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ABSTRACT:

No agreed-upon method currently exists for objective measurement of perceived voice quality. This paper describes
validation of a psychoacoustic model designed to fill this gap. This model includes parameters to characterize the
harmonic and inharmonic voice sources, vocal tract transfer function, fundamental frequency, and amplitude of the
voice, which together serve to completely quantify the integral sound of a target voice sample. In experiment 1, 200
voices with and without diagnosed vocal pathology were fit with the model using analysis-by-synthesis. The result-
ing synthetic voice samples were not distinguishable from the original voice tokens, suggesting that the model has
all the parameters it needs to fully quantify voice quality. In experiment 2 parameters that model the harmonic voice
source were removed one by one, and the voice tokens were re-synthesized with the reduced model. In every case
the lower-dimensional models provided worse perceptual matches to the quality of the natural tokens than did the
original set, indicating that the psychoacoustic model cannot be reduced in dimensionality without loss of fit to the
data. Results confirm that this model can be validly applied to quantify voice quality in clinical and research applica-
tions. © 2021 Acoustical Society of America. https://doi.org/10.1121/10.0003331
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I. INTRODUCTION

At present, no agreed-upon method exists for objective
measurement of perceived voice quality. As traditionally
defined, voice quality is a psychoacoustic attribute—the per-
ceptual response to all the acoustic attributes of a voice sig-
nal [ANSI (1960); see also Sundberg (1987) and Kreiman
and Sidtis (2011)]. It follows that modeling or measuring
voice quality entails identifying a set of acoustic attributes
that are both necessary and sufficient to specify voice qual-
ity perception—a psychoacoustic level of description.

This is not the approach taken by traditional quality
assessment protocols like the Consensus Auditory-
Perceptual Evaluation of Voice (Kempster et al., 2009) or
the GRBAS protocol (Isshiki ef al., 1969), which partition
voice quality into separate perceptual dimensions. In addi-
tion to scales like breathiness and roughness, these protocols
typically include a scale for “grade” or overall severity of
disorder, yet it is not clear how the individual quality scales
relate to scaled severity or to the overall voice pattern.
These protocols do not pretend to measure quality as a
whole; and to our knowledge neither the necessity of indi-
vidual scales nor the sufficiency of the composite protocols
as models of overall quality has been established. As a
result, two voices with identical profiles of ratings across
scales can and do differ substantially in perceived overall
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quality. For this reason, it is impossible a priori for rating
scales to provide information about how a listener actually
perceives an overall voice pattern, one primary purpose of
voice quality measurement. As a further limitation, listeners
have difficulty focusing their attention on individual features
like breathiness or roughness within complex acoustic pat-
terns in voice, an inability that is the primary source of
often-documented rating unreliability in traditional voice
quality assessment protocols (Kreiman et al., 2007). This
further limits the effectiveness of scalar ratings of individual
qualities as measures of the sound of a voice.

To address these issues, we have recently proposed an
alternate model that treats quality as perceptually integral
and models it as the set of acoustic parameters that allow lis-
teners to determine that two signals are the same or different
(Kreiman et al., 2014). These parameters (Table I) were
derived from a series of acoustic and psychoacoustic studies
[Kreiman et al. (2007), Garellek er al. (2016), and
Signorello et al. (2016)], and were selected because they
account for most of the acoustic variability across voices.
The assumption is that those parameters that vary most will
be the most perceptually salient. This last point has not been
formally examined, and the model as a whole thus remains
to be validated.

Model validation requires demonstrating two things:
That the model includes all the parameters needed to quan-
tify a very wide range of voice qualities (i.e., the parameter
set is sufficient), and that all included parameters are
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TABLE I. The parameters included in the psychoacoustic model of voice
quality.

