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ABSTRACT

We present an optimized Floyd-Warshall (FLoyp-WARSHALL) algo-
rithm that computes the All-pairs shortest path (Apsp) for GPU
accelerated clusters. The FLoyD-WARSHALL algorithm due to its
structural similarities to matrix-multiplication is well suited for
highly parallel GPU architectures. To achieve high parallel effi-
ciency, we address two key algorithmic challenges: reducing high
communication overhead and addressing limited GPU memory. To
reduce high communication costs, we redesign the parallel FLoyD-
WARSHALL (a) to expose more parallelism, (b) aggressively overlap
communication and computation with pipelined and asynchronous
scheduling of operations, and (c) tailored MPI-collective. To cope
with limited GPU memory, we employ an offload model, where the
data resides on the host and is transferred to GPU on-demand. The
proposed optimizations are supported with detailed performance
models for tuning. Our optimized parallel FLoyD-WARSHALL imple-
mentation is up to 5X faster than a strong baseline and achieves
8.1 PetaFLOPS/sec on 256 nodes of the Summit supercomputer at
Oak Ridge National Laboratory. This performance represents 70%
of the theoretical peak and 80% parallel efficiency. The offload algo-
rithm can handle 2.5x larger graphs with a 20% increase in overall
running time.
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1 INTRODUCTION

We consider the problem of computing all-pairs shortest paths
(Apsp) for a dense graph in a distributed memory multi-GPU cluster.
The Apsp is a fundamental graph problem with many applications
in data analytics on knowledge graphs, traffic routing and simula-
tion, and network design, to name a few. For instance, in knowledge
graph analytics, the relationship mining problems become comput-
ing Apsp in a large and dense graph [22]. This calculation requires
massive computing power and aggregate memory capacity only
available in a multi-GPU cluster like the Summit supercomputer
at Oak Ridge National Laboratory. Floyd and Warshall (FLoyp-
WARSHALL) is the algorithm of choice for the Apsp computation
on dense graphs. The FLoyD-WARSHALL algorithm, due to its struc-
tural similarities with matrix multiplication, is also well suited for
a massively parallel GPU architecture. In this paper, we present a
highly scalable distributed memory Apsp for multi-GPU clusters at
larger problem sizes.

Our baseline is a strong one, being the parallel and blocked vari-
ant of FLoyD-WARsHALL listed in Algorithm 3 with GPU accelera-
tion using the semi-ring matrix multiplication kernels (SRGEMM)
available in cuASR [40]. We identify two key algorithmic challenges
in achieving high parallel efficiency in the baseline. First, we need
to reduce or hide the communication cost to scale to a large num-
ber of processors. However, the baseline algorithm has an implied
bulk-sequential dependence between the major steps of each it-
eration, which makes it difficult to overlap communication with
computation. Second, the baseline algorithm performs Apsp only
using GPU memory. Hence, the largest feasible problem sizes for
running APpsP is limited by the available aggregate GPU memory.
Beyond these algorithmic challenges, extracting high performance
requires a careful mapping of algorithms to hardware and choosing
the appropriate algorithmic parameters.

We relax the bulk-sequential dependence by exploiting a finer-
grained dependence structure, which in turn reduces communi-
cation costs. This tactic allows us to expose more parallelism and
effectively overlap communication and computation via pipelined
and asynchronous scheduling. Additionally, we further reduce the
communication costs using a customized MPI-collective tailored
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to FLoyD-WARSHALL-APSP. Finally, we overcome the memory lim-
itation by using an offload model. In this technique, all the data
resides in the host, and the data is transferred for diagonal-block
updates and min-outer products to the GPU on an as-needed basis.
We carefully design the pipeline scheme to mask host-device data
transfers.

We enhance the baseline algorithm with these optimizations to
arrive at the following two flavors of PARALLELFw , targeting both
parallel and problem scalability:

e Communication Optimized PARALLELFW (Co-PARALLELFW): This
flavor uses several algorithmic tools to hide the cost of commu-
nication and latency bound operations.

o Memory-Efficient PARALLELFW (ME-PARALLELFW): This strategy
allows us to solve larger problems that do not fit in aggregate
GPU memory with negligible performance overhead.

We derive detailed performance models for both variants, which
guides our performance tuning for the Summit system. Our per-
formance models are general and apply to other accelerated super-
computer systems as well.

We evaluate the performance of individual optimizations and
the proposed algorithmic variants on the Summit supercomputer.
The optimized Co-PARALLELFW is up to 5X faster than the base-
line on 256 nodes (Figure 8). The Co-PARALLELFW variant achieves
8.1 PetaFLOPS/sec on 256 nodes, which is close to 70% of the the-
oretical peak and equates to 80% parallel efficiency. This theoret-
ical efficiency is similar to the HPL benchmark on Summit. With
proper parameter tuning, ME-PARALLELFW achieves 80% of the Co-
PARALLELFw. That permits handling of graphs that are 2.5-times
larger than the baseline’s capability with only a 20% increase in
overall running time. In particular, we are able to solve an Apsp
on a graph with 1.66 million vertices, which has a roughly 10 TB
memory footprint for the output, on 64 GPU-enabled nodes.

