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Abstract
Coding for visual stimuli in the ventral stream is known to be invariant to object
identity preserving nuisance transformations. Indeed, much recent theoretical and
experimental work suggests that the main challenge for the visual cortex is to build
up such nuisance invariant representations. Recently, artificial convolutional networks
have succeeded in both learning such invariant properties and, surprisingly,
predicting cortical responses in macaque and mouse visual cortex with
unprecedented accuracy. However, some of the key ingredients that enable such
success—supervised learning and the backpropagation algorithm—are neurally
implausible. This makes it difficult to relate advances in understanding convolutional
networks to the brain. In contrast, many of the existing neurally plausible theories of
invariant representations in the brain involve unsupervised learning, and have been
strongly tied to specific plasticity rules. To close this gap, we study an instantiation of
simple-complex cell model and show, for a broad class of unsupervised learning rules
(including Hebbian learning), that we can learn object representations that are
invariant to nuisance transformations belonging to a finite orthogonal group. These
findings may have implications for developing neurally plausible theories and models
of how the visual cortex or artificial neural networks build selectivity for
discriminating objects and invariance to real-world nuisance transformations.
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1 Context and purpose of the study
How does the mammalian visual cortex build up object representations that are simulta-
neously selective for object identity and invariant to nuisance variation (e.g. changes in
location, pose)? This is an old and challenging problem with a storied history of theo-
retical and practical attempts at solutions both in pattern recognition and computational
neuroscience [1–12]. Much theoretical and experimental work [13–15] supports the hy-
pothesis that most of the complexity of the object category recognition task is due to nui-
sance transformations such as pose, scale, and illumination. From this perspective, a nat-
ural property for a ventral stream representation to have is the ability to factor out task-
nuisance variation (invariance) while still retaining task-relevant information (selectivity).
How to build such an architecture? Hubel and Wiesel’s seminal work [16–18] in study-

ing cat visual cortex suggests an architectural solution that alternates between two cell
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types: simple cells, which detect features (selectivity); and complex cells, which integrate
inputs from simple cells so as to provide robustness to small translations (invariance). This
proposal provides a simple potential explanation for the structure and representational se-
lectivity and invariance properties of the ventral stream, the part of the visual cortex that
is believed to underlie the process of rapid object category recognition of images. Inspired
by the work of Hubel and Wiesel, researchers in computer vision, theoretical and com-
putational neuroscience, and machine learning have developed many architectures that
embody this alternating motif: the neocognitron [2], HMAX [12], scale invariant feature
transform (SIFT) [19], and most recently, deep convolutional neural networks (DCNNs).
DCNNs are a class of architectures directly inspired by empirically observed properties
of the visual cortex, and have proven to be very successful in learning representations for
a wide variety of tasks that are simultaneously selective and invariant to nuisance trans-
formations [20–27]. In particular, recent contributions on invariance and equivariance
properties of DCNNs [28–32] are particularly relevant for our work although we focus on
unsupervised Hebbian learning and emphasize neural plausibility.
The success of DCNNs in object recognition has revolutionized computer vision, au-

dition and sparked a new movement in computational neuroscience as well. Surprisingly,
recent work has shown that DCNNs trained solely for object recognition can predict cor-
tical responses in macaque and mouse with unprecedented accuracy, especially in higher
visual cortical areas [13]. Furthermore, these studies show that the DCNN’s high predic-
tion accuracy depends critically on its ability to build invariance to large nuisance transfor-
mations, with competingmodels failing to be invariant, for example, to large out-of-depth
rotations. This confirms the predictions from earlier theory and experimental work that
invariance to nuisances is the main difficulty to be surmounted in object recognition.
Despite these successes, a rigorous theoretical understanding of these artificial and neu-

