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Manifold Proximal Point Algorithms for Dual
Principal Component Pursuit and Orthogonal
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Abstract—We consider the problem of minimizing the `1 norm
of a linear map over the sphere, which arises in various machine
learning applications such as orthogonal dictionary learning
(ODL) and robust subspace recovery (RSR). The problem is
numerically challenging due to its nonsmooth objective and
nonconvex constraint, and its algorithmic aspects have not been
well explored. In this paper, we show how the manifold structure of
the sphere can be exploited to design fast algorithms with provable
guarantees for tackling this problem. Specifically, our contribution
is fourfold. First, we present a manifold proximal point algorithm
(ManPPA) for the problem and show that it converges at a global
sublinear rate. Furthermore, we show that ManPPA can achieve a
local quadratic convergence rate when applied to sharp instances
of the problem. Second, we develop a semismooth Newton-based
inexact augmented Lagrangian method for computing the search
direction in each iteration of ManPPA and show that it has an
asymptotic superlinear convergence rate. Third, we propose a
stochastic variant of ManPPA called StManPPA, which is well
suited for large-scale computation, and establish its sublinear
convergence rate. Both ManPPA and StManPPA have provably
faster convergence rates than existing subgradient-type methods.
Fourth, using ManPPA as a building block, we propose a new
heuristic method for solving a matrix analog of the problem, in
which the sphere is replaced by the Stiefel manifold. The results
from our extensive numerical experiments on the ODL and RSR
problems demonstrate the efficiency and efficacy of our proposed
methods.

I. INTRODUCTION

The problem of finding a subspace that captures the features
of a given dataset and possesses certain properties is at the
heart of many machine learning applications. One commonly
encountered formulation of the problem, which is motivated
largely by sparsity or robustness considerations, is given by

min
x∈Rn

f(x) := ‖Y >x‖1 s.t. ‖x‖2 = 1, (1)
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where Y ∈ Rn×p is a given matrix and ‖ · ‖r denotes the `r
norm of a vector. To better understand how problem (1) arises
in applications, let us consider two representative examples.

• Orthogonal Dictionary Learning (ODL). The goal
of ODL is to find an orthonormal basis that can com-
pactly represent a given set of p (p � n) data points
y1, . . . ,yp ∈ Rn. Such a problem arises in many signal
and image processing applications; see, e.g., [1], [2] and
the references therein. By letting Y = [y1, . . . ,yp] ∈
Rn×p, the problem can be understood as finding an
orthogonal matrix X ∈ Rn×n and a sparse matrix
A ∈ Rn×p such that Y ≈ XA. Noting that this means
X>Y ≈ A should be sparse, one approach is to find a
collection of sparse vectors from the row space of Y and
apply some post-processing procedure to the collection to
form the orthogonal matrix X . This has been pursued in
various works; see, e.g., [3]–[6]. In particular, the work [6]
considers the formulation (1) and shows that under a
standard generative model of the data, one can recover
X from certain local minimizers of problem (1).

• Robust Subspace Recovery (RSR). RSR is a fundamental
problem in machine learning and data mining [7]. It is con-
cerned with fitting a linear subspace to a dataset corrupted
by outliers. Specifically, given a dataset Y = [X,O]Γ ∈
Rn×(p1+p2), where the columns of X ∈ Rn×p1 are the
inlier points spanning a d-dimensional subspace S of Rn
(d < p1), the columns of O ∈ Rn×p2 are outlier points
without a linear structure, and Γ ∈ R(p1+p2)×(p1+p2)

is an unknown permutation, the goal is to recover the
inlier subspace S, or equivalently, to cluster the points
into inliers and outliers. One recently proposed approach
for solving this problem is the so-called dual principal
component pursuit (DPCP) [8], [9]. A key task in DPCP
is to find a hyperplane that contains all the inliers. Such a
task can be tackled by solving problem (1). In fact, it has
been shown in [8], [9] that under certain conditions on the
inliers and outliers, any global minimizer of problem (1)
yields a vector that is orthogonal to the inlier subspace S .

Despite its attractive theoretical properties in various ap-
plications, problem (1) is numerically challenging to solve
due to its nonsmooth objective and nonconvex constraint.
Nevertheless, the manifold structure of the constraint set
M := {x ∈ Rn | ‖x‖2 = 1} suggests that problem (1) could
be amenable to manifold optimization techniques [10]. One
approach is to apply smoothing to the nonsmooth objective
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in (1) and use existing algorithms for Riemannian smooth
optimization to solve the resulting problem. For instance, when
tackling the ODL problem, Sun et al. [5], [11] and Gilboa et
al. [12] proposed to replace the absolute value function t 7→ |t|
by the smooth surrogate t 7→ hµ(t) = µ log(cosh(t/µ)) with
µ > 0 being a smoothing parameter, while Qu et al. [13]
proposed to replace the `1 norm with the `4 norm. They
then solve the resulting smoothed problems by either the
Riemannian trust-region method [5], [11] or the Riemannian
gradient descent method [12], [13]. Although it can be shown
that these methods will yield the desired orthonormal basis
under a standard generative model of the data, the smoothing
approach can introduce significant analytic and computational
difficulties [6]. Another approach, which avoids smoothing
the objective, is to solve (1) directly using Riemannian
nonsmooth optimization techniques. For instance, in the recent
work [6], Bai et al. proposed to solve (1) using the Riemannian
subgradient method (RSGM), which generates the iterates via

xk+1 =
xk − ηkvk

‖xk − ηkvk‖2
, vk ∈ ∂Rf(xk). (2)

Here, ηk > 0 is the step size; ∂Rf(·) denotes the Riemannian
subdifferential of f and is given by

∂Rf(x) = (In − xx>)∂f(x), ∀x ∈M,

where In is the n× n identity matrix and ∂f(·) is the usual
subdifferential of the convex function f [14, Section 5]. Bai et
al. [6] showed that for the ODL problem, RSGM with a suitable
initialization will converge at a sublinear rate to a basis vector
with high probability under a standard generative model of
the data. Moreover, by running RSGM O(n log n) times, each
time with an independent random initialization, one can recover
the entire orthonormal basis with high probability. Around the
same time, Zhu et al. [9] proposed a projected subgradient
method (PSGM) for solving (1). The method generates the
iterates via

xk+1 =
xk − ηkvk

‖xk − ηkvk‖2
, vk ∈ ∂f(xk). (3)

The updates (2) and (3) differ in the choice of the direction
vk—the former uses a Riemannian subgradient of f at xk,
while the latter uses a usual Euclidean subgradient. For the
DPCP formulation of the RSR problem, Zhu et al. [9] showed
that under certain assumptions on the data, PSGM with
suitable initialization and piecewise geometrically diminishing
step sizes will converge at a linear rate to a vector that is
orthogonal to the inlier subspace S. The step sizes take the
form ηk = ηb(k−K0)/Kc+1, where η ∈ (0, 1) and K0,K ≥ 1
satisfy certain conditions. In practice, however, the parameters
η,K0,K are difficult to determine. Therefore, Zhu et al. [9]
also proposed a PSGM with modified backtracking line search
(PSGM-MBLS), which works well in practice but has no
convergence guarantee.

A. Motivations for this Work

Although the results in [6], [9] demonstrate, both theoreti-
cally and computationally, the efficacy of RSGM and PSGM
for solving instances of (1) that arise from the ODL and RSR

problems, respectively, two fundamental questions remain. First,
while PSGM can be shown to achieve a linear convergence
rate on the DPCP formulation of the RSR problem [9],
only a sublinear convergence rate has been established for
RSGM on the ODL problem [6]. Given the similarity of the
updates (2) and (3), it is natural to ask whether the slower
convergence rate of RSGM is an artifact of the analysis or
due to the inherent structure of the ODL problem. Second,
the convergence analyses in [6], [9] focus only on the ODL
and RSR problems. In particular, they do not shed light on
the performance of RSGM or PSGM when tackling general
instances of problem (1). It would be of interest to fill this
gap by identifying or developing practically fast methods that
have more general convergence guarantees, especially since
different applications may give rise to instances of problem (1)
with different structures. In a recent attempt to address these
questions, Li et al. [15] showed, among other things, that
RSGM will converge at the sublinear rate of O(k−1/4) (here,
k is the iteration counter) when applied to a general instance
of problem (1) and at a linear rate when applied to a so-called
sharp instance of problem (1). Informally, an optimization
problem is said to possess the sharpness property if the objective
function grows linearly with the distance to a set of local
minima [16]. Such a property plays a crucial role in establishing
fast convergence guarantees for a host of iterative methods; see,
e.g., [15]–[17] and also [18]–[20] for related results. Since the
ODL problem and the DPCP formulation of the RSR problem
are known to possess the sharpness property under certain
assumptions on the data [6], [9], the results in [15] imply that
RSGM will converge linearly on these problems.