2 BACKGROUND

Table 1: Notation

Category ~ Symbol  Description
P Number of MPI Processes
P, P. Row and Column Processes
Processes P (k) (k mod P,)th Process Row
P.(k) (k mod P;)th Process Column
K, K¢ Node grid dimensions
Or, Qc Intranode process grid
Matri A Distance matrix of the Graph
AHICES A k) Ak :nk)
A(k,:) A(k,k+1:n) : kth A panels
G =(V,E) InputGraph
Graph n,m Number of vertices and edges

In this section, we describe the baseline sequential and par-
allel FLoyD-WARsHALL algorithm. The key concepts include the
min-plus semi-ring formulation of Apsp and baseline architecture-
independent performance models. In Table 1 we summarize the
notations.
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Algorithm 1 FLoyD-WARsHALL algorithm for Apsp

def FloydWarshall(G = (V,E)):
n « dim(V)

Dist[i, j] - wi, j if(i,j) € E
) otherwise
for k in {1, 2...,n}:
for i in {1, 2...,n}:
for j in {1, 2...,n}:
Dist[i,j] = min {Dist[i,j], Dist[i,k]+Dist[k,j]}

2.1 Graph All Pair Shortest Path (Apsp)
Problem

Notation and terminology. Let G = {V, E} be an directed weighted
graph with a vertex set V containing n = |V| vertices or nodes, edge
set E with m = |E| edges. The weight W : E = R U co denotes the
edge weights. The W is stored as a matrix so that w; ; denotes the
the distance between the i-th vertex v; € V and j-th vertex v; if if
{i, j} € E; otherwise, w; j = co. A path between two vertex vs and
vy is a sequence of edges e € E starting that starts at vertex vg and
ends at vertex o4. The length of path is the sum of edge weights w; ;
in a path. A shortest path between two vertex vs and vy is the path
with the minimal length. The length of the shortest path between
two vertex vs and vy is called distance denoted as Dist[s, d].

Apsp Computation. Apsp is the simultaneous computation of the
shortest paths between all pairs of vertices in a graph. During the
computation of Apsp, FLOYD-WARSHALL maintains and updates a
2-D array of distances, Dist. Each entry Dist[i, j] holds the current
shortest distance between v; and v; discovered so far, with its value
at the termination of the algorithm being the shortest such distance.
We will assume for simplicity that the graph G consists of a single
connected component, in which case the Dist eventually becomes
fully dense; however, our implementation will work when there
are multiple connected components.

2.2 Sequential FLoyD-WaRsHALL algorithm

FLoYD-WARSHALL uses a dynamic programming approach to
computing APpsP, as shown in algorithm 1. It initializes Dist with
the input weights W. Then, in the k-th iteration, it checks for all
pairs of vertices v; and v; if there is a shorter path between them
via the intermediate vertex v. If so, FLOYD-WARSHALL updates
Dist[i, j]. Therefore, Dist[i, j] after k steps, which we denote by
Distk (i, J), may be defined recursively as

Dist* [, j] « min {Distk_l [i, j], Distk~1 i, k] + Dist“~ [k, j]} .

In Algorithm 1, this computation is done in place by overwriting
Dist* [, j] in place of Distc1[j, j].

At any Kkth iteration, FLOYD-WARSHALL maintain the invariance
that Dist[i, j] holds the current shortest distance between v; and
v;j with all intermediate vertices k € (v1,02,- -+ ,0) so far. This
invariance is always satisfied when there are no cycles of negative
weight sum.
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Algorithm 2 A blocked version of FLoyD-WARSHALL algorithm

def BlockedFW (A,D):
# Here A is input distance matrix, n=dim(A) and
# b is the block size and nj « 3
for k in {1,2,...,np}:

# Diagonal Update

A(k, k) « FLoyp-WarsHALL (A(k, k))

# Panel Update

A(k,:) «— A(k,:) & A(k, k)®A(k,:)

A(L k) «— A(L k) & A(Lk)®A(k, k)

# Min—plus Product

for i in {1, 2...,np}:

for j in {1, 2...,np}:
A(i, j) « A, j) ® A(i, k)®A(k, j)

2.3 MiIn-PLus Matrix Multiplication

APsp may be understood algebraically as computing the matrix
closure of the weight matrix, W, defined over the tropical semir-
ing [14]. In more basic terms, let ® and ® denote the two binary
scalar operators

x®y min(x, y)

X®y = X+,

where x and y are real values or co. Next, consider two matrices
A € R™k and B € RF*" The Min-Prus product C of A and B is

[
Cij — ZAik ®Bkj = mkin (Aik +Bkj) .
k

This product is the analogue of matrix-matrix multiplication over
the reals.

2.4 Blocked FLoYD-WARSHALL algorithm

Let us divide Dist into ny X nj, blocks, each of size b X b (i.e.,
ny = %) If Ajj denote the (i, j) block of A, where 1 < i,j < np,
a blocked version of FLoyD-WARSHALL, called BLockEDFw, can
carry out the same ApPsp computation as FLOYD-WARSHALL in the
following three steps as illustrated in Algorithm 2
e Diagonal Update (D1aGUPDATE): Perform the classic FLoyp-

WAaRSHALL algorithm on a diagonal block, Ag.

e Panel Update (PANELUPDATE): Update the k-th block row
and column. For any block A(k, j), j#k in the block row, the
update is a MIN-PLus multiply with Ay from the left, and for
block A(i, k) on the k-th block column is MIN-PLUS multiply with
Ay from right, ie.,

A(k, j) « A(k, j) ® A(k,k)®A(k, j) j#k

A(i, k) «— A(i, k) & A(i, k)®A(k, k) i#k
Here, @ denotes element-wise application of the corresponding
scalar operator, and ® denotes MiN-Prus product.
MinPlus Outer Product: Perform the outer product of k-th
block row and block column, and update all the remaining blocks
of matrix A
A(L, j) <« A(i, j) @ A(Lk)®A(k, j) i,j # k.

This step is analogous to a Schur-complement update in LU or
Cholesky factorization.

