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Abstract— The brushing of hair requires a complex un-
derstanding of the interaction between soft hair fibers and
the soft brushing device. It is also reliant on having both
visual and tactile information. Guided by a recently developed
model of soft tangled fiber bundles, we develop a method for
optimizing hair brushing by robots which seeks to minimize
pain and avoid the build up of jammed entanglements. Using an
experimental setup with a custom force measuring sensor and
a soft brush end effector, we perform closed-loop experiments
on hair brushing of different curliness. This utilizes computer
vision to assess the curliness of the hair, after which the hair
is brushed using a closed loop controller. To demonstrate this
approach hair brushing experiments have been performed on
a wide variety of wigs with amount of curl. In addition to hair
brushing the insight provided by this model driven approach
could be applied to brushing of fibers for textiles, or animal
fibers.

I. INTRODUCTION

Soft robotics is rapidly furthering our understanding of
the design, control and fabrication of softer structures and
systems [1]. It is also extending our understanding of how
we interact with complex, soft objects and environments [2]
through the provision of improved modeling techniques and
controllers. This expands the range of materials and environ-
ments within which robots can operate effectively, allowing
robots to perform some of the more complex tasks that
humans perform with ease. One such application where this
is particularly true is in assistance and care robots [3]. With
the globally increasing population, longer life expectancy and
growing demands on health care systems, the use of robots in
personal care and assistance is one area where robots could
make a significant humanitarian impact [4].

With current advances in soft robotic technologies, ma-
chine learning and modelling, developing robots for care and
health care applications is becoming increasing feasible [5].
Within this domain one task which has had limited explo-
ration is hair-brushing. Although a routine tasks for humans,
it relies on a complex understanding between the interaction
between the deformable brush bristles and the soft hair fibers,
and requires both visual and tactile feedback. Hair brushing
is typically a self-care task, however for the elderly, young,
or those who can not physically perform the task, it has been
shown that having assistance in this task benefits both mental
and physical health [6].

Within the domain of robots for personal care, there have
been a number of notable examples. There has been the
development of robotic systems for hair washing [7], shaving
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Fig. 1. Experimental setup for the investigation of robotic hair brushing
showing the wig, sensorized brush and robot arm.

and make-up assistant robot [8], [9], and rehabilitation robots
[10] . There is also increasing interest in the possibilities
for robotic care-givers, or robots that support human care-
givers[11]. To allow robots to extend their task solving
abilities to more complex tasks such as hairbrushing, we need
not only novel safe hardware, but also an understanding of
the complex behavior of the soft hair and tangled fibers.

The goal of this work is to develop a platform to explore
the complex task of the manipulation and brushing of hair
fibers–in particular, to develop a model of soft fiber bundles
which considers the complex tangling behavior when under-
going manipulation or brushing interactions. The ability to
manipulate soft fiber bundles has a wide range of applications
including hair brushing or textile fiber manipulation. In this
project we will focus on how the model can be applied to
the problem of hair brushing, developing a control approach
to allow a robot with a sensorized soft bristle brush to comb
hair using an approach which minimizes the ‘pain’ felt by
the user, and the time spend undertaking the procedure.

This task is complex as every head of hair is different,
and the interaction between hairs when combing is highly
complex, with jamming and tangles forming depending on
the brushing strategy used. If the incorrect brushing strategy
is used, the process can be very painful and damaging
to the hair. Thus, we need to understand the interactions
between the soft hair strands to allow the principles behind an
efficient hair brushing to be identified. In addition, we need
to develop methods of incorporating sensory information



(visual and force feedback) to create an effective brushing
strategy. Whilst there has been some prior modelling and
investigation of hair brushing and combing, the focus has
predominantly been on the mechanical, dynamic and visual
properties of hair [12]–[14], opposed to the tangling and
combing behavior.