B. Our Contributions

In this paper, we depart from the subgradient-type approaches
(such as RSGM (2) and PSGM (3)) and present another method
called the manifold proximal point algorithm (ManPPA) to
tackle problem (1). At each iterate xk, ManPPA computes a
search directon by minimizing the sum of f and a proximal
term defined in terms of the Euclidean distance over the tangent
space toM at xk. This should be contrasted with other existing
PPAs on manifolds (see, e.g., [21], [22]), in which the proximal
term is defined in terms of the Riemannian distance. Such a
difference is important. Indeed, although the search direction
defined in ManPPA does not admit a closed-form formula, it
can be computed in a highly efficient manner by exploiting
the structure of problem (1); see Section II-B. However, the
search direction defined in the existing PPAs on manifolds
can be as difficult to compute as a solution to the original
problem. Consequently, the applicability of those methods is
rather limited.

We now summarize our contributions as follows:
1) We show that ManPPA has a global sublinear con-

vergence rate of O(k−1/2) when applied to a general
instance of problem (1). Moreover, we show that if the
instance has the sharpness property, then the local con-
vergence rate of ManPPA is at least quadratic. Although
the sublinear rate result follows from the results in [23],
the quadratic rate result is new. Moreover, both rates are
superior to those of RSGM established in [15]. Key to
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the proof of the quadratic rate result is a new Riemannian
subgradient inequality (see Appendix C, Proposition 5),
which extends the classic subgradient inequality in the
Euclidean space to the sphere M. Such an inequality
allows us to analyze ManPPA in a similar way as its
Euclidean counterpart. It can also be of independent
interest.

2) To compute the search direction in each iteration of
ManPPA, we develop a semismooth Newton (SSN)-based
inexact augmented Lagrangian method (ALM). Numeri-
cally, the proposed method can accurately compute the
search direction in a highly efficient manner, which is
crucial to the fast convergence of ManPPA. Theoretically,
we show, for the first time, that the proposed SSN-based
inexact ALM has an asymptotic superlinear convergence
rate when finding the search direction.

3) We propose a stochastic version of ManPPA called
StManPPA to tackle problem (1). StManPPA is well
suited for the setting where the number of the data points
p is extremely large, as each iteration involves only a sim-
ple closed-form update. We also analyze the convergence
behavior of StManPPA. In particular, we show that it
converges at the sublinear rate of O(k−1/4) when applied
to a general instance of problem (1), which matches the
convergence rate of RSGM established in [15]. Again,
the aforementioned Riemannian subgradient inequality
plays an important role in establishing this result, as it
connects the analysis of StManPPA to those of various
Euclidean stochastic methods.

4) Using ManPPA as a building block, we develop a
new method for solving the following matrix analog
of problem (1):

min
X∈Rn×q

‖Y >X‖1 s.t. X>X = Iq. (4)

Our interest in problem (4) stems from the observation
that it provides alternative formulations of the ODL and
RSR problems. Indeed, for the ODL problem, one can
recover the entire orthonormal basis all at once by solving
problem (4) with q = n. For the RSR problem, if one
knows the dimension d of the inlier subspace S, then
one can recover it by solving problem (4) with q = n−d.
We show that a good feasible solution to problem (4)
can be found in a column-by-column manner by suitably
modifying ManPPA. Although the proposed method is
only a heuristic, our extensive numerical experiments
show that it yields solutions of comparable quality to
but is significantly faster than existing methods on the
ODL and RSR problems.

C. Organization and Notation

The rest of the paper is organized as follows. In Section II,
we present ManPPA for solving problem (1) and describe a
highly efficient method for solving the subproblem that arises
in each iteration of ManPPA. We also analyze the convergence
behavior of ManPPA. In Section III, we propose StManPPA, a
stochastic version of ManPPA that is well suited for large-scale
computation, and analyze its convergence behavior. In Section

IV we discuss an extension of ManPPA for solving the matrix
analog (4) of problem (1). In Section V, we apply ManPPA
to solve the ODL problem and the DPCP formulation of the
RSR problem and compare its performance with some existing
methods. We draw our conclusions in Section VI.

Besides the notation introduced earlier, we use L to denote
the Lipschitz constant of f ; i.e., |f(x)−f(y)| ≤ L‖x−y‖2 for
all x,y ∈ Rn (note that L ≤

√
nmaxu∈Rn ‖Y >u‖1/‖u‖1).

Given a closed set C ⊆ Rn, we use ProjC(x) to denote the
projection of x onto C and dist(x, C) := infy∈C ‖y − x‖2 to
denote the distance between x and C. Given a proper lower
semicontinuous function h : Rn → R ∪ {+∞}, its proximal
mapping is given by proxh(x) = argminw∈Rn h(w)+ 1

2‖w−
x‖22. Given two vectors x,y ∈ Rn, we use 〈x,y〉 or x>y to
denote their usual inner product. Other notation is standard.

II. A MANIFOLD PROXIMAL POINT ALGORITHM

Since problem (1) is nonconvex, our goal is to compute a
stationary point of (1), which is a point x̄ ∈M that satisfies
the first-order optimality condition

0 ∈ ∂Rf(x̄) = (In − x̄x̄>)∂f(x̄)

(see [14]). In the recent work [23], Chen et al. considered the
more general problem of minimizing the sum of a smooth
function and a nonsmooth convex function over the Stiefel
manifold and developed a manifold proximal gradient method
(ManPG) for finding a stationary point of it. When specialized
to solve problem (1), the method generates the iterates via

xk+1 = ProjM(xk + αkd
k) =

xk + αkd
k

‖xk + αkdk‖2
, (5)

where the search direction dk is given by

dk = argmin
d∈Rn

‖Y >(xk + d)‖1 +
1

2t
‖d‖22

s.t. d>xk = 0
(6)

and αk > 0, t > 0 are the step sizes. As the reader may
readily recognize, without the constraint d>xk = 0, the
subproblem (6) is simply computing the proximal mapping of
f at xk and coincides with the update of the classic proximal
point algorithm (PPA) [24]. The constraint d>xk = 0 in (6),
which states that the search direction d should lie on the tangent
space to M at xk, is introduced to account for the manifold
constraint in problem (1) and ensures that the next iterate xk+1

achieves sufficient decrease in objective value. Motivated by the
above discussion, we call the method obtained by specializing
ManPG to the setting of problem (1) ManPPA and present its
details below:

Algorithm 1 ManPPA for Solving Problem (1)
1: Input: x0 ∈M, β ∈ (0, 1), t > 0.
2: for k = 0, 1, 2, . . . do
3: Solve the subproblem (6) to obtain dk.
4: Let jk be the smallest nonnegative integer such that

f(ProjM(xk + βjkdk)) ≤ f(xk)− βjk

2t ‖d
k‖22.5: Set xk+1 according to (5) with αk = βjk .

6: end for
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Naturally, ManPPA inherits the properties of ManPG estab-
lished in [23]. However, due to the structure of problem (1),
many of the developments in [23] have to be refined when
designing ManPPA. In particular, the SSN method used by
ManPG for finding the search direction in each iteration
requires the computation of the proximal mapping of the
nonsmooth part of the objective function. However, due to
the presence of the matrix Y , the objective function f of
problem (1) does not have an easily computable proximal
mapping. As such, the SSN method proposed in [23] cannot
efficiently solve the subproblem (6). To circumvent this
difficulty, we propose to use an inexact ALM, which can
efficiently compute an accurate solution to (6); see Section II-B.

