ICC 2021 - IEEE International Conference on Communications | 978-1-7281-7122-7/21/$31.00 ©2021 IEEE | DOI: 10.1109/ICC42927.2021.9500903

Extrinsic Neural Network Equalizer for Channels
with High Inter-Symbol-Interference

1Xiang Huang 2" Joohyun Cho

Dept. of ECE Dept. of ECE
Univ. of Utah Univ. of Utah
eric.xiang.huang@utah.edu joohyun.cho@utah.edu

Abstract—In this paper, we propose a novel extrinsic neural
network equalizer (ExNE) for joint iterative equalization and
decoding. The proposed ExNE takes the received signal sequence
and a priori probabilities from the channel decoder as inputs to
directly generate output extrinsic probabilities. This approach
improves the performance of iterative equalization and decoding
by making explicit use of extrinsic information. A three-step,
open-loop neural network (NN) training procedure is developed
for the ExNE, independent of the choice of channel code. We
propose a new NN architecture termed deep concatenated convo-
lutional blocks with skip connections (DCCB-SC) for EXNE which
attains excellent performance with only a moderate number of
network parameters. For challenging linear and non-linear inter-
symbol-interference (ISI) channels considered in this work, the
proposed ExNE approaches the performance of the maximum
a posteriori probability (MAP) equalizer without assuming prior
knowledge of the channel model.

Index Terms—turbo equalization, neural network, inter-
symbol-interference, iterative decoding, extrinsic information.

I. INTRODUCTION

Recently, the use of neural networks (NN) in communi-
cation systems, including NN based equalization and decod-
ing over inter-symbol-interference (ISI) channels, has shown
promising results [1]-[8]. Compared to conventional equaliz-
ers such as minimum mean square error (MMSE) equalizer
or the maximum a posteriori probability (MAP) equalizer,
a major advantage of the NN equalizer is that it does not
require prior knowledge of the channel model. It is applicable
to unknown linear and nonlinear channels to combat ISI
caused by channel dispersion. In this work, we design a
new class of NN equalizer, termed extrinsic neural network
equalizer (ExNE), specifically for the application of turbo
equalization over ISI channels. Turbo equalization [9] is a
powerful technique to improve detection performance via
joint iterative equalization and decoding. In this setting, soft
information in terms of probabilities, or equivalently, the log-
likelihood ratios (LLRs) of transmitted bits are exchanged
between the soft-input and soft-output (SISO) equalizer and
the decoder over iterations to improve data reliability. It is
important to note that extrinsic probabilities, rather than a
posteriori probabilities (APPs) should be used to ensure good
convergence of the iterative processing. However, to the best
of our knowledge, there are only very limited studies [10]

This work is supported by NSF Grants 1817154 and 1824558.

978-1-7281-7122-7/21/$31.00 ©2021 IEEE

3 Kazem Hashemizadeh

s.hashemizadehkolowri @utah.edu

4™ Rong-Rong Chen
Dept. of ECE
Univ. of Utah
rchen@ece.utah.edu

Dept. of ECE
Univ. of Utah

on NN equalizer designs that use extrinsic probabilities. The
proposed ExNE is designed specifically to produce extrinsic
probabilities required for turbo equalization. A novel three-
step training procedure is developed which utilizes a prelim-
inary APP-based NN equalizer to train the proposed ExNE.
The resulting EXNE generates extrinsic probabilities directly.

Our work focuses on the design of a stand alone SISO NN
equalizer that can be plugged in a coded system for turbo
equalization. Given the operating signal-to-noise power ratio
(SNR), the training of the proposed ExNE is independent of
the choice of the channel code. In contrast, most works in
the literature on NN-based equalizer design is either uncoded
[6], considers a one-time equalization and decoding (without
turbo equalization) [3], [S], [7], or targets a joint design that
combines the tasks of equalization and decoding [2], [4]. In
[2], a blind turbo equalizer based on a convolutional neural
network (CNN) is designed under an unsupervised setting. In
[4], a turbo equalizer/decoder is built jointly based on a recur-
sive neural network (RNN) architecture. While both designs of
[2], [4] depend on the specific choice of the channel code, the
proposed ExNE does not impose such a constraint, provided
that the range of the operating SNR is given. We note that a
stand alone turbo equalizer is considered in [10] for fiber-optic
nonlinearity compensation. While [10] also considers the use
of extrinsic probabilities, our proposed approach is different in
that we explicitly remove prior information from NN training
to ensure that the generated probabilities are extrinsic.

