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A B S T R A C T   

Little is known about the cognitive capacities underlying real-time accommodation in spoken language and how 
they may allow conversing speakers to adapt their speech production behaviors. This study first presents a simple 
attunement model that incorporates hypothesized capacities, with a focus on individual variability as one of 
those capacities. The model makes explicit predictions about observable convergence behaviors in interacting 
speakers, including that: i) the intrinsically more variable speaker of the two will be the one who converges to 
their partner, ii) this flexible speaker with higher baseline variability will exhibit a substantial decrease in 
variability and iii) a greater change in the variability between speaking solo and interacting with their partner. 
These predictions are supported by the results of the modeling simulations. To further test the model’s pre
dictions, we analyzed a behavioral dataset including acoustic and articulatory data from three pairs of interacting 
speakers participating in a maze navigation task as well as a like solo speech task. The amount of variability in 
the speech parameters of each dyad member was quantified using coefficient of variation. The experimental 
results parallel the simulation results, and taken together, this work indicates that structured variability is an 
illuminating index of individual speaker adaptability and convergence behavior.   

1. Introduction 

A hallmark property of healthy speech production is its adaptability. 
Speakers can quickly and effortlessly adapt the movements and 
orchestration of their articulators as a function of the task demands of 
the speaking situation, such as those adjustments involved in whispering 
versus yelling, speaking casually to friends versus giving a lecture, 
reading poetry versus singing, or giving instructions versus answering 
questions (Gordon Danner, Vilela Barbosa and Goldstein 2018). Less 
obviously perhaps, recent research has shown that speakers adapt, or 
accommodate, their speech to that of their interlocutor, resulting in a 
tendency towards convergence between the two speakers’ production 
patterns (Abney et al., 2014, Kello and Warlaumont 2015; Babel 2012; 
Cohen Priva, Edelist and Gleason 2017; Giles 1973, 2008; Goldinger 
1998; Levitan and Hirschberg 2011; Nielsen 2011; Pardo 2006, among 
others), or even sometimes towards divergence (Bourhis and Giles 1977; 
Lee et al., 2018; Pardo et al., 2012). Although much of the evidence for 
accommodation has come from acoustic measures of speech production, 
some studies have also shown that accommodation can occur in 
speakers’ articulatory movements (Lee et al., 2018; Tiede et al., 2010; 

Tiede and Mooshammer 2013; Vatikiotis-Bateson, Barbosa and Best, 
2014) and the dynamical control parameters underlying those move
ments (Lee et al., 2018). 

While there is ample empirical evidence for accommodation in 
speech production, how the cognitive system implements this adapt
ability remains an outstanding question in understanding spoken lan
guage interaction. Accommodation phenomenon between speakers is 
particularly challenging to understand because the adaptations involved 
require dynamic, real-time changes in control of the speech articulators, 
unlike the adaptations to other sorts of task demands, like giving a 
public lecture, that can involve deployment of well-learned styles of 
speaking. What cognitive capacities allow speakers to make these real- 
time adaptations? 

One key component of this capacity lies in speakers’ variability in the 
production of phonetic units. Variability in the values of the parameters 
that identify the goal/target for a particular phonological unit has been 
observed both within and across speakers (e.g., Johnson et al., 1993; 
Whalen et al., 2018). For example, Harper (2020) found substantial 
within-speaker variability even when examining a specific phonetic unit 
produced in the same phonetic context and at the same nominal 
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speaking rate and importantly found that the magnitude of that vari
ability differs from speaker to speaker, as was also found in Perkell et al. 
(2008). Recognition of such within-speaker variability has led to the 
view that a speaker’s representation of a unit is a distribution over the 
quantitative values that goal parameters can take on. While early 
“window” models of such representations (Keating 1990, 1996; 
Guenther 1994, 1995; Byrd 1996; Saltzman and Byrd 2000) entertained 
the possibility of essentially rectangular distributions, i.e., windows as 
acceptable ranges of parameter values, other work has hypothesized 
Gaussian-type distributions (e.g., Roon and Gafos 2016; Villacort, Per
kell and Guenther, 2007) or arbitrary distributions built up from cate
gory exemplars (e.g., Johnson 1997; Pierrehumbert 2001). One possible 
type of evidence that speakers’ representations have such Gaussian 
character is that speakers’ real-time behavior is sensitive to the proto
typicality of the token that they are producing, i.e., how close it is to the 
center of the distribution. For example, Niziolek Nagarajan and Houde 
(2013) report that tokens of a vowel that are produced relatively far 
from a speaker’s mean target early in the vowel’s production tend to be 
corrected towards the mean later in the vowel’s production (though this 
could also be compatible with rectangular windows, if the peripheral 
tokens fall completely outside that window). The variability in phono
logical representations also affords the speaker some flexibility in how 
the same unit is produced in different contexts. Harper (2020) has 
shown that the within-speaker variability observed within a phonetic 
context is also predictive of how much a speaker’s production of that 
unit shifts across different contexts. In a shadowing study, Lewandowski 
and Nygaard (2018) revealed a potential contribution of shadowers’ 
articulatory flexibility measured from vowel dispersion to the extent of 
individual vocal alignment behavior. 

A second key component underlying the capacity for real-time ac
commodation lies in the directness of sensory-motor correspondence in the 
human orofacial system; sensory activity resulting from orofacial 
movements (self-generated or generated by another) potentially and 
transparently engages the corresponding motor activity. This trans
parent correspondence has been argued to result from a “common cur
rency” between listeners and producers (Goldstein and Fowler 2003) 
that simultaneously represents both sensory and motor information in 
terms of the properties of biologically significant actions in the world. In 
speech (which engages the orofacial system), the correspondence is a 
key component in satisfying what is known as the “parity requirement” 
that transmitted and received messages be the same (e.g., Liberman and 
Whalen 2000) or sufficiently equivalent (Goldstein and Fowler 2003), 
that a listener successfully both recognize and identify language forms 
(Fowler and Magnuson 2012). One source of evidence for this corre
spondence is the ability of infants to imitate facial gestures. Meltzoff and 
Moore (1977, 1997) discovered that newborns (the youngest 42 min 
old) can imitate the facial gestures produced by a caregiver. The baby 
cannot see its own face nor “feel” the face of the caregiver, and therefore 
some robust (and presumably innate) sensorimotor correspondence is 
needed to account for this, whether by means of “common currency” or 
some other mechanism. 