Algorithm 3 Parallel FLoyD-WARSHALL algorithm on 2D process
grid
def ParallelFW(A, P=P, X P,):
# A is distributed in block cyclic fashion
# my process Id is pjy
# On each MPI process p;; do in parallel:
for k in {1, 2...,np}:
#Diagonal Update and Broadcast
if pia= Prk:
A(k, k) « FLoyp-WarsHALL (A(k, k))
Broadcast(A(k, k), Pr(k))
Broadcast (A(k, k), P.(k))
#Panel Update and Broadcast
if p;g € Pr(k):
Receive(A(k, k), pri)
A(k,:) « A(k,:) ® Ak, k)®A(k,:)
Broadcast(A(k,:), Pc(piq))
else :
Receive(A(k,:))
if p;g € Pr(c):
Receive(A(k, k), pri)
A(, k) — AL k) @ A(L k)RA(k, k)
Broadcast(A(: k), Pr(piq))
else :
Receive(A(k,:))
# Min-plus outer product
for i in {1, 2...,np}:
for j in {1, 2...,np}:
if pig owns A(i, j):
AL, J) « A(, ) & A, k)®A(Kk, j)

2.5 Parallel FLoyp-WAaRsHALL algorithm on 2D
process grid

The Algorithm 3 lists the Message Passing Interface (MPI) based
FLoyp-WARSHALL algorithm for expressing the distributed memory
parallelism.

2.5.1 Data structure. The MPI processes are logically arranged in
a two-dimensional (2D) process grid of dimension px X py. On this
2D process grid, distributes the input matrix distance A in a block
cyclic fashion, so the block A; j resides in process with coordinate
(i%Pr, j%Pc).

2.5.2  Two-D distributed PARALLELFw algorithm. The outer loop of
PARALLELFW proceeds as the BLockEDFw. However, we have addi-
tional communication steps namely D1AGBcAsT and PANELBCAST so
all the processes can perform the PANELUPDATE and OUTERUPDATE.
The complete algorithm appears in Algorithm 3. The k-th iteration
ParRALLELFw involves following kernels

(1) D1acUppATE(k): The process Py, which owns block Ay,
perform the DIAGUPDATE.

(2) D1aGBcasT(k): The process Py broadcasts Axy across its
process row Py (k) and its process column P, (k).

(3) PANELUPDATE(k): Each process in the P, (k) performs left
multiplies Ag. with Ay and each process in P.(k) performs
right multiplies A.; with Agg
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(4) PanELBcAsT(k): Each process in P, (k) broadcasts blocks of
Ay to its process column, and each process in the P¢(k)
broadcasts blocks of A.x to its process row.

(5) OUTERUPDATE(K): upon receiving Ag. and A, each process
performs OUTERUPDATE on its local copy.

2.6 GPU Parallelization

Matrix multiplication over the tropical semiring is the core compute
kernel for As detailed in blocked Floyd-Warshall algorithm Sec-
tion 2.4. The (min, +) SRGEMM kernel follows similar acceleration
opportunities like classical General Matrix Multiplication (GEMM)
in terms of arithmetic intensity and data access pattern. The imple-
mentation [22], [40] realizes MIN-PLus SRGEMM by extending the
NVIDIA Cutlass open-source linear algebra framework [24]. Ac-
cording to [22, 40], the SRGEMM implementation achieves 6.81 TF/s
at single precision.

2.7 The cost of PARALLELFwW

2.7.1 Computation Cost. There are three computational steps in
PARALLELFW: D1AGUPDATE, PANELUPDATE and OUTERUPDATE. In
the blocked FW algorithm, the total number of floating-point opera-
tions is 2n> distributed among P processes. Since the computation is
uniform and load-balanced, hence the cost of floating-point opera-
tions is %tf, where t is the cost of unit floating-point operations.

2n®
Tcomp = th

2.7.2  Communication Cost. If b is the block-size used for block-
cyclic data distribution, then algorithm-2 performs the 7 outer
loop iterations. In each of the iterations, each process participates
in two broadcasts I"J—f across process row and 1’;—” across process
column. In the ring broadcast, the total cost of the two broadcast is
2t + tw(?)—f + 1’;—5), where f; is the setup cost of sending a message

and t,, is cost of sending a unit float word. Since the outer iteration
runs for 'F’ iterations, hence the total communication cost is Z%tl +
tw( + 1)
wlp, +p, )
n 2 p2

n
Teomm = zbtl +tw(P_x + P_y)

So the total cost of the PARALLELFW is given by

3 2 nZ

2n n n

wa:th*—zztl-'-tw(E-'_P_y) (1)
Having described the baseline parallel Floyd-Warshall in Algo-
rithm 3, in the next two sections, we will describe, communication
and single node optimizations respectively. From the Algorithm 3,
we can witness that there is a broadcast after panel and diagonal
updates. These collectives come with an inherent barrier that in-
hibits the scalability to the large number of nodes. To overcome
this problem, in Section 3, we describe techniques to hide or reduce
inter-node communication and unnecessary synchronization. In
Section 4, we describe optimization to improve the performance of
single node computation and hide the intra-node communication

between host and GPU.
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Algorithm 4 Pipelined parallel FLoyp-WARSHALL algorithm on 2D
process grid

def pipelinedFW(A, P =P, X P¢):
# On each MPI process p;; do in parallel:
# First start the pipeline
diagUpdate(0); diagBcast(0);
panelUpdate(0); panelBcast(0);
for k in {1, 2...,np}:
if k#ny:
if Pid= Prerksr:
A(k+1,k+1) «— A(k+1,k+1) & A(k+1,k) @ A(k, k+1)
A(k+1,k+1) «— FW (A(k+1,k+1))
# Broadcast A(k+1,k+1) to Pr(k+1) and P.(k+1)
diagBcast(k+1)
if pig € Pr(k+1):
#Look ahead update
A(k+1,:) «— A(k+1,:) & A(k+1,k)®A(k,:)
#Receives A(k+1,k+1) from pr.i s
diagBcast(k+1)
A(k+1,:) «— A(k+1,k+1) ® A(k+1,:)
panelUpdate(k+1)
if pig € Pe(k+1):
#Look ahead update
A( k+1) — AGLk+1) © A K)®Ak ki1
#Receives A(k+1,k+1) from piiq i1
diagBcast(k+1)
AL k+1) — A(k+1,k+1) ® A(:, k+1)
panelUpdate(k+1)
# Asynchronously launch SrGemm on GPU
OuterProduct (k)
#Waits for the next panels broadcast to finish
if k#ny:
panelBcast (k+1)