Model component Parameters

H1-H2, H2-H4, H4-2kHz, 2 kHz-5kHz
Spectral slope in four ranges (0-961 Hz,
961-2307 Hz, 2307-3653 Hz,
3653 Hz—5 kHz); HNR mean

FO mean; FO contour

Harmonic voice source
Inharmonic voice source

Pitch
Loudness Amplitude mean; amplitude contour
Formants 1-11; bandwidths 1-11; spectral

zeros 1-3; zero bandwidths 1-3

Vocal tract

actually necessary. This paper presents two experiments
addressing these points. Experiment 1 examines the suffi-
ciency of the model—the range of phenomena for which it
can account satisfactorily—by using analysis-by-synthesis
to fit the model to a very wide range of naturally occurring
voice qualities. Experiment 2 addresses the necessity of the
parameters modeling the harmonic voice source (Table I) by
eliminating them one by one and comparing the resulting
synthesized voices to natural target voices.

Il. EXPERIMENT 1

The goal of this experiment was to assess the limits of
what the proposed psychoacoustic quality model can
account for. Two hypotheses were tested: (1) model parame-
ters will be sufficient to recreate the perceived quality of all
normal and most pathological voices; (2) failures to ade-
quately model quality will increase with increasing severity
of perceived vocal pathology.

A. Method
1. Voice samples

One hundred voice samples (50 male, 50 female) were
drawn from a database of recordings of speakers who had a
voice disorder diagnosed by an otolaryngologist. Voices
were unselected with respect to diagnoses' and ranged from
extremely mild to very severe vocal pathology, as initially
judged by the first author and confirmed via pretest
(described next). An additional 100 voices (50 male, 50
female) were drawn from the UCLA Speaker Variability
Database (Keating et al., 2019), which includes multiple
voice samples from over 200 male and female UCLA under-
graduate students, none of whom reported a history of voice
or speech complaints. All speakers sustained the vowel /a/ at
comfortable pitch and loudness levels, and all were recorded
with a Briiel and Kjer 1/2 in. microphone. Samples were
directly digitized at 20kHz (clinical samples) or 22kHz
(Speaker Variability Database samples) sampling rates. A
relatively steady-state 1-s portion was selected from the
middle of each utterance (so that onsets and offsets were
eliminated). Samples were then downsampled to 10kHz
prior to analysis and testing.
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2. Listening pretest

The following pretest was undertaken to confirm that
the sample of voices included a wide range of severities of
vocal pathology, and to provide data for testing the second
hypothesis. All experimental procedures described in this
paper were approved by the UCLA Institutional Review
Board.

Pretest methods are fully described in Kreiman et al.
(2020). Briefly, listeners judged the extent to which each
natural voice sample was or was not normal using a visual
sort and rate task (Granqvist, 2003). Male and female voices
were judged separately, but samples from normal and clini-
cal speakers were combined. The following procedure was
used to control for context effects on perceived severity of
dysphonia. Each listener heard 180 stimuli, either all male
or all female, divided into 9 trials of 20 voices each. Five
different sets of 180 stimuli were created for the male and
female voices (10 sets total), such that across the entire
experiment every voice appeared at least once in a trial with
every other same-sex voice; 80 stimuli in each 180 voice set
were repeated twice, and twenty appeared once only. No
voices were repeated within a single 20 voice trial. Ten
UCLA students and staff heard each of the ten 180-voice
sets, for a total of 100 listeners (50 each for male and female
voices). Listeners ranged in age from 18 to 68 years (mean
age =22.5years; sd=10.13years). All listeners reported
normal hearing. Students received course credit in return for
their participation.

The experiment took place in a double-walled sound
suite. Subjects were tested individually and heard the stimuli
over Etymotic insert earphones (model ER-1; Etymotic
Research, Inc., Elk Grove Village, IL) at a comfortable con-
stant listening level. In each trial, listeners were presented
with a screen containing 20 randomly colored and shaped
icons, each icon representing a single voice token randomly
assigned to that icon. Listeners played each voice by click-
ing its icon, then dragged the icon to a line at the bottom of
the screen to indicate (1) whether the voice sounded normal,
in which case the icon was placed in a box on the right end
of the line, and (2) if it did not sound normal, how close to
normal it sounded. The most abnormal-sounding voices
were to be placed towards the left end of the line; those that
approached normal were placed near the box. Voices judged
equally dysphonic were to be stacked on the line so that
they were the same distance from the ends of the line.
Listeners were told that they could place as many or as few
icons as desired in the box. They were encouraged to play
the voices as often as required, in any order, until they were
satisfied with their sort, after which testing advanced to the
next trial. The experiment was self-paced and listeners could
take breaks as needed. They were not told how many total
speakers were included in the experiment. Testing lasted
less than 1 h.