A third key cognitive component leading to accommodation 
behavior is the socially induced pressure for an individual to act similarly 
to others (Giles, Coupland and Coupland, 1991; cf. Pickering and Garrod 
2004). It has been argued (Goldstein and Fowler 2003) that this sys
tematic tendency for individuals to attune their behavior to one another 
can, when supported by a transparent sensory-motor correspondence, 
play a key role in the formation and stabilization of phonological cate
gories that are shared among members of a speech community. Illus
trations of how this might be so have been offered via simple simulation 
models showing the emergence of categories along some continuous 
articulatory dimension(s) in a system of computational agents (e.g., 
Goldstein 2003; Goldstein et al., 2008; cf. Oudeyer 2006, for a similar 
approach). In Goldstein’s work, at the beginning of the simulation two 
agents produce random values of a continuum (uniform probability 
distribution). On each further production trial, both agents emit a value 

at random from their probability distribution. If the agents’ two values 
match within some noise threshold (determined in part by the nature of 
the degree of uncertainty of the sensory-motor correspondence), then 
both agents increase slightly the probability of producing the step values 
they just produced. This is repeated over many trials, and the probability 
distributions continually evolve. Ultimately, both agents develop one or 
more narrow Gaussian-like distributions centered on one of the con
tinuum steps, with the step location values of the two agents matching 
each other within the noise threshold. In phonological terms, this pro
vides for the creation of the values that could be produced by structured 
phonological categories. These simulations are a conceptual model of 
how categories along a continuum could emerge without beginning with 
any structure at all; they emerge from sensory-motor correspondence 
combined with the social intention to behave similarly to other in
dividuals we interact with. 

2. Attunement model 

2.1. Modeling foundations 

It is possible to use the same type of computational model to simulate 
how online accommodation can emerge from the flexible adaptability 
hypothesized to exist due to the three underlying cognitive capacities of 
variability, direct correspondence, and pressure to act similarly. Such a 
simulation approach adopts two simple computational foundations—a 
random choice of values from each agent’s continuum on every trial and 
an increasing probability of a value that is produced on a trial in which 
the two agents match. This type of model makes several predictions 
about observable features of accommodation, and these can be tested 
not only with the results of performing the simulations but also with real 
behavioral accommodation data. 

In such a simulation model of two interacting interlocutors (agents), 
instead of beginning with each agent randomly choosing values along a 
continuum as in the simulations described above, both ‘conversing’ 
agents can begin with Gaussian probability distributions centered on 
different steps of a continuum that represents some control parameter of 
the speakers’ performance before they interact with another. The cen
ters (μ) of the two agents’ distributions along the continuum can be 
manipulated across different simulations, as can the standard deviation 
(σ) of the each of two agents’ starting distributions. In the course of a 
simulation, convergence of the agents’ distributions is expected under a 
subset of initial conditions. 

The structure of this very simple model leads to three predictions 
about observed convergence. (1) Convergence will occur on a simulation 
only if the μ and σ values are such that there is a non-zero probability 
that a randomly produced match will occur. If the μ values are far apart 
and the σ values are small, no matches may ever occur by chance, and 
therefore no convergence is predicted to occur. (2) The more flexible 
agent—the agent with a higher value of σ—will exhibit a greater shift of 
mode in converging. This is because the more flexible agent is more 
likely than the other agent to produce values far from their μ value that 
will result in matches, and these will eventually push their μ value a 
greater distance. (3) That said, both agents may show some reduction in 
variability of the values they produce after convergence as compared to 
before, because the way matching is rewarded will tend to increase the 
maximum probability associated with mode values, thereby reducing σ. 
Nevertheless, the change is expected to be greater for the more flexible 
agent, as their distribution comes to resemble the distribution of the less 
flexible agent. 

It is unclear if convergence and divergence involve separate or (inter) 
dependent processes/mechanisms. Thus, our conceptual model is con
strained to address predicting accommodation behaviors specifically for 
interactions exhibiting convergence, not the cases of divergence or cases 
of no observable accommodation. 
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2.2. Simulation method 

The simple attunement simulation described above can be specified 
with these further details in our implementation. At the beginning of 
each simulation, two agents, A1 and A2, are assigned normal probability 
density distributions associated with selecting (producing) each of the 
steps of a continuum representing some articulatory or acoustic 
parameter of speech. Here 70 steps (− 35 to 34) are used in the simu
lations. Each agent’s distribution is defined by choosing a distribution 
mean value (μ1 and μ2) and a standard deviation (σ1 and σ2). Fig. 1a 
shows an example of initial distributions with μ1 = − 3, σ1 = 2, and μ2 =

3, σ2 = 4. On each iteration of the simulation, each agent selects a value 
from her particular distribution. If the two values match within a noise 
criterion that represents uncertainty in the sensory-motor correspon
dence, (|x1 - x2| < noise), each agent increases the probability associated 
with the value that she just produced. The noise criterion used is 3 
continuum steps, and rule updating the probability is: Pn+1 = Pn + 0.001 
(1 - Pn). Iterations are divided into epochs of 250 iterations, and epochs 
continue until both of the agents stabilize their productions, where sta
bilization is a change in the mean production from one iteration to the 
next that is below a criterion: mean (|x‾i+1 - x‾i|) < criterion, where 
criterion is 2 continuum steps. If the stabilization criterion is not ach
ieved by iteration 50,000, the simulation ends. The mean values selected 
by the two agents at the final epoch are compared, and the simulation is 
considered to show convergence if |x‾1 - x‾2| < noise. Fig. 1b shows the 
probability function at the final iteration of the converged simulation for 
the initial condition in Fig. 1a. Fig. 1c tracks the mean value (x‾) of each 
agent across epochs, and Fig. 1d does the same for the variance (Var(x)) 
of each agent. 