Fig. 1: Channels with
high, moderate, or mild
ISL.

0.2 0.4 0.6 0.8 1
Normalized Frequency

In this work, we consider challenging channels with high ISI
and use them to examine the effectiveness of EXNE. In Fig.
1, we plot the frequency responses of four linear channels
considered in this work. The channels are ordered from the
most challenging to the least. Channels h; and hs, taken from

Authorized licensed use limited to: The University of Utah. Downloaded on September 14,2021 at 03:50:54 UTC from IEEE Xplore. Restrictions apply.

[11], have deep and wide spectral nulls. They feature high ISI
and thus are the most challenging to equalize. Besides hy
and hy, we also consider two representative channels used
in existing NN equalizer designs: hg and hy. Channel hg
from [2] features a moderate ISI due to a narrow spectral
null at the edge of the frequency response. In comparison, the
commonly used channel h, from [3]-[5] has no deep spectral
nulls, which indicates a more benign characteristic with mild
ISI. Numerical results in Section IV show that the proposed
ExNE can approach the performance of the MAP equalizer for
these channels without any prior knowledge of the channels.

We summarize main contributions of this work as follows.

o« We propose an original extrinsic NN-based equalizer
(ExNE) for turbo equalization. A novel three-step training
procedure is developed to train the ExNE that directly
generates extrinsic LLR for joint iterative equalization
and decoding using the received signal and a priori LLRs
generated from an open-loop simulation.

o« We propose a powerful NN architecture, termed deep
concatenated convolutional blocks with skip connections
(DCCB-SC) for EXNE to increase the reception view of
the NN while allowing efficient feature extraction with a
moderate network size. This enables EXNE to achieve a
performance close to the MAP equalizer over channels
with high ISL

o Different from existing work on NN-based equalizers
for turbo equalization, the proposed ExXNE is trained
using an open-loop simulation, independent of the choice
of channel codes. A simple adaptive decoder scaling
procedure is proposed to scale the range of the decoder
LLR over iterations to match that of the training data.
This improves the performance of ExNE and provides
great flexibility in its application to turbo equalization.

e We provide a comparison of the proposed EXNE with
MAP and turbo MMSE equalizers over challenging ISI
channels that were not considered in prior work. This
demonstrates ExNE as a strong candidate for turbo equal-
ization over unknown channels with high ISI.

II. BACKGROUND
A. Turbo equalization and decoding

A system block diagram of turbo equalization and decoding
is shown in Fig. 2. At the transmitter side, a sequence of
information bits m is encoded and mapped to a sequence of
binary phase shift keying (BPSK) symbols x = (x3, -+ ,XN)-
Here, N is the number of bits in each codeword. The coded
sequence x is then passed through an ISI channel and the
received signal sequence is given by y = (y1, - ,¥N). We
consider a general ISI channel model as in [2], [4] which has
the form of y = g(x * h) + w, or equivalently,

L—-1

Yn = 9(Y Tnokhi) +wn, m=1,
k=0

In (1), h = [ho,h1, -+ ,hr—1] is the channel impulse re-
sponse, L is the channel length. The noise sequence w =

N 6]

[wy, - ,wy] is assumed to be independent identically dis-
tributed Gaussian random variables. The scalar function g(-),
applied component-wise on the convolution z * h, represents
the non-linearity of the channel. When g(u) = u, the model
in (1) reduces to a standard linear ISI channel. Joint turbo

ISI Channel

transmitter {

m| ' channel
, Encoder

L-1
v, =8 %, h)+w,

1 $ | k=0

Channel
' Decoder

L)

Fig. 2: A system diagram for turbo equalization and decoding.

¥T1 03 ‘qoid

equalization and decoding is performed at the receiver side.
The inputs to EXNE are y and the a priori probabilities of N
transmitted bits, produced by the decoder. These are denoted
by LLRs L, = (L4(1), La(2), -+ , Lyo(N)), where L, (i) =
log %. At the beginning of each iteration, the equalizer
processes its inputs to suppress the ISI and generates refined
estimates of bit conditional probabilities P(z; = +1|y,La).
Subsequently, these probabilities are passed to the channel
decoder for the next iteration of channel decoding. This way,
joint equalization and decoding proceeds in an iterative fashion
until the receiver converges or a pre-determined number of
iterations is reached.

