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We study translationally invariant spin chains where each unit cell contains an n-state projective representation
of a Zn × Zn internal symmetry, generalizing the spin-1/2 XYZ chain. Such spin chains possess a generalized
Lieb-Schultz-Mattis (LSM) constraint, and we demonstrate that certain (n − 1)-component Luttinger liquids
possess the correct anomalies to satisfy these LSM constraints. For n = 3, using both numerical and analytical
approaches, we find that such spin chains with nearest-neighbor interactions appear to be gapless for a wide
range of microscopic parameters and described by a two-component conformally invariant Luttinger liquid. This
implies the emergence of n − 1 conserved U(1) charges from only discrete microscopic symmetries. Remarkably,
the system remains gapless for an unusually large parameter regime despite the apparent existence of symmetry-
allowed relevant operators in the field theory. This suggests that either these spin chains have hidden conserved
quantities not previously identified, or the parameters of the field theory are simply unusual due to frustration
effects of the lattice Hamiltonian. We argue that similar features are expected to occur in (1) Zn × Zn symmetric
chains for n odd and (2) Sn × Zn symmetric chains for all n > 2. Finally, we suggest the possibility of a lower
bound growing with n on the minimum central charge of field theories that possess such LSM anomalies.
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I. INTRODUCTION

The Lieb-Schultz-Mattis (LSM) theorem and its gener-
alizations [1–13] provide strong constraints on the possible
low-energy long-wavelength behavior of translationally in-
variant many-body systems. These theorems can be used, for
example, to rule out trivial gapped many-body states of matter
in systems with a spin-1/2 degree of freedom per unit cell.
Recently, it has been understood that the LSM theorem can
be significantly strengthened [13] by viewing the system of
interest as the boundary of a crystalline symmetry-protected
topological (SPT) state [5,14–18]. The bulk-boundary corre-
spondence can then be used to place strong constraints on the
type of long wavelength, universal behavior exhibited by the
system.

In the framework of quantum field theory, this bulk-
boundary correspondence is an example of a ’t Hooft anomaly.
That is, systems with LSM constraints possess a certain type
of ’t Hooft anomaly—a mixed anomaly between the on-site
symmetry and the translational symmetry—and therefore any
possible field theory that emerges at long wavelengths must
match this anomaly. For example, Refs. [19,20] used the rela-
tion between LSM constraints and ’t Hooft anomaly matching
to constrain the possible renormalization group flows that
describe critical phases of SU(N ) spin chains. Reference [13]
showed how these ideas can be used to constrain the pos-
sible patterns of symmetry fractionalization that can arise
in (2 + 1) dimensional topologically ordered states. See also
Refs. [17,18,21–23] for a discussion of anomalies in field
theories of certain quantum magnets.

In general, given a quantum many-body system that is
subject to a generalized LSM constraint, little is known about

the space of possible effective field theories that have the
appropriate anomalies to satisfy the LSM constraints. To study
this question, in this paper we study translationally invariant
one-dimensional spin chains with a Zn × Zn on-site (internal)
symmetry, where each unit cell contains an n-dimensional
projective representation of Zn × Zn. These spin chains can
be thought of as generalizations of the XYZ spin chain to
SU(n) spin systems. Generalized LSM theorems forbid these
spin chains from having a unique gapped ground state [5,6]
and thus raise an interesting question of what the possible long
wavelength effective field theories can be.

Here we demonstrate that certain (n − 1)-component Lut-
tinger liquids can satisfy the LSM constraints and thus possess
the appropriate ’t Hooft anomaly. Importantly, these gapless
theories are distinct from the more familiar coupled Luttinger
liquids as they have different anomalies and symmetry ac-
tions. Moreover, in the case n = 3, we use a combination of
numerical and analytical methods to study such spin chains
in detail. For nearest-neighbor models with time-reversal and
inversion symmetry, we provide evidence that these systems
are indeed described by two-component Luttinger liquids in
a large portion of their phase diagram. These critical field
theories can be thought of as symmetry-preserving marginal
deformations of SU(3)1 Wess-Zumino-Witten (WZW) con-
formal field theories (CFTs) that are parametrized by a single
continuous parameter g. Remarkably, these systems possess
only discrete internal symmetry generators, and yet have two
emergent U(1) charges.

The stability of these gapless phases is particularly surpris-
ing. On the one hand, the two-component Luttinger liquids
that we study apparently always have symmetry-allowed
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relevant operators away from the SU(3) invariant point, and
therefore strictly speaking are not fully stable as field theories.
Nevertheless, remarkably we find that these critical phases
of the spin chain are, to within numerical accuracy, stable
with respect to tuning the microscopic parameters over a
large region of the phase diagram. Specifically, the micro-
scopic parameters can vary over an essentially infinite range,
in dimensionless units, with the gapless behavior persisting
throughout. In this sense, it appears that the parameters of
the field theory are “unusual” given the symmetries of the
Hamiltonian. We suggest that this unexpected behavior is
related to the frustrated nature of terms in the microscopic
Hamiltonian, which individually possess a U(2)∞ symmetry
in the thermodynamic limit. Our results suggest that either
(1) these spin chains have previously unnoticed conserved
quantities—or may even be fully integrable—that rule out the
appearance of the relevant operators at long wavelengths or
(2) the field theory parameters are simply unusual due to the
frustration of the microscopic terms in the Hamiltonian.