3 OPTIMIZING COMMUNICATION IN
PARALLEL FLOYD-WARSHALL

In this section, we describe the design of Co-PARALLELFwW, which
improves the performance of Algorithm 3 by optimizing the commu-
nication by pipelined scheduling, aggressively overlapping commu-
nication with computation and increasing the asynchrony among
processes.

3.1 Data dependencies in PARALLELFw :

Note that in Algorithm 3, all the steps within an iteration must
be performed sequentially. In each iteration the complete distance
matrix is updated, hence there is a bulk synchronous dependency
between the iterations. The PARALLELFW formulation in Algo-
rithm 3 does not expose enough parallelism that allows overlapping
communication with computation. So it is required to break the
abstractions in Algorithm 3 to expose more parallelism.

To do so, consider the dependency between iteration k and k+1.
The OuTERUPDATE will update the complete matrix in the k-th
iteration. However, the D1AGUPDATE and PANELUPDATE of the k+1-
th iteration only require k+1 panels, not the whole matrix, hence we
can start DIAGUPDATE and PANELUPDATE of the k+1-th iteration as
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soon as the OUTERUPDATE update is performed on the k+1 panels.
Thus, we can break the data dependency between the k and the
k+1 iteration by prioritizing the OUTERUPDATE update on the k+1
panels.

3.2 Pipelined Scheduling

Recall that the most expensive communication operation is PANEL-
BcasT and the most expensive compute operation is OUTERUPDATE
in any iteration of Algorithm 3. The goal of the pipelined scheduling
is to overlap the two operations. We use the idea of breaking the
dependency between k and k+1 iteration to achieve the overlap as
follows.

Consider the execution of the k-th iteration of Algorithm 3. Let’s
assume that we have performed the PANELBcAsT(k). So each pro-
cess has received k-th horizontal and vertical panels and is ready to
perform the OUTERUPDATE(k). Then any process in Pr(k+1) and
Pc(k+1) except Py 11, will first perform the OUTERUPDATE(K) on
the k+1-th panels and wait for the DiacBcasT(k+1). Then the pro-
cess Pyyq k41 Will perform OUTERUPDATE(k) on the block Agyq f41,
followed by D1aGUPDATE(k+1) and DiaGBcasT(k+1). Following
that we perform the OUTERUPDATE(k) on the k+1-th panels.

After D1aGBcasT(k+1), processes in Pr(k+1) and P (k+1) can
perform the PANELUPDATE(k+1), and initiate
PANELBcAsT(k+1). Subsequently, all the processes on P, (k+1) and
Pc(k+1) performs the OUTERUPDATE(k) on the remaining matrix.
Meanwhile, all other processes initiate
OuTERUPDATE(k) on the GPU and the host CPU waits for the
PANELBCAST(k+1). At the end of this step, all processes have fin-
ished PANELBcAsT(k+1) and OUTERUPDATE(k). Likewise we per-
form PANELBcAST(k+2) and
OUuTERUPDATE(k+1) concurrently in the next iteration.

In Algorithm 4 we show the pseudocode for the pipelined execu-

tion. To initialize the pipeline, we first perform the first DIAGUPDATE.

DiaGBcasT, PANELUPDATE and PANELBcAST outside the main loop
and all subsequent iterations k,
PaNELBcAsT(k+1) and OUTERUPDATE(k) concurrently.

3.3 Asynchronous execution using ring
broadcast

To further improve the scheduling and asynchrony among the
process, we use a variant of ring-broadcast in Co-PARALLELFw.
The standard library broadcast has two limitations. First, it uses
a tree-based broadcast which is optimized for latency rather than
bandwidth. And second, it is synchronizing in nature, i.e. acts as a
barrier at the end of any iteration of Algorithm 4, so in the cases
where some network links are slower due to network contention
or if there are straggler processes then its impact propagates to all
the processes.

We overcome these limitations by using a ring-based broadcast
for PANELBcAST instead of the library broadcast. In ring-broadcast,
any participating process p; relays the message to its neighboring
process pi+1, and this procedure continues until all the processes
have received the message. The ring-broadcast has a large latency
(@) term, i.e. any broadcast requires p — 1 sequential steps to finish,
but it is optimal in terms of bandwidth since any process needs to
receive and sends only one message.
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Figure 1: Optimal rank placement for K = 4 and Q = 6. This repre-
sent the minimal inter-node communication placement for 24 MPI-
processes on 4 node with 6 MPI-processes per node.

We use the library broadcast for DiaGBcAsT to minimize the
latency since message size here is small and it is on the critical path
of the computation. On the other hand, we optimize the bandwidth
bounded PANELBcAST using the ring-based broadcast algorithm.

Besides improving the bandwidth, the ring-broadcast shortens
the critical path of PARALLELFw . This is because in the ring based
PaNELBcasT(k), Pr(k+1), and P.(k+1) receives the panels first,
so they can perform the pipelined update before PANELBcAsT (k)
is finished. The ring-based PANELBcAsT introduces asynchrony
between the processes across iterations, since PANELBcAsT(k+1)
need not wait until the completion of PANELBcasT(k) or even
PaNELBcAsT(k—1). In contrast, the Algorithm 4 can overlap at most
two consecutive iterations only.