Initial conditions for the simulations compared three values of the 
distance between μ1 and μ2: μ2 - μ1 = 6, μ2 - μ1 = 12, μ2 - μ1 = 18, 
symmetrically placed around 0 (e.g., μ1 = − 3, μ2 = 3). The standard 
deviations of the agents (σ1 and σ2) used all combinations of three 
values: 2, 4, and 8. Combining the σ combinations with all μ values gives 
3 × 3 × 3 = 27 distinct simulation conditions. Each condition was 
simulated 25 times, yielding a total of 675 simulations. 

2.3. Simulation results 

Of the 675 simulations, 34 simulations (5%) failed to converge, with 
the majority (32/34) failing to reach the stabilization criterion. 
Consistent with prediction (1), the distance between the μ values (agent 
means) was maximal (|μ2 - μ1| = 18) on 26 of these convergence failures 
and was large for the other six (|μ2 - μ1| = 12), while the σ (standard 
deviation) values were minimal: in 31 of these convergence failures σ1 
= 2 and σ2 = 2 and in the other case σ1 = 4 and σ2 = 2. In six of the 30 
non-converged simulations, both agents shifted their mean values to
wards each other by the final (50 000th) iteration in the direction of 
convergence—i.e., a reduced distance between agent means. Five of 
these approximation cases were where |μ2 - μ1| = 12 and σ1 = 2 and σ2 =

2, and one case was where |μ2 - μ1| = 18 and σ1 = 4 and σ2 = 2. In the 
other 24 cases, in which |μ2 - μ1| = 18 and σ1 = 2 and σ2 = 2, the mean 
values of the two agents remained unshifted and far from one another 
through the iterations. An additional four simulations that converged 
failed to reach the stabilization criterion. Further analyses are based on 
the 639 simulations that both reached criterion and converged. 

For the 95% of simulations that stabilized and converged, for each 
agent the shift in mean value from the initial epoch to the final was 
calculated: Shifti = |x‾final(i) - x‾initial(i)|. In 446 converged simulations, 
one agent had a higher initial σ than the other. In every instance, the more 
variable agent shows a greater shift. In other words, consistent with pre
diction (2), the agent with a higher baseline variability is the 
‘converger.’ 

In the remaining 193 converged simulations in which σ1 = σ2, there 
is no preference for which agent shows the greater shift—95 times it was 
A1 and 98 times it was A2. In addition, the relative contribution of each 

agent to convergence is quite variable across individual simulations, as 
can be seen in the scatterplot in Fig. 2, which plots the Shift of A1 (shift in 
mean value) against the Shift of A2 for all the simulations where σ1 = σ2. 
The three clusters of points correspond to the |μ2 - μ1| conditions: 6, 12 
and 18 units. Each cluster exhibits a range of relative contribution of the 
agents’ shifts to the convergence. In some simulations, only one agent 
shifts a substantial amount (peripheral points in the cluster), while in 
other simulations, the two agents shift nearly equally (the central points 
in a cluster), and all intermediate possibilities are attested. Since in all 
cases the final values of μ2 and μ1 are converged (close to equal), the 
change of the two agents must sum to the initial |μ2 - μ1| value in each 
condition ± the noise parameter. Thus, there is a negative correlation 
between the change in the two agents in each condition (r = 0.23, p <
0.005). This is quite different from the simulations in which initial σ 
differs between the two agents. In these 446 converged simulations, shift 
of the flexible agent is almost entirely responsible for the convergence: 
mean(Shift) ± standard error for the flexible agent (higher initial σ) is 
10.29 ± 0.75 (A1, when σ1 > σ2) and 10.49 ± 0.77 (A2, when σ1 < σ2) 
while mean(Shift) for the less flexible one is only 1.0 ± 0.08 (A1, when σ1 
< σ2) and 1.2 ± 0.1 (A2, when σ1 > σ2). 

Finally, the difference between the variance for each agent during 
the final epoch Var(x) and the agent’s baseline variance (σ2 of the initial 
probability distribution) was calculated (Var(x) - baseline). Fig. 3 pre
sents violin plots (with overlaid box plots) of Var(x) - baseline for A1 and 
A2 separately for three different simulation conditions: σ1 > σ2, σ1 = σ2, 
σ1 < σ2. When σ1 > σ2 there is a substantial reduction in Var(x) from its 
baseline value (mean (Var(x) - baseline) = − 43 ± 3.3). The reduction in 
Var(x) is smaller, but still present, in the other conditions (mean 
reduction is − 28 ± 2.8 when σ1 = σ2 and is − 5.9 ± 0.53 when σ1 < σ2). 
Thus, consistent with prediction (3), when A1 begins with higher vari
ability than A2, A1 shows a substantial decrease in variability during the 
convergence process. In other conditions, there was also some decrease 
in variability, but much smaller, again as predicted. Comparable pat
terns are observed with A2; again, when A2 is more variable than A1, A2 
shows the largest decrease in variability during the convergence process. 

3. Experimental assessment 

We turn next to an experimental dataset that serves to assess the 
hypothesis that structured variation can serve as an index of individual 
speaker adaptability underlying convergence behavior in speech ac
commodation, which we have illustrated in an elementary way in the 
modeling above. In the present experimental study, we examine 1) how 
the variability structure in acoustic and kinematic properties of in
dividuals’ speech may differ when they are engaged in a cooperative 
dyadic speech activity as compared to a similar solo speech activity, and 
2) how variability differences between partners in a dyadic interaction 
relate to the speech convergence phenomena that they exhibit. We 
specifically examine whether and how the individual speaker variability 
may serve as an indicator of which speaker of a dyad converges to their 
partner. 