Now, let us state the following result, which shows that the
line search step in line 4 of Algorithm 1 is well defined. It
simplifies [23, Lemma 5.2] and yields sharper constants. The
proof can be found in Appendix B.

Proposition 1. Let {(xk,dk)}k be the sequence generated by
Algorithm 1. Define ᾱ = min{1, 1/(tL)}. For any α ∈ (0, ᾱ],
we have

f(ProjM(xk + αdk)) ≤ f(xk)− α

2t
‖dk‖22. (7)

As a result, we have αk = βjk > βᾱ for any k ≥ 0 in
Algorithm 1, which implies that the line search step terminates
after at most dlogβ ᾱe+ 1 iterations. In particular, if t ≤ 1/L,
then we have ᾱ = 1, which implies that we can take jk = 0
in line 4 of Algorithm 1; i.e., no line search is needed.

A. Convergence Analysis of ManPPA

In this subsection, we study the convergence behavior of
ManPPA. Recall from [23, Lemma 5.3] that if dk = 0
in (6), then xk ∈ M is a stationary point of problem (1).
This motivates us to call xk ∈ M an ε-stationary point of
problem (1) with ε ≥ 0 if the solution dk to (6) satisfies
‖dk‖2 ≤ ε. By specializing the convergence results in [23,
Theorem 5.5] for ManPG to ManPPA, we obtain the following
theorem:

Theorem 1. Any limit point of the sequence {xk}k generated
by Algorithm 1 is a stationary point of problem (1). Moreover,
Algorithm 1 with t = 1/L returns an ε-stationary point xk

in at most d2(f(x0)− f∗)/(Lε2)e iterations, where f∗ is the
optimal value of problem (1).

Theorem 1 shows that ManPPA has an iteration complexity
of O(ε−2), which is superior to the O(ε−4) bound established
for RSGM in [15].

Now, let us analyze the convergence rate of ManPPA in the
setting where problem (1) possesses the sharpness property.
Such a setting is highly relevant in applications, as both the
ODL problem and DPCP formulation of the RSR problem give
rise to sharp instances of problem (1) under certain assumptions
on the data; see [6, Proposition C.8] and [15, Proposition 4].
To proceed, we first introduce the notion of sharpness.

Definition 1 (Sharpness; see, e.g., [16]). We say that X ⊆M is
a set of weak sharp minima for the function f with parameters

(α, δ) (where α, δ > 0) if for any x ∈ B(δ) := {x ∈ M |
dist(x,X ) ≤ δ}, we have

f(x)− f(x̄) ≥ α · dist(x,X ), ∀x̄ ∈ X . (8)

From the definition, we see that if X is a set of weak sharp
minima of f , then it is the set of minimizers of f over B(δ).
Moreover, the function value grows linearly with the distance
to X . In the presence of such a regularity property, ManPPA
can be shown to converge at a much faster rate. The following
result, which has not appeared in the literature before and is
thus new, constitutes the first main contribution of this paper.

Theorem 2. Suppose that X ⊆ M is a set of weak sharp
minima for the function f with parameters (α, δ). Let {xk}k
be the sequence generated by Algorithm 1 with dist(x0,X ) <

δ := min
{
δ, αL

}
and t ≤ min

{
δ

2α−Lδ ,
2δα−Lδ2

L2

}
. Then, we

have
dist(xk,X ) ≤ δ, ∀k ≥ 0, (9)

dist(xk+1,X ) ≤ O(dist2(xk,X )), ∀k ≥ 0. (10)

Theorem 2 establishes the quadratic convergence rate of
ManPPA when applied to a sharp instance of problem (1).
Again, this is superior to the linear convergence rate of RSGM
established in [15] for this setting. The proof of Theorem 2 can
be found in Appendix C. Note that sinceM is nonconvex, one
cannot directly apply standard convergence analysis techniques
for PPA (see, e.g., [24]) to obtain Theorem 2. The key to
overcoming this diffculty is the new Riemannian subgradient
inequality we establish in Proposition 5 (see Appendix C),
which provides a path for extending the convergence analysis
of PPA to that of ManPPA.

It should be pointed out that the results in Theorems 1 and 2
do not assume any generative model of the data matrix Y .
By contrast, the results developed in, e.g., [6] for the ODL
problem and [9] for the DPCP formulation of the RSR problem
do assume certain generative models of the data. Although
the latter results may yield qualitatively sharper convergence
guarantees for instances of (1) that arise from the ODL problem
or the DPCP formulation of the RSR problem, the former apply
to arbitrary instances of (1).

B. Solving the Subproblem (6)

Observe that each iteration of ManPPA requires solving
the subproblem (6) to obtain the search direction. Thus, the
efficiency of ManPPA depends not only on its convergence rate
(which has already been studied in Theorems 1 and 2) but also
on how fast the subproblem (6) can be solved. To address the
latter, we note that (6) is a linearly constrained strongly convex
quadratic minimization problem. This motivates us to adopt the
SSN-based ALM originally developed in [25] for LASSO-type
problems to solve it. As we shall see, such an approach yields
a highly efficient method for solving the subproblem (6).

To set the stage for our development, let us drop the index k
from (6) for simplicity and set c = Y >x. Then, the subproblem
(6) can be equivalently written as

min
d∈Rn,
u∈Rp

1

2
‖d‖22 + t‖u‖1 s.t. Y >d + c = u, d>x = 0. (11)
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At this point, one may be tempted to use ADMM to solve
problem (11). However, from a practical point of view, ADMM
is often unable to return a high-accuracy solution in an efficient
manner. Since (11) is a subproblem in ManPPA, a low-accuracy
solution will adversely affect the convergence rate of ManPPA.
In fact, this has been observed in our numerical experiments.
Therefore, we propose to use an inexact ALM, which can
solve problem (11) efficiently and accurately. This makes it
possible for ManPPA to achieve fast convergence. To describe
the algorithm, let us first write down the augmented Lagrangian
function corresponding to (11):

Lσ(d,u; y,z)

:=
1

2
‖d‖22 + t‖u‖1 + y · d>x + 〈z,Y >d + c− u〉

+
σ

2
(d>x)2 +

σ

2
‖Y >d + c− u‖22. (12)

Here, y ∈ R and z ∈ Rp are Lagrange multipliers (dual
variables) associated with the constraints in (11) and σ > 0 is
a penalty parameter. Then, a generic iteration of the inexact
ALM is given by

(dj+1,uj+1) ≈ argmin
d∈Rn,
u∈Rp

Ψj(d,u) := Lσj (d,u; yj , zj),

(13a)

yj+1 = yj + σj(d
j+1)>x, (13b)

zj+1 = zj + σj(Y
>dj+1 + c− uj+1), (13c)

where the penalty parameters {σj}j are chosen such that 0 <
σj ↗ σ∞ ≤ +∞ [25], [26]. Since the subproblem (13a) can
only be solved inexactly in general, we adopt the following
stopping criteria, which are standard in the literature (see [25],
[26]):

Ψj(d
j+1,uj+1)−Ψ∗j ≤

ε2j
2σj

,

∞∑
j=0

εj <∞, (14a)

Ψj(d
j+1,uj+1)−Ψ∗j

≤
δ2j

2σj
‖(yj+1, zj+1)− (yj , zj)‖22,

∞∑
j=0

δj <∞, (14b)

dist(0, ∂Ψj(d
j+1,uj+1))

≤
δ′j
σj
‖(yj+1, zj+1)− (yj , zj)‖2, δ′j ↘ 0. (14c)

Here, Ψ∗j is the optimal value of (13a). Equipped with condi-
tions (14a)–(14c), we can show that starting from any initial
point (d0,u0; y0, z0), the inexact ALM (13) will converge
at an asymptotic superlinear rate to an optimal solution to
problem (11). This result, which constitutes the second main
contribution of this paper, is obtained from a new perturbation
analysis of the solution set of the subproblem (6) and its dual.
The details can be found in the companion technical report of
this paper [27].

Now, it remains to discuss how to solve the subproblem (13a)
in an efficient manner. Again, let us drop the index j in (13a)

for simplicity. By simple manipulation, we have

Ψ(d,u) =
1

2
‖d‖22 +

σ

2

(
d>x +

y

σ

)2
− y2

2σ
− ‖z‖

2
2

2σ

+ t‖u‖1 +
σ

2

∥∥∥Y >d + c +
z

σ
− u

∥∥∥2
2
.