ronal representations—how certain architectures can establish them and specifically how
they produce the selectivity and nuisance invariance needed—remains poorly understood.
There are several key issues that bedevil this effort. First, real-world nuisance transforma-
tions are high-dimensional, nonlinear, and can be quite complex. Currently, no simple
mathematical characterization of them exists. Second, studying DCNN representations
is complicated by the fact that DCNN learning is (a) discriminative, relying on access to
large quantities of hand-labeled data, a luxury the brain lacks; and (b) relies heavily on
algorithms like backpropagation which are neurally implausible.a These issues make it
difficult to relate any advances in understanding nuisance transformations or the selectiv-
ity/invariance of DCNN representations back to the brain.
Given the complexity of real-world nuisance transformations, it makes sense to start

by studying smaller, simpler classes of analytically tractable nuisance transformations. In
this vein, we focus on nuisance transformations that belong to a group (see Definition 1
in Sect. 2). Many real-world nuisance transformations belong to groups, including 2D/3D
translations (changes in object location), 2D/3D rotations (changes in object or camera
pose), scalings (changes in ambient lighting), and permutations (rearrangements of ob-
jects in a scene). However, it should be noted that groups do not exhaust all possible
object-identity preserving nuisance transformations: for example, object deformations or
a change in an object’s style or texture. Nevertheless, the major advantage of working with
groups is that their mathematical structure is well understood, with many concepts and
tools available for analysis. Our work thus uses the group structure, in particular that of
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finite orthogonal groups; later on we discuss potential ways to relax this constraint, which
we leave to future work (see also the Appendix for some preliminary arguments).
In order to address the issues above, here we study a simple instantiation of an alternat-

ing architecture with an unsupervised learning rule, applied to a dataset of inputs that is
generated by nuisance transformations belonging to the cyclic (abelian) or dihedral (non-
abelian) group. We also consider a more realistic dataset composed of 2D rotations of
natural image patches.
Our main contributions, extending the work in [25, 33] and [34], are to detail a neurally

plausible mechanism for building a representation that is selective and invariant with re-
spect to a class of nuisance transformations, namely those belonging to a finite orthogonal
group. Our novel contributions can be summarized as follows:
• Theorem 1 shows how the group structure of the input is intimately related to the set
of possible synaptic weights for the simple cells, under a broad class of unsupervised
learning rules.

• Theorem 2 gives a simple mechanism by which a complex cell can aggregate simple
cell inputs in order to produce representations that are invariant to a larger class of
nuisance transformations beyond translations.

• Lemma 3.2 gives theoretical guarantees regarding the selectivity of a population of
complex cells (i.e. their ability to discriminate different classes of images), under the
assumption of a hard threshold nonlinearity.

2 Theoretical background: groups, alternating architectures, and learning
rules

2.1 Input structure and transformations
As anticipated in the introduction, we are interested in understanding howneuronal prop-
erties relate to the structure of the visual input. In this vein, understanding the structure
of the visual input is essential. We start by recalling the formal definition of a group.

Definition 1 A group (G,�) is a set of elements G with a binary composition rule � such
that the following properties hold:
• Closure: composing two group elements results in another group element.

∀a,b ∈ G, ∃c ∈ G s.t. a � b = c.

• Identity: the identity element belongs to the group.

∃e ∈ G such that ∀a ∈ G, e � a = a � e = a.

• Inverse: each group element has an inverse.

∀a ∈ G, ∃a–1 such that a � a–1 = e.

• Associativity:

(a � b) � c = a � (b � c), ∀a,b, c ∈ G.
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One of the simplest examples of a group is RN , the finite group of N rotations in the
plane R2, whose elements are 2D rotation matrices of the form

Rθi :=

[
cos(θi) sin(θi)
– sin(θi) cos(θi)

]
∈R

2×2, θi = i
2π
N

, i ∈ [N],

where [N] := {1, 2, . . . ,N}. It is straightforward to verify that the set of matricesRN := {Rθi :
i ∈ [N]} together with the operation of 2× 2 matrix multiplication forms a group.
In this paper, we consider the input space to be the d dimensional vector space X :=R

d .
We denote the transformation of a point x ∈ X by the group element g ∈ (Rd×d, ·) as the
action of the matrix g ∈ G on the vector x ∈ X i.e. gx := g · x.
A key mathematical object in this context is that of an orbit. Let OrbG(x) denote the

orbit of x ∈ X with respect to the group G , defined as the set of transformations of x over
all elements of the group:

OrbG(x) := {gx : g ∈ G}. (1)

For the group of plane rotations RN , the orbit of a vector v ∈ R
2 is simply OrbRN (v) :=

{Rθi v : i ∈ [N]}, the set of all rotations of v. Orbits with respect to a group G (or G-orbits)
allow us to define an equivalence relation on the input space X, the essential ingredient
for defining both invariance and selectivity.