Our approach to robot hair brushing utilizes a model
of entangled soft fiber bundles as sets of entwined double
helices. This provides an improved understanding of hair
brushing and entangled hairs and allows us to identify the
key characteristics of soft hair which influence brushing
strategies. To brush and manipulate the hair we have created
a soft bristle end effector which is sensorized to allow forces
during brushing to be measured. Using this sensorized soft
brushing end effector (Fig. 1), we can explore how this model
can be used to optimize the control strategy for hair brushing.
Using this setup, we propose a control strategy that uses
force-feedback from the sensorized brush. We demonstrate
this approach on a number of wigs which represent a wide
range of different hair styles and types, and demonstrate how
our control approach utilizes our improved understanding of
hair combing to minimize both time and pain. As such, we
make a number of contributions:

• A robotic setup with a sensorized soft brushing end
effector that allows for hair-brushing to be investigated

• A control strategy based on a novel model of the
knotting and tangling of soft bundles of fibers

• Demonstration of the approach on a number of different
hair types and different measured of tangle

The remainder of the paper is organized as follows.
Section II introduces the methods, including the model of
tangled fibers used, and how this has been used to inform
the development of a control strategy. Section III presents
the experimental setup for the hair brushing experiments, and
the methods of sensorizing the system and implementing the
control strategy. The results from experiments are given in
Section IV, which is followed by Section V, a discussion
and of the outcomes of the paper and a review of the main
conclusions.

II. METHODS

A. Model of Untangling Natural Curl
The complexity of modeling hair combing arises from

the many-body and extended nature of the entangled hair
interactions. To better understand the behavior of untangling,
we consider a minimal model for the combing of a double
helix [15]. Although combing involves interactions with the
many-body bundle of entangled hairs, recent experimental
results in [15] suggest that the dominant interactions are of
a pairwise, i.e. two-body nature. Thus a model that considers
two entwined helices of the same chirality, clamped at the
top end and hanging freely at the bottom (Fig. 2), with a
single, stiff comb bristle moving through the double-helix is
sufficient to explain the mechanics of combing qualitatively.

There are two key phenomena involved in this interac-
tion: link current and over/under winding. Over- and under-
winding describe the stretching of the clamped end of the

helices (between the fixed upper base and the comb) and the
compression of the free end, respectively. When the comb is
moved through the helix there is generally an initial rise in
the force extension curve before a leveling off, corresponding
to an initial over-winding of the helix in front of the tine
before a current of link [16], a topological measure of
entanglement, leaves through the free end and softens the
curve.

Considering these phenomena can also help explain the
utility of the minimal model in relation to the complex
reality. The likelihood of an interaction more complex than
the pairwise one modeled by the entwined helices increases
with the curliness (later defined by Eqn 1) of the hairs [15].
However, the closer an entanglement is to the free end, the
closer it is to being removed from the hairs. This is captured
in the dynamical balance between the jamming-like over-
winding of the helices and the detangling loss of link through
the free end. Additionally, combing nearer the free ends
reduces this many-body complexity concern as pairwise links
are can be removed before neighboring hairs can get more
involved.

From this model, there are two key results which inform
the development of a brushing controller. Firstly, small pitch
and more tightly wound helices lead to larger forces required,
thus the curlier the hair, the greater the resultant brushing
forces. Secondly, starting combing nearer to the free end
allows link to propagate out the free end faster and easier.
This allows for untangling before the link density in front of
the comb becomes too high and the comb/tine begins to jam.
Hence we recover the intuitive result that one should start
combing ones hair far from the scalp and gradually work
upward. Thus, to detangle hair, the hair should be brushed
starting from near the free ends and working up, optimally
removing a given amount of link entanglements with each
brush stroke.

Fig. 2a shows an illustration of this model, and the key
parameters which define the double helix model. These are
P , the length of one entanglement which corresponds to the
length of one period of the double helix, R the radius of the
curl, r the radius of this hair and l0, the length of the hair.
From this, a measure of the amount of curl can be given by
P/R, and the number of entanglements to remove through
brushing is given by P/l. In this work we are going to make
the simplifying assumption that r is approximately constant
for human hair.