To address these questions, we explore a dataset reported in a pre
vious accommodation study (Lee et al., 2018) that collected acoustic and 
articulatory kinematic data from pairs of facing speakers jointly 
participating in a maze navigation task as well as from each speaker 
completing the same task individually prior to the joint task. The data 
from three pairs of speakers who demonstrated convergence in Lee et al. 
(2018), out of the original four dyads, are investigated in the present 
study.1 Fig. 4 shows the results of significant convergence patterns 
observed in Lee et al. (2018). Speakers’ production behaviors are 
examined in solo speech (SOLO) before the conversational interaction and 
then during that interaction. The ‘converger’ was defined as the member 

1 The fourth dyad showed instances of ‘divergence’ behavior, which is not 
further discussed in the present follow-up study. 
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of the dyad that shows a larger shift in mean values between the SOLO 

condition and the INTERACTION condition (compare the Δmedian of mean 
values of the two dyad members in Fig. 4). Speakers converge during the 
interactive task (INTERACTION) in various measures: sentence duration, the 
stiffness control parameter underlying the tongue movement (indexed 
by time-to-peak-velocity), and intonational measures. While in some 
cases both speakers of the dyad become more similar to one another, in 
all cases one speaker of the dyad is particularly malleable, producing the 
large preponderance of the convergence or accommodation toward their 
partner relative to their own prior solo speech; these convergers are 
denoted using orange in the figures. 

3.1. Methods 

3.1.1. Samples and stimuli 
This study used simultaneously collected audio and articulatory data 

reported in Lee et al. (2018). The full data set and a guideline to its 
organization are freely available via a public repository at https://doi. 
org/10.5281/zenodo.1119284. 

Participants were adult native speakers of American English with 
typical speech and hearing (mean age = 25). They were paired into 

dyads of the same sex: one male dyad denoted as Dyad S1-S2 and three 
female dyads denoted as Dyads S3-S4, S5-S6 and S7-S8—making a total 
of four dyads. Dyad members were not previously familiar with one 
another. Note that this study examines only the convergence patterns 
(Fig. 4), so the diverging dyad, Dyad S5-S6, was excluded from the 
analysis. 

Details of the experiment setup, data acquisition, and post- 
processing are fully described in Lee et al. (2018). Briefly, the syn
chronized audio and articulatory data of participants were recorded in a 
sound-insulated room. Each speaker was seated with a table-top 
microphone in front of them and beside an electromagnetic articulog
raphy (EMA) system, facing their dyad partner at a distance of about 
three meters. The kinematic data analyzed in the present study was 
drawn from the movement tracking of an EMA sensor coil placed on the 
tongue tip. 

Speakers participated in speech tasks presented on their computer 
monitors (see Table 1): a sentence reading task (solo pretest, not 
analyzed), a maze navigation task independently completed (solo 
speech #1), a maze task cooperatively completed with one another 
(interactive speech), followed by another independently completed 
maze task (solo speech #2, previously analyzed but not included in this 

Fig. 1. Simulation method, illustrative example. (a) probability function of initial distributions for: μ1 = − 3, σ1 = 4, and μ2 = 3, σ2 = 2. x axis represents the 
continuum steps; (b) probability function at the final iteration of the converged simulation for the initial condition in (a); (c) tracking of the mean value (x‾) of each 
agent across epochs; (d) tracking of the variance (Var(x‾)) of each agent across epochs. 
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new analysis) and finally a reading task (solo posttest, not analyzed). 
During an ‘individual’ task, an opaque screen was placed to block the 
line of sight between the dyad members, and headphones with music 
playing were given to a dyad member who was not performing the task 
to prevent them from hearing the other dyad member’s speech. 

The carrier sentence used in the tasks had phrase-medial (“beside” or 
“between”) and phrase-final (“signs” or “lights”) target words, resulting 
in four combinations: 

“And then you go ______ [beside/between] the next two ______ [signs/ 
lights].” 

For the maze navigation tasks, the mazes were designed to have a 
balanced occurrence of the target word pairs (“between/beside” and 
“lights/signs”), and each maze landmark icon was either two road signs 
or two traffic lights. At each landmark, the speakers were asked to use 
the frame sentence and appropriate combinations of target words to 
describe that landmark. 

Fig. 5 is an example maze image presented to a participant in the 
interactive task. For each unique maze, the two dyad members saw 
different views of the same maze, differing only in the locations of solid 

and dotted blue lines. The dyad members were asked to navigate only 
the sections indicated by solid lines and to turn over the floor to their 
partner to navigate the other sections with dotted lines. (The mazes in 
solo speech had only solid lines.) At each turn, each dyad member 
navigated either one or two landmarks in a row. 

For the solo conditions, participants were presented with eight 
unique individual mazes. For the interactive condition, in which both 
dyad members participate, eighteen different versions of cooperative 
mazes were repeated twice in random order, yielding a total of 36 
mazes. 

The target words analyzed here are the phrase-medial “beside” and 
phrase-final “signs,” which share comparable articulatory trajectories: 
the diphthong [ɑɪ] in each [bəsɑɪd] and [sɑɪnz] is followed by tongue 
tip constriction and release. 

