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ABSTRACT
Micro-organisms and artificial microswimmers often move in biological fluids displaying complex rheological behaviors, including viscoelas-
ticity and shear-thinning viscosity. A comprehensive understanding of the effectiveness of different swimming gaits in various types of
complex fluids remains elusive. The squirmer model has been commonly used to represent different types of swimmers and probe the effects
of different types of complex rheology on locomotion. While many studies focused only on squirmers with surface velocities in the polar
direction, a recent study has revealed that a squirmer with swirling motion can swim faster in a viscoelastic fluid than in Newtonian fluids
[Binagia et al., J. Fluid Mech. 900, A4, (2020)]. Here, we consider a similar setup but focus on the sole effect due to shear-thinning viscosity.
We use asymptotic analysis and numerical simulations to examine how the swirling flow affects the swimming performance of a squirmer
in a shear-thinning but inelastic fluid described by the Carreau constitutive equation. Our results show that the swirling flow can either
increase or decrease the speed of the squirmer depending on the Carreau number. In contrast to swimming in a viscoelastic fluid, the speed
of a swirling squirmer in a shear-thinning fluid does not go beyond the Newtonian value in a wide range of parameters considered. We
also elucidate how the coupling of the azimuthal flow with shear-thinning viscosity can produce the rotational motion of a swirling pusher
or puller.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0029068., s

I. INTRODUCTION

Locomotion at a low Reynolds number has garnered signif-
icant interdisciplinary interest, which is closely related to under-
standing cell motility,1–3 designing active colloids for soft matter
research,4–6 or artificial microswimmers for biomedical applica-
tions.7–9 Although earlier studies commonly assumed the surround-
ing fluid medium to be Newtonian, many biological fluids such as
blood and mucus display complex rheological behaviors, including
viscoelasticity and shear-thinning viscosity. A key question emerg-
ing from the recent literature is how these non-Newtonian rhe-
ological behaviors affect the locomotion of micro-organisms.10,11
A better understanding will also inform the design of artificial
microswimmers for operations in more realistic, complex biological
environments.12 While substantial efforts focused on swimming in a

viscoelastic fluid,13–26 recent efforts have also begun to examine the
effect of shear-thinning viscosity.27–34 However, a complete knowl-
edge of what types of swimmers and locomotory gaits can enhance
or hinder propulsion in the presence of different non-Newtonian
fluid behaviors remains elusive.

Among different types of swimmermodels, the squirmermodel
has gained popularity for both its simplicity and biological rele-
vance.35 Lighthill and Blake first considered the swimming motion
of a squirmer,36,37 which consists of a spherical body with pre-
scribed surface velocities, as a model for ciliary propulsion of micro-
organisms such as Paramecium and Volvox.38–40 The body of these
ciliates is covered by many hair-like organelles called cilia, which
beat in coordinatedmanners to propel the body. The beatingmotion
of these cilia is represented by surface velocities on the squirmer sur-
face. In addition, the squirmermodel has been employed as a generic
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locomotion model for different types of swimmers (e.g., pushers
and pullers), by adjusting the distribution of surface velocities. The
squirmer model has also been used to examine how different types
of non-Newtonian rheology affect locomotion.18,19,27,30,41–46 While a
small speed enhancement was predicted to occur for pushers at small
Deborah numbers,43 fluid elasticity was shown to generally reduce
the swimming speed of pushers, pullers, and neutral squirmers at
larger Deborah numbers.18,19 Similarly, pushers, pullers, and neu-
tral squirmers were shown to swim slower in a shear-thinning fluid
than in a Newtonian fluid.27,30 However, it is also possible for shear-
thinning rheology to enhance swimming when a higher squirming
mode is included in the surface velocity distribution.30,47