B. MAP equalizer

The MAP equalizer [9] first employs the BCJR algorithm
to compute the APPs for each bit ¢ = 1,--- | N according to

N
P(xi = :t1|y’La) X Z P(le, La) H P(xj)> (2)
x:x;=+1 Jj=1
where the summation is over all possible sequences x such
that ; = +1 or —1. The a priori probabilities {P(z;),j =
1,---,N} are assumed to be independent. Subsequently, it
generates extrinsic LLRs Lg(¢) for each bit ¢ by removing
the contribution of the a priori LLR L, (i) from (2). This is
done simply by subtraction:

P(xl = +1|yaLa)
P(IZ = 71|y7La)

These extrinsic LLRs are then passed to the decoder. The use
of extrinsic LLRs in the form of (3) is essential to ensure
the success of joint iterative equalization and decoding. This
motivates our work to design extrinsic NN equalizer for turbo
equalization. We note that for the MAP equalizer, extrinsic
LLRs can be obtained by simply subtracting a priori LLRs
from APPs (see (3)). However, the same approach applied to
a NN equalizer does not guarantee that true extrinsic LLRs
will be produced. The main reason is that a NN equalizer
does not necessarily closely approximate a MAP equalizer
(especially for challenging ISI channels), and thus, simply

Lp(i) =log — La(i). 3)

Authorized licensed use limited to: The University of Utah. Downloaded on September 14,2021 at 03:50:54 UTC from IEEE Xplore. Restrictions apply.

subtracting a priori LLRs cannot remove the effect of the
priors completely. This leads to our proposed design that
ensures complete removal of the a priori LLRs.

III. PROPOSED EXTRINSIC NEURAL NETWORK
EQUALIZER (EXNE)

In this section, we present the proposed ExNE design.
We will first describe a novel three-step, open-loop training
procedure that allows ExNE to generate extrinsic LLRs. Next,
we will discuss details of generating prior LLRs in the open-
loop training. This is followed by a description of the proposed
DCCB-SC network architecture for EXNE. Finally, we discuss
an adaptive decoder scaling procedure to match the range of
close-loop decoder LLRs with that of the training data.

A. Three-step, open-loop training in ExNE

The three-step training for ExNE is illustrated in Fig. 3.

Step 1: Train an APP-based NN equalizer (ApNE). We
train a preliminary, APP-based NN equalizer, indicated by
“ApNE” in Fig. 3. Note that ApNE uses the same DCCB-SC
architecture as in the final EXNE architecture shown in Step
3. Here, each training sample (vector) contains the received
signal vector y and a bit-wise a priori LLR vector L,, each of
length m. Here, we choose m < N. . The output is a bit-wise
a posteriori LLR vector La of the same length. To generate
each training sample, a random bit sequence x of length m
is generated first and then used to generate y according to
(1). For a given x, each component L,(i),s = 1,--- ,m in
L, is generated following the method described in Section
II-B. Since BPSK modulation is used, we map each BPSK
symbol x; = +1to b; = 1 and z; = —1 to b; = 0. We
use the binary cross entropy (BCE) loss function L4 =
— LS [bi - log Pa(i) + (1 —b;) - log (1 — Pa(i))], where
P, (i) is the probability that x; = +1, to match the output a
posteriori probability P o with true values of the training bits.
We then convert Pa to LLRs L by L4(i) = log 12‘;3()1.),
which are fed to the decoder.

Step 2: Generate extrinsic training LLRs from ApNE.
As shown in Fig. 3, we run m modified sample vectors (all
from the same L,) in parallel, using the ApNE obtained from
Step 1. When processing the i-th sample vector, the inputs are
y and the modified a priori vector LY, obtained from L, by
setting its ¢-th component to be zero. Specifically, we define

Li(k) = { Zel

This way, for each bit ¢, the output L} (i) of the ApNE is
independent of its original prior L, (i) because L’ (i) is set to
be zero at the input. Hence, L, (i) will represent the “extrinsic
LLR” of bit ¢ after equalization. At the end of Step 2, we
collect LLRs {L%,(i),i = 1,---,m}, one from each output
vector and use these as targets for training in Step 3.