Definition 2 (Input equivalence relation) Two inputs x,x′ ∈ R
d are equivalent with re-

spect to a group G iff there exists a transformation in G that maps x to x′. Mathematically,

x ∼ x′ ⇔ ∃g ∈ G s.t. x = gx′. (2)

In other words x∼ x′ iff x, x′ belong to the same G-orbit i.e. OrbG(x) =OrbG(x′).

This equivalence relation induces a partition of the input space into disjoint orbits or
equivalence classes i.e. X =

⋃
c∈C Xc where C is the set of equivalence classes (or categories

or orbits) induced by the nuisance group G . Intuitively all inputs belonging to the same
orbit of G will be considered the ‘same’ in the sense that they belong to the same category
c ∈ C . For example, in image classification, two images x,x′ ∈ X may both contain a dog
and hence belong to the same category, namely c = DOG.
Another example is the group of 2D rotations: two images will be considered equivalent

if there exists a 2D rotation that, when applied to one of the images, makes the two images
equal.
In this work we further suppose that the group consists of unitary transformations i.e.

g–1 = gT , ∀g ∈ G . In other words, we consider finite orthogonal groups.
Since the space of input is partitioned into different equivalence classes (orbits), we can

now precisely define what it means for an input representation to be invariant and selec-
tive.

Definition 3 (Invariance and selectivity) A function is invariant if it maps elements of the
same equivalence class into the same object (e.g. a number or a vector) and it is selective
if it maps elements of two different equivalence classes into two different objects.



Anselmi et al. Journal of Mathematical Neuroscience           (2020) 10:12 Page 5 of 15

The partition of the input space into equivalence classes/orbits as described above will
be the main assumption in our work. More precisely:

Assumption (Visual input structure) Let X = R
d and let G be a finite orthogonal group.

Suppose that the set of inputs S consists of a base set ofQ distinct inputs {x1,x2, . . . ,xQ} ∈ X
and each of their G-orbits Orb(xq) = {gxq : g ∈ G}. Then we have

S :=
{
gixq : i ∈ [N],q ∈ [Q]

}
=

{
gxq : g ∈ G,q ∈ [Q]

}
, (3)

where N := |G| is the size of the group.

Throughout the rest of this paper we assume that the set of inputs is generated in this
manner.
How plausible are these assumptions? A few remarks are in order before describing

our network model. First, although finite orthogonal groups are a special subset of all
image transformations, they constitute (a good approximation of) a large class of nui-
sance transformations with respect to which the representations in visual cortex are in-
variant. These include changes in position (object/camera translation), 2D size (object
3D size/proximity), and orientation (object/camera rotation). Second, although complete
orbits are rarely available in real datasets, a large enough sample of orbits is sufficient
for approximation in our model (see Sect. 3.3). Third, non-group transformations, which
constitute by far the majority of real nuisance transformations, can be approximated by
translations.b

We next describe our cortical model, inspired by the findings of Hubel and Wiesel, and
the class of admissible learning dynamics for the simple cell synaptic weights.

2.2 Alternating architecture of simple and complex cells
We adopt the simple-complex cells model of the visual system originally proposed by
Hubel and Wiesel in the sixties [16]. The model consists of a hierarchical structure it-
erating the motif of simple and complex cells where a simple cell s computes the scalar
product between the visual stimulus x ∈ R

d and the cell’s weights w ∈ R
d followed by a

nonlinearity, σ :R →R

s(x) = σ
[
wTx

]
, (4)

and a complex cell c linearly aggregates the responses of simple cells:

c(x) =
N∑
i=1

σ
[
wT
i x

]
, (5)

where we consider a set of N simple cells.
We suppose the early stage of the visual information processing to be done by units of

simple-complex cells. In the next sectionwe define the set of admissible learning dynamics
for the simple cell synaptic weights w.
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2.3 Class of online unsupervised learning rules
We consider a broad class of online learning algorithms derived from an unsupervised loss
function of the form