We further argue that similar phenomena are expected to
occur in (1)Zn × Zn symmetric chains for n odd and (2) Sn ×
Zn symmetric chains for all n > 2.

We note that extended gapless phases in the vicinity of
the PSU(3) and PSU(4) symmetric spin chains have been
previously reported in the literature [24,25]. However, these
models are different from the systems discussed in this work
as they do not have the Zn × Zn on-site symmetry, but rather
have PSU(2) symmetries that prohibit the relevant operators
from appearing at long wavelengths and thus stabilize the
gapless phases.1

The rest of this paper is organized as follows. In Sec. II, we
set up notation and formalism and briefly discuss the anomaly
associated with the generalized LSM constraints. In Sec. III,
we review Z2 × Z2 symmetric spin chains and their gapless
phases. In Sec. IV, we discuss the Z3 × Z3 spin chains,
present numerical evidence for it being gapless over a large
region of the phase diagram, and present the two-component
Luttinger liquid theory along with its symmetry actions and
anomalies. In Sec. V, we discuss in detail the stability of the
gapless phase, presenting additional evidence that the two-
component Luttinger liquid theory is the correct description
despite the presence of symmetry-allowed relevant operators.
In Sec. VI, we generalize the discussion to Zn × Zn symmet-
ric spin chains. We end with a brief discussion in Sec. VII.

II. HILBERT SPACE, GLOBAL SYMMETRY OPERATORS,
AND THE LSM ANOMALIES

For each site i, the local Hilbert space is an n dimensional
space spanned by |gi〉, with gi = 0, . . . , n − 1. We work with
onsite “clock” and “shift” operators, Zi and Xi, which form a
projective representation of Zn × Zn,

Zi|gi〉 = e2π igi/n|gi〉
Xi|gi〉 = |(gi + 1) mod n〉, (1)

1Note that the symmetries involved are PSU(n) = SU(n)/Zn, as
the center Zn subgroup of SU(n) acts trivially on all operators.

such that

XiXj = XjXi,

ZiZ j = ZjZi, (2)

ZiXj = ei2πδi, j/nXjZi.

For n = 2, these are the usual SU(2) Pauli Xi,Zi operators,
corresponding to π rotations around the x and z directions.

For a spin chain with N sites, we take the generators of the
global Zn × Zn symmetry to be given by

Z =
N∏
i=1

Zi and X =
N∏
i=1

Xi. (3)

Since each site forms a projective representation ofZn × Zn, a
translationally invariant spin chain that respects these symme-
tries cannot have a trivial gap (generalized LSM restriction)
[5,6]. The ground state must either (1) exhibit spontaneous
symmetry breaking of the Zn × Zn and/or translational sym-
metry or (2) form a gapless phase.

One way to see the existence of an anomaly associated
with an LSM constraint is as follows. Consider a Zn × Zn

and translationally invariant spin chain with a unique ground
state. From theZn × Zn symmetry, we know that this state has
to be a Zn × Zn singlet (since it is the unique ground state).
However, a singlet state only exists if the number of sites N
is a multiple of n, i.e., N mod n = 0. When N mod n = 1, for
instance, the ground state degeneracy must be a multiple of n,
and each state must transform nontrivially under the action of
Zn × Zn.

The above property must be reproduced within the low-
energy effective field theory. A translation by one lattice site
is represented in the field theory by a nontrivial symmetry
transformation on the fields. Changing the number of sites
in a periodic system is then modeled by inserting a unit of
flux associated with this translational symmetry, which corre-
sponds to twisting the boundary conditions on the fields. In
the presence of this symmetry flux, the vacuum degeneracy
must change, with the Zn × Zn symmetry acting nontrivially
on the resulting vacuum subspace. In field theory terminol-
ogy, this means that the symmetry is broken in the presence
of background fields, which in this case corresponds to the
presence of nontrivial translational symmetry flux. This is the
symptom of an anomaly, and it implies that the low-energy
effective field theory cannot be trivial, thus ruling out a trivial
gapped state. More precisely, the field theory must have a
mixed anomaly between the Zn × Zn internal symmetry and
the translational symmetry, which we will refer to below as
the LSM anomaly. We will use this particular manifestation
of the anomaly extensively throughout the rest of this work.

Alternatively, we can consider this system to exist at the
surface of a (2 + 1) dimensional weak SPT, corresponding to
an array of (1 + 1)-dimensional SPTs with Zn × Zn symme-
try [13]. Each (1 + 1)D SPT in the array is a gapped system
with a linear representation of Zn × Zn per unit cell, with
boundary zero modes forming a projective representation of
Zn × Zn. Our (1 + 1)D spin chain can thus be thought of
as a one-dimensional array of these projective boundary zero
modes. As such, the LSM constraint can be interpreted as
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the impossibility of trivially gapping out the boundary of a
(2 + 1)D weak SPT.

III. NEAREST NEIGHBOR HAMILTONIAN
WITH Z2 × Z2 SYMMETRY

In this section, we discuss nearest-neighbor spin chains
with Z2 × Z2 symmetry. While none of the results of this
section are new, our method of observing the anomaly is
different from standard treatments and sets the stage for the
generalization to Zn × Zn.