Step 3: Train the final EXNE. In this step, we train the final
ExNE architecture to directly map y and L, to the extrinsic
LLR vector Lg. The network is trained so that Lg closely
approximates the target Ly that comes from Step 2. Here, we

if ki

if k=1. @

Step 1) train ApNE
target: pilot X

[| ApNE 3
—4 =

_____ ~maas

° L

% ___ - generate

—"y—l_’: &< £ training data
m— I N

LR
Y oy -
L[’ | ApNE >E3
—

i ;]
y ! ExNE with DCCB-SC 1
i
> 3
o) a z
(o]
L, |ZAEras 2 E |
—>: Ogx Oz 3 2|
)
|]
)

Fig. 3: Three-step, open-loop training of ExNE.

again use the BCE loss function Ly = —L 3" [Pg(i) -
log P(i) + (1 — Pg(i)) - log(1 — Pg(i))] and convert Pg to
Lg in the same way as in Step 1.

B. Generate open-loop a priori LLRs for training samples

Next, we describe how to generate L, in Step 1 of open-
loop ExNE training. Given x, each L, (i), =1,--- ;m in L,
is generated following the open-loop simulation method of the
extrinsic information transfer (EXIT) curve [12]. Specifically,
we characterize the quality of L, using a parameter [4 €
[0,1], which is the mutual information (MI) between a bit
and its a priori LLR. Given I4, we randomly generate L, ()
from a Gaussian distribution N(%+u,0?) if z; = +1. Here,
we set 02 = 2 and o2 is computed from 4 so that the MI
between z; and L, () equals T4 [12]. In summary, to generate
each sample vector, we first pick an 7,4 uniformly from [0, 1]
and keep it fixed. Next, we calculate o2 for this 14, and then
follow the distribution N(+0?%/2,02) to generate L, for all
bits in this training sample. The value of I4 changes from one
sample vector to the next. This design exploits the fact that in
a close-loop system, the quality of L, produced by the channel
decoder improves over iterations. Typically, I4 increases from
0, before the start of channel decoding, to a value close to
1, when the decoder converges. Within each codeword, the
qualities of LLRs are similar, corresponding to the same 4.
Histograms of L, obtained in an open-loop simulation are
shown in Fig. 5 (a). The top subfigure shows the combined
histogram of L, when I, is randomly chosen from [0, 1]. The
middle and bottom histograms are for I, = 0.2 and I, = 0.8,
respectively. The distribution of L, generated using a larger
1, better approximates the distribution of decoder LLRs from
later iterations.

Authorized licensed use limited to: The University of Utah. Downloaded on September 14,2021 at 03:50:54 UTC from IEEE Xplore. Restrictions apply.

|

CB-SC Block 1 5

8

=

>

- Conv1D(6,9 2)
= SCflockZ l [conptes) | 2| Fig.4: The proposed
: >| DCCB-SC network
I—‘—l @ for ExNE. The
CB-SC Block B “CAT” operator
Conv1D(3,1 ConviD(126) in (b) denotes the
onv A .
() batchnorm+tanh concatenation.

!
(a) DCCB-SC Net (b)CB-SC Block

C. A DCCB-SC network

In this section, we describe the proposed deep concatenated
convolutional blocks with skip connections (DCCB-SC) net-
work for EXNE. As shown in Fig. 4(a), the DCCB-SC consists
of B convolutional blocks with skip connections(CB-SC). Let
ConvlD(M,N) denote a 1D convolutional layer with M input
and N output features. At the last layer of DCCB-SC, a
ConvlD(3,1) layer with sigmoid activation is used to map
3 component features to an output probability. In total, the
network has 4 x B+1 convolutional layers. As shown in Fig. 4
(b), each CB-SC block has 4 convolutional layers. The skip
connection concatenates 3 network inputs with 9 outputs of
2nd layer to obtain 12 inputs to 3rd layer. In each convolutional
layer, kernels of size 1x5 with stride 1 and padding size of 2,
batch normalization, and tanh activation are used.