L
({wi}Ni=1, {xj}R=Q|G|

j=1
)
=L(W ,S) =

∑
i,j

f
(
σ
[
wT
i xj

])
, (6)

where wi = W(:,i) are the synaptic weights of the simple cells, xj ∈ S are the inputs, and
f : R → R+ is a Lipschitz function. In general N is a free parameter, but here and in sim-
ulations we fix N to be the orbit size i.e. one possible degenerate solution. Unsupervised
loss function of the form above includes i.e. Hebbian, Oja’s, Ica, and Foldiack [35].
In particular, for the simulations we used the loss f (·) = (·)2 and a Heaviside nonlinearity

σ = H(· – z) with a big fixed negative threshold z to use the full range of activations (see
also the Appendix and Sect. 3.2):

L
({wi}Ni=1, {xj}R=Q|G|

j=1
)
=

∑
i,j

(
σ
(
wT
i xj

))2

= Tr
(
σ
(
WTS

)
σ
(
STW

))
=

∥∥σ
(
WTS

)∥∥2
F . (7)

The online update rule for the ith simple cell’s weights is obtained deriving Eq. (6) w.r.t.
wi:

�twi = wt+1
i –wt

i ∝ ∇wiL(W ,S) =
∑
j

f ′(σ [
wt,T
i xj

])
σ ′[wt,T

i xj
]
xj, (8)

where, in simulations, the initial weights were initialized at random. Inwords: any learning
associated with a smooth loss of the simple cells response is admissible.
After t∗ updates the simple cell weights will be

wt∗
i = –α

t∗∑
t=1

∑
j

f ′(σ [
wt,T
i xj

])
σ ′[wt,T

i xj
]
xj, (9)

where the initial cell’s weightsw0 are chosen to be the zeromatrix for simplicity and α ∈R+

is the learning rate.
This assumption, together with that of the input structure (Eq. (3)), will be enough to

derive a characterization of the learned weights for the simple cells (Theorem 1).

2.4 Learning simple cells and how to aggregate simple cells
Before going into the mathematical details of the next section, we first give an intuition
and describe a possible biological mechanism for the learning of simple cells’ receptive
fields and simple cells’ aggregation operated by a complex cell. The idea is to consider two
phases of neuronal plasticity.
In the first phase, Hebbian learning will tune a simple cell’s receptive field to any of the

possible degenerate solutions of the weights dynamical system. The degeneracy is due to
the transformations in the set of inputs (e.g. natural images rotations).
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In the second phase, a Hebbian-type hypothesis on the behavior of a complex cell will
be employed: cells that maximally fire in the presence of input belonging to the same
class/category will be wired together by a complex cell. The idea is that the weights of
a population of simple cells maximally firing over a collection G-orbits form an orbit. In
the next section, we formalize this idea and provide proofs of key results.

3 Theoretical results: selectivity and invariance of image representations
In the following we present the mathematical proofs for the learning and aggregation
mechanism explained in the previous section. We proceed by steps:
1 First, we show that the structure of the visual input implies that if w is a possible
solution for the simple cell’s weights dynamics so is each element of its equivalence
class, the orbit OrbG(w).

2 Second, we prove how a Hebbian type of learning can account for a biologically
plausible mechanism to aggregate simple cells to obtain a complex cell invariant
representation.

3 Finally, we prove how simple cells with “enough” random thresholds nonlinearities
provide a way to implement a selective representation.

Summarizing, our main contribution is as follows.

Result (Main, informal) Suppose that the set of inputs is a collection of group transfor-
mations of images as in Eq. (3). Suppose the simple-complex cells model of Hubel and
Wiesel and a learning dynamics as in Eq. (9). Then the complex cell response is invariant
and selective with respect to the group transformations.