Most studies on the squirmer model considered only radial and
tangential surface velocities without including the azimuthal compo-
nents until recently.35 In addition to general analyses of azimuthal
motion in Stokes flow,48–50 Pedley et al. demonstrated the impor-
tance of including azimuthal swirl in the squirmer model in describ-
ing the dynamics observed in experiments with Volvox.51 More
recently, Binagia et al. considered a swirling squirmer in viscoelas-
tic fluids described by the Giesekus and FENE-P models.52 Specifi-
cally, an azimuthal mode corresponding to a rotlet dipole in Stokes
flow was included in their analysis to represent the effect due to a
rotating flagellum and counter-rotating body of a swimming micro-
organism. Such a swirling squirmer was shown to exhibit marked
speed enhancement, allowing it to swim faster than in a Newtonian
fluid. Furthermore, the results based on varying Giesekus mobility
(and hence varying the degree of shear-thinning) suggested that the
shear-thinning effect would only diminish the enhancement. There-
fore, it was concluded that themarked speed enhancement should be
largely attributed to the coupling of fluid elasticity with the swirling
flow.

In this paper, we revisit the swirling squirmer problem consid-
ered by Binagia et al.52 but in a shear-thinning, inelastic fluid to focus
on the sole effect due to shear-thinning rheology.We use asymptotic
analysis and numerical simulations to show explicitly that the addi-
tion of a swirling flow can either increase or decrease the speed of
a squirmer in a shear-thinning fluid, depending on the rate of sur-
face actuation relative to the critical shear rate of the shear-thinning
fluid. We contrast the modifications on the translational and rota-
tional swimming velocities by shear-thinning rheology alone with
that due to fluid elasticity52 to separate the effects due to these two
features of non-Newtonian rheology. Taken together, the current
work combines with previous studies to reveal qualitatively differ-
ent features of a swirling squirmer in Newtonian, viscoelastic, and
shear-thinning fluids.

This paper is organized as follows: We formulate the problem
in Sec. II, introducing the squirmer model (Sec. II A), equations gov-
erning locomotion in a shear-thinning fluid (Sec. II B), and the non-
dimensionalization used in this work (Sec. II C). In Sec. III, we first
present the results from an asymptotic analysis at the small Carreau
number limit (Sec. III A) before numerical results at a larger Carreau
number (Sec. III B). Finally, we conclude this work in Sec. IV.

II. FORMULATION

A. The squirmer model
We consider the motion of a spherical squirmer of radius a

(see setup and notations in Fig. 1). As a result of prescribed surface

FIG. 1. The geometrical setup and notations of a swirling squirmer of radius a
with tangential, axisymmetric squirming motion in both the polar (θ) and azimuthal
(ϕ) directions. Here, ρ = �x2 + y2 denotes the perpendicular distance between
a point to the z-axis. By symmetry, the translational (U = Uez) and rotational
(Ω = Ωez) swimming velocities are in the z-direction.

actuation uS, the squirmer swims at some translational (U) and rota-
tional (Ω) velocities. In the laboratory frame, the velocity at the
surface of the squirmer is therefore given by

u(r = a) = U +Ω × xS + uS, (1)

where xS = aer denotes the position vector of a point on the surface
of the squirmer. A general representation of the tangential surface
actuation of a steady, axisymmetric squirmer is given by35,49

uS(θ) = ∞�
n=1−

2P1
k(cos θ)

k(k + 1) Bk eθ +
∞�
n=1−

P1
k(cos θ)
ak+1

Ck eϕ, (2)

