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ABSTRACT: Strong enhancement of molecular circular dichroism (CD) has the potential to enable efficient asymmetric
photolysis, a method of chiral separation that has conventionally been impeded by insufficient yield and low enantiomeric excess.
Here, we study experimentally how predicted enhancements in optical chirality density near resonant silicon nanodisks boost CD.
We use fluorescence-detected circular dichroism (FDCD) spectroscopy to measure indirectly the differential absorption of circularly
polarized light by a monolayer of optically active molecules functionalized to silicon nanodisk arrays. Importantly, the molecules and
nanodisk antennas have spectrally coincident resonances, and our fluorescence technique allows us to deconvolute absorption in the
nanodisks from the molecules. We find that enhanced FDCD signals depend on nanophotonic resonances, in good agreement with
simulated differential absorption and optical chirality density, while no signal is detected from molecules adsorbed on featureless
silicon surfaces. These results verify the potential of nanophotonic platforms to be used for asymmetric photolysis with lower energy

requirements.

hirality, or handedness, is a fundamental property of all
living organisms, from biological building blocks such as
DNA and amino acids to macroscopic structures. Chirality also
features prominently in many synthetic molecules, with over
50% of pharmaceuticals and 40% of agrochemicals existing as
enantiopure forms or racemic mixtures."”” These enantiomers
can have distinct efficacy in biological systems, making the
ability to distinguish mirror-image molecules with high
sensitivity and maximize enantiomeric excess (ee) in
asymmetric synthesis crucial tasks. Circular dichroism (CD),
defined as the selective absorption of circularly polarized light
(CPL), is commonly used to differentiate enantiomers via CD
spectroscopy, though it typically requires relatively high sample
concentrations or long optical path lengths.”* This differential
absorption between left- and right-CPL, A" — AR (AA), has
also inspired efforts to use CPL as a reagent in enantioselective
synthesis or for photolysis as early as 1929.>° However, due to
the low differential absorption cross section of molecules, the
yield and ee achieved by decomposition of optical isomers with
light alone falls below industrially relevant state-of-the-art
techniques to maximize enantiopurity.7_9
A variety of methods have sought to improve the sensitivity
of chiral differentiation in CD spectroscopy. For example,
nonlinear spectroscopies utilizing second harmonic generation
that are sensitive to surfaces and interfaces'*~'* and single-
molecule spectroscopy have enabled enantiomeric detection at
the monolayer to few- to single-molecule regime.'”'* To
expand upon these spectroscopic techniques, superchiral
electromagnetic fields arising from the interference of chiral
plane waves have been shown to increase dissymmetry in chiral
excitation, but the position of the superchiral fields within the
resulting standing wave nodes limits utility.">'® Recently,
nanophotonic architectures have received considerable atten-
tion due to their potential to manipulate chiral evanescent near
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fields while maintaining high field strength.17_26 These near
fields have been predicted to enhance the enantioselective rates
of molecular absorption and can be achieved using
plasmonic®”~** and high-refractive-index nanostructures.”>~*'
In experiments, many of these approaches enable highly
effective enantiomeric sensors but often exhibit negligible
spectral overlap between chiral molecular absorption and
nanoantenna resonances, which is necessary to achieve
enantioselective photolysis with high yield and ee.***”*
Therefore, rather than enhancing differential absorption rates
by the molecules themselves, resulting CD signals in the visible
and near-IR are mainly due to intrinsic (extrinsic) chirality of
3D (2D) nanostructures, or induced CD in lossy platforms.*
Furthermore, these techniques struggle to distinguish molec-
ular absorption from total absorption, making it difficult to
unveil and optimize the near-field mechanism behind chiral-
optical enhancements in molecules.***’

Here, we demonstrate enhanced enantioselective absorption
in chiral molecular monolayers using nanostructures with
optical resonances spectrally matched to the molecular CD.
Sub-wavelength, periodic arrays of silicon disks (hereafter,
“metasurfaces”) are functionalized with self-assembled mono-
layers of fluorescently labeled oligonucleotide strands with
visible-frequency CD (see Figure 1a), attributed to dye binding
within the helical DNA environment. We use fluorescence-
detected circular dichroism (FDCD) to perform a background-
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Figure 1. (a) Schematic: dye/DNA functionalized to metasurface. (b) Array transmission: radius, r = 92—103 nm, height, & = 80 nm, pitch, a = 300
nm. (c) Array SEMs. (d) Electric field enhancement on resonance, 4 = 570 nm. (e) Maximized C enhancement, A = $65 nm. (d, e) r = 92 nm
metasurface; top through disk center; bottom 5 nm above disk/layer interface. Simulated chiral layer radius is r, = 82 nm, avoiding mesh artifacts at

disk edge, with layer height, #; = 10 nm.

free measurement, as the dye fluorescence is distinguishable
from that in the metasurface or substrate. While negligible
FDCD is observed on unpatterned films, we observe strong,
red-shifting FDCD on disks with increasing radius, in
agreement with calculations. We show that our method can
distinguish conformation in molecular monolayers, which we
validate with in situ measurements of FDCD sign reversal
during DNA dehybridization. Our results exhibit enhancement
of intrinsic molecular CD, en route to enantioselective
photolysis.