A. Lattice model and symmetries

The most general nearest-neighbor Hamiltonian with Z2 ×
Z2 symmetry is given by

H =
∑
i

(JxXiXi+1 + JyYiYi+1 + JzZiZi+1), (4)

where Yi = iXiZi, and X , Y , Z are the usual Pauli matrices.
This model is known to be integrable for all values of Jx,
Jy, Jz. In addition to the translational symmetry group Ztrans,
generated by translation by one site, Tx, and the Z2 × Z2

symmetry, this system has two important additional discrete
symmetries.

(1) Inversion, ZP
2 , generated by P:

P : (Xi,Yi,Zi ) → (X−i,Y−i,Z−i ) (5)

(2) Time-reversal, Z�
2 , generated by complex conjugation

in the Zi basis, �:

� : (Xi,Yi,Zi ) → (Xi,−Yi,Zi ). (6)

Time-reversal defined here is different from the conven-
tionally defined time-reversal by a unitary π rotation around
the y axis. We work with this definition as it can be easily
generalized to theZn × Zn case. Therefore the total symmetry
group is [Z2 × Z2 × Z�

2 ] × [Ztrans � ZP
2 ]. Note that while the

on-site symmetry group Z2 × Z2 × Z�
2 is Abelian, the local

Hilbert space on each site forms a projective representation
of this symmetry group, so that the representations of the
symmetry generators no longer commute.

For certain special choices of parameters, the model has
enhanced symmetries. For example, when |Jx| = |Jy|, the
Z2 × Z2 is enhanced to a U(1) � Z2 unitary on-site symme-
try. When Jx = Jy = Jz, the Z2 × Z2 is enhanced to the full
SO(3) spin rotational symmetry.

The Hamiltonian in Eq. (4) is exactly solvable and is
known to be gapless only when the microscopic on-site sym-
metry of the system possesses a continuous U(1) symmetry
such that two of the coupling constants are equal in mag-
nitude, e.g., Jx = ±Jy (this is a necessary but not sufficient
condition for gaplessness). Otherwise the system exhibits
spontaneous symmetry breaking [26].

B. Luttinger liquid theory

The critical phase here is described by the usual c = 1
compactified boson (Luttinger liquid) CFT,

L = 1

2π

∫ 2π

0
dx[(∂tϕ(x, t ))

2 − (∂xϕ(x, t ))
2],

ϕ ∼ ϕ + 2πR. (7)

To simplify the formalism we have set the length of the chain
to 2π . R is compactification radius of the free boson. The
Luttinger parameter K is related to R as K−1 = 4R2. The
compactified field ϕ can be expanded as

ϕ(x, t ) = ϕ0 + n

2R
t + xmR +

∑
l �=0

ϕl (t )e
ilx,

n,m, l ∈ Z. (8)

Ignoring the trivial harmonic oscillator part (setting ϕl = 0),
the zero mode Hamiltonian reads,

H0 = 1

2

(
n2

2R2
+ 2m2R2

)
. (9)

This part of the spectrum sets the scaling dimension of the
primary fields. It is useful to decompose the field ϕ into
right/left moving parts,

ϕL/R(x ± t ) = ϕ0,L/R + 1

2

(
mR ± n

2R

)
(x ± t ) + oscillators.

(10)

The conventional (2π periodic) Luttinger variables are given
by

φ(x) = 1

R
(ϕL(x) + ϕR(x)),

θ (x) = 2R(ϕL(x) − ϕR(x)). (11)

Note that the T-duality R → 1
2R is manifest in Eq.(9). At

the R = 1√
2
self-dual point, the symmetry of the system is

enhanced from U(1) � Z2 to PSU(2) ≡ SU(2)/Z2 = SO(3)
and the system is described by the SU(2)1 WZW CFT [27].

The action of symmetry operators can be read off using
the usual bosonization methods [23,26]. The Z2 symmetry
associated with X is given by

X : θ → −θ and φ → −φ, (12)

and the Z2 symmetry associated with Z is

Z : θ → θ + π and φ → φ. (13)

The translational symmetry Tx acts like

Tx : θ → θ + π and φ → φ + π. (14)

Finally the symmetry actions associated with time reversal
(ϕL → ϕR) and inversion (ϕL → −ϕR) can be represented as

P : θ → θ and φ → −φ, (15)

and

� : θ → −θ and φ → φ. (16)

C. LSM anomaly

Inserting a unit of translational symmetry flux changes the
boundary condition [Eq. (14)]

φ(x + 2π ) = φ(x) + 2πm + π,

θ (x + 2π ) = θ (x) + 2πn + π. (17)

This can then be incorporated in the mode expansion (8) as

m → m + 1
2 ; n → n + 1

2 . (18)
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An implication of this shift is that (after flux insertion) the to-
tal spin operator is given by Stotz = 1

2π

∫ 2π
0 dx∂xφ = m + 1/2.

That is, the total Sz charge of the spin chain becomes half-
integer, which of course matches the microscopic expectation
(spin chains of odd length have half-integer Stotz ).

Eqution (18) shows that for odd length spin chains the
ground state is four fold degenerate corresponding to {n =
±1/2,m = ±1/2}. Note that microscopically only a two fold
degeneracy is guaranteed and that this four fold degeneracy is
a consequence of the fact that the U(1) symmetry is enlarged
to U(1)L ×U (1)R. In practice, this degeneracy is always bro-
ken to two twofold degeneracies by irrelevant perturbations
that break the symmetry down to U(1). This system size (or
translation flux) dependent change in the degeneracy is a
manifestation of the mixed Zn × Zn and Ztrans LSM anomaly
in the critical phase.