We note that the simulations used in [15] can be extended
to model the brushing of a many-body tangle of hair. In such
a model, each hair would be treated as a Cosserat elastic rod
[17] and each comb tine as a rigid rod, with all tines and hairs
interacting via contact forces. A small-scale demonstration
of how such a bundle would be initialized is shown in
the Supporting Information of [15]. We propose applying
this simulation scheme to a large bundle of hairs combed
by several tines. In such a simulation, one could track
over what length scale of combing two-body interactions
accumulate into many-body interactions and produce more
complex tangles in the bundle. These results could further



(a) Double Helix Combing Model (b) Hair Brushing Model
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Fig. 2. a) Simplified minimal model of a double helix of hair undergoing
combing. b) Model of the hair brushing problem showing the hair brush
and the quantities that describe the problem.

inform the control algorithm to design a combing strategy
that maximizes the stroke length of each brushing iteration
while avoiding the build-up of two-body interactions into
many-body tangles.

B. Problem Definition

Given this model, we can define the hair brushing problem.
This is the removal of entanglements from hair which is
hanging free from the top of the head. The hair can be
described by the length, l0, and we define a curliness ratio
as given in (1) as RC = R/P as:

RC = R/P (1)

such that the number of entanglements in the section of the
hair can be given by:

q0 = l0/P (2)

A control approach must be developed to optimize for
brushing time, whilst ensuring that the maximum force when
brushing (Fmax) does not exceed the pain threshold FT . This
pain threshold has been identified experimentally by brushing
hair with a sensorized hairbrush, and identifying the force at
which pain starts to be felt. Using the principles identified by
the model, the brushing should start from the free end and
work upwards to gradually release entanglements. The length
and height of the brushing process should be optimized
for a given hair type and length. The brush length, bl,
for a specific iteration of brushing is measured from the
bottom of the hair to the height at which the brushing starts.
The combing device is kept parallel to the and brushed
downwards. The force during brushing is measured in the
direction of brushing.

C. Optimization

The cost of hair brushing has two key components: pain
inflicted and time taken. The brushing length (bl), and
hence number of entanglements removed in each brush must
optimized with respect to these two costs. The relative costs

Fig. 3. Illustration of the optimization problem showing the different
regions in which different costs (i.e. pain or time) dominate.

of these two metric varies for different amount of curl and
entanglements (RC).

The cost related to pain, can be considered to be pro-
portional to the maximum force experienced, and thus is
high for longer brushing lengths on curlier hair. In contrast,
the cost relating to time is determined by the number of
brushing cycles, so longer brush lengths across any hair
will minimize this cost. For straight hair with low values of
RC the time cost will dominate, thus longer brushing value
should be selected. In contrast, for curlier hair, the pain cost
will dominate so shorter brush lengths should be selected.
From the model of hair entangling, we know the relationship
between force and curliness is not linear, thus we need a more
representative way of formulating this optimization problem.

We propose using an adapted Sigmoid function, specifially
the Logistic function, to map from curliness (RC), to the
selection of the initial brushing height (bl0). A Sigmoid
function offers a monotonically decreasing function in which
for low values of curliness we get a large brushing length,
whereas for high curliness we get a shorter brushing length.
This is illustrated in Fig. 3. Although other non-linear
functions are suitable, this function is particular suited as a
single parameter can be used to capture the rate of change of
the ’S’ shaped properties of the function. Using this function,
we can describe the optimal brushing height as a function of
RC using:

bl0 =
q

qtot
=

1

1 + e(k(Rc+0.5))
(3)

where the value of k should be optimized experimentally by
finding the maximum brush length (bl/l0) for a hair with a
given curl ratio that does not exceed FT .

D. Control Approach

Using the optimized mapping identified in (3) an estima-
tion of the initial brushing height can be identified. Although,
as a base strategy we can increment each brushing iteration
by this brush height until the full length is brushed, this



Algorithm 1: Closed-loop brushing control

Take picture, compute RC eqn (5), bl0 eqn (3);
Initialize sensor and arm;
iteration, i = 0;
bl[i] = bl0;
while finished != true do

move to brushing height bl[i];
start brushing in -z direction ;
f=0 ;
while brush height ≤ bottom of hair do

f= [f; read force] ;
if f ≥ fT then

stop brushing, break;
end

end
stop brushing;
fmax = max(f);
if fmax ≥ fT then

bl[i+ 1] = bl[i](FT /Fmax);
else

bl[i+ 1] = bl[i] + bi − bi(Fmax/0.5FT );
end
i = i+ 1;

end

assumes ideal behavior and that each entanglement is fully
removed and the hair behaves as a perfect helix.