Icons placed in the box were assigned a rating of 1000;
those at the left end of the line were scored 0, with scores
for other icons interpolated between these values. Ratings
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were averaged across listeners for use in calibrating results
of the validation study. [For more detailed analyses, see
Kreiman et al. (2020).] Rating distributions were skewed
towards the right, consistent with the inclusion of samples
from equal numbers of normal and pathologic speakers
[Figs. 1(a) and 1(b)]. Across voices, mean ratings ranged
from 122 to 917.9, where 0 meant maximally dysphonic and
1000 meant normal. No significant differences were
observed between male and female speakers in mean ratings
[F(1, 198)=0.15, p>0.05, rZ:O]. Listeners were quite
self-consistent in their judgments (mean test-retest
agreement = 75.8%; sd =9.22%), but showed considerable
between-listener variability [mean Spearman’s rho for pairs
of listeners =0.27; sd =0.11; see Kreiman et al. (2020), for
discussion]. However, given the large number of ratings
(n=90) used to generate the mean values used here, and
given that mean values spanned nearly the entire 1000 point
scale, we conclude that the sample of voices was sufficiently
large and varied to provide a fair test of the adequacy of the
psychoacoustic model.
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FIG. 1. Distribution of severity ratings across listeners. Larger values on
the x axis represent more normal-sounding voices. (a) Female speakers. (b)
Male speakers.
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3. Synthesis procedures

Synthetic copies were created for each of the 200 voice
samples using the UCLA voice synthesizer, which imple-
ments the psychoacoustic model of voice. All synthesis was
completed by the first author. Methods are described in
detail in Kreiman et al. (2016) [see also Kreiman et al.
(2010)]. Briefly, voice samples were inverse filtered using
the method described by Javkin et al. (1987). Harmonic
source spectra were calculated from the resulting source
pulses and then smoothed by fitting them with the model of
the harmonic source spectrum (Table I, row 1), which mod-
els overall spectral shape in four pieces (H1 to H2; H2 to
H4; H4 to the harmonic nearest 2kHz; and the harmonic
nearest 2 kHz to the harmonic nearest 5 kHz) but eliminates
differences in amplitude between adjacent harmonics [Figs.
2(a) and 2(b)]. The inharmonic (noise) source spectrum was
estimated through application of a cepstral-domain comb fil-
ter (a “lifter”) like that described by de Krom (1993) [see
also Qi and Hillman (1997)]. This spectrum was smoothed
with a similar four-piece approximation [Figs. 2(c) and
2(d)], with segments spanning 0-961Hz, 961-2307 Hz,
2307-3653 Hz, and 3653 Hz—5 kHz.

Fundamental frequency (FO) and amplitude contours
were calculated from measurements of the original voice
samples, and source pulses with frequencies and amplitudes
dictated by these contours were calculated, then
concatenated. A 100 tap FIR filter was synthesized for the
noise spectrum, and a spectrally shaped noise time series
was created by passing white noise through this filter. The
source pulse train was added to this noise time series to cre-
ate a complete glottal source time series.

The vocal tract was modeled by importing formant fre-
quencies and bandwidths from the inverse filtering algo-
rithm, and the complete synthesized source was filtered
through this vocal tract model. The ratio of noise to har-
monic energy was adjusted to approximate the value calcu-
lated from the original voice sample, resulting in a
preliminary version of the synthetic voice. Finally, all
parameters were adjusted to provide the best possible per-
ceptual match (in the opinion of the first author) to the origi-
nal voice sample. Although this procedure admits the
possibility of using vocal tract parameters to compensate for
insufficiencies in source parameterization, we note that
above H4, formant changes have a very local effect relative
to the wide frequency range of the source model segments,
and thus are expected to have only a small effect on the
higher-frequency harmonic slopes and their contribution to
voice quality. We were less inclined to make formant
changes that would affect frequencies below H4, because
H1-H2 and H2-H4 have such narrow frequency bands that a
change in formant frequency or bandwidth at this low fre-
quency range would result in very large changes in quality
(because they would affect both H1-H2 and H2-H4).