3.1 Learning invariance
As explained above, the presence of equivalence classes (symmetries) in the stimulus space
produces many equivalent possibilities for the simple cells learned weights (degeneracy of
the solution space). In particular, an orbit of a solution is itself a set of solutions. More
precisely:

Theorem 1 (Possible simple cells learned weights) Let the set of inputs be composed by a
collection of group transformations of images as in Eq. (3). Let the learning rule be admissi-
ble in the sense of Eq. (9). Then if w∗ is a possible solution for the learned simple cell weights
at time t∗ = k|G|, k ∈N, so is gw∗ for all g ∈ G .

Proof Wewant to prove that if w∗ is a solution, then gw∗ is. Under a transformation g ∈ G
of the weight wi, wi → gwi, each of the addends in Eq. (9) transforms as follows:

�wi = ∇wiL
({w1, . . . , gwi, . . . ,wN },S)

=
∑
j

f ′(σ [
(gwi)Txj

])
σ ′[(gwi)Txj

]
xj

= g
∑
j

f ′(σ [
wT
i g

Txj
])

σ ′[wT
i g

Txj
]
gTxj

= g∇wiL(W ,S),

where in the second line we inserted the identity e = ggT . The last line follows noting that:
(1) by the closure property of the group, gTxj is an element of the orbit of xj; (2) since
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t∗ = k|G|, all the first k orbit elements of the input S are present in the sum, the sum is
invariant. The last equation implies that if w∗ is a solution, so is gw∗ for all elements of the
group. �

The theorem proves that orbits of weights are possible solutions among all solutions of
the learning dynamics.
Suppose now that the set of simple cells are mature after the first phase of synaptic plas-

ticity and their weights are fixed. A natural question is then: which set of simple cells is a
complex cell going to aggregate? As informally mentioned in the previous section, if we
assume that a complex cell aggregates simple cells that fire together, then we can deduce
that the aggregated cells have weights that form an orbit. More precisely:

Theorem 2 (Complex cells pooling and invariance) A complex cell learns to aggregate
over simple cells whose weights form an orbit with respect to the group G . Furthermore, its
response is invariant with respect to (nuisance) transformations from the group G .

Proof Let Esimple be the set of all possible weights for simple cells after learning. This set is
determined by the learning dynamics given by Eq. (9). Let the new incoming stimulus set
Snew = {g1s1, . . . , g|G|s1, . . . , g1sM, . . . , g|G|sM} be composed of transformations of a new input
set in agreement with our input assumption in Eq. (3).
Let w̄ be the weights of the simple cell that maximally respond to the Snew input i.e.

w̄ = argmax
w∈Esimple

∑
j

f
(
σ
(
wTsnewj

))
. (10)

Which other simple cells a complex cell will aggregate to the simple cells with w̄ weights?
The key observation is that the sum in Eq. (10) is invariant to a transformation w̄ → gw̄,
∀g ∈ G . Thus we have

w2 = argmax
w∈Esimple,w �=w̄

∑
j

f
(
σ
(
wTsnewj

))
= gw̄ (11)

for some g ∈ G . The reasoning can be repeated leading to wi = giw̄, w1 = w̄. Note that
elements of the same orbit can be repeatedly sampled in this way. However, as this does
not impact our results, we assume for simplicity that the selected weights form an orbit
and not multiple copies of it. The invariance property of the complex cell response follows
from the group property of closure:

c(gx) =
|G|∑
i=1

σ
[
(gx)Tgiw̄

]
=

|G|∑
i=1

σ
[
xTgTgiw̄

]

=
|G|∑
i=1

σ
[
xT ĝiw̄

]
= c(x), (12)

where we relabeled the group elements as ĝi = gTgi. �

This result gives an explanation for how a simple-complex model of visual information
processing, together withHebbian-type learning, can provide an input representation that
is invariant to a larger class of nuisance transformations, beyond translations.
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3.2 Selectivity
Although invariance is necessary, it is not sufficient: indeed we can think of trivially in-
variant representations e.g. a function that maps all inputs to 0. Selectivity, the ability to
separate/discriminate different equivalence classes of inputs, is the other important prop-
erty.
In the following we show the importance of the presence of a nonlinear function in

the simple cell response for the selectivity property. In particular we analyze the case of
simple cells with nonlinearity given by the Heaviside function with threshold z ∈ R i.e. we
consider a family of nonlinearities {σz(·) ≡ H(· – z), z ∈ R}. The complex cell response is
in this way modeled as a family of responses {cz}z∈R indexed by the variable z:

cz(x)≡
(
c(x)