D. Stability of gapless phase

As mentioned above, the LSM theorem forbids a trivial gap
(without spontaneous symmetry breaking). However, it does
not guarantee the presence of a critical phase or its stability.
To analyze stability of the gapless phase, we consider the most
generic perturbations consistent with the symmetries that can
be added to the critical action described above, and which
could potentially gap the system. These are of the form

cos(mθ + nφ). (19)

Note that sinusoidal terms are not considered as they are man-
ifestly not invariant under the symmetry actions. The scaling
dimension of the operator above is given by Eq. (9). The
most relevant operators that are consistent with the anomaly
generating symmetry group Zn × Zn × Ztrans are

cos(2θ ) and cos(2φ). (20)

These operators are also invariant with respect to P and �

symmetries. At the self-dual point R = 1√
2
both of the oper-

ators above are marginal. Therefore, at the self-dual PSU(2)
symmetric point, the theory is gapless. As we move away from
the self dual point one of these operators becomes relevant
and pins its argument at strong coupling, giving rise to a
gapped phase with 〈φ〉 �= 0 or 〈θ〉 �= 0. Therefore, away from
the self-dual point, the critical phase is not stable. What is
needed is a symmetry that prohibits at least one of the two
operators above. In the case of spin chains discussed here,
such symmetry is present at U(1) symmetric points where
two of the coupling constants are equal in magnitude, e.g.,
Jx = ±Jy. This U(1) symmetry (corresponding to continuous
rotations around the z axis) acts as

U(1) : θ → θ + α and φ → φ, (21)

where α is an arbitrary real constant. This symmetry prohibits
the cos(2θ ) term. Therefore, in an extended region R < 1√

2
, no

relevant operators are allowed and the critical phase is stable.
This of course matches the known result that the spin chains
discussed above can be gapless only when an additional U(1)
symmetry is present and R < 1√

2
.

IV. NEAREST NEIGHBOR HAMILTONIAN
WITH Z3 × Z3 SYMMETRY

A. Lattice model, symmetries, and phase diagram

We consider the most general translationally invariant
nearest-neighbor Hamiltonian with on-site Z3 × Z3 symme-
try:

H =
∑
i

(JwWiW
†
i+1 + JxXiX

†
i+1 + JyYiY

†
i+1 + JzZiZ

†
i+1)

+ H.c., (22)

whereW and Y are defined as

W = Z†X, Y = ZX. (23)

Any pair of these four operators (W,X,Y,Z) satisfy relations
analogous to Eq. (2). We can write a matrix representation of
these operators (acting on the onsite Hilbert space) as

W =
⎛
⎝0 e4π i/3 0
0 0 e2π i/3

1 0 0

⎞
⎠, X =

⎛
⎝0 1 0
0 0 1
1 0 0

⎞
⎠,

Y =
⎛
⎝0 e2π i/3 0
0 0 e4π i/3

1 0 0

⎞
⎠, Z =

⎛
⎝e2π i/3 0 0

0 e4π i/3 0
0 0 1

⎞
⎠.

(24)

Note that as opposed to the Z2 × Z2 case, the coupling con-
stants, e.g., Jz, do not have to be real.

For various specific choices of coupling constants Ji, the
model has enhanced symmetries. For example, (1) if all the
coupling constants are real, we have an on-site, unitary ZC

2
charge conjugation symmetry,

C =
⎛
⎝0 1 0
1 0 0
0 0 1

⎞
⎠. (25)

This symmetry acts as

C : (Wi,Xi,Yi,Zi ) → (e2π i/3W †
i ,X †

i , e−2π i/3Y †
i ,Z†

i ). (26)

The charge conjugation symmetry enlarges the Z3 × Z3 on-
site symmetry to [Z3 × Z3] � ZC

2 .
(2) Again, if all the coupling constants are real, there is an

inversion symmetry, ZP
2

P : (Wi,Xi,Yi,Zi ) → (W−i,X−i,Y−i,Z−i ). (27)

(3) If Jx is real and Jw = J∗
y , there is a time-reversal sym-

metry, Z�
2 , associated with complex conjugation in the Zi

basis,

� : (Wi,Xi,Yi,Zi ) → (Yi,Xi,Wi,Z
†
i ). (28)

Note that with time-reversal Z�
2 , the Z3 × Z3 on-site symme-

try is expanded to Z3 × [Z3 � Z�
2 ] = Z3 × S3. On the other

hand, the Z2 symmetry generated by C� by itself also en-
hances the Z3 × Z3 on-site symmetry to [Z3 � ZC�

2 ] × Z3 =
S3 × Z3

(4) If three of the coupling constants are equal, e.g.,
Jx = Jy = Jz, the Z3 × Z3 on-site symmetry is enhanced to
Z3 � U(1)2. Here the two U(1) symmetries are associated
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with conservation of the real and imaginary part of Z [i.e.,
Z + Z† and i(Z − Z†)].

(5) If all four of the coupling constants are equal, the Z3 ×
Z3 on-site symmetry is enhanced to PSU(3) = SU(3)/Z3.

The PSU(3) symmetric point has several known integrable
deformations [28–32], however none of these are Z3 × Z3

invariant [and therefore not of the form in Eq. (22)], with the
exception of the particular deformation shown in Eq. (78).