where P1
k represents the associated Legendre function of the first

kind, θ is the polar angle measured from the axis of symmetry, ϕ is
the azimuthal angle, and the polar (Bk) and azimuthal (Ck) squirm-
ing modes can be related to Stokes flow singularity solutions.49
Here, we follow the work of Binagia et al.52 to consider a swirling
squirmer consisting of the first two polar modes (B1 and B2) and
the second azimuthal mode (C2) as uS = [B1 sin θ + B2 sin(2θ)/2]
eθ + 3C2 sin(2θ)/2eϕ. In a Newtonian fluid, only the B1 mode (a
source dipole) leads to a net swimming speed, UN = 2B1/3. The B2
mode (a force dipole) can be used to represent a pusher (α = B2/B1< 0), which generates propulsion from its rear (e.g., the bacterium
Escherichia coli), or a puller (α = B2/B1 > 0), which generates propul-
sion from its front (e.g., the alga Chlamydomonas); the α = 0 case
is termed a neutral squirmer. Binagia et al.52 added the C2 mode
(a rotlet dipole) to represent the effect due to a rotating flagel-
lum and counter-rotating body of a swimming micro-organism.53
We examine how such a biologically relevant swirling motion
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couples with shear-thinning rheology to alter the swimming kine-
matics of a squirmer.

B. Governing equations
The incompressible flow around a squirmer is governed by

the continuity equation and the Cauchy equation of motion in the
absence of inertia,

∇ ⋅ u = 0, (3a)

∇ ⋅ σ = 0, (3b)

where the total stress σ = −pI + τ; here, I is the identity tensor, p
and u represent the pressure and velocity fields, respectively, and τ
is the deviatoric stress tensor. To focus only on the shear-thinning
effect, we consider a shear-thinning, inelastic fluid described by the
Carreau constitutive law, τ = ηγ̇, where the dynamic viscosity η is

η = η∞ + (η0 − η∞)(1 + λ2t �γ̇�2)(n−1)�2 (4)

and γ̇ = ∇u+(∇u)T is the strain rate tensor. Here, η0 and η∞ are the
zero- and infinite-shear-rate viscosities, respectively. The power-law
index n characterizes the degree of shear thinning (n ≤ 1), and 1/λt
represents a critical shear rate above which the shear-thinning effect
becomes significant.

By symmetry, both the unknown translational and rotational
velocities are oriented in the z-direction, U = Uez and Ω = Ωez ,
whose magnitudes can be determined by enforcing the force-free
and torque-free conditions, respectively,

�
S
σ ⋅ n dS = 0, (5a)

�
S
xS × (σ ⋅ n) dS = 0, (5b)

where n = er is the outward unit normal vector on the surface of the
squirmer, S.

C. Non-dimensionalization
We scale lengths by the radius of the squirmer a, velocities by

the first squirming mode B1, strain rates by ω = B1/a, and stresses
by η0ω. The constitutive equation therefore takes the dimensionless
form

τ∗ = �β + (1 − β)(1 + Cu2�γ̇∗�)(n−1)�2�γ̇∗, (6)

where β = η∞/η0 is the viscosity ratio and Cu = λtω is the
Carreau number comparing the characteristics shear rate ω to
the critical shear rate 1/λt . Dimensionless variables are denoted
with stars (∗).

The dimensionless surface actuation of the swirling squirmer is
given by

uS∗ = sin θ + α
2
sin(2θ) eθ + 3ζ

2
sin(2θ) eϕ, (7)

where α = B2/B1 represents the type of swimmer and ζ = C2/(B1a3)
measures the relative strength of the azimuthal flow to the polar

flow.52 Hereafter, we drop the stars for simplicity and consider only
dimensionless variables unless otherwise stated.

III. RESULTS AND DISCUSSION

A. Asymptotic analysis at small Carreau number
We use asymptotic analysis to reveal the first non-Newtonian

correction to the swimming velocities in the limit of small Carreau
number, Cu2 � 1. We consider regular perturbation expansions for
the variables in powers of Cu2 as

{u, p, γ̇, τ,σ,U,Ω} = {u0, p0, γ̇0, τ0,σ0,U0,Ω0}
+ Cu2{u1, p1, γ̇1, τ1,σ1,U1,Ω1}
+O(Cu4). (8)

1. Zeroth-order solution
TheO(Cu0) solution corresponds to themotion in a Newtonian

fluid, governed by the Stokes equation,

∇ ⋅ u0 = 0, (9a)