Consider the function d 7→ ψ(d) := infu∈Rp Ψ(d,u). Upon
letting w = Y >d + c + z

σ ∈ Rp and using the definition of
the proximal mapping of u 7→ h(u) := t‖u‖1, we have

ψ(d) =
1

2
‖d‖22 +

σ

2

(
d>x +

y

σ

)2
− y2

2σ
− ‖z‖

2
2

2σ

+ h(proxh/σ(w)) +
σ

2
‖w − proxh/σ(w)‖22.

It follows that (d̄, ū) = argmind∈Rn,u∈Rp Ψ(d,u) if and only
if

d̄ = argmin
d∈Rn

ψ(d), ū = proxh/σ

(
Y >d̄ + c +

z

σ

)
.

Using [28, Theorem 2.26] and the Moreau decomposition w =
proxh/σ(w) + (1/σ)proxσh∗(σw), where h∗ is the conjugate
function of h, it can be deduced that ψ is strongly convex and
continuously differentiable with

∇ψ(d) = d + σ
(
d>x +

y

σ

)
x + Y proxσh∗(σw).

Thus, we can find d̄ by solving the nonsmooth equation

∇ψ(d) = 0. (15)

Towards that end, we apply an SSN method, which finds
the solution by successive linearization of the map ∇ψ. To
implement the method, we first need to compute the generalized
Jacobian of ∇ψ [29, Definition 2.6.1], denoted by ∂(∇ψ). By
the chain rule [29, Corollary of Theorem 2.6.6] and the Moreau
decomposition, each element V ∈ ∂(∇ψ) takes the form

V = In + σY (Ip −Q)Y > + σxx>, (16)

where Q ∈ ∂proxh/σ(w). Using the definition of h, it can be
shown that the diagonal matrix Q = Diag(q) with

qi =

{
0 if |wi| ≤ t/σ,
1 otherwise,

i = 1, . . . , p

is an element of ∂proxh/σ(w) [25, Section 3.3] and hence
can be used to define an element V ∈ ∂(∇ψ) via (16). Note
that the matrix V so defined is positive definite. As such, the
following generic iteration of the SSN method for solving (15)
is well defined:

v = −V −1∇ψ(dj), (17a)

dj+1 = dj + ρjv. (17b)

Here, ρj > 0 is the step size. Moreover, since Ip −Q is a
diagonal matrix whose entries are either 0 or 1, the matrix V
can be assembled in a very efficient manner; again, see [25].
In the companion technical report [27], we present a detailed
implementation of the SSN method (17) and show that it will
converge at a superlinear rate to the unique solution d̄ to (15).
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III. STOCHASTIC MANIFOLD PROXIMAL POINT
ALGORITHM

In this section, we propose, for the first time, a stochastic
ManPPA (StManPPA) for solving problem (1), which is well
suited for the setting where p (typically representing the number
of data points) is much larger than n (typically representing
the ambient dimension of the data points). To begin, observe
that problem (1) has the finite-sum structure

min
x∈Rn

p∑
j=1

∣∣y>j x∣∣ s.t. ‖x‖2 = 1,

where yj ∈ Rn is the j-th column of Y . When p is extremely
large, computing the matrix-vector product Y >x can be
expensive. To circumvent this difficulty, in each iteration of
StManPPA, a column of Y , say yj , is randomly chosen and
the search direction dk is given by

dk = argmin
d∈Rn

∣∣y>j (xk + d)
∣∣+

1

2t
‖d‖22

s.t. d>xk = 0.
(18)

The key advantage of StManPPA is that the subproblem (18)
admits a closed-form solution that is very easy to compute.

Proposition 2. Let µ = t(y>j x
k). Then, the solution to (18)

is given by

dk =


µxk − tyj if (1 + µ)µ/t− t‖yj‖22 > 0,

−µxk + tyj if (1− µ)µ/t+ t‖yj‖22 < 0,

µ2xk − tµyj
t2‖yj‖22 − µ2

otherwise.

(19)

Proof. The first-order optimality conditions of (18) are

0 ∈ 1

t
d + ∂

∣∣y>j (xk + d)
∣∣yj − λxk, (20a)

0 = d>xk. (20b)

Suppose that d is a solution to (20). If y>j (xk + d) > 0, then
∂
∣∣y>j (xk + d)

∣∣ = 1, and (20a) implies that 0 = d/t+ yj −
λxk. This, together with (20b) and the fact that ‖xk‖2 = 1,
gives λ = y>j x

k. It follows that d = t(y>j x
k)xk − tyj =

µxk − tyj and hence y>j (xk + d) > 0 is equivalent to (1 +
µ)µ/t − t‖yj‖22 > 0. This establishes the first case in (19).
The other two cases in (19), which correspond to y>j (xk +
d) < 0 and y>j (xk + d) = 0, can be derived using a similar
argument.

We now present the details of StManPPA in Algorithm 2. It
is worth noting that our proposed StManPPA is different from
the ones developed in the recent work [30]. Indeed, in each
iteration, the former only needs to solve a subproblem that
involves a single component of the objective function, while
the latter need to compute the proximal mapping of the entire
objective function.

Algorithm 2 StManPPA for Solving Problem (1)
1: Input: x0 ∈M, t0, t1, . . . , tT > 0.
2: for k = 0, 1, . . . , T do
3: Select jk ∈ {1, . . . , p} uniformly at random and solve

the subproblem (18) with j = jk, t = tk to obtain dk.
4: Set xk+1 = ProjM(xk + dk).
5: end for
6: Output: x̄ = xk with probability tk/

∑T
k=0 tk.

A. Convergence Analysis of StManPPA

In this section, we present our convergence results for
StManPPA. Let us begin with some preparations. Define
fj : Rn → R to be the function fj(x) =

∣∣y>j x∣∣ and let
Lj > 0 denote the Lipschitz constant of fj , where j = 1, . . . , p.
Set L̄ := maxj∈{1,...,p} Lj . Furthermore, define the Moreau
envelope and proximal mapping on M by

ef (z) = min
x∈M

f(x) +
1

2
‖x− z‖22, (21a)

mproxf (z) ∈ argmin
x∈M

f(x) +
1

2
‖x− z‖22, (21b)

respectively. The proximal mapping mprox is well defined
since the constraint set M is compact. As it turns out, the
proximal mapping mprox can be used to define an alternative
notion of stationarity for problem (1). Indeed, for any λ > 0 and
x ∈ M, if we denote x̂ = mproxλf (x), then the optimality
condition of (21) yields

0 ∈ ∂Rf(x̂) +
1

λ
(In − x̂x̂>)(x̂− x).

Since In − x̂x̂> is a projection operator and hence nonexpan-
sive, we obtain

dist(0, ∂Rf(x̂)) ≤ 1

λ
‖x− x̂‖2.

In particular, if 1
λ‖x− x̂‖2 ≤ ε, then (i) x̂ is ε-stationary in

the sense that dist(0, ∂Rf(x̂)) ≤ ε and (ii) x is close to the
ε-stationary point x̂. This motivates us to use

M3 x 7→ Θλ(x) :=
1

λ
‖x−mproxλf (x)‖2

as a stationarity measure for problem (1). We call x ∈M an
ε-nearly stationary point of problem (1) if Θλ(x) ≤ ε. It is
worth noting that such a notion has also been used in [15] to
study the stochastic RSGM.

We are now ready to establish the following convergence
rate result for StManPPA, which constitutes the third main
contribution of this paper.

Theorem 3. For any λ ∈ (0, 1/(pL̄)), the point x̄ output by
Algorithm 2 satisfies

E
[
Θλ(x̄)2

]
≤

2λeλ(x0) + L̄2
∑T
k=0 t

2
k

λ((1/p)− λL̄)
∑T
k=0 tk

,

where the expectation is taken over all random choices made
by the algorithm. In particular, if the step sizes {tk}k satisfy∑∞
k=0 tk = ∞ and

∑∞
k=0 t

2
k < ∞, then E

[
Θλ(x̄)2

]
→ 0.