3.4 Optimal Rank Ordering

3.4.1  Improved models for communication cost. We go back to the
model of communication cost in Eq. (1). This model has two key
limitations when used in practice.

First, the cost of sending a data t,, depends on how many MPI
processes are spawned in a node. Since all the processes share a sin-
gle network interface (NIC), if multiple MPI processes are spawned,
per process bandwidth will be decreased and t,, will increase. Sec-
ond, this model does not capture intranode data movement. For
instance, if all processes in a communicator are within a node, then
for a collective operation the effective t,, will be much smaller com-
pared to the instance where the communicator spawns multiple
nodes.

A more accurate model of communication costs by considering
total data sent outside of NIC. Let assume that we have MPI grid
of dimension P = P, X P, and we have Q processes per-node draw
from MPI grid in dimension Q X Q.. Typically, while creating MPI
2D grid, every node was assigned with continuous MPI-process
ranks hence the typical configurations are 1 X Q or Q X 1.
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We define the logical node-grid of dimension K, X K, where
K, = Pr/Qr and K, = P./Q.. Suppose we had one MPI process per
node, so Qr = Q. = 1 and P, = K; and P, = K¢, then we can use
Eq. (1). and obtain the communication cost Toomm (neglecting the
latency term) as

n?  n?

Teomm = tw(K_r + K_c)

For any choice of the number of MPI process per node Q = Q, X
Q¢ and for a given K number of nodes in K, XK, the above equation
represents the lower bound on the amount of data transferred via
from a node in PARALLELFW. Hence for a given MPI process grid
P = P, X P, with Q = Qr X Q. MPI processes sharing a node’s NIC,
the lower bound on communication is
n2 Qr + @)

P, P,
where t,, = Size in byte for unit data/NIC-bandwidth.

Teomm = tw(

3.4.2 Optimal Rank Placement. To minimize the communication
volume per Section 3.4.1, we should have

Kr ~ K, (2

The latency term only depends on P, and P.. To minimize the
latency cost we should have

P, ~ Pe.. (3

To satisfy both Egs. (2) and (3), we should also have Q, ~
Qc. We place ranks within a node to achieve optimal Q, and Q.
as shown in Figure 1. Such a placement can be specified using
MPICH_RANK_ORDER or by using an explicit resource file in the
case of the Summit supercomputer.

4 SINGLE NODE OPTIMIZATION

4.1 Semiring Matrix multiplication on GPU

We implemented semiring matrix multiplication on GPU SRGEMM
using Nvidia’s Cutlass template library for constructing efficient
GEMM type of operation on Nvidia GPUs[1]. While Cutlass does
not directly support semi-ring algebra as yet, we modified it suitably
to do so. Our SRGEMM kernel achieves single-precision 6.8 TFlop/sec
on Nvidia V100 GPU. The theoretical single-precision peak of V100
is 15.7 TFlop/sec, SRGEMM can not use the fused multiply and add
(FMA) units available on V100, hence theoretical peak for SRGEMM
is 7.8TFlop/sec. The SRGEMM kernel is central to high performance
for FLoyD-WARSHALL, we consider SRGEMM as a black-box unit
in this work. We plan to opensource the SRGEMM code and pro-
vide a detailed performance analysis of SRGEMM beyond min-plus
semiring in the near future.

4.2 DiacUppATE on GPU

The cost of DIAGUPDATE in the BLOCKEDFW computation is 2nb2tf,

which we often ignore as typically b < n. However, at extreme
2

strong scaling case when P = O ’;—2) the cost of DIAGUPDATE

can not be ignored. To achieve good strong-scaling we must also

perform the D1IAGUPDATE on the GPU. The D1AGUPDATE is the semi-

ring equivalent of matrix-inversion. To express DIAGUPDATE using
SRGEMM, we use the following relation for computing transitive
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Figure 2: Execution order and pipelines scheme for 00GSRGEMM.
Steps of SRGEMM, D2HXFER and HOSTUPDATE execute in parallel to
mask the memory transfer cost.

closure which is semi-ring equivalent of Neuman series for matrix
inversion:
dim(A)
D1AGUPDATE(A) = Z Al (4)
®

Note that Eq. (4) can be computed with log,(dim(A)) matrix-
matrix multiplications. This, however, increases the asymptotic cost
of D1aGUPDATE to O (nb? log b), in practice it significantly speeds
up D1AGUPDATE due to relatively higher GPU performance.

4.3 Out-of-GPU semi-ring matrix
multiplication

So far we have assumed that complete local distance matrix fits in
the GPU memory, and many of the optimizations we have used
in Co-PARALLELFW require that to work. However, when the local
matrix does not fit in the GPU memory then we can not compute
Apsp. This poses a significant limitation on the size of the prob-
lem that our algorithm can handle. In the section we describe a
memory-efficient flavor of algorithm 3 ME-PARALLELFw that doesn’t
have such limitation. However, such improvement comes at cost
of increased data transfer between the host and the GPU typically
via NVLink or PCle. We show that by choosing the parameters
correctly we can significantly reduce this penalty. In the heart of
ME-PARALLELFW, lies out-of~-GPU semi-ring matrix multiplication
kernel (00GSRGEMM). In this section, we describe the design and
analysis of 00GSRGEMM.We focus on OUTERUPDATE since its the
most computationally demanding substep in PARALLELFwW .

Consider the semiring matrix multiplication C <~ C® A ® B
of two panels A € R™ and B € R¥*" which is accumulated on
C € R™ " We are interested in the case where m,n > kand mx n
is so large that it does not fit in the GPU memory. The idea of
00GSRGEMM is to divide the SRGEMM into smaller chunks of size
myx X ny so it can easily fit in GPU memory.