We further note that Ref. [24] has previously reported an
extended gapless phase in a particular PSU(2) invariant defor-
mation of the PSU(3) chain. However, Eq. (22) is not PSU(2)
invariant away from the PSU(3) symmetric point. To see this,
we can write Eq. (22) in terms of the standard SU(2) spin-1
matrices and confirm that the Hamiltonian is not left invariant
under PSU(2) transformations. Therefore our model is quite
different from the one studied in Ref. [24].

We use the DMRGmethod to study this model numerically
[33]. Calculations were performed using the ITensor C++
Library [34]. In our calculations, we have typically kept up
to 3000 states (bond dimension) to ensure convergence and to
keep the truncation error per step around 10−10. To estimate
the central charge, we work with periodic boundary conditions
(PBC). While DMRG is notoriously bad at handling PBCs,
in practice PBCs can give an accurate estimate of the central
charge even for quite small systems (we use Hamiltonians
with open boundary condition to estimate the finite size scal-
ing of energy gaps). In particular, to detect gapless phases
and to calculate their central charge c, we fit the numerically
calculated entanglement entropy to the CFT form [35],

S(L) = c

3
ln

(
N

π
sin

(
πL

N

))
+ a, (29)

where a is a nonuniversal constant, N is the number of sites
and L is the number of sites in the subregion used to calculate
the entanglement entropy. We have confirmed that our results
are consistent with

We observe that a significant portion of the phase dia-
gram around the fully symmetric (antiferromagnetic) point
Jx = Jy = Jw = Jz = |J| is described by a c = 2 CFT. A sam-
ple plot of how this central charge is extracted is given in
Fig. 1. Due to the large number of parameters in Eq. (22),
mapping out the entire phase diagram is impractical. For
concreteness, here we discuss this system in a few specific
cases. It should be emphasized that the c = 2 gapless phase
is seemingly prevalent all around the fully symmetric anti-
ferromagnetic point J = Jx = Jy = Jw = Jz > 0 and is by no
means restricted to the cases considered below.

1. Fully symmetric point, Jx = Jy = Jw = Jz = |J|,
with PSU(3) symmetry

At the fully symmetric point Jx = Jy = Jw = Jz = |J|, the
Hamiltonian above is equivalent to the SU(3) Heisenberg spin
chain (Lai-Sutherland model [36,37]),

H = |J|
∑
i

(WiW
†
i+1 + XiX

†
i+1 + YiY

†
i+1 + ZiZ

†
i+1) + H.c.

= 3|J|
2

∑
i

8∑
j=1

λ
j
i λ

j
i+1, (30)

-0.5 0 0.5 1 1.5 2 2.5 3
1

1.5

2

2.5

3

3.5

FIG. 1. Central charge estimate for a sample point (Jx = Jz = 1
and Jy = Jw = 0) in the critical phase of the Z3 × Z3 model. x here
is ( N

π
sin( πL

N )).

where the λ j are the Gell-Mann matrices generating the defin-
ing representation of SU(3),

λ1 =
⎛
⎝0 1 0
1 0 0
0 0 0

⎞
⎠,

λ2 =
⎛
⎝0 −i 0
i 0 0
0 0 0

⎞
⎠,

λ3 =
⎛
⎝1 0 0
0 −1 0
0 0 0

⎞
⎠,

λ4 =
⎛
⎝0 0 1
0 0 0
1 0 0

⎞
⎠,

λ5 =
⎛
⎝0 0 −i
0 0 0
i 0 0

⎞
⎠,

λ6 =
⎛
⎝0 0 0
0 0 1
0 1 0

⎞
⎠,

λ7 =
⎛
⎝0 0 0
0 0 −i
0 i 0

⎞
⎠,

λ8 = 1√
3

⎛
⎝1 0 0
0 1 0
0 0 −2

⎞
⎠. (31)

This model has two conserved U(1) charges (isospin
and hypercharge) corresponding to the Cartan subalgebra
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FIG. 2. Entanglement entropy of the U(1)2 symmetric model for
different values of Jz (value of Jz in color bar). We have set J = Jw =
Jx = Jy = 1. Here, x is ( N

π
sin( πL

N )). All the lines are parallel and
therefore, central charge seems constant for −|J| < Jz. We have used
open boundary conditions at N = 90.

of SU(3),

Sz =
∑
i

− 2i√
3
(Zi − Z†

i ) =
∑
i

λ3
i ,

Qz = −1

2

∑
i

(Zi + Z†
i ) =

∑
i

√
3

2
λ8
i . (32)

The SU(3) spin chain is Bethe-ansatz solvable [37] and
known to be described by the SU(3)1 WZW CFT in the long
wavelength limit [38–40]. Recently, it has been shown that in
the continuum description, this spin chain can be described
as a sigma model on the flag manifold SU(3)/U(1)2 [41–43].
These works motivated more detailed field theoretical studies
of such sigma models [44–46]. Of particular relevance to this
paper is the observation of Ref. [44] that the anomalies as-
sociated with the PSU(3) symmetric point survive even if the
symmetry of the sigma model is broken down to Z3 × Z3 ⊂
PSU(3).