∇ ⋅ σ0 = 0, (9b)

where σ0 = −p0I + γ̇0, with the boundary condition u0(r = 1) = U0

+ Ω0 × xS + uS, where uS is given by Eq. (7). The zeroth-order
solution, u0 = u0er + v0eθ + w0eϕ and p0, is derived as

u0 = U0

r3
cos θ + α

4
� 1
r4
− 1
r2
�(1 + 3 cos 2θ), (10a)

v0 = U0

2r3
sin θ + α

2r4
sin 2θ, (10b)

w0 = Ω0

r2
sin θ + 3ζ

2r3
sin 2θ, (10c)

p0 = − α
2r3

(1 + 3 cos 2θ). (10d)

By enforcing the force-free and torque-free conditions at this order
[Eqs. (5a) and (5b)], we recover the results in the Newtonian
limit,36,37,49

U0 = UN = 2�3, (11a)

Ω0 = 0. (11b)

We note that adding the azimuthal flow in a Newtonian fluid does
not generate any rotational velocity here.49

2. First-order solution
TheO(Cu2) solution is governed by the continuity andmomen-

tum equations at this order,

∇ ⋅ u1 = 0, (12a)

∇ ⋅ σ1 = 0, (12b)
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where σ1 = −p1I + γ̇1 +A and

A = (n − 1)(1 − β)
2

�γ̇0�2γ̇0. (13)

The boundary condition at this order reads

u1(r = 1) = U1 +Ω1 × xS. (14)

To determine the leading-order correction to the translational (U1)
and rotational (Ω1) velocities, we exploit the reciprocal theorem to
bypass detailed calculations of the flow at this order.30,54–56 To apply
the theorem, we consider an auxiliary flow problem for a body with
identical geometry as our main problem (a sphere). The auxiliary
flow (û) and stress (σ̂) fields satisfy the Stokes equation,

∇ ⋅ û = 0, (15a)

∇ ⋅ σ̂ = 0, (15b)

where σ̂ = −p̂I+τ̂. All quantities in the auxiliary problem are denoted
with hats. The reciprocal theorem then relates the force (F̂) and
torque (L̂) on the body in the auxiliary problem to the first-order
swimming kinematics as55

F̂ ⋅U1 + L̂ ⋅Ω1 = �
V
A : ∇û dV , (16)

where the integral is over the entire fluid volume, V. We first deter-
mine U1 = U1ez by considering the Stokes flow due to a sphere
translating at a unit speed in the z-direction as the auxiliary problem,
F̂ = −6πez and L̂ = 0, leading to

U1 = − 1
6π �V A : ∇û dV (17)

= (1 − β)(n − 1)
2

c1(1 + c2α2 + c3ζ2), (18)

FIG. 2. Translational swimming velocity scaled by the Newtonian value, U/UN , vs the Carreau number, Cu, for (a) a neutral squirmer (α = 0) and (b) a pusher (α = −5) for
different strengths of the azimuthal mode, ζ. In (a) and (b), the numerical results (symbols) agree well with the corresponding asymptotic solution [Eq. (19)] for ζ = 0 (black
solid lines), ζ = 1 (blue dashed lines), ζ = 5 (red dotted-dashed lines), and ζ = 10 (green dotted lines) at small Cu. The translational swimming speed relative to the case of
no swirl, U/Uζ =0, as a function of the strength of the azimuthal mode, ζ, at different values of Cu for (c) a neutral squirmer and (d) a pusher. In (c) and (d), the black dashed
lines represent the asymptotic solution based on Eq. (19). Results for pullers (α = 5) are indistinguishable from those for pushers in (b) and (d) and, therefore, are not shown
for simplicity. Here, n = 0.25 and β = 0.01.
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where c1 = 64/195, c2 = 1383/616, and c3 = 369/77. From Eq. (18),
we see that the first shear-thinning correction U1 < 0 as n < 1.
The asymptotic result suggests that the azimuthal mode (ζ) further
reduces the swimming speed at small Cu in a shear-thinning fluid,
in contrast to the observation of enhanced speed in a viscoelastic
fluid.52 The speed modification U1 is quadratic in ζ, implying that
the sign of ζ does not affect the translational swimming velocity, as
expected, by mirror symmetry. Combining Eqs. (9a) and (18), the
asymptotic swimming speed including the first-order correction is