Using a closed-loop controller allows for online optimiza-
tion and customization in response of the specific hair. In
particular, we can ensure if there is particularly knotted or
entangled areas, we can adapt the brushing height to ensure
the maximum pain threshold FT is not exceeded. We propose
the following closed-loop controller for iterative brushes
which is based upon the optimized brush length identified
in (3). Under this controller, after starting from the height
optimized for the specific curl ratio, the following round
of brushing is adapted is the force experienced is too high,
allowing for repeated brushing at low heights if knots occur,
or entanglements are not brushed out in a single iteration. In
addition, the incremental length added can be increased is
forces are significantly lower than the maximum threshold.

An additional component of this controller, is identifying
when the hair section is fully brushed. We define this as
when the full length of the hair is being brushed, and there
is minimal change in the maximum force between brushing
iterations (i). This boolean condition is defined as:

finished =

{
1, if |fmax, i − fmax, i−1| < 0.4 & bl ≥ l0
0 otherwise

(4)
where the threshold value was found experimentally.

E. Vision Pipeline

The control approach relies on having an estimation of the
metric that defines the curl of the hair, RC . To estimate this,

Fig. 4. Top - the vision pipeline on example images: cropping, conversion
to greyscale, determining gradients and then determining the ratio. Bottom -
figure showing the Rc captured using vision, and the measured (R/P) value.

an image is taken at a fixed distance away from the head. The
image is cropped so to include only the hair and is converted
to a greyscale image. From the greyscale image the x and y
direction image gradients (Gx and Gy) are found using the
Sobel gradient operator [18]. Gradients have been shown to
be useful in other texture identification tasks [19]. Images of
the hair which are straighter have a far higher component of
edges in the x direction, where are curlier has a more equal
distribution of edges in the x and y plane. This is visually
demonstrated in the gradient plots in Fig. 4. Thus, by taking
the ratio between the sum of these two gradient fields we can
calculate a metric that provides a ratio of the straightnesss’,
to the ’curl’ of the hair:

Rc = abs|
∑

Gy∑
Gx
| (5)

For straight hair,
∑

Gy is very small, and thus the ratio Rc

is approximately 0, where as for curly hair
∑

Gy starts to
become closer to

∑
Gx, resulting in a ratio which is closer

to 1. By placing an upper bound on Rc of 1, Rc provides a
metric of describing the ratio of P to r.

To demonstrate that these metrics are representative and
sufficiently accurate for presenting an reasonable measure of
the curliness of hair, for a number of different images of hair,
we have computed the ratio, Rc, and have plotted against the
measured ratio (R/P), which forms the ground truth for this
experiment. This results are shown in shown in Fig. 4.

III. EXPERIMENTAL SETUP

To explore the control strategies for hair brushing we have
developed an instrumented soft brushing end effector which



Fig. 5. Top) The experimental setup and the sensorized hair brush. Bottom)
Block diagram of the hair brushing system.

is mounted on the end of a robot arm. The setup is shown in
Fig.5. The robot arm allows for a wide variety of trajectories
to be performed and provide speed control. The end effector
is constructed from a hairbrush which has soft bristles. The
brush is mounted on a pain which connects to a load cell
which is mounted on the end effector of the robot arm. This
allows the force normal to the load cell to be measured. The
signal from the load cell is amplified using an instrumental
amplifyer and measured with an microcontroller. The load
cell has been calibrated, and the readings are converted into
Newtons and send over serial to the control PC at 10Hz. The
control policy is implemented, and the hairbrush controlled
by sending position control commands to the the robot arm
to which the hair brush is attached. A system diagram of the
system is shown in also shown in Fig.5.