A dilemma arose during synthesis of tokens with
changes in quality over the course of the token. The voice
synthesizer was designed to model steady state phonation,
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FIG. 2. (Color online) Parameterization of the harmonic and inharmonic
voice sources. The x axis in these plots represents frequency in Hz; the y
axis represents amplitude in dB. (a) The harmonic source spectrum before
fitting the four-piece model. (b) The harmonic source spectrum after model
fitting. (c) The inharmonic source spectrum. (d) The four-piece filter used to
smooth this spectrum.

but voices with vocal pathology are often unsteady in qual-
ity, as are a fair number of tokens from speakers without
obvious vocal pathology. This sometimes made it difficult
to match the voice token precisely, even when the synthetic
sample was a very good match to the speaker’s overall voice
quality (a “token vs type” problem). Although temporal
details of such variations are important for matching the
exact token under study, their relevance to the measurement
of overall quality is less obvious, because such details are
particular to a given sample and do not necessarily general-
ize to the overall sound of the voice. In response to this con-
flict, details of the particular sample were matched as
closely as possible during synthesis, but our primary efforts
were directed at capturing the speaker’s individual voice
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quality. Listeners were asked to judge the samples with
respect to both the match between tokens and the extent to
which speakers’ individual voice qualities were matched, as
described in Sec. I'V.

4. Perceptual evaluation

Synthetic and natural stimuli were combined to create 400
voice pairs: 200 where the two samples were identical (‘“same”
pairs, randomly chosen to include either two natural samples
or two synthetic samples), and 200 pairs where one voice was
a natural sample and one was its synthetic copy (“different”
pairs). Four different randomizations of these pairs were cre-
ated, and each was divided into 2 blocks of 200 trials, for a
total of 8 blocks of stimuli. Each block was judged by a sepa-
rate group of 5 listeners, so that across blocks each “same”
pair was judged by 20 listeners and each “different” pair was
judged by 20 listeners, although these were not necessarily the
same listeners. Listeners were drawn from the UCLA student
population, and ranged in age from 18 to 29 years (mean-
=19.2 years; sd=1.90years). All reported normal hearing.
They received course credit for their participation.

Listeners were seated in a double-walled sound booth
and heard the stimuli over Etymotic ER-1 insert earphones.
On each trial, they heard the two 1-s stimuli, separated by
250 ms. They were allowed to play each pair of voices once
in each order (A/B and B/A), after which they were asked to
judge whether the two samples were identical (sample
matching task), and to provide their confidence in their rat-
ing on a 1-5 scale where 1 meant they were positive about
their response and 5 meant it was a wild guess. To assess the
extent of the match to the quality of the voice independent
of the temporal details of the voice sample, listeners also
judged whether the two samples represented the same talker
(talker matching task), although not necessarily the same
sample from that speaker, again making confidence ratings
on a 1-5 scale. In this case, judgments required listeners to
ignore details of the voice sample, and instead decide
whether differences between the samples were consistent or
not with expected within-speaker variability in voice
quality.

For both the sample and talker matching tasks, same/
different sample or talker responses were combined with
confidence ratings to create a single 10-point scale ranging
from 1 (positive voices are the same; confidence rating = 1
and response = “same”), through 5 (unsure voices are the
same; confidence rating =25 and response = “same”) and 6
(unsure voices are different; confidence rating=>35,
response = “different”) to 10 (positive voices are different;
confidence rating=1 and response = “different”). SYSTAT
software (Version 13.1; Systat Software, Inc., San Jose, CA)
was then used to calculate d’ from these unfolded confidence
ratings. d’ values increase with increasing discrimination
performance; a d’ value of 2.10 corresponds to 75% proba-
bility of a correct response [MacMillan and Creelman
(2005), p. 385], and was used as a criterion for interpreting
these results.