Next, we discuss main features of DCCB-SC and highlight
how we adapt this network to turbo equalization.

o A deep network. In DCCB-SC, we adopt a deep archi-
tecture to increase the receptive field of the network.
This is crucial in turbo equalization where the LLR
of each transmitted bit depends on the entire sequence
of received signal y and the a priori probabilities of
all transmitted bits (see Section II-B). Using a deep
architecture with concatenated CB-SC blocks allows the
network to maintain a small number of features in each
block while achieving a sufficiently large receptive field
for feature extraction. In our study, we observe that the
network depth depends on the level of ISI. Either B = 3
(for channels with moderate ISI) or B = 4 (for channels
with high ISI) is sufficient to obtain good performance.

e Skip connection. As shown in Fig. 4 (b), we use a
skip connection (SC) within each CB-SC to combat the
vanishing gradient problem and to improve the efficiency
of the back propagation during network training. Here,
we adopt a concatenated SC [13] rather than a residual
connection [2] due to its greater flexibility in building
network connection. The concatenated SC also provides
feature re-usability by combining features from earlier
layers with those of later layers. This allows useful
information to be retained from previous layers so that

better predictions can be made at later layers.

o Tanh activation. In DCCB-SC, we use the tanh activation
function because it maintains the symmetry of the data,
see Fig. 5(b) for the near symmetric distribution of the
LLRs coming out of the ExNE. We find that when
other activation functions such as the rectified linear unit
(ReLU) is used, this symmetry is no longer maintained,
and thus performance is degraded. The use of tanh in a
NN equalizer is also proposed in [2], even though the
issue of symmetry is not discussed therein.

e Batch normalization. We find that adding batch nor-
malization prior to the activation function improves the
network training. The batch normalization step helps
control the input distributions to the convolutional layers.
Note that batch normalization before the sigmoid function
in the last layer is not performed.

Compared to existing architectures of NN equalizers [2]-
[5], the proposed DCCB-SC features the deepest architecture
of 13 or 17 layers, while requiring only a moderate network
size of 2743 (B = 3) or 3640 (B = 4) parameters. This
deep architecture, in combination with concatenated SC and
tanh activation, demonstrates a strong expressive power and
can achieve near optimal performance for channels with high
ISI (e.g. hy, hg) under turbo equalization. The proposed
DCCB-SC utilizes the a priori probabilities from the decoder
efficiently, without assuming prior knowledge of the channel
or the choice of channel code. This is different from the NN
equalizer of [2] in which the loss function used in the equalizer
training assumes knowledge of coding constraints.

D. Scaling of decoder LLR to match ExNE training

As described in Section III-B, we adopt an open-loop
training procedure to generate the a priori LLRs L,. A
histogram of the generated L, used for training is shown in
Fig. 5 (a). We see that there exists some ¢ such that with
a high probability (> 97%), L, falls in [—¢,¢]. Since the
distribution of L, used in training does not depend on the
choice of channel code, or the specific LLR distribution of
the decoder at a given iteration, it is necessary to scale the
decoder LLR appropriately so that the resulting LLR after
scaling matches the range of [—/, ¢] for the training data.

We propose a simple adaptive decoder scaling procedure
to scale the range of the decoder LLR over iterations. As
the number of iteration increases, the decoder becomes more
confident about its estimates, and hence, the mean value of the
LLRs will increase over iterations. In our implementation, at
the end of each equalization and decoding iteration, we first
check the LLRs to determine the range [—s;, ;] that contains
the LLRs with high probability. Subsequently, if s; > ¢, then
these LLRs are scaled by SL (no scaling otherwise) so that
the scaled LLRs fall into |—¢,¢]. This adaptive procedure
improves the performance of ExNE, especially in the high
SNR range. We also note that if one performs clipping, i.e.,
truncate the decoder LLRs to the desired range of [/, ¢], then
the performance is inferior to that of the adaptive scaling. One

Authorized licensed use limited to: The University of Utah. Downloaded on September 14,2021 at 03:50:54 UTC from IEEE Xplore. Restrictions apply.

explanation is that scaling keeps the relative confidence level
of the bits intact, while the clipping operation does not.

