/10.1

Key algorithms: Floyd Warshall

Input datasets and versions: Suite sparse matrix collection

URL to output from scripts that gathers execution environment

information.

https://www.dropbox.com/s/sd79sdmtzig7z2c/summitenv. �

txt?dl=0↪→