Kreiman et al.
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B. Results

Across voices, no listener performed at or above crite-
rion levels, whether discriminating between synthetic and
natural tokens or making same/different talker judgments.
When discriminating between synthetic and natural tokens
of the voices, d’ averaged 0.81 (sd =0.50, range =-0.14 to
1.86). When asked if tokens represented the same or differ-
ent speakers, d’ averaged 0.42 (sd = 0.46, range =-0.43 to
1.34).

Across listeners, discrimination scores were below cri-
terion levels for all female voices, for both tasks (same/dif-
ferent sample task: mean d’ =0.54, range =-0.45 to 1.99,
sd =0.39; same/different talker task: mean d =0.19,
range =-2.57 to 1.17, sd =0.54). Overall performance was
quite poor for male voices as well (mean d' =0.55,
range =-0.44 to 2.4, sd =0.47), but synthetic and natural
tokens for two of the 50 pathologic talkers were discrimina-
ble at above criterion levels (d'=2.28 and 2.4). Figure 3
shows how values of the cepstral peak prominence (CPP)
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(Hillenbrand et al., 1994), a computationally robust variant
of the noise-to-harmonics ratio, vary over time for these two
natural voice samples and for their synthetic counterparts.
CPP values were calculated using VOICESAUCE software
(Shue et al., 2011), with a Hamming window five pitch peri-
ods in length. As these figures show, noise levels for the nat-
ural stimuli [Fig. 3(a) and 3(b)] increased and decreased
more over time than for the synthetic samples [Fig. 3(c) and
3(d)], an impression that was confirmed by careful listening.
However, accuracy did not exceed criterion levels for the
same/different talkers task for any male voices, including
these two (d' = 1.14 and 0.87, respectively) (mean d' = 0.18,
range =—0.87 to 1.22; sd =0.4).

Finally, contrary to expectation, we observed little or
no relationship between perceived severity of voice disorder
and discriminability of the natural and synthetic tokens
(same/different token task: » =-0.28, p < 0.01; same/differ-
ent talker task: r =-0.1, n.s.). Although the first correlation
is statistically reliable, the amount of variance accounted for
is negligible (% = 0.078).
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FIG. 3. Noise variability for two voice samples that were perceptually discriminable from their synthetic counterparts. (a) and (b) CPP values
over time for the natural voice tokens. (c) and (d) CPP values over time for the synthetic stimuli corresponding to the natural voices in panels

(a) and (b), respectively.
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C. Interim discussion

It is of course impossible to prove that the psychoacous-
tic model of voice quality is adequate to model every possi-
ble voice, because of the obvious limits imposed by
sampling. For this study, every effort was made to include a
large range of vocal pathologies and severities of voice dis-
orders, but even the large sample of voices studied here can-
not capture the full range of possible qualities that exist or
could exist, either within or between speakers. We also note
that our sample contained a large number of normal voices,
where “normal” was self-defined by the speakers. In a uni-
verse of talkers, the vast majority of voices are normal in
this sense. Given these circumstances, the fact that only
2/200 synthetic tokens were reliably (but far from perfectly)
discriminable from their natural counterparts is in our opin-
ion strong evidence that the model adequately quantifies
voice quality, particularly since those two tokens were
judged to match the overall quality of the speaker, if not the
exact temporal details of the specific voice sample. Further,
for the current sample of voices, accuracy of the model did
not decrease with increasing severity of dysphonia.

This leads to the second issue arising from these results.
The two synthesis failures that occurred do not appear to be
the result of model limitations, but rather were related to
minor issues with token unsteadiness. This raises the ques-
tion of what exactly we are attempting to model: the overall
sound of a sample, or the precise details of its temporal vari-
ation. To our knowledge, this issue has not been addressed
in studies evaluating previous protocols for quality assess-
ment. The nature and extent of variability in voice in general
are poorly understood [e.g., Lavan et al. (2019) and Lee
et al. (2019)], as are the ways in which listeners cope with
such variability when judging quality. A solution to this
issue is beyond the scope of the present study; however,
the psychoacoustic model proposed here may offer a tool
for future work addressing this topic. We return to this in
Sec. IV.

lll. EXPERIMENT 2

Experiment 1 provided evidence that the psychoacous-
tic model has all the parameters it needs to model a wide
range of voice qualities. This experiment addresses the
remaining question about the model’s validity: Are all the
included parameters actually needed to model quality
adequately?