We assume that A and B are already in GPU memory. We divide
A by rows into Ao, A1 ... Am,—1 where m, = m/my and each A;
has a dimension my X k; and B by columns into By, By ... Bp, -1
where nj, = n/ny and each B; has a dimension k X ny. Using GPU
buffer X of size my X ny, we perform the following steps:
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e SRGEMM to compute X « A; ® Bj;
o D2HXFER: transfer the compute X from the GPU to host; and
e HOSTUPDATE: Cjj « Cjj & X.

Since each of the three steps involves different hardware, we can
potentially overlap the three. We use cunaStrEam API to do so. In
a single cUDASTREAM all the tasks will be performed sequentially
but cUDASTREAMSs are asynchronous to each other. So when one
CUDASTREAM is computing SRGEMM, the other stream performs
D2HXFER.

4.4 Hiding GPU to host transfer cost

To use s CUDASTREAMs, we initialize s buffers Xy, X7 ..., Xs—1 each
of size my X ny. The SRGEMM and D2HXFER of any block C;; are
performed in a single stream. The blocks are assigned to streams in
a round-robin fashion.

Any CUDASTREAM r computes X, < Ai X B;j and sends it to
the host. The host waits for CUDASTREAM in the order they were
initiated. So when the host receives X;, it performs the HOSTUPDATE
Cij < Cij ® Xy. Now the host initializes SRGEMM and D2HXFER for
another block on r-th CUDASTREAM, if there are any blocks left to
be updated. The host now waits for the r+1-th stream to finish the
data transfer.

We can also hide the cost of transferring A and B by pipelining it.
To do so, instead of sending the complete A and B matrices we send
A; when we are performing update of C;, and send B; when we
are performing update of Co ;. A; and Bj needs to sent only once,
and we reuse A; and B; when performing update on any blocks
C ij

4.5 Cost of SRGEMM in offload-model

The total number of flops performed in 00GSRGEMM is 2mnk, so
the total cost of SRGEMM (to) is to = 2mnkty, where tf is time to
perform a floating point operation. The total data sent from host to
device and device to host is (m+n)k and mn respectively. So the cost
of the data transfer between host and device (t1) is (mn+nk+mk)ty,
where ty,4 is the cost of sending unit data between host and device.
And finally, the performance of HOSTUPDATE is limited by the CPU-
DRAM memory bandwidth. Since HOSTUPDATE performs 2mn reads
(C and X) and mn writes (C) between CPU and DRAM, the cost of
the HOSTUPDATE (t2) is 3mnt,,, where t,, is the cost of unit DRAM
to CPU transfer.

If we use a single cUDASTREAM then we will not be able to
overlap either of the three steps so the cost will be ty + t1 + t2. With
two streams we can only overlap one substep with another two
so the total cost will be min {maxi’j,k {ti, tj + tk}} where i, j, k €
{0,1,2}. And with three or more streams, all three substeps can be
overlapped so the cost of 00GSRGEMM will be max {to, t1, t2}

To achieve the peak flop-rate we should have cost of either
D2HXFER or HOSTUPDATE be lower than the cost of SRGEMM. So

to > max {t1, 12}
In our case, m,n > k so the cost of the data transfer between

host and device can be approximated as ¢; ~ mntyy. So we can
simplify above equation:
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k > max th—d3tﬂ (5)
th 2tf

5 EXPERIMENTS AND EMPIRICAL RESULTS

We perform experiments to understand the individual impact of
each optimization as well as how they work in cohesion.

5.1 Setup

We describe experimental details such as the testbed, data, met-
rics, and programming environment that we used to explain the
observations. In all cases, we experimentally confirmed that the
output of our revised implementations match outputs (results) of
the sequential FLoyD-WARSHALL baseline.

5.1.1 Testbed. The Summit system consists of 4,608 nodes. Each
node has two 22-core IBM POWERY processors and six NVIDIA
Volta V100 GPUs, connected by NVLINK-2, which has a peak per-
formance bidirectional bandwidth of 100 GB/s. V100 GPU has 5,120
cores operating at 1.53 GHz, which translates to theoretical peak of
7.85TF/s and 15.7 TF/s in single precision with and without FMA
instructions. The peak memory bandwidth of each V100 GPU is
900 GB/s. Each node contains 512 GB main memory, while each
GPU contains 16 GB HBM2 memory. The nodes are connected with
a Mellanox Infiniband fat-tree interconnect which has an effective
bandwidth of 25 GB/s per node.

5.1.2  Legends. In this section, we discuss the different legends
BASELINE, PIPELINED, +REORDERING, +ASYNC, and OFFLOAD that
appear in the plots.

e BASELINE: represents the implementation of Algorithm 3.

e PIPELINED: Algorithm 4 which overlaps communication with
computation.

¢ +REORDERING: PIPELINED with optimal rank reordering dis-
cussed in Section 3.4.

e +ASYNC: +REORDERING with the asynchronous ring broadcast
discussed in Section 3.3.

e OFFLOAD: the memory-efficient flavor of Algorithm 3 outlined
in Section 4.

5.1.3 Metrics. For reporting absolute performance, we use the
normalized metric Flops/sec depending upon the scale of the prob-
lem. In the case of a single GPU, we use GigaFlops/Sec and for
multiple GPUs, we always report PetaFlops/sec. We use effective
bandwidth per node in GB/Sec when reporting performance of indi-
vidual communication optimizations. The effective bandwidth per

node is computed as Wenin , here Wiy, is the theoretical minimum
o Irw .

per-node communication volume among all the configurations for

given problem size and the number of nodes, and tpyy is the total

time spent in PARALLELFw.