)
z =

|G|∑
i=1

H
(
xTgiw – z

)
, z ∈R. (13)

Next we prove that allowing for the thresholds z to be in a continuous range produces a
selective complex cell response. More precisely:

Lemma (Complex cells selectivity) Let x,x′ ∈R
d be two inputs and c(x), c(x′) be the com-

plex cell response as in Eq. (13). Then the distance defined as

dist
(
x,x′) := ∥∥c(x) – c

(
x′)∥∥

�2
(14)

is zero iff x∼ x′.

Proof Let A := {xTgiw, i = 1, . . . , |G|} and B := {(x′)Tgiw, i = 1, . . . , |G|} be the sets containing
the simple cells’ responses to inputs x, x′, respectively. Note first that the effect of a trans-
formation of the input x → gx on the sets A, B is a permutation of their elements. This is
due to the closure property of the group G . Second, note that cz(x) is the value, at z, of the
cumulative distribution function (CDF) of the simple cells’ responses to the stimulus x.
To conclude the proof, we recall that the CDF is a maximal invariant with respect to the
permutation group [36]. This means that the distance between the CDFs of A, B is zero
iff the simple cells’ responses for x and x′ differ by a permutation. In other words x ∼ x′ iff
dist(x,x′) = 0. �

Intuitively the selectivity property, which is partially lost by the complex aggregation op-
eration, can be recovered by allowing different nonlinearities in simple cells. The contin-
uous set of thresholds is clearly an implausible biological assumption. However, a weaker
result can be obtained by sampling (uniformly at random) the set of thresholds and apply-
ing a concentration inequality (see Sect. 3.3). Experimental evidence is given in Fig. 1(a2,
b2, c2).
One possible biological interpretation/implementation for our model could be the fol-

lowing. Let us consider a complex cell corresponding to a pyramidal cell. Let us assume
that there are subunits on the dendritic tree of the cell, each one receiving similar inputs.
Let us also assume that the subunits are electrically separate in the sense that each of them
has the ability to produce dendritic spikes. Then effectively each subunit will be equiva-
lent to a simple cell tuned to different (wi) weights: this is because of the degeneracy of
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the solutions to the dynamical system, as described in Sect. 3. Moreover, each simple cell
will have very similar thresholds: this is because receiving the same input the range of
their responses will be approximately equal. The soma of the pyramidal cell will summate
the simple-cell-like subunit activities. Literature supports the hypothesis of computational
subunits e.g. [37].

3.3 Approximate invariance and selectivity
In a real scenario we could not count on an infinite number of thresholds and input data
will not consist of full orbits as in Assumption 2.1. However, we show here that the results
in Sect. 3 still hold in expectation with high probability.
More precisely the result in Lemma 3.2 can be obtained in expectation, for a finite num-

ber of thresholds, using a simple concentration inequality e.g. Hoeffding’s inequality. Let

ĉ(x) =
Q∑
q=1

czq (x),

where zq is sampled uniformly at random in the range of the simple cell responses. Apply-
ing Hoeffding’s inequality, we have

Pr
{∣∣dist(x,x′) – ˆdist(x,x′)∣∣ > ε

}
< 2e–

Qε2
2p ∀ε > 0,

where ˆdist(x,x′) = ĉ(x) – ĉ(x′). By choosing the number of complex cellsQ to be sufficiently
large, we obtain, in expectation, a very good approximation of the true distance.
Clearly, because of the restricted dynamic range of cortical cells, the number thresh-

olds is likely to be small. However, related representations are possible using other classes
of nonlinearities. Although a CDF is fully represented by all of its moments, in practice
often just a few moments—such as the average, energy (second moment), or max (∞
moment)—can serve as an effective replacement. Also note that any linear combination
of the moments is also invariant, and so a small number of linear combinations is likely to
be sufficiently selective.
A similar argument can be made for approximating the loss in Eq. (6) or the update

rule in Eq. (8) when the complete set of input orbits is not available (violating the key
Assumption 2.1).