3.1.2. Data analysis 
Among the acoustic and articulatory variables quantitatively 

analyzed in Lee et al. (2018), the present study considers specifically 
only those variables that showed significant between-speaker conver
gence effects. In most cases, the convergence was accomplished by just 
one of the two speakers in a dyad, with that speaker becoming more like 
their partner (i.e., a reduced phonetic distance between the two dyad 
members). In Lee et al. (2018), significant convergence was determined 
to have occurred when a measure became more alike in the interactive 
condition, compared to its behavior in the solo condition before inter
action (solo speech #1). As shown in Fig. 4, the measures in Lee et al. 
(2018) that were seen to have converged included acoustic sentence 
duration (Dyads S1-S2, S3-S4, and S7-S8), utterance-final f0 maximum 
for the H% boundary tones (Dyad S3-S4), and time-to-peak-velocity 
(TPV) for the tongue tip closure (Dyad S7-S8) or release (Dyad S1-S2). 
Note that TPV is an index of gestural stiffness control parameter. The 
reader is referred to Lee et al. (2018) for further details on measurements 
and the breadth of findings in the earlier study. 

The present study turns its focus to the structured variability 
observed in this dataset for the maze condition (SOLO vs. INTERACTION). For 
a given measure of variability, there were 8 mazes for the SOLO maze 
condition before interaction and 34–41 mazes for the INTERACTION con
dition, each of which with ~4 observations. To quantify the amount of 
variability in a speaker’s speech over the course of experimental trials, 
we use a moving coefficient of variation (moving CoV = moving σ / 
moving μ * 100). For each parameter from each speaker in each maze 
condition, a rolling calculation window of eight observations was set, 

Fig. 2. Simulation results. Scatterplot of Shift values of A1 against Shift values 
of A2 for the 193 converged simulations in the condition σ1 = σ2, where Shifti =
|x‾final(i) - x‾initial(i)|. Each point represents the results from one of the 
simulations. 

Fig. 3. Simulation results. Violin plots with overlaid box plots of Var(x) - baseline for A1 and A2 for three simulation conditions: σ1 > σ2, σ1 = σ2, σ1 < σ2. Black 
dashed horizontal line at 0 = agent’s baseline variance. 
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substituting two new values for the two oldest values with each advance 
of the window. 

This study assesses the changes in variability from when speakers 
were speaking solo to when they were interacting with one another for 
each maze. The following measures are calculated:  

• Baseline CoV: the individual variability inherent to an individual 
speaker’s solo speech.  
○ Baseline CoV was assessed by comparing moving CoV values of the 

two dyad members in their solo maze conditions (before the 
cooperative maze task).  

• Absolute difference in CoV: |ΔCoV|, where ΔCoV = CoV during 
interaction - mean baseline CoV.  
○ For quantifying changes in variability structure, for each speaker, 

difference values (Δs) were calculated by subtracting the mean 
value of baseline CoVs (a constant value) from each of the CoV 

values during interaction, as calculated by the moving window 
described above.  

○ A ΔCoV value indicates either a decrease (-Δ) or increase (+Δ) in 
individual variation during their interactive speech as compared to 
their solo speech. To assess the magnitude of shifts in CoV asso
ciated with the interactive maze condition, absolute values of 
ΔCoV (i.e., |ΔCoV|) for a given measure are compared. 

The differences in the paired values of baseline CoV and |ΔCoV| in 
the acoustic and kinematic measures of the two members for a given 
dyad are statistically evaluated using the non-parametric sign test, with 
p-values ≤ 0.05 considered significant. 

Fig. 4. Measures with significant convergence over the course of maze trials. TPV = time-to-peak-velocity. Each data point along the x axis represents a mean value 
of parameter for each maze trial. Δmedian = absolute difference in median of the mean values between the INTERACTION condition and SOLO condition prior to 
interaction. Adapted from Lee et al. (2018). 
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3.2. Experiment results 

3.2.1. Distributions in solo versus interactive speech 
Fig. 6 shows full distribution patterns of each significant accommo

dation variable from each speaker of the three converging dyads during 
solo speech and interactive speech. The reader is also referred to the 
model simulation results in Fig. 1a (initial distributions) and 1b (the 
converged simulation). For all three dyads, during their solo speech the 
malleable member of a dyad (orange) always shows a wider density 
curve (i.e., a higher value of σ) compared to the other member (blue). 
During the interactive trials, the distribution belonging to the originally 
more variable member resembles that of their dyad partner. As shown in 
shifts in median values (vertical dashed lines) and changes in widths of 
the curve from solo to interactive trials, the member with higher base
line variability is always the one who adapts more to their partner and 
exhibits a significantly reduced value of σ. We additionally note that the 
baseline variability between the members of Dyad S7-S8 seems com
parable to another for the tongue tip closure time-to-peak-velocity 
measure (Fig. 6F). These patterns are statistically confirmed in the 
detailed analysis of time-varying changes in variability presented in the 
following subsections. 

In solo speech, five of six cases show that at least one production 
value of each dyad member falls within the range of the values of the 
other member, exhibiting overlapping distributions between paired 
speakers. In these cases, speakers converge to nearly identical produc
tion values, with similar means and largely overlapping distributions. 
The one exception is the phrase-final f0 peak measure from Dyad S3-S4 

(Fig. 6D), in which, unlike the others, the baseline distributions of f0 
values from Speaker S3 and Speaker S4 do not overlap. Despite the lack 
of a precise match in median values during the interactive trials, the 
‘converger’ (Speaker S4) still shows a significant shift in their produc
tion values towards their partner’s f0 values such that the two speakers 
do exhibit overlapping distributions of f0. 

3.2.2. Baseline coefficient of variation (CoV) in solo speech 
For all three converging dyads, the baseline CoV values in solo 

speech are always greater for the dyad member who then went on to 
converge in the interactive measure(s) as compared to the baseline CoV 
values for the other dyad member who was found to be less malleable 
during the interactive speech. In all cases below, we report means ±

standard deviations of the CoV measure. 
For Dyad S1-S2, the baseline CoV values for sentence duration are 

consistently greater for Speaker S2, the more malleable member of the 
dyad, than for Speaker S1 (S1: 4.2 ± 1.5, S2: 15.1 ± 7.8, z = 3.32, p < 
0.001). The phrase-final tongue tip release time-to-peak-velocity (TPV) 
has a similar pattern with Speaker S2 again exhibiting more variability 
(67.0 ± 16.9) than Speaker S1 (48.4 ± 19.7), though this difference is 
not statistically significant (z = 1.51, p = 0.13) due to the three instances 
(out of 11) that show the opposite pattern (S2 < S1). 