In addressing this question, we assume that previous
research has sufficiently established the perceptual impor-
tance of FO, formant frequencies and bandwidths, and sound
intensity, so that their inclusion in the model need not be
justified anew [see, e.g., Fastl and Zwicker (2007) and
Hillenbrand (2019) for review]. Our own previous studies
(Kreiman and Gerratt, 2005, 2012; Signorello et al., 2016)
have also established the importance of correctly modeling
the inharmonic voice source. However, the necessity of all
four parameters in the model of the harmonic source has not
been previously established. These parameters were derived
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from acoustic analyses of a large number of voice sources,
and were chosen so that they accounted for as much vari-
ance as possible in source spectral shape across different
voices (Kreiman et al., 2007). To test the hypothesis that
perception of voice exploits acoustic variability (in other
words, that listeners use the parameters that vary most
across voices when they assess the quality of an individual
voice), we created stimuli by dropping each piece in turn
out of the harmonic source model, re-synthesizing the voi-
ces, and then assessing the effect of these changes on the
match between synthetic and natural tokens. If acoustic vari-
ability predicts perception, then across voices, the four-
piece source spectral model should provide a better match to
the natural voice tokens than any of the three-piece models.

A. Methods
1. Stimuli

Twenty-four voices (12 male, 12 female) were selected
from the voices used in experiment 1, such that one male
and one female voice had a low, mid, or high value for each
of the 4 spectral source parameters, based on the observed
distribution of values for the entire set. Four versions of
each stimulus voice were then created. The first was the
token created with the four-parameter source spectral model
via analysis-by-synthesis in experiment 1 [Fig. 4(a)]. In the
second version, H1-H2 and H2-H4 were merged to create a
single H1-H4 parameter [Fig. 4(b)]; in the third, H2-H4 was
merged with H4-2kHz to create an H2-2kHz parameter
[Fig. 4(c)]; and in the fourth, H4-2kHz was merged with
2kHz-5kHz to create a single H4-5kHz parameter [Fig.
4(d)]. As in experiment 1, differences in the amplitudes of
individual harmonics within each range were eliminated.

In many cases, these changes to the harmonic source
resulted in prominent changes in vowel quality, because the
vocal tract models used in experiment 1 were optimized for
a four-piece source model. For this reason, formant frequen-
cies and bandwidths were re-adjusted to provide the best
possible match to the natural target voice in the context of
each of the 3 new harmonic sources, so that any mismatches
in overall quality between the synthetic and natural tokens
could be unambiguously attributed to differences among
source models. Levels for the noise-to-harmonics ratio were
also reset, to compensate for changes in the perceptual
prominence of spectral noise as a result of changes to the
harmonic source spectrum (Kreiman and Gerratt, 2012;
Labuschagne and Ciocca, 2020). All other model parameters
remained unchanged from their values in experiment 1.

2. Participants

Twenty listeners (12 female, 8 male) participated in this
experiment. They ranged in age from 18 to 65 (mean =31;
sd = 14.3). All reported normal hearing. They were compen-
sated for their time.

Kreiman et al.
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FIG. 4. (Color online) The three-piece source models. (a) A source fitted
with the original four-piece model. (b) The same source fitted with a three-
piece model using H1-H4. (c) The same source fitted with a three-piece
model using H2-2kHz. (d) The same source fitted with a three-piece model
using H4-5 kHz.

3. Task

Listeners were seated in a double-walled sound booth
and heard the stimuli over Etymotic ER-1 insert earphones.
On each trial, they heard two 1-s stimuli, separated by

250 ms, and were asked to report whether the stimuli were
the same or different along with their confidence in their
response on a 1 (positive) to 5 (wild guess) scale. Stimuli
were identical for half of the trials; for the other half, one
stimulus was the natural voice token and one was one of the
4 synthetic versions of that voice (24 voices x4
versions = 96 “different” trials, plus 96 “same” trials, for a
total of 192 trials/listener). In all cases, playback was lim-
ited to 2 repetitions, once in each order (A/B and B/A).
Testing lasted an average of about 40 min.