Metasurfaces were engineered to have concurrent electric
and magnetic dipolar Mie resonances coinciding with the
molecular monolayer absorption, a condition known as the first
Kerker condition, at which optical chirality density was found
to be highly enhanced in our previous work.”” These
overlapping modes enhance optical chirality density due to
strong electric and magnetic near fields that maintain the phase
properties of incident CPL, and disk nanoantennas enable
facile tuning of such resonances (see Supporting Information
(SI) and Figure S1 for further detail).””***~>" Nanodisk
arrays were fabricated in single-crystalline silicon layers grown
on sapphire substrates. The fabricated arrays are 100 m X 100
pum, with nominal disk height 4 = 80 nm, disk radii r = 90—105
nm, and pitch ¢ = 300 nm. Figure 1b includes experimental
transmission spectra of three examples of bare silicon
metasurfaces with nominal disk radii of r = 92, 97, and 103
nm, with representative SEMs in Figure 1c. We simulate these
metasurfaces with a layer of chiral medium on top, where layer
height h; = 10 nm, and layer radius r, = r — 10 nm (see SI),
finding that the simulated transmission (dotted line, Figure 1b)
is in good agreement with experiments. Dips in the
transmission spectra correspond to concurrent electric and
magnetic Mie resonances; the simulated electric field plots of
Figure 1d are indicative of these overlapping resonances and
show strong electric fields extending into the chiral layer.””
Near these resonances, and just blue-shifted (4 = 565 nm vs A
= 570 nm), optical chirality density in the chiral layer reaches a
maximum enhancement (Figure le). Here, we define the

optical chirality density as C = —%Im(D*-B) and the

enhancement factor as C/Cgp, where Ccpp = ezo—wEg, the
C
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optical chirality density of CPL alone.'®'®** The small shift
between peak C/Ccpy, and resonance center wavelength occurs
due to the balance between the relative phases and intensities
of the electric and magnetic fields.*

The fluorophore, ATTO 590, was covalently attached to the
S’-end of a 25 base pair DNA sequence with a thiol
modification on the 3’-end (Figure 2a, see SI for details).
The complex absorbs strongly from 500 to 650 nm, with a
peak in excitation at 600 nm and an emission maximum at 615
nm that depends on the excitation wavelength (Figure 2b,c).
When hybridized with its fully complementary strand, the dye-
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Figure 2. (a) Structure of Atto590 dye functionalized to the 5’-end of
DNA and dehybridization scheme. (b) Excitation spectrum of dye-
dsDNA in PBS. (c) Emission spectra of dye-dsDNA in PBS. (d) CD
of dye-dsDNA and dye-ssDNA in PBS, 30 uM.
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dsDNA complex exhibits a positive CD signal in its visible
absorption band.>¥™%¢ Interestingly, the sign of the CD signal is
reversed when the DNA molecules are denatured, as the dye
molecules experience the different local environment of the
single strand’s secondary structure (Figures 2d and $2).°” This
enantiomer-reversal-like behavior is particularly useful to probe
changes in the sign of the CD signal on the same substrates
without varying surface density.

The metasurfaces were functionalized with self-assembled
monolayers of the dye-DNA complexes with widely used silane
chemistry (Figure 3&1).58’59 Terminal amine groups on vapor-
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Figure 3. (a) Functionalization scheme and dehybridization on
substrate. (b) Fluorescence of dye-functionalized 92 nm-radius array
(solid) vs dye-less (dotted). (c) FDCD sign reversal from dye-dsDNA
to dye-ssDNA.

deposited films of (3-aminopropyl)trimethoxysilane were
cross-linked to pre-hybridized thiol-modified DNA strands
using m-maleimidobenzoyl-N-hydroxysuccinimide ester (see
SI). Monolayers of DNA prepared by silanization on Si/SiO,
typically feature surface densities of ~10'> molecules/cm?,
which represents an approximate upper bound to the limit of
detection of our technique.’”®" To validate surface function-
alization, metasurface fluorescence spectra were collected both
before and after DNA assembly. Strong fluorescence near the
long-pass edge at 600 nm can be attributed to background
fluorescence from the sapphire substrate. However, a
significant increase in emission intensity from 610 to 650 nm
following functionalization confirms that fluorescence from the
monolayer is distinguishable from that of the substrate (Figure
3b).