To test the system and controller, we use a head mount on
which various wigs can be attached using hair pins. The head
is mounted on a variable height mount such that the bottom
of the hair is kept in in a fixed location relative to the robot
and camera setup. Each wig is set in to a ‘pre-brushed’ state
by turning upside down and shaking for 10-15 seconds. This
returns the wigs to an entangled state, allows experiments to
repeated with a similar state of entagledness.

The wig is placed such that the free end of the hair is at a
fixed point relative to the arm. A webcam is also mounted in
a fixed position relative to this position, and is used to capture
the image to determine the curl ratio RC . The brushing
height can then be determined, and the brush moved to this
height before the brushing regime starts. The brush is moved
from the brush height in a fixed plane downwards to below
the end of the hair. This is repeated until the robot determines
the processes is finished. The depth of brushing (horizontal
distance between the hair and the brush) is kept constant
for all experiments and was chosen experimentally such that
brush bristles interact with both straight hair which has less
volume, and also curly hair.

Fig. 6. Exemplar timeseries from the sensorized hairbrush when brushing
i) the same hair at a repeated high for 6 iterations, ii) varying the height of
brushing.

Fig. 7. Variation in maximum force with normalized brushing length for
hair with different curliness.

IV. EXPERIMENTAL RESULTS

A. Exploration of hair brushing

To demonstrate and validate the model, we have performed
a set of brushing experiments for which we show the
progression of the force with brushing time. First, we show
repeated brushing of a single wig with the brushing height
fixed. We see the expected rise in force as the hair fibers
start to jam, after which the force applied to the brush
overcomes this jamming force and brushes free. The brush
force is the highest for the first brush, however, reduces
with brushing iterations as with each brush a number of
entanglements are removed. After three brush cycles the
maximum forces measured on each brush cycle starts to
plateau, demonstrating that entanglements and jamming has
been removed. This validates the method of identifying when
brushing has finished as given in (4).

We next perform a similar experiment but where the brush-
ing height is varied. Each height experiment was repeated
5 times, with the hair ’reset’ between experiments. The
average of each set of experiments is shown in Fig. 6b. When
brushing the entire length of the hair fibers we see the build
up forces, with the rate increasing as the fibers jam, until
the brush pulls through these entanglements. When the brush
height is reduced, the maximum force that is reached reduces
significantly, we also see more reliability in the repeated
experiments.

The model suggests that the velocity of brushing should
have a minimal effect on the experienced force. To test this
we use the hair brushing platform to explore the variation
in force measured for different speeds of brushing. Fig. 8



Fig. 8. Average maximum force for different velocities and orientations
of brushing for a fixed brush length, and on the same hair (RC = 0.4).

shows the variation in maximum brushing force for different
brushing speeds. This is performed for the two wigs, one
straight, one curl, with the brushing height fixed. The wig
reset between each tests.

As expected we see that the velocity has minimal effect on
the brushing force, in particular for straight hair. For curly
hair, whilst the maximum force is approximately constant,
there is far greater uncertainty for slower motion. This
suggests that although velocity does not affect the maximum
force, a slightly faster speed reduces variability in the forces
experienced. The maximum speed of this experiments was
limited by the capabilities of the robot arm, thus remains
relatively low; further work could explore the effects of faster
more jerky hair brushing motions.

B. Optimization

To optimize the selection of brushing height, we must
fit the sigmoid function proposed in (3) to experimental
data. For a number of wigs with different hair types, we
identify the maximum normalized brushing length that can
be performed without exceeding the brushing force threshold,
FT . We can then fit a sigmoid function to these data points
to identify the optimal value of k to ensure efficient brushing
without exceeding the maximum force threshold.

The results of this process shown in Fig. 9, where the
optimal value of k is found to be 8.5. It can be seen that the
sigmoid function has been fitted to the points such that the
curve is lower than any of the experimental results to ensure
that the maximum force threshold is not exceed at any points.
There appears to be a close fitting between the experimental
results and the sigmoid function, validiating this choice of
function.