4 Experimental results
We tested the proposedmodel for invariance and selectivity of the complex cell output on
an artificial input set and a natural image dataset.
For the artificial dataset the group of transformations G was chosen to be a permutation

group acting on a vector space of dimension 6. We considered the cyclic group (abelian)
or the dihedral group (non-abelian). The input sets (S, Snew) were generated by picking
random vectors (uniformly sampled from the unit ball in R

6) and transforming them ac-
cording to all transformations of the selected permutation group.
To have a more realistic dataset, we then considered natural images. We extracted same

size patches (of radius 10 pixels) at random on the natural image and rotated each patch
according to a finite group of rotations (six equally spaced rotation angles).
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Figure 1 Invariance and selectivity: (a1 , a2 , a3) intra- and inter-orbits log distances statistic for toy data
(cyclic (a1) and dihedral group (a2)) and rotated natural patches (a3); (b1 , b2 , b3) selectivity in terms of cosine
similarity for the three datasets with respect to the number of Heaviside nonlinearities

Figure 1 summarizes our findings. To test the properties of invariance and selectivity
for the artificial input datasets, we produced two sets of orbits: the input set S (100 orbits)
and the new input Snew (2 orbits). This applies for both the cyclic and the dihedral group.
Similarly, for the natural images dataset, we produced a dataset S of 100 random ex-

tracted patches and their rotations and the new input Snew (two orbits).
For both datasets, we learned the simple cells weights U∗ and the complex cell aggre-

gation operation by maximizing, respectively, their response to S and Snew running the
maximization problem:

U∗ = argmax
U∈Rd×N

∥∥σ
(
UTS

)∥∥2
F + λ

∥∥σ
(
UTSnew

)∥∥2
F s.t. UTU = Id (15)

with λ ∈R+ (see also the Appendix).
We then calculated the coding operated by the complex cell as in Eq. (13) for a few num-

bers of random thresholds (10) and calculated the code distances for couples of inputs be-
longing to the same orbit (equivalent class, intra-orbit) or different orbits (not equivalent,
inter-orbits). In more detail, we calculated the distance dist : Rd×d → R+:

dist(x, y) =
∑
z
distz(x, y) =

∑
z

∣∣cz(x) – cz(y)
∣∣ = ∑

z

∣∣∣∣∣
|G|∑
i=1

σz
(
xTu∗

i
)
–

|G|∑
i=1

σz
(
yTu∗

i
)∣∣∣∣∣.
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In the case of elements belonging to the same orbit i.e. x, y ∈Orb(x) =Orb(y), we expect the
distance to be zero (or approximately zero in simulations) due to the invariance properties.
Otherwise different from zero.
Figure 1(a1, b1, c1) represents the distribution of distances dist(x, y) when x ∼ y i.e. they

belong to the same orbit (blue histogram) or when x� y i.e. they do not belong to the same
orbit (orange histogram).
As expected, the distribution of distances among elements within the same equivalence

class (same orbit) and those among different classes of equivalence (different orbits) are
significantly different. Statistics was done for 1000 orbits test-set for the two artificial
datasets and the natural images dataset. Log plot of distances is shown for the reader’s
convenience.
Finally, Fig. 1 (a2, b2, c2) shows how the separation among different classes of equivalent

images behaves with respect to the simple cell nonlinearity. We analyzed the case of a
Heaviside-threshold nonlinearity plotting the cosine inter-distance among two random
orbits against the number of (random) thresholds used in computing the complex cells
response for the three datasets. The plot shows how the cosine similarity grows with the
number of thresholds eventually reaching a plateau.
Taken together, the experimental results confirm our theoretical results both for toy

model and natural images patches, although in the second case the overlap between the
distribution of intra- and inter-distances is much more marked.