During interaction, Dyad S3-S4 converged in sentence duration and 
utterance-final f0 peak measures. For this dyad, the baseline CoV is 
significantly greater for Speaker S4, and as predicted it was S4 who 
drove convergence in both measures, as compared to their less malleable 
partner, Speaker S3 (sentence duration, S3: 6.2 ± 2.6, S4: 12.3 ± 5.5; f0, 
S3: 7.2 ± 2.6, S4: 21.2 ± 1.8; all p < 0.005). 

For the final converging dyad, Dyad S7-S8, in which Speaker S7 is the 
malleable member, Speaker S7 is slightly more variable than Speaker S8 
in sentence duration (S8: 6.3 ± 2.6, S7: 7.2 ± 3.4) and tongue tip 
constriction TPV (S8: 41.0 ± 8.6, S7: 48.1 ± 17.7), but neither difference 
is significant (sentence duration: z = 0.19, p = 0.85; TPV: z = 0.58, p =
0.56). 

3.2.3. Difference CoV values: |ΔCoV| 
Across dyads, a greater change in the CoV values from solo speech to 

interactive speech is indicated by higher |ΔCoV| values. As predicted, 
the higher difference value is always associated with the more malleable 
dyad member. That being said, we observe mixed results with respect to 
the direction of the condition-dependent shift in CoV (+/-ΔCoV). These 
results can be visually confirmed in Fig. 7, in which the less malleable 
speaker within a dyad is marked with blue x symbols, and the dyad 
member driving convergence during interaction is indicated with or
ange circles. The black bold lines placed horizontally at 0 refer to 

Table 1 
Task presentation order for Dyad A-B. Conditions in gray cells were not analyzed 
in this study.  

Fig. 5. Example cooperative maze trial. Adapted from Lee et al. (2018).  
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speakers’ baseline CoVs before interaction. Thus, regardless of its di
rection, the distance from 0 to each data point indicates the magnitude 
of shifts in CoV associated with the interactive condition (= |ΔCoV|). 

For Dyad S1-S2’s sentence duration (Fig. 7A) and final tongue tip 
release TPV (Fig. 7B) measures, the magnitude of shift in CoV from solo 
speech to interactive speech is greater for Speaker S2 (the ‘converger’) 
than for Speaker S1 (mean sentence duration |ΔCoV|, S1: 0.65 ± 0.48, 
S2: 10.44 ± 1.19, z = 5.39, p < 0.001; mean release TPV, S1: 13.46 ±
6.77, S2: 24.7 ± 18.69, z = 2.47, p < 0.05). As shown in the top figure 
panels, ΔCoV values for the malleable speaker (S2) are farther away 
from zero, the baseline CoV. In contrast, ΔCoV values for the less 
malleable partner (S1) do not deviate much from their baseline. In 
addition, Speaker S2 consistently shows negative ΔCoV values in sen
tence duration, while exhibiting largely fluctuating ΔCoV values in the 
release TPV measure. 

For Dyad S3-S4, a robust between-speaker difference in |ΔCoV| is 
observed for both sentence duration (Fig. 7C, S3: 1.82 ± 1.09, S4: 6.3 ±

2.94, z = 6.06, p < 0.05) and f0 (Fig. 7D, S3: 3.92 ± 2.42, S4: 14.92 ±
1.82, z = 5.66, p < 0.001). Again, the ‘converger’ (S4) shows a greater 
distance between CoV during interaction and their solo speech baseline 
CoV than does their less malleable partner (S3), in both temporal and 
intonational variables. Across measures, Speaker S4 shows negative 
ΔCoV values (excepting the two positive values near zero in sentence 
duration), whereas Speaker S3 shows ΔCoV values fluctuating around 
the baseline. 

Lastly, Dyad S7-S8 patterns similarly to the other converging dyads, 
again, showing that the ‘converger’ of the dyad (S7) exhibits larger 
fluctuations in ΔCoV. However, the difference between speakers is not 
significant for either sentence duration (Fig. 7E, S7: 2.46 ± 2.14, S8: 
1.69 ± 1.08, z = 0.38, p = 0.71) or TPV (Fig. 7F, S7: 18.55 ± 10.92, S8: 
12.25 ± 8.57, z = 1, p = 0.31). For sentence duration (Fig. 7E), the ΔCoV 
values for the malleable speaker (S7) fluctuate in both directions from 
the baseline, whereas the values for the less malleable speaker (S8) 
mostly occupy the region below zero during interaction. For the 

Fig. 6. Density plots of accommodation variables in converging dyads in solo (top plots) versus interaction (bottom plots) tasks: Dyad S1-S2 (A,B), Dyad S3-S4 (C,D), 
& Dyad S7-S8 (E,F). A vertical dashed line indicates the median value of a distribution. Orange indicates the ‘converger’ within the dyad. 
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constriction TPV measure (Fig. 7F), both speakers show various ΔCoV 
values throughout the interaction trials, with the overall distance from 
the baseline slightly larger for the malleable speaker than for their 
partner. 

3.2.4. Summary of experimental assessment 
Table 2 synthesizes these results. In the table, underlining indicates 

the malleable dyad member who converged during interaction in the 
indicated measure: Speakers S2, S4 and S7. 

In sum, the variability inherent to an individual speaker’s solo 
speech—assessed by baseline CoV—is consistently greater for the 
malleable dyad member than for the less malleable dyad member 
(significantly so in three of six cases). This direction of difference is 
never the reverse. 