U ∼ 2
3
+ Cu2(1 − β)(n − 1)

2
c1(1 + c2α2 + c3ζ2). (19)

The rotational velocity Ω1 = Ω1ez can be similarly obtained
with Eq. (16) by considering the Stokes flow of a sphere rotating at
a unit speed in the z-direction as the auxiliary problem: F̂ = 0 and
L̂ = −8πez , resulting in

Ω1 = − 1
8π �V A : ∇û dV (20)

= −(1 − β)(n − 1)
2

c4αζ, (21)

where c4 = 2400/1001. In contrast to zero rotation (Ω0 = 0) in a New-
tonian fluid, Eq. (21) reveals that a swirling (ζ ≠ 0) pusher/puller
(α ≠ 0) rotates in a shear-thinning fluid, while a swirling neutral
squirmer does not. Moreover, a swirling pusher rotates in an oppo-
site direction to that of a swirling puller. Results from the asymptotic
analysis at small Cu here are shown in Figs. 2 and 3 and compared
with numerical solutions of the full governing equations presented
in Sec. III B. Similar to Eq. (19), we obtain the asymptotic rotational
velocity as

Ω ∼ Cu2(1 − β)(n − 1)
2

c4αζ. (22)

FIG. 3. Dimensionless rotational velocity, Ω, vs the Carreau number, Cu, for a
pusher (α = −5) and a puller (α = 5) for different strengths of the azimuthal modes,
ζ. The numerical results (symbols) agree well with the corresponding asymptotic
[Eq. (22)] for ζ = 0 (black solid lines), ζ = 1 (blue dashed lines), ζ = 5 (red dotted-
dashed lines), and ζ = 10 (green dotted lines) at small Cu. The rotational velocity
of a neutral squirmer is negligibly small, consistent with the prediction by Eq. (22),
and is therefore not shown. Here, n = 0.25 and β = 0.01.

In addition to the small Cu limit, weakly non-Newtonian
behaviors also arise when the viscosity ratio β is close to unity.
We can therefore conduct an asymptotic analysis in the limit ε = 1− β� 1. We provide more details for this asymptotic analysis in the
Appendix.

B. Numerical simulations at finite Carreau number

Next, we conduct numerical simulations to examine the behav-
ior at larger values of Cu. We obtain the numerical solution of
the continuity equation [Eq. (3a)] and the momentum equation
[Eq. (3b)] with the Carreau constitutive model [Eq. (4)] based on
a finite element method implemented in COMSOL. Because of its
axisymmetry about the z-axis, the flow is solved on the ρz-plane
of the cylindrical coordinate system (ρ, ϕ, z) (see Fig. 1). Note that
the azimuthal flow uϕ does not depend on ϕ. Since flows at a low
Reynolds number are expected to decay slowly, a large computa-
tional domain (500 × 500a2) is used to guarantee accuracy. The
domain is discretized by ∼30 000–50 000 Taylor–Hood (P2 – P1)
triangular elements, with mesh refinement near the squirmer to
properly capture the spatial variation of the viscosity. We perform
the simulations in a reference frame moving with the squirmer.
The force-free and torque-free conditions are implemented as global
equations in COMSOL, which are solved together with the conti-
nuity and momentum equations; hence, the translational and rota-
tional velocities are obtained simultaneously with the flow field.
This approach is more efficient than the one used in our previous
studies,18,19,30 where we calculated the hydrodynamic forces on the
squirmer using different inlet velocities and interpolated the one
corresponding to zero force. The numerical implementation has
been validated against analytical results in a Newtonian fluid36,37,49
and shear-thinning fluids.30,47 As a remark, we consider only positive
values of ζ in this work because, by mirror symmetry, a sign rever-
sal of ζ does not alter the translational swimming velocity52 and only
reverses the direction but not change themagnitude of the rotational
velocity.