C. Brushing Demonstration

To demonstrate the hair brushing approach, we test the
controller on a number of wigs which have been selected
to show a variety of different lengths, hair types and curl
ratios. We have selected four examples with varying hair
type to demonstrate the process. In each of these, we show
the iterative brush height that is selected, and the measured
maximum force for each of these iterations. This is shown
in Fig. 10 alongside before and after photos of the hair. The
visual results of the hair before and after are also shown.
In can be see than in the case of straight hair, the approach

Fig. 9. Optimized sigmoid function (3) to allow identification of the optimal
starting brush height for hair with different amounts of curl.

is simplistic, and the estimated ratio perform works well,
and minimal iterations are required. As the amount of curl
increases, more brush strokes are required, and the forces
increase. Finally, when we move to the curliest hair we see
the ratio predicted using vision is initially too high, and thus
the brush height must be reduced to remove some of the
entanglements that form. In all cases we can visually see an
improvement of the hair after brushing.

To benchmark and contrast the performance of the control
approach developed, we compare the performance in com-
parison to a ‘naive’ brushing approach and human brushing.
In the ‘naive’ approach we brush at a fixed interval which
increases by thirds each time (e.g. Bl = 0.33, 0.67, 1). We
also compare it a human baseline where the human was asked
to brush the section of hair using the sensorized hairbrush.
Whilst this human baseline considers only a single person
and therefore their specific approach, it does provide an
approximate order of magnitude of their performance. All
control strategies were repeated on wigs with a variety of curl
ratio with the total time to brush, and also the maximum force
recorded. This comparison between approaches is shown in
Fig. 11.

When considering the maximum force that is achieved the
optimized robot solutions show similar response to that of
human brushing, although the human performs marginally
better at the extremes. The naive approach leads to signifi-
cantly higher forces for the curly hair, significantly exceeding
the pain threshold (FT 10N ), however, this is a faster
than the optimized solution. Throughout the experiments
the human performs faster, however the robots movement
is limited by the capabilities of the robot arm, and thus there
is considerable room to optimize this process and close the
performance gap in comparison to humans.

V. DISCUSSION & CONCLUSION

In this work we introduce an experimental model for
the combing of entangled chiral hairs using a visuo-motor
feedback loop that builds on recent work to comb a double
helix [15]. Our model provides significant insight in to the
behaviors of the combing of hair with respect to the number
of entanglements, and how these can be efficiently and effec-
tively brushed out by choosing appropriate brushing lengths.
We propose using a sigmoid function to provide selection of



Fig. 10. Demonstration of hair with increasing curliness using the control
approach showing the maximum force and normalized brushing length for
each iteration.

brushing height for different hair, where computer vision is
used to identify the curliness of hair.

Using this model, we have developed an control approach
for brushing hair for various hair types. By developing a
sensorized soft brush end effector, we have validated this
approach experimentally and benchmarked it in comparison
to a human lead approach and a naive approach. Whilst
this work has demonstrated effective hair-brushing, there is
significant further work for improvement, including investi-
gating more complex trajectories and increasing the complex-
ity of our model through many-hair combing simulations.
Performing such simulations would allow us to increase
the complexity of our algorithm to capture nuances in the
differences in the mechanics of combing across different hair
types and hair styles.

Another area for future work is performing more realistic
experiments on humans, to gain more subjective feedback
from the experimental subjects. Pain is a highly complex
phenomena, and to truly understand the performance of the
robot with respect to this metric, human experiments are
required.

One advantage of this approach presented is the adapt-
ability of the approach, due to the use of a sigmoid function

Fig. 11. Comparison between developed controller, human brushing and
also a naive controller for the consideration of maximum force (top) and
brushing time (bottom)..

to optimize the starting brush height. This allows the model
to be easily adapted when the tasks is varied, for example
of a different brushing device, or a different tasks - such
as brushing wider/complex complex textile based fibers. By
fitting the sigmoid function to a set of minimal experimental
data the approach can be readily adapted.

In addition to further exploration of hair brushing, the
model of entwined soft hairs could have significant further
applications. For example, it could be used to assist with the
development of robotic approaches to dealing with ropes, and
fibrous systems, or even robots that efficiently manipulate
spaghetti.
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