1, €[0,1]
80K = 1K

1st iteration 1st iteration

40K 0.5K

o
@
X

0 0 0
-20 -10 0 10 20 -10 0 10 -40 -20 0 20 40

1,=0.2 distributon 2nd iteration

2nd iteration

6K 0.5K

J
S

0
=20 -10 0 10 20 -10 0 10 -40 -20 0 20 40

1,=0.8 distributon
8K 1K

5th iteration

5th iteration
—— 1.2K —

4K 0.5K

4
@
X

0 0 0
=20 -10 0 10 20 -10 0 10 -40 =20 0 20 40

(a) Training Data La (b)EXNE output LLR (c¢) Decoder LLR

Fig. 5: LLR histograms for (a) La generated in open-loop training.
(b) EXNE output Lg (see step 3 of Fig. 3) (c¢) decoder LLR L.
Data from (b) and (c) are collected from a close-loop simulation for
channel hy using EXNE and a convolutional code.

Fig. 5 (b) and (c) show the histograms of EXNE’s output
LLR and the decoder’s output LLR after the Ist, 2nd, and
5th iteration of joint equalization and decoding, respectively.
We see that after the first iteration, the histograms both center
at around 0, meaning that neither the EXNE nor the decoder
can distinguish the +1 and —1 bits reliably. After the 2nd
iteration, EXNE’s histogram becomes less peaky around 0 and
starts to show initial separation of the two Gaussian peaks,
corresponding to bit values of +1 and —1, respectively. The
decoder’s histogram shows a better separation of the peaks.
By the end of the 5th iteration, the separation of two peaks is
clear at the ExNE, while the decoder can separate them almost
perfectly. This confirms EXNE can utilize the a priori LLR
from the decoder efficiently to generate extrinsic LLRs. In this
example, decoder LLRs in (c) are scaled by é = %, é = %
to match the range of training LLR shown in the top figure of
(a) for [—¢, (] with ¢ = 14.

IV. NUMERICAL RESULTS
We consider 4 linear ISI channels with impulse responses
h; = [0.160, 0.227, 0.460, 0.688, 0.460, 0.227, 0.160];
h, = [0.227,0.460, 0.688, 0.460, 0.227];
h; = [0.16,0.545, —0.672, 0.256, 0.095, —0.389];
h, = [0.3482,0.8704, 0.3482].

Their frequency responses are shown in Fig. 1. Note that ISI
is high for h; and hy, moderate for hs, and mild for hy. We
also consider 2 nonlinear channels of the form (1), given by

h=h,g=g1(u) =u+0.2u* — 0.1u?, (6)
h=hy,g=g2(u) = u+0.2u* — 0.1u> 4 0.5 cos(mu). (7)

®)

Note that [2] considers a nonlinear channel (hs, ¢g1). Here, we
consider a more challenging combination (hy, g1) in (6). The
nonlinear channel (hy, g2) in (7) is from [3], [5], [7].

For each channel defined above, for a given signal-to-
noise power ratio (SNR), we perform the three-step training
procedure described in III-A and III-B to train the EXNE, using
the DCCB-SC network. The ExNE is implemented under a
PyTorch framework. Detailed parameters for network training
is shown in Table 1.

TABLE I: Hyper-parameters used in network training

kernel size = 5
mini-batch size = 128

of training samples per SNR = 10%
length of training sample vector m = 286
initial learning rate = 0.001 epoch number = 200

of layers = 4B + 1 Optimizer= Adam

parameters in DCCB-SC: 3640 for B = 4, 2734 for B = 3

In the simulations, we use either a convolutional code with
generating polynomial [1 + D2 1 + D + D?] or a regular
(3,6) low-density parity-check (LDPC) code constructed by
the Progressive-Edge-Growth (PEG) algorithm. Both codes
are rate R = 1/2 and have a length of 3072 bits. For hs
and h, with moderate or mild ISI, we use the LDPC code
because it outperforms the convolutional code. In contrast,
for high ISI channels h; and hy, we use convolutional
code because it performs better than LDPC code. This is
consistent with observations from [14] that the difference in
code performance is likely attributed to the drastically different
channel characteristics compared to the AWGN channel.