Moreover, if we take tk = 1√
T+1

for k = 0, 1, . . . , T , then the



7

number of iterations needed by StManPPA to obtain a point
x̄ ∈M satisfying E[Θλ(x̄)] ≤ ε is O(ε−4).

The proof of Theorem 3 can be found in Appendix D. Again,
it makes crucial use of our newly established Riemannian
subgradient inequality (see Appendix C, Proposition 5), which
allows StManPPA to be analyzed in a similar way as various
Euclidean stochastic methods. We remark that the iteration com-
plexity bound O(ε−4) of StManPPA established in Theorem 3
is comparable to that of RSGM established in [15].

IV. EXTENSION TO STIEFEL MANIFOLD CONSTRAINT

In this section, we consider the matrix analog (4) of
problem (1), which also arises in many applications such
as certain “one-shot” formulations of the ODL and RSR
problems (see Section I-B). Currently, there are two existing
approaches for solving problem (4), namely a sequential linear
programming (SLP) approach and an iteratively reweighted
least squares (IRLS) approach [8]. In the SLP approach, the
columns of X are extracted one at a time. Suppose that we have
already obtained the first ` columns of X (` = 0, 1, . . . , q− 1)
and arrange them in the matrix X` ∈ Rn×` (with X0 = 0).
Then, the (`+ 1)-st column of X is obtained by solving

min
x∈Rn

‖Y >x‖1 s.t. ‖x‖2 = 1, X>` x = 0.

This is achieved by the alternating linearization and projection
(ALP) method, which generates the iterates via

zk = argmin
z∈Rn

‖Y >z‖1 s.t. z>xk−1 = 1, X>` z = 0,

xk = zk/‖zk‖2.

Note that the z-subproblem is a linear program, which can be
efficiently solved by off-the-shelf solvers.

In the IRLS approach, the following variant of problem (4),
which favors row-wise sparsity of Y >X and has been studied
by Lerman et al. in [31], is considered:

min
X∈Rn×q

‖Y >X‖1,2 s.t. X>X = Iq. (22)

Here, ‖Y >X‖1,2 denotes the sum of the Euclidean norms
of the rows of Y >X . The IRLS method for solving (22)
generates the iterates via

Xk = argmin
X∈Rn×q

p∑
j=1

wj,k‖X>yj‖22 s.t. X>X = Iq,

where wj,k = 1/max{δ, ‖Xk−1>yj‖2} and δ > 0 is a
perturbation parameter to prevent the denominator from being
0. The solution Xk can be obtained via an SVD and is thus
easy to implement. However, there has been no convergence
guarantee for the IRLS method so far.

Recently, Wang et al. [32] proposed a proximal alternating
maximization method for solving a maximization version
of (4), which arises in the so-called `1-PCA problem (see [7]).
However, the method cannot be easily adapted to solve
problem (4).

The similarity between problems (1) and (4) suggests that the
latter can also be solved by ManPPA, which is indeed the case.
However, the SSN method for solving the resulting nonsmooth

equation (i.e., the matrix analog of (15)) can be slow, as the
dimension of the linear system (17) is high. Here, we propose
an alternative method called sequential ManPPA, which solves
(4) in a column-by-column manner and constitutes the fourth
main contribution of this paper. The method is based on the
observation that the objective function in (4) is separable in
the columns of X = [x1,x2, . . . ,xn]. To find x1, we simply
solve

min
x1∈Rn

‖Y >x1‖1 s.t. ‖x1‖2 = 1

using ManPPA as it is an instance of problem (1). Suppose that
we have found the first ` columns of X (` = 0, 1, . . . , q − 1)
and arrange them in the matrix Q` ∈ Rn×` (with Q0 = 0).
Then, we find the (`+ 1)-st column x`+1 by solving

min
x`+1∈Rn

‖Y >x`+1‖1 s.t. ‖x`+1‖2 = 1, Q>` x`+1 = 0.

(23)
As it turns out, problem (23) is equivalent to the deflation
process discussed in [11] for sequentially recovering the
columns of an orthogonal dictionary. Specifically, let V` be an
orthonormal basis of the orthogonal complement of Q`. We
can then find x`+1 by solving

min
q∈Rn−`

‖Y >V`q‖1 s.t. ‖q‖2 = 1. (24)

Note that (24) has the same form as (1) and thus can be solved
by RSGM or PSGM. By contrast, problem (23) has an extra
linear constraint and cannot be solved by RSGM or PSGM
directly. Nevertheless, our ManPPA can solve both (23) and
(24). Let us now briefly discuss how to use ManPPA to solve
the former. To simplify notation, let us drop the index ` and
denote x = x`+1, Q = Q`. In the k-th iteration of ManPPA,
we update the iterate by (5), where the search direction dk is
computed by

min
d∈Rn,
u∈Rp

1

2
‖d‖22 + t‖u‖1

s.t. Y >(xk + d) = u, d>[Q,xk] = 0.

This subproblem can be solved using the SSN-based inexact
ALM framework in Section II. We omit the details for
succinctness. The sequential ManPPA is guaranteed to find a
feasible solution to problem (4). Moreover, as we shall see
in Section V, it is computationally much more efficient than
the ALP and IRLS methods on the ODL problem and the
DPCP formulation of the RSR problem. However, it remains
open whether the solution found by sequential ManPPA is a
stationary point of problem (4). We leave this question for
future research.

V. NUMERICAL EXPERIMENTS

In this section, we compare our proposed ManPPA,
StManPPA, and sequential ManPPA with the existing methods
PSGM-MBLS, ALP, and IRLS. We do not include RSGM with
diminishing step sizes in our comparison, as the numerical
results in [9] show that they are slower than PSGM-MBLS and
cannot achieve high accuracy. In all the tests, we used the step
size t = 0.1 for ManPPA and set the maximum number of iter-
ations of ManPPA, inexact ALM, and SSN to 100, 30, and 20,
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respectively. We stopped ManPPA if the relative change in the
objective values satisfies |f(xk)−f(xk−1)|/f(xk−1) ≤ 10−9.
In the k-th iteration of ManPPA, we stopped the inexact ALM
if the primal and dual feasibility of problem (11) satisfy

max
{√
‖Y >dj+1 + c− uj+1‖22 + ((dj+1)>x)2,

‖∇ψj(dj+1)‖2
}
≤ εk = 0.1k.

For SSN, we used the same termination criteria as the ones
given in [25] and solved the linear equation (17a) by Cholesky
decomposition. We refer the reader to the companion technical
report [27] for the setting of the parameters in the inexact
ALM and SSN.

For StManPPA, we used the piecewise geometrically di-
minishing step sizes tk = βbk/pct0 for k = 0, 1, . . . , pT with
t0 = 0.6 and T = 500. Such step sizes are motivated by
those used in PSGM [9]. We use StManPPA-β to specify
the parameter β used in the algorithm. We stopped the
algorithm if the relative change in the objective values satisfies
|f(xk) − f(xk−1)|/f(xk−1) ≤ 10−12. For PSGM-MBLS,
ALP, and IRLS, we used their default settings of the parameters.
We stopped ALP if the change in the objective values satisfies
|f(xk) − f(xk−1)| ≤ 10−6, while we stopped IRLS if the
change in the objective values satisfies |f(xk)− f(xk−1)| ≤
10−11. With these stopping criteria, the solutions returned by
these algorithms usually achieve the same accuracy.

A. DPCP Formulations of the RSR Problem

In this section, we consider the DPCP formulations of the
RSR problem. For the recovery of a vector that is orthogonal
to the inlier subspace (the vector case), we compared the
performance of ManPPA, StManPPA, PSGM-MBLS, ALP,
and IRLS on problem (1). For the recovery of the entire inlier
subspace of known dimension d (the matrix case), we compared
the performance of sequential ManPPA, PSGM-MBLS, ALP,
and IRLS on problem (4) with q = n− d.