2. J = Jx = Jy = Jw = ±1 �= Jz with U(1)2 symmetry

Another case of interest is when 3 of the couplings are
equal and real, e.g., J = Jx = Jy = Jw = ±1 �= Jz. In this
case, the PSU(3) symmetry is broken down to Z3 � U(1)2,
such that isospin and hypercharge are still conserved. Based
on numerical results, it appears that for −|J| < Jz this model
is still described by a c = 2 CFT (see Fig. 2). This case,
for |J| < Jz, has also been considered in Ref. [47]. Since the
gapless phase here is smoothly connected to the SU(3)1 CFT,
it is naturally described by a marginal deformation of it.

Here we also present evidence that the spin chain remains
gapless for J = Jx = Jy = Jw and −|J| < Jz. We observe that
the finite size scaling of the gap is consistent with a vanishing
gap in the thermodynamic limit, for both the Jz > |J| and Jz >

−|J| regimes. Figure 3 shows the energy difference between
Sz = 0 and Sz = 1 sectors in this regime. We have used a fit of
the form � = a

N + b
N ln(N ) + c, where a, b, and c are the fitting

0 0.005 0.01 0.015 0.02

0

0.1

0.2

0.3

0.4

FIG. 3. Finite size scaling of the energy difference between Sz =
0 and Sz = 1 sectors of the U(1)2 symmetric model for different val-
ues of Jz at J = Jw = Jx = Jy = 1. We use open boundary condition
and consider systems sizes up to N = 195.

parameters and the logarithmic contribution arises from the
presence of marginal operators in the field theory.

We have also examined the model for Jz as large as 40|J|.
Although we have not studied the finite-size scaling of the gap
in detail, from the entanglement entropy scaling we note that
the model seems to remain gapless. The same conclusion has
been reported by Ref. [47] for Jz as large as 100|J|.

3. Jy = Jw = 0, Z3 × Z3 symmetry

Finally, we consider the case where all the couplings are
real and two of them, e.g., Jy = Jw = 0 are set to zero. In this
case, the PSU(3) symmetry is broken all the way down to the
discrete group Z3 × Z3. In this case, the Hamiltonian can be
written as,

H =
∑
i

|J|(sin(θ )XiX
†
i+1 + cos(θ )ZiZ

†
i+1) + H.c. (33)

This Hamiltonian has been previously studied in Ref. [48]
under the title of “quantum torus chain.” The numerically
calculated phase diagram is plotted in Fig. 4 (the same phase
diagram was found independently in Ref. [48]). The two
phases FMx andFMz are associated with 〈Xi〉 �= 0 and 〈Zi〉 �=
0, respectively. The central charge is estimated by fitting the
entanglement entropy to Eq.(29). As shown in Fig. 4, this
system hosts a large region described by a c = 2 CFT. To
provide further evidence of being gapless, we have studied the
finite size scaling of the energy gap. Figure 5 shows the en-
ergy difference between

∑
i gi mod 3 = 0 and

∑
i gi mod 3 =

1 sectors for two different points θ in the gapless phase. As
shown in Fig. 5 and consistent with the CFT prediction, the
energy gaps appear to flow to zero in the thermodynamic limit
as � = a

N + b
N ln(N ) , where the logarithmic contribution arises

from the presence of marginal operators in the field theory.
The nature of the c = 2 gapless phase was not identified in

Ref. [48] and left as an open question. Here we demonstrate
that this gapless phase can be smoothly deformed into the
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FIG. 4. Phase diagram of the Z3 × Z3 model at Jw = Jy = 0.
Dashed lines correspond to first-order transitions. Solid lines corre-
spond to second-order transitions.

PSU(3) point without encountering any singularities. Let us
consider the one-parameter family of Hamiltonians obtained
by tuning λ from 0 to 1 in

Hλ = λH + (1 − λ)HSU(3), (34)

with H1 = H given by Eq. (33). We observe that the central
charge as estimated from entanglement entropy remains con-
stant for all values of λ (see Fig. 6). Furthermore, to ensure
no first-order transitions occur as we change λ, we have also
calculated the ground state energy (per-site). Sample results
are shown in Fig. 7, showing no sign of a phase transition.

We further numerically calculate the low-energy spectrum
using the periodic uniform matrix product states (puMPS)
[49,50]. Effectiveness of puMPS in extracting the spec-
trum of gapless spin chains was recently demonstrated in
Refs. [51,52]. We use the puMPS software package available
in Ref. [53]. Sample results are shown in Fig. 8. In princi-
ple, these results can be used to extract the entire conformal
spectrum. However, the presence of logarithmic corrections
[47,54] makes extracting the conformal data difficult. Never-
theless, we can verify numerically that the low-lying spectrum
of scaling dimensions changes substantially as λ is tuned.

0 0.01 0.02 0.03

0

0.02

0.04

0.06

0.08

0.1

FIG. 5. Finite size scaling of the energy difference between∑
i gi mod 3 = 0 and

∑
i gi mod 3 = 1 sectors of the quantum torus

chain Eq. (33) in the gapless regime. We use open boundary condi-
tion and consider systems sizes up to N = 150.

1 1.5 2 2.5 3 3.5 4
1

1.2

1.4
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2.2

0
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIG. 6. Entanglement entropy for different values of λ defined in
Eq. (34) at θ = π/4 (value of λ in color bar). Here, x is ( N

π
sin( πL

N )).
All the lines are parallel and therefore, central charge is constant as
function of λ. We have used open boundary conditions at N = 120.