5.1.4  Test Graphs. The entire experimentation was conducted on
a dense uniform random matrix.

5.1.5 Programming Environment. The software versions used are
GCC 6.4.0, IBM Spectrum MPI 10.2.0.0, and CUDA 10.1.243. Sum-
mit’s jsrun tool is used for application launch. No other proprietary
software was used in the execution.
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5.2 Impact of Communication Optimizations

5.2.1 Optimal Rank Placement. In this section, we evaluate differ-
ent rank placement schemes discussed in Section 3.4.1. Recall the
K, P and Q parameters from Section 3.4.1: Py, P, are the dimen-
sions of MPI grid; Qr, Q. are the dimensions node local MPI grid;
and K, K, are the dimensions of node grid; and K, = P,/Q, and
K. = P./Qc. Given a node count, we explore the different combi-
nations of Py, P¢, K, K¢, Qr, Qc and measure the effective per node
bandwidth GB/Sec.

The Figure 3 shows the effect of rank reordering by sweeping
the Py, P, K, K. on every node count for n = 196, 608 vertices. We
observe that for a given number of nodes, the maximum effective
bandwidth is always achieved when K, ~ K,. For instance when
node=4, best performance occurs at K, = K, = 2. Similarly, the
worst performance occurs when K, and K, are far-off. Note that in
the single-node case, the best effective bandwidth is higher than
the theoretical limit of 25 GB/s since all the communications are
within a single node.
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Figure 3: Effect of Rank Reordering. The plot shows ob-
tained bandwidth for different combination of P,, P, K, K,
on every node count for 196,608 vertices.

5.2.2  Evaluation of Different Communication Strategies. We evalu-
ate the impact of different communication optimizations discussed
in Section 3.3 and Section 3.2. The Figure 4 show the effective
bandwidth achieved for PIPELINED, +REORDERING, +AsYNC and the
BASELINE variants. We vary the problem size from 26k to 524k on
64 nodes of Summit. Note that our effective bandwidth calculations
are meaningful when the execution time is dominated by intern-
ode communication time. Hence when the problem size is small,
execution time is dominated by bandwidth cost. Whereas for large
problem size the execution time is dominated by compute time. On
64 nodes, 120k is the theoretical estimate of the smallest problem
size when FLOYD-WARSHALL becomes compute-bound.

When the execution time is dominated by communication time,
we observe that PIPELINED achieves better effective bandwidth com-
pared to the BASELINE as it hides the cost of computation. Whereas
+REORDERING reduce the communication cost in addition to hiding
the computation cost. Furthermore +Async reduce the synchro-
nization cost on top of all former optimizations. In the best case, our
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Figure 4: The effect of optimizing communication with
pipelined, asynchronous and rank reordering on PArAL-
LELFw for various vertices in 64 nodes

implementation that encompasses all the optimizations is achieves
four times higher effective bandwidth.

5.3 Impact of Single Node Optimizations

5.3.1 Performance of Offload Model SRGEMM on Single GPU. We
built the ooGSRGEMM micro benchmark to understand its perfor-
mance on a single GPU. The performance of 00GSRGEMM is heavily
dependent on (a) Input size m, n (b) Block Size b and (c) GPU Max
Rows my, ny. For simplicity, we are assuming m = n and my = nx.

First, we find the minimum block size for the 00GSRGEMM. So
for different my € {512, 1k, 2k, 4k}, we vary the block size in Sec-
tion 5.3.1, and observe the performance. We observe that for block
size > 768 00GSRGEMM performs very close to the peak for all
my. Per Eq. (5), we estimate minimum block size of 624 assuming
NVlink’s bandwidth= 50 GB/s and peak flop rate =7.8TFlops. So our
model’s prediction is very close to the observed block size.

Recall that my and ny are the dimensions for buffer. We assume
myx = ny and vary my and the input size n = #vertices block size
b = 768. From Figure 6, we can observe that, in a single GPU,
the 00GSRGEMM performance is close to peak even for buffers of
dimension 2k X 2k if n is sufficiently large.

We evaluate the performance of the end-to-end PARALLELFW
with the different optimizations. All the experiments in Sections 5.4
and 5.5, utilized the entire 6 GPUs in a node and used 2 MPI ranks
per GPU.

5.4 Performance on 64 nodes

We compare all the optimizations to BASELINE by varying the input
size from 16e3 to 1.6e6 vertices on 64 nodes shown in Figure 7.
When the vertex size is less than 208k, PARALLELFw is network
bandwidth bound so Co-PARALLELFw has higher relative perfor-
mance. As the number of vertices increases, PARALLELFW becomes
compute-bound so in such cases, we do not see the advantage of
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Figure 6: out-of-gpu Srgemm performance in Gigaflops/sec for dif-
ferent m (the operand size) and m, GPU buffer’s dimension.

communication optimizations. Also note that all other implemen-
tations except offload can run only up to 524k vertices whereas,
with ME-PARALLELFW, we can push it to 1.6 Million vertices while
achieving 50% of peak theoretical throughput.

5.5 Strong and Weak Scaling

5.5.1 Strong Scaling. We evaluated performance on 16 to 256 nodes
for n = 300, 000 vertices and present the performance in Figure 8.
The Co-PARALLELFW implementation achieves 45% of parallel effi-
ciency. Note that, in 16 nodes Co-PARALLELFwW is 1.6x faster over the
baseline and it is 4.6x faster on 256 nodes. This is expected since at
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Figure 8: Strong Scaling of PARALLELFw on 300,000 vertices.

the higher node count effect of communication cost is pronounced,
that Co-PARALLELFW handles gracefully.

5.5.2 Weak Scaling. For weak scaling experiment, we keep the
workload O(%) constant. The experiments was conducted with
300,000 vertices on 16 nodes and scale accordingly to 256 nodes.
From the Figure 9, Co-PARALLELFW shows perfect weak scaling,
whereas for offload and baseline do not scale well. This is attributed
to fact that baselines and offload do not actively hide the communi-
cation.