1) Synthetic Data: We first test the algorithms on synthetic
data. The data matrix takes the form Y = [X,O] ∈
Rn×(p1+p2). We generated the inlier data X as X = QC,
where Q ∈ Rn×d is an orthonormal matrix and C ∈ Rd×p1
is a coefficient matrix. The matrix Q was generated by
orthonormalizing an n× d standard Gaussian random matrix
via QR decomposition, while the matrix C was generated as
a d× p1 standard Gaussian random matrix. The outlier data
O ∈ Rn×p2 was generated as a standard Gaussian random
matrix. Finally, the columns of the matrix Y were normalized.
The d-dimensional subspace spanned by X is denoted by S
and its orthogonal complement is denoted by S⊥.

Vector case. We set the initial point x0 of all algorithms to
be the eigenvector of Y Y > corresponding to the eigenvalue
with minimum magnitude. We compared the performance of
the algorithms on problem (1) with different dimension n,
number of inliers p1, and number of outliers p2 in Figure
1. The first row of Figure 1 reports the principal angle1

1The principal angle is the distance between xk and S⊥. Any optimal
solution x∗ to problem (1) is orthogonal to the inlier subspace S [9, Theorem
1]. Using the Lipschitz continuity of f , we know that θ also measures the
function value gap f(x)− f(x∗).

θ between xk and S⊥ versus the iteration number. The
second row reports θ versus CPU time. Note that xk =
sin(θ)n+cos(θ)s, where n = ProjS(xk)/‖ProjS(xk)‖2 and
s = ProjS⊥(xk)/‖ProjS⊥(xk)‖2. From Figure 1, we see
that PSGM-MBLS is the fastest, while ManPPA is slightly
slower. However, they are both much faster than other compared
methods. Moreover, the principal angle θ of ManPPA decreases
much faster than PSGM-MBLS in terms of iteration number.
This can be attributed to the quadratic convergence rate of
ManPPA (Theorem 2).
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Fig. 1. Numerical results for the DPCP formulation (1). (a): Principal angle
versus iteration number. (b): Principal angle versus CPU time.

In Figure 2 we report the quadratic fitting curves of the
different algorithms. As shown in [9], the DPCP formulation
can tolerate O((#inliers)2) outliers; i.e., p2 = O(p21). For
different p2 ∈ {40, 80, 120, . . . , 600}, we find the smallest
p1 ∈ {60, 70, 80, . . . , 260} such that θ < 10−1. Here, the
principal angle θ is the mean value of 10 trials; i.e., we find
pairs (p1, p2) such that for a fixed p1, p2 is the largest number
of outliers that can be tolerated. We then use a quadratic
function to fit these pairs (p1, p2). A higher curve indicates that
more outliers can be tolerated and hence the algorithm is more
robust. From Figure 2, we see that the curve corresponding
to PSGM-MBLS is the lowest one and thus the least robust,
while ManPPA and StManPPA are more robust. In Figure 3
we report the CPU time versus p1 and p2. For each algorithm,
the shadow area represents the standard deviation (std) of 10
random trials, while the line within the shadow is the mean
of those trials. From the left two subfigures of Figure 3, we
see that the stds of IRLS and ALP are quite significant. In
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particular, they are usually more than ten times larger than the
stds of other compared algorithms. To better illustrate the stds
of the other four algorithms, we plot their CPU times in the
right two subfigures of Figure 3. From these two figures, we
see that ManPPA has a larger std than those of the other three
algorithms. Overall, we see that PSGM-MBLS is the fastest
and ManPPA is second, and they are both much faster than
the other compared algorithms. Figures 2 and 3 suggest that
ManPPA is slightly slower than PSGM-MBLS but is more
robust. Moreover, the choice of the parameter β for StManPPA
is crucial and challenging, as StManPPA-0.9 is faster but less
robust than StManPPA-0.8. We leave the determination of the
best parameter β for StManPPA as a future work.
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Fig. 2. Quadratic fitting curves (n = 30).

Fig. 3. Upper: CPU time versus the number of inliers p1 (n = 30, p2 = 320).
Lower: CPU time versus the number of outliers p2 (n = 30, p1 = 200). The
shadow area corresponds to the std and the line within the shadow is the mean
of 10 random trials.

Matrix case. We solved problem (4) using sequential
ManPPA and compared its performance with PSGM-MBLS
(applied to (24)), ALP, and IRLS. We report the results for
q = 2 and q = 4 in Figures 4 and 5, respectively. Since ALP
has a very high std, for better illustration of the CPU time
comparison, we exclude it from the right two subfigures of
Figures 4 and 5. The results suggest that sequential ManPPA
is not as robust as IRLS but is the second most efficient one
among the four compared algorithms. Moreover, we find that
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Fig. 4. Comparison on the DPCP formulation (4) with n = 30, q = 2. First
row: Quadratic fitting curves. Second row: CPU time versus the number of
inliers p1 (p2 = 320). Third row: CPU time versus the number of outliers p2
(p1 = 200). The shadow area corresponds to the std and the line within the
shadow is the mean of 10 random trials.

although PSGM-MBLS is very efficient, its fitting curve is not
very good. This is due to the fact that PSGM-MBLS is very
sensitive to the choice of step size.

2) Real 3D Point Cloud Road Data: Next, we compared
ManPPA with PSGM-MBLS on the road detection challenge
of the KITTI dataset [33]. This dataset contains image data
together with the corresponding 3D points collected by a
rotating 3D laser scanner. Similar to [9], we only used the 360°
3D point clouds to determine which points lie on the road plane
(inliers) and which do not (outliers). By using homogeneous
coordinates, this can be cast as a robust hyperplane learning
problem (1) in R4. As reported in [9], PSGM-MBLS is the
fastest algorithm when compared with other state-of-the-art
methods. Thus, we only compared the performance of ManPPA
and PSGM-MBLS on problem (1). Table I reports the area
under the Receiver Operator Curve (ROC) and the CPU time.
We see that all ROC values of ManPPA are better than those
of PSGM-MBLS, with some sacrifice on the CPU time.

B. ODL Problem

We generated instances of the ODL problem by first
randomly generating an orthogonal matrix X̂ ∈ Rn×n and
a Bernoulli-Gaussian matrix Â ∈ Rn×p with parameter γ (see,
e.g., [3]), then setting Y = X̂Â.

Vector case. We first compared the performance of ManPPA
and StManPPA with ALP, IRLS, and PSGM-MBLS on
problem (1) with n = 30, p = d10n1.5e. Figures 6 and 7
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TABLE I
AREA UNDER ROC AND CPU TIME FOR ANNOTATED 3D POINT CLOUDS WITH INDEX 0, 21 IN KITTY-CITY-48 AND 1, 45, 120, 137, 153 IN

KITTYCITY-5. THE NUMBER IN PARENTHESIS IS THE PERCENTAGE OF OUTLIERS.

KITTY-CITY-48 KITTY-CITY-5
0 (56%) 21 (57%) 1 (37%) 45 (38%) 120 (53%) 137 (48%) 153(67%)

Area under ROC
ManPPA 0.99437 0.99077 0.99810 0.99898 0.87629 0.99969 0.75481

PSGM-MBLS 0.99420 0.99062 0.99802 0.99891 0.86782 0.99968 0.74933
CPU time

ManPPA 0.129 0.174 0.091 0.066 0.106 0.108 0.066
PSGM-MBLS 0.028 0.015 0.034 0.029 0.029 0.014 0.017
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Fig. 5. Comparison on the DPCP formulation (4) with n = 30, q = 4. First
row: Quadratic fitting curves. Second row: CPU time versus the number of
inliers p1 (p2 = 320). Third row: CPU time versus the number of outliers p2
(p1 = 200). The shadow area corresponds to the std and the line within the
shadow is the mean of 10 random trials.

report the iteration numbers and CPU times of the compared
algorithms. The quantity θ is the angle between xk returned
by the algorithm and its nearest column in X̂ . From Figures
6 and 7, we see that PSGM-MBLS is the fastest algorithm in
terms of CPU time, while ManPPA is slightly slower. However,
they are both much faster than the other compared algorithms.
Moreover, we see that ManPPA is much faster than PSGM-
MBLS in terms of iteration number. This again can be attributed
to the quadratic convergence rate of ManPPA (Theorem 2).