Changes in variability structure, indexed by the absolute difference 
CoV values from individuals’ solo speech to interactive speech (|ΔCoV|), 
are consistently greater for the ‘convergers’ than for their dyad partners 
(significantly so in four of six cases). The direction of difference is never 
the reverse. 

Additionally, we note that when any baseline production values from 
the two dyad members happen to fall within each other’s range (a non- 
zero probability), the convergence pattern during interaction shows 
near-perfect matches between the adapted values of the dyad members. 
In one case in which baseline distributions of the dyad members do not 
overlap (phrase-final f0 peak of Dyad S3-S4), shifts in f0 values do 

Fig. 7. ΔCoV of accommodation variables over the INTERACTION task trials (x axis) in converging dyads (i.e., the interval between the red vertical lines in Fig. 4): Dyad 
S1-S2 (A,B), Dyad S3-S4 (C,D), & Dyad S7-S8 (E,F). ΔCoV = change in coefficient of variation from solo speech to interactive speech. Black bold horizontal line at 0 
= speaker’s baseline CoV measured in solo speech. Orange indicates ‘converger’ within the dyad. 

Table 2 
A summary table.  

An underlined subject (S#) indicates the speaker driving convergence within a 
dyad; gray cells indicate p > 0.05. [CoV = coefficient of variation; TPV = time- 
to-peak-velocity]. 
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reduce the inter-partner phonetic distance, but an imperfect match be
tween the interspeaker distributions is observed—the members’ median 
values remain far from one another. 

Finally, as shown in Fig. 7, the more flexible speakers (S2, S4 & S7) 
generally (in four of six cases) show reduced (negative) CoV values in 
their production after convergence has occurred, as compared to 
speaking solo. In the two exceptions to this pattern (S2’s TPV [upper 
right] and S7’s sentence duration [bottom left]), the malleable speakers 
fluctuate relative to their baselines. In no case is there an increase in the 
variability of these speakers. 

4. Discussion of structured variability as an index of individual 
adaptability 

Conversing speakers often attune their speech behavior to one 
another. Much evidence for speech accommodation exists, yet we know 
relatively little about the cognitive capacities that may lead to online 
adaptations in speakers’ production. This study expounds how under
lying components of the capacity for accommodation may allow two 
speakers engaged in a dynamic spoken interaction to stabilize their 
speech productions. We present a simple attunement model that serves 
as a conceptual basis for constructing predictions about accommodation 
behaviors and test the model’s predictions by examining a dataset of 
pairs of conversing speakers exhibiting convergence behaviors. 

Both model simulation and experimental results support our over
arching hypothesis that structured variation may reveal individual 
speaker adaptability that underlies convergence behavior in speech ac
commodation. Real-time accommodation is observed in our simple 
model of two computational agents (emulating two conversing in
terlocutors) that instantiates the hypothesized key cognitive compo
nents underlying convergence. These components are (i) individual 
agents’ adaptability that springs from their natural variability in pro
ducing a phonetic unit, (ii) transparent sensory-motor correspondence, 
and (iii) ‘social’ pressure to behave similarly.2 In the case of two agents 
who produce their representative performance values not too far from 
one another along a (phonetic) continuum, matching of their mean 
values occurs over iterative steps rewarding values produced on trials in 
which the agents’ values match, and this results in convergence be
haviors. The speech experiment behavioral data reported here exhibits 
the same pattern of results. As shown in Fig. 4, when two dyad members 
start interacting with each other, at least one dyad member, if not both, 
shows shifts in their mean values in production parameters to become 
more similar to the other member they are conversing with, as compared 
to when they are speaking solo prior to interaction. 

This is further confirmed by the similarities in distribution patterns 
between the model simulation results (Fig. 1a & 1b) and the experi
mental data (Fig. 6). While convergence, measured as the decreased 
distance between the phonetic variables produced by each dyad mem
ber, is observed for all six behavioral cases reported here, only those five 
cases that have overlapping baseline values show a near-complete 
matching of the inter-partner values. In the other case, in which 
speakers have baseline values that are proximal but not overlapping, the 
speakers’ production distributions still converge (and become over
lapping) but remain distinct. This mirrors the cases of non-convergence 
in the model simulations, in which the distance between agents (with 
equal variability) is proximal and becomes closer by the time of the final 
iteration. This suggests that the natural range of individuals’ production 
may constrain the extent of accommodation behaviors (Babel, 2010; 
Walker and Campbell-Kibler, 2015). 

Both simulation and behavioral results support the hypothesis that 
speaker variability plays a key role in convergence. Three pieces of ev
idence are relevant here: speakers’ baseline variability, the reduction in 
variability in speakers’ behavior during interaction, and the relationship 
between the relative magnitude of shifts during convergence contrib
uted by an individual speaker and that speakers’ variability structure. 

Our simulation results demonstrate that the intrinsically more vari
able agent of the two, i.e., the agent with a higher baseline variability, 
will be the ‘converger.’ The 70% of converged simulations in which the 
two agents have different baseline variabilities clearly captures 
this—the more variable agent always drives the convergence, showing a 
greater shift in mean than their partner (Fig. 1a-c). Given the larger 
window of variation in their production, the more variable agent can 
match the distant productions of their partner, thereby pushing their 
distribution towards that of their partner. Our experimental data 
(summarized in Table 2, baseline CoV column) also indicate this. In two 
of three dyads (Dyads S1-S2 & S3-S4), the more flexible dyad member 
has higher variability in solo speech before the interactive task than the 
less malleable dyad member.3 

The remaining 30% of converged simulations are the cases in which 
both agents have identical values of baseline variability. Here, the 
relative contribution of each agent to convergence varies considerably 
across simulations—i.e., there is no preference for which agent shows a 
greater shift in mean during interaction (Fig. 2). These include cases 
such as only one agent shifting a substantial amount, the two agents 
shifting nearly equally, and all other intermediate possibilities. Our last 
converging dyad (S7-S8) from the experimental study appears to be an 
instance of this scenario; the two interlocuters with similar baseline 
variability values (baseline CoV column in Table 2) converge via nearly 
equally shifting their baseline mean values. As shown in Fig. 4E, F, while 
the shift in mean is slightly greater for Speaker S7 than for Speaker S8, 
both speakers converge towards each other in both measures. This is 
clearly so for sentence duration (Fig. 4E), whereas for the tongue tip 
stiffness measure (Fig. 4F), the dyad demonstrates a late match—i.e., 
convergence emerges in the later trials. 