To detect the CD of the monolayers indirectly using
fluorescence, we built a table-top polarization-sensitive
spectrometer that performs a lock-in measurement to collect
excitation spectra (see SI). For this measurement, we used a
635 nm bandpass filter that transmits the fluorescence of the
dye alone. First, we studied the FDCD signal dependence on
the hybridization state of the DNA monolayers which, from
solution/ensemble-CD measurements, reverses sign between
double- and single-stranded forms. Monolayer-functionalized
metasurfaces were mounted within a cuvette of 1X phosphate-
buffered saline (PBS) to maintain the helical tertiary structure
of dsDNA when tethered to surfaces during measurements

(Figure S3). Using metasurfaces functionalized with dye-
dsDNA complexes, positive FDCD signals were measured in
the range of 520 to 580 nm for each of the different radii
(Figures 3c and S4). Then, PBS was removed and replaced
with formamide to lower the DNA melting temperature below
room temperature. Upon denaturing, the FDCD signal
reversed sign or was destroyed completely (Figures 3c and
S4). Importantly, because the dye-functionalized ssDNA
remains tethered to the surfaces, the change in FDCD signal
can be attributed to partial or complete dehybridization of
adsorbed DNA rather than removal of fluorescent probes from
the surfaces.

We repeated the double-stranded DNA measurements on
the three metasurfaces characterized in Figure 1 to study the
spectral influence of the metasurface resonance on the FDCD
signal. These results (Figure 4a) show a red-shifting FDCD
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Figure 4. (a) Normalized FDCD signal from dye-dsDNA on r = 92—
103 nm arrays (details in SI). Vertical lines mark spectra maxima,
illustrating red-shift; shaded region represents standard error. (b)
Simulated AA from 10 nm chiral layer on disk surface (left axis, solid)
against integrated C/Ccpy, (right axis, dotted). Vertical lines mark AA
maxima.

signal with increasing disk size. Consistent with C/Ccpy in
Figure 1, the peak is blue-shifted from the resonance center
wavelength. In contrast, upon repeating the measurement on
an identically sized square of unpatterned silicon on the same
sapphire substrate, no significant FDCD signal is observed
(Figure SS), illustrating that the detected signal can primarily
be attributed to the electromagnetic near-field enhancements.
To confirm that the measured FDCD signal arises primarily
from molecular CD, we performed full-field simulations,
calculating AA and C/Ccpy, within a 10-nm-thick chiral layer
above the silicon disks. To account for coupling effects
between induced electric and magnetic dipoles in the chiral
medium, these simulations used a wavelength-independent
Pasteur parameter with strength typical of an on-resonant
chiral molecule (see SI).*>*** Figure 4b shows these results,
indicating that the peak in molecular AA occurs just blue-
shifted from the dip in transmission and red shifts with
increasing disk size, corresponding well with experiments.
Further, the observed line shape and spectral position of the
simulated AA are in good agreement with those of the optical
chirality enhancement in the molecular layer, seen in the solid
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and dotted lines of Figure 4b, respectively. We note that the
optical chirality calculated in the chiral layer on the 103 nm
metasurface exhibits two peaks, in contrast to the single peak in
AA, likely due to higher enhancements in electric field
associated with the blue-shifted mode as the resonances
separate. Importantly, AA within the silicon nanodisks in
simulation (Figure S6) is given by a bisignate line shape not
seen in our measurement. This result further indicates that the
measured FDCD signal arises primarily from enhanced
molecular CD due to high optical chirality density in the
near field, as opposed to induced CD in the disks themselves.**
We attribute the non-negligible (~20 nm) red shift between
simulation and experiment to a combination of an oxide layer
on the silicon surface, tapering of disk side-walls, and
wavelength-dependent chiral medium properties which were
not captured in our model.

In summary, we demonstrate enhancement of intrinsic
molecular CD in a monolayer via overlap of molecular CD
with nanophotonic resonances using FDCD. We study the CD
of ATTO 590-functionalized DNA strands, with a solution-
phase CD signal from 500 to 650 nm. Interestingly, the sign of
this CD signal is dependent on DNA conformation, with dye-
dsDNA exhibiting a positive signal and dye-ssDNA exhibiting a
negative signal. The complexes are functionalized to silicon
metasurfaces fabricated with optical resonances in the CD
band of interest and characterized using a table-top FDCD
spectrometer. We exploit the enantiomer-reversal-like behavior
of the different conformations to probe surface chirality by
dehybridizing the dsDNA, observing a sign reversal when
metasurfaces are present but negligible signal in their absence.
Finally, we show that the FDCD signal red shifts with
increasing disk size, and thus that the metasurface’s resonant
features are central to molecular CD enhancement. Full-field
simulations confirm that both differential absorption and
optical chirality density are enhanced within the chiral medium
near the disk resonances. This indicates that the experimental
FDCD enhancement is due to enhanced optical chirality
density, as predicted in prior works, thus providing important
insights toward efficient enantioselective photolysis.
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