In Figures 8 and 9 we report the linear fitting curves for
log(n) and log(p) and CPU times of ManPPA, StManPPA-
0.8, StManPPA-0.9, IRLS, ALP, and PSGM-MBLS. Note
that for the ODL problem, it has been found empirically in
[6] that the sample size p and dimension n should satisfy
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Fig. 6. Numerical results for the ODL problem (1): n = 30, p = d10n1.5e,
γ = 0.1.

p = O(n2) to guarantee recovery. The linear fitting curves
were found in the following manner. For a given dimension
n ∈ {5, 10, 15 . . . , 50}, we find the smallest sample number
p ∈ 2n+ {10, 20, 30, . . . , 800} such that θ < 10−1. Here the
principal angle θ is the mean value of 10 trials. We then use
a linear function to fit the points {(log(n), log(p))}n,p. From
Figures 8 and 9, we find that PSGM-MBLS is the fastest but
its fitting curve is high, which suggests that it is not robust.
This is because PSGM-MBLS is very sensitive to the choice
of step size. ManPPA appears to be the second fastest but is
very robust based on the fitting curve.

Matrix case. To find the entire orthogonal basis, we use
sequential ManPPA to solve problem (4) with q = n. We
compared sequential ManPPA with PSGM-MBLS (applied to
(24)) and SLP based on ALP, and report the results in Figures
10 and 11. We see that sequential ManPPA is not as robust as
ALP, but it is much faster than ALP. Note that there is nothing
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Fig. 7. Numerical results for the ODL problem (1): n = 30, p = d10n1.5e,
γ = 0.3.

for IRLS to do, as it tackles the objective function ‖Y >X‖1,2,
which is a constant when X>X = In. We also find that the
fitting curve of PSGM-MBLS is very high, which indicates
that it fails to recover the dictionary in many cases. Again, this
is due to the high sensitivity of PSGM-MBLS to the choice
of step size.

VI. CONCLUSIONS

In this paper, we presented ManPPA and its stochastic variant
StManPPA for solving problem (1). By exploiting the manifold
structure of the constraint set M, these methods not only are
practically efficient but also possess convergence guarantees
that are provably superior to those of existing subgradient-type
methods. Using ManPPA as a building block, we also proposed
a new sequential approach to solving the matrix analog (4) of
problem (1). We conducted extensive numerical experiments
to compare the performance of our proposed algorithms with
existing ones on the ODL problem and DPCP formulation of
the RSR problem. The results demonstrated the efficiency and
efficacy of our proposed methods.

APPENDIX

A. Useful Properties of ProjM

In this section, we collect some useful properties of the
projector ProjM.

Proposition 3. For any x ∈M and d ∈ Rn satisfying d>x =
0 (i.e., d is a tangent vector at x), we have

‖ProjM(x + d)− (x + d)‖2 ≤
1

2
‖d‖22. (25)
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Fig. 8. Comparison on the ODL problem (1) with γ = 0.1. First row: Fitting
curves. Second row: CPU time versus the number of samples p, (n = 30).
Third row: CPU time versus the number of dimension n, (p = 300). The
shadow area corresponds to the std and the line within the shadow is the mean
of 10 random trials.

Moreover, if ‖d‖2 ≤ D for some D ∈ (0,+∞), then

‖ProjM(x + d)− x‖2 ≥
1

(1 +D2)3/4
‖d‖2. (26)

Proof. It is straightforward to verify that∥∥∥∥ x + d

‖x + d‖2
− (x + d)

∥∥∥∥
2

=
√

1 + ‖d‖22 − 1.

We then have (25) by using the fact that
√

1 + x2 − 1 ≤ 1
2x

2

for all x ∈ R. Similarly, since∥∥∥∥ x + d

‖x + d‖2
− x

∥∥∥∥2
2

= 2

(
1− 1√

1 + ‖d‖22

)

and

1√
1 + x2

≤ 1− 1

2(1 +D2)3/2
x2, ∀x ∈ [0, D],

we get (26).

Proposition 4. For any x, z ∈ M and d ∈ Rn satisfying
d>x = 0, we have

‖ProjM(x + d)− z‖2 ≤ ‖x + d− z‖2.
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Proof. We compute

∥∥∥∥ x + d

‖x + d‖2
− z

∥∥∥∥
2

= 2− 2
(x + d)>z

‖x + d‖2

=2 + 2(x + d)>z

(
1− 1

‖x + d‖2

)
− 2(x + d)>z

≤2 + 2(‖x + d‖2 − 1)− 2(x + d)>z

≤‖x‖22 + ‖z‖22 + ‖d‖22 − 2(x + d)>z (27)
=‖x + d− z‖2,

where (27) follows from the fact that ‖x + d‖2 − 1 =√
1 + ‖d‖22 − 1 ≤ 1

2‖d‖
2
2.

B. Proof of Proposition 1

Since f is Lipschitz with constant L and dk>xk = 0, we
have

∣∣f(ProjM(xk + αdk))− f(xk + αdk)
∣∣

≤L
∥∥∥∥ xk + αdk

‖xk + αdk‖2
− (xk + αdk)

∥∥∥∥
2

≤ α2L

2
‖dk‖22

1.5 2 2.5 3 3.5 4

log(n): dimension

3

3.5

4

4.5

5

5.5

6

6.5

7

lo
g

(p
):

 N
u

m
b

e
r 

o
f 

s
a

m
p

le

PSGM-MBLS

fit curve

ManPPA

fit curve

ALP

fit curve

Fig. 10. Comparison on the ODL problem (4) with γ = 0.1. First row:
Linear fitting curves. Second row: CPU time versus the number of samples p,
(n = 30). Third row: CPU time versus the number of dimension n, (p = 300).
The shadow area corresponds to the std and the line within the shadow is the
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by Proposition 3. Hence, for any α ∈ (0, ᾱ], we have

f(ProjM(xk + αdk)) ≤ f(xk + αdk) +
α2L

2
‖dk‖22

≤(1− α)f(xk) + αf(xk + dk) +
α2L

2
‖dk‖22 (28a)

≤f(xk)− α

t
‖dk‖22 +

α2L

2
‖dk‖22 (28b)

≤f(xk)− α

2t
‖dk‖22, (28c)

where (28a) follows from the convexity of f , (28b) holds
because the strong convexity of the objective function in
subproblem (6), together with the optimality of d = dk

and feasibility of d = 0 for (6), implies that f(xk + dk) +
1
t ‖d

k‖22 ≤ f(xk), and (28c) is due to α ≤ 1/(tL). If t ≤ 1/L,
then ᾱ = 1. This completes the proof.
C. Proof of Theorem 2

We begin with two preparatory results. The first states that the
restriction of the objective function f in (1) on the nonconvex
constraint set M satisfies a Riemannian subgradient inequality,
which means that with respect to its Riemannian subgradient,
the function f behaves almost like a convex function on M.

Proposition 5. Let x ∈M and d ∈ Rn be such that d>x = 0.
Define x+ = x + d. Then, for any z ∈ M and s ∈ ∂f(x+),
we have

f(z)− f(x+) ≥ 〈(In − xx>)s, z − x+〉 − L

2
‖z − x‖22.
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Proof. Since f is convex on Rn, we have

f(z)− f(x+) ≥ 〈s, z − x+〉
=〈(In − xx>)s, z − x+〉+ 〈xx>s, z − x+〉

Now, observe that

〈xx>s, z − x+〉 = 〈s,xx>(z − (x + d))〉

= 〈s,x(x>z − 1)〉 ≥ −1

2
‖s‖2‖z − x‖22,

where the second equality is due to x>x = 1 and d>x = 0,
and the inequality follows from the fact that |x>z − 1| =
1
2‖z − x‖22. Since f is Lipschitz with constant L, we have
‖s‖2 ≤ L by [28, Theorem 9.13].

The second establishes a key recursion for the iterates
generated by ManPPA.

Proposition 6. Let {xk}k be the sequence generated by
Algorithm 1 with t ≤ 1/L. For any x̄ ∈M, we have

‖xk+1 − x̄‖22 ≤ (1 + tL)‖xk − x̄‖22
− 2t

(
f(xk)− f(x̄)

)
+ t2L2.