Our model further showed that the agent with higher baseline vari
ability exhibits a substantially decreased variability during interaction 
(Fig. 1). This was also seen in four of six cases from our experimental 
results (Fig. 7). The more flexible speakers (S2, S4 & S7) typically show 
reduced production variability in the interaction task compared to 
speaking solo. That said, the two exceptions to this pattern (Fig. 7B, E) 
show fluctuations in both directions from the flexible speakers’ base
lines, exhibiting both increased and decreased variability. Contrary to 
our modeling results, which show stabilized production after the 
convergence process, these two exceptional experimental results suggest 
that the converger’s speech may adapt to exhibit higher probabilities of 
producing a new central value without a reduction in variability. One 
possibility is that the more malleable speaker may be exploring various 
production targets within the wider parameter window available to 
them without reducing the size of that window. 

Overall, the model predicts that the change in variability is greater 
for the more flexible agent who converges to resemble the distribution of 
the less flexible agent. This was confirmed in simulation results (Fig. 3) 
and can also be seen in our behavioral data. For Dyads S1-S2 and S3-S4, 
changes in variability from individuals’ solo speech to interactive speech 
are consistently greater for the ‘convergers’ than for their less malleable 
dyad partners (Table 2, |ΔCoV| column), even though in one case (Dyad 

2 Variation in social and task-related factors can contribute to an asymmetry 
in accommodation (e.g., Abel and Babel 2017; Pardo et al., 2017; Taminga 
et al., 2016), but they were not the main focus of our study. In addition, the 
maze navigation task we employed here assigned both dyad members giver and 
receiver roles in information exchange. 

3 One measure from Dyad S1-S2 (tongue tip stiffness) does not reach signif
icance though still in the direction of the difference is as predicted by the model 
(less malleable S1 < more malleable S2). The failure to achieve significance can 
probably be attributed to the nature of the “distribution free” sign test, which 
measures the direction of effect on paired values, rather than directly assessing 
their numerical magnitude, combined with a small sample size yielding less 
power. 
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S1-S2’s tongue tip stiffness measure) the change involves an increase in 
variability, not a decrease. The members of Dyad S7-S8, who have 
comparable baseline variability and thus contribute to convergence 
nearly equally, also show a comparable shift in variability during 
interaction. In sum, in both simulation results and these experimental 
findings, structured variability serves as an illuminating index of indi
vidual adaptability in convergence behavior. 

Certainly many behavioral accommodation cases do exhibit patterns 
beyond those that have been simulated and observed in the current 
study; thus two limitations of this work must be noted. First, we un
derline that our simple conceptual model of two interacting in
terlocutors is specifically applicable to accommodation situations that 
exhibit convergence behaviors between interlocutors, as the simulations 
model how production values from two agents along a continuum could 
converge. Our model successfully simulates the convergence case of 
complete matching of interlocutor production values, as well as 
approximation examples in which some approach towards convergence 
still occurs but no perfect matching of prototypical values between in
terlocutors is observed. However, the current modeling yields conver
gence only in cases in which baseline distributions of the interlocutors 
are proximal to one another, which is what is seen in the behavioral data 
as well. 

Our relatively simple model makes the strong prediction that the 
extent of convergence in any dyadic interaction should be based solely 
on variability structure of the speakers. However, such a perfect pre
diction is of course unlikely. First, accommodation patterns can vary 
across measures because individuals may attend to different speech 
characteristics in their partner to a greater or lesser extent and may have 
different natural proclivities in their own variation patterns. We thus 
presume that the presence, absence or degree of convergence will vary 
across tasks and measures. Second, our modeling assumptions and 
simulations are staged for interactional contexts in which social and 
other factors are playing a limited role. In various social contexts with 
different attitudes or statuses of interlocutors, while we would expect 
individual variability to still contribute to accommodation behaviors, 
we would not speculate as to the extent of such contributions in light of 
other influences of social and motivational factors. It would certainly be 
fruitful to examine more datasets that provide a wider range of talker 
variation, incorporating various conversational contexts and topics. 
Nonetheless, the limited results of our attunement simulations and 
speech production behavioral data suggest that intrinsic variability may 
play a significant role in determining whether or not phonetic conver
gence occurs. 

5. Conclusions 

Convergence in dyadic interaction demonstrates the real-time 
adaptability of speech behaviors. This study provides novel evidence 
that one key to understanding the cognitive basis for this adaptability 
can be found in the intrinsic variability exhibited by a speaker in the 
production of a phonetic unit. Based on several hypothesized cognitive 
components affording real-time accommodation, including individuals’ 
variability, we construct a simplified computational model of attune
ment, abstracting away from other “social” factors that could influence 
the convergence process. The model succeeds in simulating the 
convergence behaviors of two conversing interlocutors (“agents”) over 
time. These simulation results show that i) the intrinsically more vari
able agent of the two is the converger, ii) this converger, but not the 
other agent, shows a substantial decrease in variability during the 
convergence process, and iii) the converger shows a greater change in 
their variability structure than does the converger’s partner. Analysis of 
parallel behavioral data from a conversational experiment mirrors the 
findings of the model simulations. As such, our findings demonstrate the 
important contribution of individual variability/flexibility to speaker 
adaptability and identify this structured variability as a factor in 
determining who converges in a spoken language interaction exhibiting 

accommodation . 
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