Simulation results for 4 linear channels and 2 nonlinear
channels are shown in Fig. 6. For each channel, we compare
the performance of the EXNE with the MAP equalizer and
the turbo MMSE equalizer [9]. Out of these three equaliz-
ers, the EXNE does not require any prior knowledge of the
channel model, while the MAP and the MMSE equalizers
assume full knowledge of the channel. In all figures, we
plot the bit-error-rate (BER) as a function of Ej/Ny in dB,
given by %(dB) = 10log;, (Hg(x * h)(n)H/RHwnH)7 where
R = 1/2 is the coding rate. The results shown in Fig. 6
are after 6 iterations of joint equalization and decoding. Main
observations from Fig. 6 are summarized as follows:

o The ExNE achieves excellent performance over all 4
linear channels. At BER = 104, the gap between ExNE
(unknown channel) and MAP (known channel) is only
about 0.2 dB and 0.17 dB for high ISI channels h; and
h,, respectively. The ExNE performs virtually the same
as MAP for channel hz and even slightly better than MAP
for channel hy at lower Ej/Ny. It also outperforms the
MMSE equalizer over all 4 channels and the performance
gap is large for h; and hs.

 For the highly challenging nonlinear channel (hi,g1),
we note that the performance gap between ExNE and
MAP increases to about 0.76 dB at BER = 1074
In comparison, the gap is only 0.15 dB for the less
challenging combination of (hg4, g2). The turbo MMSE
equalizer is not applicable to nonlinear channels.

e The proposed DCCB-SC network works well with the
depth of B = 3 or 4 for all channels considered. The
number of parameters remains moderate 3640 (B = 4)

Authorized licensed use limited to: The University of Utah. Downloaded on September 14,2021 at 03:50:54 UTC from IEEE Xplore. Restrictions apply.

Channel h, with Convolutional Code Channel h, with Convolutional Code

10 10
107 '\.\I—_.__' 107
3 i 1‘-\.\.\1
o 10° ljc10'2
@ @
10% 10°
MAP MAP
107 10
MMSE mMMSE b
ExNE(B=4) MEXNE(B=3)
5 5.2 5.4 5.6 5.8 6 10 4 5.5
E/N, (dB) E/N, (dB)
(a) channel hy, high ISI (b) channel hgy, high ISI
Channel h, with LDPC Channel h, with LDPC
10° 10°
104 107y
4
102 10"\
[+ o
@ L &
10° 10°
_[PMAP , . [omAP '
107 ImMMSE 107 ImMMSE
ExNE(B=3) ExNE(B=3)
2 22 24 26 28 3 05 26 2.7 28 29 3
E_/N, (dB) E,/N, (dB)
(c) channel hg, moderate ISI (d) channel hg4, mild ISI
(h‘, g|) with C i Code Nonlinear (h4, 92) with LDPC
o o
10 10
1076 10°
A .
10 mw?
@ @
10? 10°°
10*lomMAP 0*fomapP
EXNE(B=4) EXNE(B=3)
10 5 5.5 6 6.4 10 2 22 24 26 275 29
E,/N, (dB) E,/N, (dB)

(e) Nonlinear (hi, g1), high ISI (f) Nonlinear (hy4, g2), mild ISI

Fig. 6: BER comparisons over linear and nonlinear channels.

for most challenging channels h; and (hy, g1). For other
channels, only 2734 parameters are needed (B = 3).

o The proposed ExNE works effectively with both convo-
lutional codes and LDPC codes. This demonstrates the
effectiveness of the proposed open-loop training that is
independent of the channel coding constraint.

o Fig. 6 (d) shows that the MAP equalizer performs slightly
worse than the ExNE after 6 iterations. A closer examina-
tion (results not shown here) reveals that MAP is better
than ExNE after the Ist iteration, but its performance
becomes inferior to EXNE in later iterations. This may be
attributed to (2) which assumes accurate and independent
prior {P(z;),j = 1,---,N}. This assumption holds
during the 1st iteration with uniform priors, but may
become less accurate in later iterations.

For the above channels and code choices, we have not found
an APP-based NN equalizer whose performance is comparable
to the EXNE in the low operating F} /Ny range shown in Fig.
6. Note that the E, /Ny range in Fig. 6 (¢), (d), (f) is noticeably
lower than those of [2]-[5] for channels hg, hy, and (hyg, g2).
Besides differences in the system setup and choice of channel
code, we believe that proper use of extrinsic information in the
ExNE is a key factor that allows us to achieve the low Ej, /Ny
performance. Thus, in Fig. 6, we limit our comparisons to only
the MAP and the MMSE equalizer.