B. Results

As in experiment 1, “same” and “different” responses
were combined with confidence ratings to create a single
scale ranging from 1 (positive voices are the same) to 10
(positive voices are different). Data from all listeners were
combined to calculate a single d’ value for each of the 96
natural/synthetic voice pairs. Results averaged across voices
are given in Table II. Matched pair t-tests indicated that the
four-piece source model provided a significantly better
match (as measured by lower d’) to the natural voice tokens
than did any of the three-piece models (four-piece model vs
three-piece model with H1-H4: #(23)=-3.69, p <0.001;
four-piece model vs three-piece model with H2-2kHz:
1(23) =-2.98, p <0.007; four-piece model vs three-piece
model with H4-5 kHz: #(23) =-3.70, p < 0.001).

C. Discussion

Results were consistent with our hypothesis, in that the
four-piece model of the harmonic voice source provided a
better overall fit to quality than did any of the three-piece
models. However, changes to different parts of the harmonic
source spectrum had different effects on the quality of the
synthetic stimuli. Changes to the detail with which the low-
est harmonics were modeled (by merging HI-H2 and H2-
H4 or H2-H4 and H4-2 kHz) significantly impacted vowel
quality, which could be largely corrected by adjusting for-
mant frequencies and bandwidths. Given that our stimuli
were /a/ vowels, this is not surprising: The primary determi-
nants of vowel quality, F1 and F2 (both generally between
700 and 1200 Hz for /a/) can change markedly in amplitude
as the source spectral shape is modified in this range. The
relationship between vowel quality and voice quality
depends in theory on whether one views voice primarily
from the perspective of production or perception. From a
production point of view, researchers have long

TABLE II. d' values for comparisons between natural stimuli and 3- vs 4-piece source models. Higher values represent better discrimination performance.

Natural token
vs. model with merged
HI1-H2 and H2-H4

Natural token
vs. four piece model

Natural token
vs. model with H4-5 kHz merged
H4-2kHz and 2kHz-5kHz

Natural token
vs. model with H2-2 kHz
merged H2-H4 and H4-2kHz

Mean 1.48 1.92
SD 0.58 0.92
Minimum 0.40 0.71
Maximum 2.48 3.74

1.95 2.25
1.03 0.94
0.58 0.77
5.06 4.30
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distinguished narrow from broad definitions of voice [e.g.,
Kreiman and Sidtis (2011)]: In a narrow view, voice com-
prises only those attributes directly related to the voice
source (i.e., laryngeal activity), while in broader views,
voice is nearly synonymous with speech and thus includes
vocal tract resonances. Narrow definitions are uncommon in
perceptual research, because listeners do not have separate
access to laryngeal and resonance aspects of phonation
(although attributes like ‘“breathiness” or “roughness” are
often assumed to be laryngeal in origin). By including for-
mant frequencies and bandwidths as part of the psycho-
acoustic model of voice quality, we have implicitly adopted
the view that effects of the vocal tract filter are part of per-
ception of voice quality. However, the present results sug-
gest that even from the standpoint of production strict
separation of source and vocal tract functions is problem-
atic: Speakers must adjust source and filter jointly if they are
to simultaneously achieve both voice quality and vowel
quality goals. This is inconsistent with the distinction
between narrow and broad definitions of voice, and suggests
that very narrow definitions of voice quality may be
untenable.

Changes to the higher part of the harmonic source spec-
trum had less impact on vowel quality, but significantly
affected the “breathy/turbulent” quality of the voice and
overall brightness. Adjusting formant frequencies and/or
bandwidths did not correct these quality changes, presum-
ably because there are few formants relative to the number
of harmonics in these larger frequency ranges. This implies
that either (1) as we talk we make constant, small adjust-
ments to the voice source to maintain a relatively constant
voice quality as vowel quality changes in speech or (2)
voice quality varies within technically perceptible ranges
across utterances, but speakers and listeners are both
focused on semantic meaning so they simply do not notice
this. Data examining within-speaker variability in voice
quality in connected speech are needed to untangle these
issues. We note that the psychoacoustic model is an essen-
tial prerequisite to such studies, because it limits the number
of acoustic features that need to be examined to a relatively
small necessary and sufficient set.