Proof. Since t ≤ 1/L, we have xk+1 = ProjM(xk + dk)
by from Proposition 1. From the optimality condition of the
subproblem (6), there exists an sk ∈ ∂f(xk + dk) such that

dk = −t(In − xkxk>)sk. (29)

Denoting xk
+

= xk + dk, we have

‖xk+1 − x̄‖22 =
∥∥ProjM(xk + dk)− x̄

∥∥2
2

≤
∥∥xk + dk − x̄

∥∥2
2

(30a)

=‖xk − x̄‖22 + 2〈dk,xk+ − x̄〉 − ‖dk‖22
=‖xk − x̄‖22 − 2t〈(In − xkxk>)sk,xk

+ − x̄〉 − ‖dk‖22
(30b)

≤(1 + tL)‖xk − x̄‖22 + 2t(f(x̄)− f(xk
+

))− ‖dk‖22 (30c)

≤(1 + tL)‖xk − x̄‖22 + 2t(f(x̄)− f(xk))

+ 2tL‖dk‖2 − ‖dk‖22 (30d)

≤(1 + tL)‖xk − x̄‖22 + 2t(f(x̄)− f(xk)) + t2L2, (30e)

where (30a) follows from Proposition 4, (30b) follows
from (29), (30c) follows from Proposition 5, (30d) follows from
the Lipschitz continuity of f , and (30e) follows from the fact
that 2tL‖dk‖2−‖dk‖22 = −(‖dk‖2−tL)2+t2L2 ≤ t2L2.

We are now ready to prove Theorem 2. We first prove (9) by
induction. Let x∗ ∈ X be such that dist(xk,X ) = ‖xk−x∗‖2.
By invoking Proposition 6 with x̄ = x∗, we have

dist2(xk+1,X ) ≤ ‖xk+1 − x∗‖22
≤(1 + tL)‖xk − x∗‖22 − 2t

(
f(xk)− f(x∗)

)
+ t2L2

≤(1 + tL)dist2(xk,X )− 2αt · dist(xk,X ) + t2L2,

where the last inequality follows from (8). Consider the function
[0, δ] 3 s 7→ φ(s) = (1 + tL)s2 − 2tαs+ t2L2. Observe that
φ attains its maximum at s = δ if δ ≥ 2tα

1+tL . Given that

t ≤ min
{

δ
2α−Lδ ,

2δα−Lδ2
L2

}
, we indeed have δ ≥ 2tα

1+tL and

hence φ(s) ≤ φ(δ) ≤ δ
2

for all s ∈ [0, δ]. In particular, we
have dist(xk+1,X ) ≤ δ whenever dist(xk,X ) ≤ δ. This
establishes (9).

Next, we prove (10). Again, let x∗ ∈ X be such that
dist(xk,X ) = ‖xk − x∗‖2. Since α ≤ L by (8), we have
δ̄ ≤ 1. This implies that xk>x∗ =

2−‖xk−x∗‖22
2 ≥ 1

2 .
Hence, the vector d̄k = x∗

xk>x∗
− xk is well defined and

satisfies d̄k>xk = 0 (i.e., d̄k is a tangent vector at xk),
ProjM(xk + d̄k) = x∗, and ‖d̄k‖2 ≤

√
3. By the strong

convexity of the objective function in subproblem (6) and
noting the optimality of dk and feasibility of d̄k for (6), we
have

f(xk + dk) +
1

2t
‖dk‖22 +

1

2t
‖dk − d̄k‖22

≤f(xk + d̄k) +
1

2t
‖d̄k‖22. (31)

Furthermore, by the Lipschitz continuity of f and Proposition 3,
we get

f(xk + d̄k) ≤ f(ProjM(xk + d̄k)) +
L

2
‖d̄k‖22

= f(x∗) +
L

2
‖d̄k‖22, (32a)

f(xk+1) = f(ProjM(xk + dk))

≤ f(xk + dk) +
L

2
‖dk‖22. (32b)



14

Combining (31), (32a), and (32b), we have

f(xk+1) +

(
1

2t
− L

2

)
‖dk‖22 +

1

2t
‖dk − d̄k‖22

≤f(x∗) +

(
L

2
+

1

2t

)
‖d̄k‖22. (33)

Since t ≤ δ
2α−Lδ ≤ 1/L, we have 1

2t −
L
2 ≥ 0. Moreover,

since dist(xk+1,X ) ≤ δ ≤ δ, we have f(xk+1) − f(x∗) ≥
α · dist(xk+1,X ) by (8). It then follows from (33) and
Proposition 3 that

α · dist(xk+1,X ) ≤
(
L

2
+

1

2t

)
‖d̄k‖22

≤8

(
L

2
+

1

2t

)
‖xk − x∗‖22 = 4

(
L+

1

t

)
dist2(xk,X ).

This completes the proof.

D. Proof of Theorem 3
Let x̂k = mproxλf (xk) ∈M. By definition of eλ in (21a)

and Proposition 4, we have

eλ(xk+1) ≤ f(x̂k) +
1

2λ
‖x̂k − xk+1‖22

≤f(x̂k) +
1

2λ
‖x̂k − (xk + dk)‖22. (34)

From the optimality condition of (18), we get

dk ∈ −tk(In − xkxk>)∂fjk(xk + dk).

Hence, we compute

‖x̂k − (xk + dk)‖22
=‖x̂k − xk‖22 − ‖dk‖22 − 2〈x̂k − xk − dk,dk〉
≤‖x̂k − xk‖22 − ‖dk‖22

+ 2tk

(
fjk(x̂k)− fjk(xk + dk) +

Ljk
2
‖x̂k − xk‖22

)
(35a)

≤‖x̂k − xk‖22 − ‖dk‖22 + 2tk
(
fjk(x̂k)− fjk(xk)

)
+ 2tkLjk

(
1

2
‖x̂k − xk‖22 + ‖dk‖2

)
, (35b)

where (35a) follows from Proposition 5 and (35b) is due to
the Lipschitz continuity of fjk . Upon taking the expectation
on both sides of (35) with respect to jk conditioned on xk,
we obtain

E
[
‖x̂k − (xk + dk)‖22 | xk

]
≤(1 + tkL̄)‖x̂k − xk‖22 +

2tk
p

(
f(x̂k)− f(xk)

)
+ 2tkL̄ · E

[
‖dk‖2 | xk

]
− E

[
‖dk‖22 | xk

]
≤(1 + tkL̄)‖x̂k − xk‖22 +

2tk
p

(
f(x̂k)− f(xk)

)
+ t2kL̄

2 (36a)

=

(
1 + tkL̄−

tk
pλ

)
‖x̂k − xk‖22

+
2tk
p

(eλ(xk)− f(xk)) + t2kL̄
2

≤
(

1 + tkL̄−
tk
pλ

)
‖x̂k − xk‖22 + t2kL̄

2, (36b)

where (36a) follows from the fact that E
[
‖dk‖2 | xk

]
≤√

E [‖dk‖22 | xk] and a
√
x−x ≤ a2/4 for any a, x ≥ 0; (36b)

follows from the definition of eλ. Putting (34) and (36b)
together gives

eλ(xk+1)

≤f(x̂k) +
1

2λ

(
1 + tkL̄−

tk
pλ

)
‖x̂k − xk‖22 +

t2kL̄
2

2λ

=eλ(xk) +
(L̄− 1/(pλ))tk

2λ
‖x̂k − xk‖22 +

t2kL̄
2

2λ
.

Taking expectation on both sides with respect to xk yields

(1/(pλ)− L̄)tk
2λ

E
[
‖x̂k − xk‖22

]
≤E

[
eλ(xk)

]
− E

[
eλ(xk+1)

]
+
t2kL̄

2

2λ
.

Upon summing the above inequality over k = 0, 1, . . . T and
noting that λ < 1/(pL̄) and eλ(z) ≥ 0 for any z ∈ Rn, we
obtain

T∑
k=0

tkE
[

1

λ2
‖xk −mproxλf (xk)‖22

]

≤ 2

1/p− λL̄
eλ(x0) +

L̄2

λ(1/p− λL̄)

T∑
k=0

t2k.

Upon dividing both sides of the above inequality by
∑T
k=0 tk

and noting that the left-hand side becomes E
[
Θλ(x̄)2

]
, the

proof is complete.
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