V. CONCLUSION

In this work, we conducted a new study of the NN-based
equalizer specifically for turbo equalization. We developed
a novel EXNE equalizer that performs closely to the MAP
equalizer over a variety of linear and non-linear ISI channels
without knowledge of the channel model. The proposed ExNE
features an open-loop, three-step training that is independent
of the choice of channel code. This offers great flexibility for
the application of EXNE in turbo equalization. We proposed
a deep network, DCCB-SC, which enables EXNE to achieve
a near optimal performance with only a moderate number of
network parameters. We studied challenging ISI channels that
were not considered previously for NN-based equalizers. The
effectiveness of ExNE over these high ISI channels makes
it a promising candidate for turbo equalization. Future work
includes extensions of the proposed ExNE to higher-order
modulations and to ISI channels with longer memory.

REFERENCES

[1] S. Cammerer, F. A. Aoudia, S. Dorner, M. Stark, J. Hoydis, and
S. Ten Brink, “Trainable communication systems: Concepts and proto-
type,” IEEE Transactions on Communications, vol. 68, no. 9, pp. 5489—
5503, 2020.

[2] A. Caciularu and D. Burshtein, “Unsupervised linear and nonlinear
channel equalization and decoding using variational autoencoders,” IEEE
Transactions on Cognitive Communications and Networking, 2020.

[3]1 W. Xu, Z. Zhong, Y. Be’ery, X. You, and C. Zhang, “Joint neural
network equalizer and decoder,” in 2018 15th International Symposium
on Wireless Communication Systems (ISWCS). 1EEE, 2018, pp. 1-5.

[4] Y. Hu, L. Zhao, and Y. Hu, “Joint channel equalization and decoding
with one recurrent neural network,” in 2019 IEEE International Sym-
posium on Broadband Multimedia Systems and Broadcasting (BMSB).
IEEE, 2019, pp. 1-4.

[5] H. Ye and G. Y. Li, “Initial results on deep learning for joint channel
equalization and decoding,” in 2017 IEEE 86th Vehicular Technology
Conference (VIC-Fall). IEEE, 2017, pp. 1-5.

[6] N. Farsad and A. Goldsmith, “Sliding bidirectional recurrent neural net-
works for sequence detection in communication systems,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018, pp. 2331-2335.

[7]1 C. Teng, H. Ou, and A. A. Wu, “Neural network-based equalizer by
utilizing coding gain in advance,” in 2019 IEEE Global Conference on
Signal and Information Processing (GlobalSIP), 2019, pp. 1-5.

[8] B. Liu, S. Li, Y. Xie, and J. Yuan, “Deep learning assisted sum-product
detection algorithm for faster-than-nyquist signaling,” in 20/9 IEEE
Information Theory Workshop (ITW). 1EEE, 2019, pp. 1-5.

[9]1 M. Tuchler, R. Koetter, and A. C. Singer, “Turbo equalization: principles
and new results,” IEEE transactions on communications, vol. 50, no. 5,
pp. 754-767, 2002.

[10] T. Koike-Akino, Y. Wang, D. S. Millar, K. Kojima, and K. Parsons,
“Neural turbo equalization: Deep learning for fiber-optic nonlinearity
compensation,” Journal of Lightwave Technology, vol. 38, no. 11, pp.
3059-3066, 2020.

[11] R.-H. Peng, R.-R. Chen, and B. Farhang-Boroujeny, “Markov chain
monte carlo detectors for channels with intersymbol interference,” IEEE
transactions on signal processing, vol. 58, no. 4, pp. 2206-2217, 2009.

[12] S. Ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density
parity-check codes for modulation and detection,” IEEE transactions on
communications, vol. 52, no. 4, pp. 670-678, 2004.

[13] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017, pp. 2261-2269.

[14] M. M. Mashauri, “Spatially coupled codes in turbo equalization,” 2019.

Authorized licensed use limited to: The University of Utah. Downloaded on September 14,2021 at 03:50:54 UTC from IEEE Xplore. Restrictions apply.

		2021-07-31T15:40:49-0400
	Preflight Ticket Signature