First, the numerical solutions of the non-Newtonian transla-
tional swimming velocities, scaled by the Newtonian value, U/UN ,
are shown in Fig. 2 for a wide range of Cu. The asymptotic solu-
tion (lines) predicts well the numerical results (symbols) for various
strengths of the azimuthal flow, ζ, when Cu � 1. For each value
of ζ, the variation of the swimming speed is non-monotonic: the
speed first decreases from the Newtonian value quadratically with
increased Cu as predicted by the asymptotic solution (lines) based
on Eq. (18). As Cu further increases, the speed reaches a minimum
before approaching the Newtonian value again at a very large Cu,
when the fluid viscosity becomes virtually uniform with the infinite-
shear-rate value η∞ at such high shear rates. In contrast to a swirling
squirmer in a viscoelastic fluid, where faster than Newtonian swim-
ming occurs;52 here, a swirling neutral squirmer [Fig. 2(a)] and
pusher/puller [Fig. 2(b)] always swim slower in a shear-thinning
fluid (U/UN < 1) for a wide range of Carreau numbers and strengths
of azimuthal flow considered.

We note that although the shear-thinning effect does not
increase the swimming speed compared to the Newtonian case, our
numerical results reveal that in a shear-thinning fluid, the swirling
motion can occasionally enhance the swimming speed of a squirmer,

Phys. Fluids 32, 111906 (2020); doi: 10.1063/5.0029068 32, 111906-5

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 4. Distribution of the viscosity scaled by the zero-shear-rate viscosity η/η0 on the plane containing the axis of symmetry (i.e., the ρz-plane) for (a) a neutral squirmer
(α = 0), (b) a pusher (α = −5), and (c) a puller (α = 5). In (a)–(c), the left panel corresponds to a non-swirling squirmer and the right panel corresponds to a swirling counterpart
with ζ = 5. The color indicates the magnitude of η/η0 and the vertical arrow indicates the swimming direction. Here, n = 0.25, β = 0.01, and Cu = 1.

depending on the Carreau number. We explore these behaviors in
Figs. 2(c) and 2(d). At small Cu (e.g., Cu = 0.1), a stronger azimuthal
mode (increasing ζ) monotonically reduces the swimming speed
of a squirmer as predicted by the asymptotic analysis [Eq. (18);
dashed black lines in Figs. 2(c) and 2(d)]. However, at larger val-
ues of Cu, more complex variations with ζ occur. At a sufficiently
large Cu [e.g., Cu = 100 for a neutral squirmer in Fig. 2(c); green
triangles], increasing the swirling strength enhances the swim-
ming speed, U/Uζ=0 > 1. The same trend is observed for a
pusher/puller shown in Fig. 2(d), where a swirling squirmer swims
faster than a non-swirling one when Cu = 1 or above. To con-
clude, the swirling motion coupled with the shear-thinning rhe-
ology can either decrease (at small Cu) or increase (at high Cu)
the speed of a squirmer. Nevertheless, the resulting non-Newtonian
swimming speed does not exceed the Newtonian counterpart for
the wide range of Cu or ζ considered. These results therefore
support the conclusion by Binagia et al.52 that viscoelasticity is
responsible for the enhanced locomotion of a swirling squirmer
in a shear-thinning, viscoelastic fluid, compared with the case in
a Newtonian fluid.