Although inconclusive this observation suggests that the uni-
versality class changes as a function of λ.

Therefore despite having the same central charge, the CFTs
that emerge from different values of λ have manifestly differ-
ent spectra/scaling dimensions and are therefore not identical.
They are adiabatically connected to SU(3)1, and so they can
be described by marginal deformations of SU(3)1. Interest-
ingly, all such CFTs have an emergent U(1)2 symmetry, which
implies that even though the microscopic symmetry is bro-
ken down to the discrete group Z3 × Z3, in the low-energy
limit the system hosts two emergent conserved U(1) charges
(isospin and hypercharge) throughout the critical phase.

From the puMPS results, we further observe that through-
out the gapless phase of Eq. (22), there are three soft modes
present at k = 0,±2π/3. This provides evidence that the
microscopic translation symmetry acts as an internal Z3 in
the low-energy effective theory and is in agreement with the
bosonization results derived below.

0 0.2 0.4 0.6 0.8 1

-3

-2.5

-2

-1.5

FIG. 7. Ground state energy per site as a function of λ defined
in Eq. (34) at θ = π/4. Here we use open boundary conditions at
N = 120.
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FIG. 8. Spectrum (energy per site) as a function of momentum
at Jx = Jz = 1 and Jy = Jw = 0. Here we use periodic boundary
conditions atN = 30. Note that the gap closes around k = 0, ±2π/3.

B. Two-component Luttinger liquid theory

We now proceed to the explicit form of the low-energy
effective action for the gapless phase of Eq. (22). The most
general form of the fixed point Lagrangian density of a c = 2
CFT that is smoothly connected to the SU(3)1 WZW theory
is given by

L = 1

2π
[Gi j (∂tϕ

i(x, t )∂tϕ
j (x, t ) − ∂xϕ

i(x, t )∂xϕ
j (x, t ))

+ Bi j (∂tϕ
i(x, t )∂xϕ

j (x, t ) − ∂xϕ
i(x, t )∂tϕ

j (x, t ))],
(35)

where ϕi ∼ ϕi + 2π . We consider space to be a circle, so
x ∼ x + 2π . G and B are 2 × 2 symmetric and antisymmetric
matrices, respectively. We note that a symmetric tensor con-
tribution to B violates time-reversal and inversion symmetry
and consequently is not considered; as we further discuss
below, time-reversal and inversion each fix the antisymmetric
B matrix to a fixed value, which can be nonzero due to T
duality. Furthermore, the on-site Z3 × Z3 symmetry fixes G
up to an overall factor; any additional term ∝ Gi j∂xϕ

i∂xϕ
j can

then be absorbed into a renormalization of Gi j by rescaling
space and time accordingly to change the overall velocity
of excitations. Interestingly, the symmetries have enforced
that the Lagrangian be conformally invariant; therefore the
velocity of the two modes, for example, are equal.

This action gives the canonical momentum density,

π i(x, t ) = δL
δ∂tϕi

= 1

2π
(2Gi j∂tϕ

j (x, t ) + 2Bi j∂xϕ
j (x, t )).

(36)

To diagonalize the theory, we mode expand the fields as

ϕi(x, t ) = ϕi
0 + vi

0t + mix +
∑
l �=0

ϕi
l (t )e

ilx, (37)

with mi, l ∈ Z. Here ϕi
0 and vi

0 are constants, independent of
x and t .

The compactness of ϕ implies that the momentum zero
mode is quantized to integer values:

pi0 =
∫ 2π

0
dxπ i = ni ∈ Z. (38)

Using this relation we find

vi
0 = 1

2G
−1
i j n

j − G−1
i j B jkm

k . (39)

The spectrum of this model is given by a zero mode
Hamiltonian, which gives the scaling dimensions of the
conformal primaries, combined with additional harmonic os-
cillator modes on top of them. Here we are only interested
in the conformal primaries/scaling dimensions and ergo we
safely set all harmonic modes ϕl = 0.

The zero mode Hamiltonian can be written in terms of the
integer vectors nT = (n1, n2) and mT = (m1,m2):

H0 = 1

2
(nT mT )

(
1
2G

−1 −G−1B
BG−1 2(G − BG−1B)

)(
n
m

)

= 1

2
(nT mT )G

(
n
m

)
, (40)

and

G−1 =
(
2(G − BG−1B) BG−1

−G−1B 1
2G

−1

)
. (41)

The Hamiltonian above is manifestly invariant under
(n,m) → (m, n) and G → G−1. Moreover, discrete shifts
B → B + 1

2N and (n,m) → (n + Nm,m), where N is an an-
tisymmetric integer matrix, also leave the spectrum invariant.
These symmetries together generate the nonAbelian T-duality
group O(3, 3,Z), which generalizes the Abelian R → 1

2R du-
ality of the c = 1 Luttinger liquids [55,56].

To see the decomposition of the Hamiltonian into left and
right moving parts, it is useful to write the field ϕi in terms of
holomorphic and antiholomorphic parts,

ϕi(x, t ) = ϕi
L(x + t ) + ϕi

R(x − t ). (42)

For the zero modes, we have

ϕi
0,L(x + t ) = ϕi

0,L + piL(x + t ),

ϕi
0,R(x − t ) = ϕi

0,R + piR(x − t ). (43)

Here we have defined piL/R,

piL + piR = mi and piL − piR = vi
0. (44)

These variables give another form of the zero mode Hamilto-
nian,

1
2H0 = piLGi j p

j
L + piRGi j p

j
R. (45)

Equation (45) can be used to extract the left/right scaling
dimension of primary operators.