IV. GENERAL DISCUSSION

Because models are summary descriptions of a universe
of data, no model can account for every possible observation
in its domain. With that said, the psychoacoustic model pro-
posed here appears to account for a very large range of voice
qualities in an economical manner, particularly when com-
pared to Voice Profile Analysis (Laver, 1980; Laver et al.,
1981), to our knowledge the only perceptual protocol that
purports to fully quantify voice quality—albeit in the pro-
duction domain—which requires perceptual ratings of 36
parameters.” In addition to its relative simplicity, the pro-
posed psychoacoustic protocol differs from scalar protocols
in its approach to measuring voice quality, in that it quanti-
fies the voice pattern as a whole, not as a set of individual
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attributes. Rating scale protocols focus on single attributes
of voice quality like breathiness and roughness, and scores
on individual scales are usually assumed to be meaningful
out of the context of any other attributes the voice may
have. In contrast, parameters of the psychoacoustic model
(although statistically largely independent) are designed to
quantify a complete integral pattern, and are not necessarily
interpretable individually.

A focus on measuring overall voice quality could sup-
port clinical approaches that focus on treating the overall
sound of a voice, rather than on individual dimensions like
breathiness or roughness. Such approaches are intuitively
appealing, but developing them requires linking the com-
plete sound of a voice to the specific underlying pathology,
an ambitious goal for the future. For the moment we note
that linking voice production to perception is potentially an
easier task in the context of a model that links acoustics to
perception, facilitating further linkages back to the underly-
ing vocal physiology.

One significant limitation of the psychoacoustic model
is that at present it describes only steady-state phonation,
except that FO and amplitude variability are included in our
model of the harmonic voice source (which calculates indi-
vidual pulse periods and amplitudes based on tracks of the
original sample). This limitation was imposed during model
development for pragmatic reasons. As discussed above,
studies of voice quality have not consistently distinguished
the quality of a particular voice token from the overall sound
of a speaker’s voice, so that it is often unclear what exactly
is being measured, and the theoretical status and proper
quantification of variability in voice remain poorly under-
stood. The relationship between within-sample versus
within-speaker variability in quality should in principle
derive from models of within-speaker variability in voice,
but to our knowledge no such model exists at present.
Informal observations suggest that variability in these and
other model parameters is well quantified by coefficients of
variation for the relevant parameters, but further research is
needed to clarify these issues.

Finally, it is possible that another set of acoustic param-
eters exists that would describe voice quality equally well;
and it is possible that more than one set of parameter values
from the present set could result in equally good models of
the target voice quality. Two factors minimize these con-
cerns. First, the parameters included in the model were
derived from extensive acoustic analyses of a very large
number of test stimuli [including Kreiman et al. (2007),
Garellek et al. (2016), and Signorello et al. (2016); summa-
rized in Kreiman et al. (2014)]. As such, the parameter set
provides a detailed acoustic model of the stimuli that
accounts for much of the acoustic variability that distin-
guishes speakers. Second, this demonstration of the validity
of the set of parameters allows us to measure parameters via
automatic acoustic analysis [for example, with VOICESAUCE
software; Shue et al. (2011) and Lee et al. (2019)] rather than
requiring subjective estimation via analysis-by-synthesis.
Concerns about parameter validity previously limited the
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suitability of automatic acoustic analysis, but the existence of
a valid psychoacoustic model eliminates these concerns; and
use of automatic estimation procedures limits concerns about
multiple solutions, because automatic procedures yield the
same values each time they are applied.

In conclusion, although both theoretical and practical
questions remain about how voice quality should be defined,
this model of the relationship between acoustics and voice
quality appears to validly quantify the sound of a wide range
of voices, from normal to severely pathologic. Availability
of such a measurement protocol may facilitate many future
investigations of voice, including devising models relating
voice production to voice perception. Only when we under-
stand how physiological changes are related to changes in
the sound of a voice, and vice versa, can we truly say we
know why a voice sounds as it does.
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