We next discuss the rotational velocity of a swirling squirmer in
a shear-thinning fluid (Fig. 3). As shown in Eqs. (11a) and (11b), the
swirling squirmer does not rotate in a Newtonian fluid. However, as
shown in Fig. 3, the shear-thinning viscosity induces the rotation of a
swirling pusher/puller as predicted asymptotically by Eq. (21) (lines)
and numerically (symbols). For each value of ζ, the rotational veloc-
ity of a swirling pusher/puller increases quadratically with Cu in the
small Cu regime and reaches a maximum value before decaying to
zero at a very large Cu. The rotational velocities of a pusher and
puller have the same magnitude but opposite direction as predicted
by Eq. (21). A neutral, swirling squirmer however does not rotate
in a shear-thinning fluid. We can better understand these results
by examining the viscosity distribution around the squirmer in the
plane containing the axis of symmetry (i.e., the ρz-plane) in Fig. 4.
For a neutral squirmer, the magnitude of the surface velocity and,
hence, the shear rate are symmetric about the equator (θ = π/2). The
viscosity distribution hence displays the same symmetry as shown
in Fig. 4(a) when there is no swirl (ζ = 0). Since the C2 azimuthal
flow is anti-symmetric (samemagnitude but opposite sign) about the

equator, the modified hydrodynamic torque due to the shear-
thinning effect on the northern hemisphere (θ ∈ [0, π/2]) is the same
as that on the southern hemisphere (θ ∈ [π/2, π]). The squirmer is
hence torque-free by symmetry and does not rotate even in

the presence of the swirling motion and shear-thinning viscosity.
On the other hand, the simultaneous presence of the B1 and B2
modes breaks the symmetry of the surface velocity and shear rate
about the equator. The viscosity distribution is hence no longer
symmetric about the equator for a pusher [Fig. 4(b)] and puller
[Fig. 4(c)]. In the presence of the anti-symmetric C2 azimuthal flow,
the torques on the northern and southern hemispheres are mod-
ified differently by the shear-thinning viscosity. The imbalance in
the torque therefore drives the rotation of the squirmer in order for
it to remain torque-free. To illustrate this imbalance, we examine
the hydrodynamic torque density about the z-axis, namely, `z(θ)= ρ(σ ⋅ n) ⋅ eϕ, as a function of θ, when the squirmer is not allowed

FIG. 5. Distribution of the torque density `z(θ) on the northern hemisphere (red
solid line and axes) and −`z(π − θ) on the southern counterpart (blue dashed line
and axes) for a non-rotating, swirling pusher (α = −5 and ζ = 5) shown in Fig. 4(b)
(n = 0.25, β = 0.01, and Cu = 1). The inset depicts the corresponding Newtonian
case (Cu = 0).
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to rotate. The total torque acts only in the z-direction by axisym-
metry and is given by integration, Lz = 2π �π0 `zρdθ. In Fig. 5,
we contrast the torque density `z over the northern hemisphere
(red solid line and axes) with that over the southern counter-
part (blue dashed line and axes) in Newtonian (inset) and shear-
thinning fluids. In the Newtonian case (Cu = 0, inset), the symme-
try in torque density about the equator leads to zero imbalanced
torque and hence zero rotational velocity, as expected. In contrast,
shear-thinning rheology breaks the symmetry of the torque density,
resulting in a net torque imbalance that drives the rotation of the
squirmer.

For sufficiently small Cu and ζ, the rotational velocity Ω
increases monotonically with ζ in Fig. 3 as predicted by Eq. (22).
However, note that the shear-thinning effect not only causes
the imbalances in the torque but also reduces the magnitude
of the torque simultaneously due to the decreased viscosity.
Therefore, the overall magnitude of the imbalanced torque and

hence Ω could decrease with larger values of Cu and/or ζ, as
shown in Fig. 3. Finally, at exceedingly large Cu, the viscos-
ity approaches another Newtonian limit with an infinite-shear-
rate viscosity. The rotational velocity therefore decays to zero in
this regime.