6 RELATED WORK

Besides FLoyD-WARSHALL, Johnson’s algorithm[21] which com-
putes single-source shortest path (Sssp) from all the vertices is
another popular method used in HPC. It can achieve the lowest as-
ymptotic complexity of O (mn + n? log n) if Dijkstra’s algorithm[11]
with the Fibonacci heap[16] is used for Sssp. When the input graph
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is sparse i.e. m = O(n), it becomes an attractive alternative to
FLoyp-WaRrsHALL. Dijkstra’s algorithm for Sssp uses a priority
queue data structure which is difficult to parallelize for massively
threaded architecture. Another choice for Sssp inside Johnson’s
algorithm is Bellmen-Ford[5, 15], which is an embarrassingly paral-
lel computation but may not be work optimal. The Delta-stepping
algorithm [28] of Scott and Meyers is a hybrid of Dijkstra and
Bellmen-Ford that provides more parallelism than Dijkstra’s algo-
rithm and performs fewer operations than Bellman-Ford. For undi-
rected graphs with positive integer weights, Thorup algorithm[41]
is a theoretically optimal algorithm. On graphs with multiple com-
ponents one may use graph connected-components algorithm[30],
and perform Apsp on each connected component of the graph.
Out-of-memory GPU computation of these graph kernels has been
explored by Gera et al. [17]. Optimized implementations of these
Sssp routines available in many popular graph packages such as
Boost Graph Library (BGL) [36], Galois [29], and Graphmat [39] for
CPUs, and cuGraph [2] and Gunrock [44] for GPUs. Single-node per-
formance comparison of these approaches with FLoyD-WARSHALL
may be found elsewhere [10, 22, 31].

Based on the original FLoYD-WARSHALL, the first 2D distributed-
memory algorithm for the APSP without blocking using n global
synchronization is attributed to Jenq and Sahni [20]. Kumar &
Singh [25] analyzed the scalability of different Apsp algorithms and
showed overlapping communication with computation in the non-
blocked case. Solomonik et al. proposed a communication avoiding
parallel Apsp which uses the divide and conquer approach on 2.5D
process grid [37]. But in absolute performance, it achieved only
about 10 to 25% of peak, with maximum tested problem sizes of n
= 65,536. A distributed GPU Apsp showed good performance for
smaller clusters [12]. Also, their centralized communication scheme
limits their scalability beyond 64 GPUs.

The FLoyD-WARSHALL based Apsp shares structural similarity
with High Performance Linpack (HPL) and therefore is more amenable
to some of the parallelization techniques such as look ahead and cus-
tomized broadcast explored in HPL library [3, 7, 13, 19, 38, 43]. It’s
no surprise that our Apsp implementation Co-PARALLELFW achieves
similar efficiency as HPL benchmark on Summit. For sparse ma-
trices, similar optimizations have been explored in [32-34]. Such
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optimizations can be combined with sparse FLoYD-WARSHALL ap-
proaches as [31].

The GraphBLAS Forum [23] is an open effort to define stan-
dard building blocks for graph algorithms in the language of linear
algebra. This decouples the realization of graph algorithms inde-
pendent of the distributed performance and scalability. The first
distributed realization of GraphBLAS on MPI runtime using C++
was CombBLAS [6]. Recently, LAGraph [27], provided a distributed
Scala API on Spark runtime based on GraphBLAS. However, the
APSP algorithm implemented in LAGraph [27] and uses an outer
product formulation equivalent to SGER of level-II BLAS, which
will not be as efficient as BLockEDFw on GPUs.

Apsp is theoretically an important problem as a number of other
problems are equivalent to APsp e.g. metricity, minimum-weight tri-
angle, second shortest path etc.[45, 46]. While Apsp is the semiring-
equivalent of matrix inversion, no truly sub-cubic (Strassen-like)
algorithm for Apsp is known. Seidel[35] showed a way to use fast
matrix multiplication algorithms, such as Strassen’s algorithm, for
the solution of the APSP problem by embedding the semiring into
a ring. The best known complexity of Apsp for the dense case is

(0] (n3_0(1)) [45] and O ( lgé"n
case, the complexity is O(logn) due to Tishkin [42]. The seminal
work of Carre and others establishes the equivalence between find-
ing shortest paths and solving a system of linear equations [4, 8].

There are several modern treatments of this subject as well [18, 26].

) for sparse graphs [9]. For the parallel

7 CONCLUSIONS AND FUTURE WORK

The performance-improvement methods we explored are inspired
by techniques from parallel dense linear algebra. Their applica-
tion to dense FLoYD-WARSHALL significantly improves its inherent
strong and weak scalability and, critically, overcomes the memory
capacity limits imposed by existing GPU designs, which appor-
tion relatively low per-device memory capacities compared to their
host nodes. Furthermore, our scaling results on Summit should ex-
tend to other systems, and the performance models we derived can
guide their tuning when porting PARALLELFW to any accelerated
architecture.

For extremely large and sparse graphs, alternatives such as John-
son’s algorithm will be competitive to FLoYyD-WARSHALL but cannot
exploit GPUs. Hence, even for sparser graphs, we expect the perfor-
mance gap between Johnson’s and FLoyp-WARsHALL will continue
to shrink [31]. Our optimizations for PARALLELFW are also applica-
ble to other FLoyD-WARsHALL-based approaches that exploit the
structure and sparsity of the graph [12, 31].

Currently, we plan to extend this work to support distributed
shortest path generation and incremental FLoyD-WARsHALL, which
are critical in applications, and add support of structured sparse
graphs, where exploiting sparsity becomes paramount [31].
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