5 Conclusions, implications, and future work
In this report, extending the work in [25, 33], and [34], we used tools from group theory
and invariant theory, together with insights from the neuroscience of the visual cortex, to
develop a forward model of visual recognition.
Under weak assumptions on the neurons learning dynamics, we showed how the sim-

ple Hubel–Wiesel model of early visual cortex can automatically account for nontrivial
invariance and selective properties of the visual information processing.
Our contribution is relevant for any data in high-dimensional perceptual spaces that

have a low-dimensional intrinsic structure (e.g. transforming objects or sounds). The
preliminary work outlined here focused for simplicity on low-dimensional permutation
groups and rotation groups, but it defines amathematical framework that opens to natural
extensions. One intriguing direction is that of non-group transformations which consti-
tute by far the majority of real object transformations. The idea is that, if we assume that
the object transformations define a smooth manifold, locally, a Lie group is defined by
the generators on the tangent space (one important example is rotations in depth, where
3D rotations are projected into a 2D space by the retina). This allows the complex global
transformation to be decomposed into a collection of local object transformations that
obey a group structure. This is also the concept of hierarchical-compositional networks
(like DCNNs) where complex global transformations are decomposed into a hierarchy
of simple, local ones. Finally, our model predictions strongly depend on the visual input
structure i.e. group transformations of objects: however, if on one side this might be seen
as a weakness, on the other it is a great opportunity to design ad hoc artificial input to test
the model predictions in real neurophysiological experiments.
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Appendix
Approximate invariance for non-group transformations (from [38])
In here we briefly discuss extensions of this work for getting an approximately invariant
signature for transformations that do not have a group structure. In fact, most realistic
signal transformations will not have a group structure. However, assuming that the trans-
formation defines a smoothmanifold, we have (by the theory of Lie manifolds) that locally
a Lie group is defined by the generators on the tangent space.We illustrate this in a simple
example.
Let x ∈ X ⊆ R

d and s : Rd × R
P → R

d be a C∞ transformation depending on Θ =
(θ1, . . . , θP) parameters. For any fixed x ∈ X, the set M = (s(x,Θ),Θ ∈ R

P) describes a dif-
ferentiable manifold. If we expand the transformation around e.g. �0, we have

s(x,Θ) = s(x, �0) +
P∑
i=1

∂s(x,Θ)
∂θi

θi + o
(∥∥Θ

∥∥2) = x +
P∑
i=1

θiLθi (x) + o
(∥∥Θ

∥∥2), (16)

where Lθi are the infinitesimal generators of the transformation in the ith direction.
Therefore locally (when the term o(‖Θ‖2) can be neglected) the associated group trans-

formation can be expressed by exponentiation as follows:

g(Θ) = exp(θ1Lθ1 + θ2Lθ2 + · · · + θPLθP ).

In other words, instead of a global group structure of the transformation we will have a
collection of local transformations that obey a group structure. Thus in this light the local
learned weights will be orbits w.r.t. the local group approximating the non-group global
transformation.

Simple cells weights complex cells pooling learning
To mimic in the computational experiments the behavior of simple and complex cells as
described by Theorem 2, we formulated the learning problem as follows: find the matrix
U∗ (whose columns are the learned simple cells weights) such that

U∗ = argmax
U∈Rd×d

∥∥σ
(
UTS

)∥∥2
F + λ

∥∥σ
(
UTSnew

)∥∥2
F s.t. UTU = Id, (17)

where S is the set of inputs presented to the simple cells (as in Eq. (3)) to learn their weights
and Snew is the new input set, a new set of orbits.
We employed aHeaviside nonlinearity with fixed negative threshold to use the full range

of neural activations.
To find a solution, we applied a gradient descent approach. We found the best results

are with λ = 10–2 (artificial dataset) and λ = 10–1 (natural images) with a constant learn-
ing of 10–7. Note that differently from what was described as a two-phase learning in the
main text, we solved a joint optimization problem for S, Snew. Although biologically plau-
sible, the two-phase learning is not efficient since phase one consists of learning a very
overcomplete dictionary U , a known hard optimization problem.
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