IV. CONCLUSION
The performance of a swimmer depends largely on its loco-

motory gaits and the properties of its surrounding fluid medium.
In this work, we focus on the effects due to a biologically rele-
vant azimuthal flow generated by a rotating flagellum and counter-
rotating body of a swimming bacterium via the squirmer model.
While such a swirling motion has no effect on the swimmingmotion
in a Newtonian fluid,49 Binagia et al.52 showed recently that it
can couple with fluid elasticity to enhance the translational and

FIG. 6. Asymptotic (lines) and numerical (symbols) results in the small ε = 1 − β regime. The translational swimming speed scaled by the Newtonian value, U/UN , vs the
Carreau number, Cu for (a) a neutral squirmer (α = 0) and (b) a pusher (α = −5). In (a) and (b), the numerical results (symbols) agree well with the corresponding asymptotic
solutions for ζ = 0 (black solid lines), ζ = 1 (blue dashed lines), ζ = 5 (red dotted-dashed lines), and ζ = 10 (green dotted lines) when ε = 0.1. The translational swimming
speed relative to the case of no swirl, U/Uζ =0, as a function of the strength of the azimuthal mode, ζ, for (c) a neutral squirmer (α = 0) and (d) a pusher (α = −5) at different
values of Cu. In (c) and (d), the numerical results (symbols) agree well with the corresponding asymptotic solution for Cu = 0.1 (black solid lines), Cu = 1 (blue dashed lines),
Cu = 10 (red dotted-dashed lines), and Cu = 100 (green dotted lines) for ε = 0.1. Results for pullers (α = 5) are indistinguishable from that for pushers in (b) and (d) and are
therefore not shown for simplicity. Here, n = 0.25.
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rotational swimming velocities of the squirmer. Here, we exam-
ine the impacts of such a swirling flow on the locomotion of a
squirmer in a fluid with shear-thinning viscosity, which is another
ubiquitous non-Newtonian characteristic of biological fluids. Our
asymptotic and numerical analyses show that shear-thinning rhe-
ology modifies the swimming kinematics of the squirmer in qual-
itatively different manners than fluid elasticity; while the swirling
motion generally contributes to a decrease in the swimming speed
of a squirmer at small Cu, it can also enhance the speed given a
sufficiently large Cu. Despite any speed enhancement relative to
a non-swirling squirmer, our results show that a swirling neutral
squirmer, pusher, or puller always swim slower in a shear-thinning
fluid than in a Newtonian fluid, in contrast to the case in a vis-
coelastic fluid.52 In addition to translational swimming motion,
we elucidate how the rotational motion of a swirling pusher or
puller can emerge from the coupling of the swirling flow and shear-
thinning viscosity. Results from this note and previous studies,
taken together, demonstrate how the same locomotory gaits can
lead to vastly different swimming behaviors depending on the fluid
rheology.
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APPENDIX: ASYMPTOTIC ANALYSIS AT SMALL ε = 1 − β
In addition to the small Cu limit, we can also conduct an

asymptotic analysis in the small ε = 1 − β� 1 limit,

{u, p, γ̇, τ,σ,U,Ω} = {u0, p0, γ̇0, τ0,σ0,U0,Ω0}
+ ε{u1, p1, γ̇1, τ1,σ1,U1,Ω1} +O(ε2). (A1)

The solution procedure is similar to that in Sec. III A, so we only
outline the main steps.

The zeroth-order solution corresponds to the Newtonian flow
given by Eqs. (10a)–(10d). The fist-order solution is governed by
equations of the same form as Eqs. (12a) and (12b) but with a
different tensor A than Eq. (13),

A = [−1 + (1 + Cu2�γ̇0�2)(n−1)�2]γ̇0. (A2)

The first-order swimming kinematics can again be determined with
the reciprocal theorem [Eq. (16)] to arrive at the same integral
expressions for the translational [Eq. (17)] and rotational [Eq. (20)]
velocities. By evaluating the integrals by quadrature, we obtain the
asymptotic results (lines) shown in Fig. 6, which agree well with full

numerical simulations of the governing equations for ε = 0.1. Similar
qualitative features are observed here as those described in the main
text.
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