The conventional (2π periodic) Luttinger variables can be
defined as

φi(x) = ϕi(x) = ϕi
L(x) + ϕi

R(x),

θ i(x) = 2(G + B)i jϕ
j
L(x) − 2(G − B)i jϕ

j
R(x). (46)

Note that these operators are conjugate to each other, that is,

1

2π
∂xθ

i = π i. (47)

The Luttinger variables are defined such that

φi(x + 2π ) = φi(x) + 2πmi,

θ i(x + 2π ) = θ i(x) + 2πni. (48)
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At the SU(3)1 symmetric point, we can choose [55]

GSU(3) = 1

4

(
2 1
1 2

)
and BSU(3) = 1

4

(
0 −1
1 0

)
. (49)

C. Symmetry actions in Luttinger liquid theory

To obtain the microscopic action of the symmetries we
follow a method similar to Refs. [40,57,58]. We assume that
the SU(3) invariant spin chain can be obtained from a large
U limit of a 1/3 filled SU(3) Hubbard model and that the
symmetry actions can therefore be read off from (perturba-
tive) Abelian bosonization of the fermions of the Hubbard
model. We then use the same symmetry actions throughout
the moduli space of the c = 2 Luttinger liquid. Details of this
procedure are given in the Appendix. Here we only quote the
results.

The Zn generator X acts as

X : φi → Mi jφ
j,

θ i → (MT )−1
i j θ j, (50)

for M = (−1 −1
1 0 ). Alternatively, we can define an auxiliary

field ϕ3
L/R such that

ϕ1
L + ϕ2

L + ϕ3
L = 0 (51)

and a similar relation for ϕR. Then X acts as a cyclic permuta-
tion ϕ3 → ϕ2 → ϕ1.

The action of the Z3 symmetry generator Z is

Z : θα → θα + 2πα/3,

φi → φi. (52)

As discussed earlier, at special points theZ3 × Z3 is enhanced
to Z3 � U(1)2. This microscopic U(1)2 symmetry acts as

U (1)2 : θα → θα + cα,

φi → φi, (53)

where cα is an arbitrary real number.
To be consistent with the Z3 × Z3 symmetry, the G and B

matrices must satisfy

MTGM = G, MTBM = B. (54)

It is straightforward to check that in fact the most general G
and B matrices consistent with the Z3 × Z3 symmetry satisfy
G ∝ GSU(3) and B ∝ BSU(3). This means that by requiring
Z3 × Z3 symmetry the G and B matrices can be written as

G = g

4

(
2 1
1 2

)
,

B = b

4

(
0 −1
1 0

)
. (55)

Translation by one site Tx acts as

Tx : θα → θα + 2πα/3,

φα → φα + 2π/3. (56)

It is now manifest that translation by a single site acts as
an emergent Z3 internal symmetry in the low-energy theory.
This Z3 symmetry associated with translations may itself be

anomalous [19,20,59,60], although we do not investigate this
here.

We now discuss the discrete C, P, and � symmetries. In-
version P acts like (ϕL → −ϕR),

P : θ i → θ i − 4BSU(3)
i j φ j,

φi → −φi. (57)

Time reversal (complex conjugation in Z basis) acts as (ϕL →
ϕR),

� : θ i → −θ i + 4BSU(3)
i j φ j,

φi → φi. (58)

Finally, charge-conjugation acts as (ϕ1 → ϕ2),

C : (θ1, θ2) → (θ2 − φ1, θ1 + φ2),

(φ1, φ2) → (φ2, φ1). (59)

The charge-conjugation, inversion, and time-reversal sym-
metries flip the sign of the second term in Eq. (35), effectively
taking B → −B. At the SU(3) point C,P,� are good symme-
tries, since under B → −B, the spectrum is invariant (4BSU(3)

is an integer valued matrix). As we deviate from the SU(3)
point, these symmetries force the B matrix to be fixed B =
BSU(3) (i.e., b = 1). Therefore the most general G and Bmatri-
ces consistent with Z3 × Z3 and C,P,� that are adiabatically
connected to the SU(3) point are

G = g

4

(
2 1
1 2

)
and B = 1

4

(
0 −1
1 0

)
. (60)

The moduli space of Z3 × Z3 and C,P,� symmetric c = 2
Luttinger liquids is therefore one dimensional and character-
ized by a single real parameter g. We remark that in principle it
is possible to also have a symmetric theory with a vanishing B
matrix. However, this theory is not adiabatically connected to
the SU(3) point and we do not consider it here. It is remarkable
that theZ3 × Z3 and C, P, and � imply that the Luttinger liq-
uid is conformally invariant, since multicomponent Luttinger
liquids generically need not be conformally invariant.

Finally, we note that since the charge conjugation symme-
try interchanges φ1 and φ2, it alone is sufficient to force the
velocity of the two modes to be the same.

D. LSM anomaly of two-component Luttinger liquid

Similar to theZ2 × Z2 case, to directly see the mixed LSM
anomaly, we need to insert a unit of translational symmetry
flux through the system. Inserting a unit of Tx flux changes
Eq. (48) according to

φα (x + 2π ) = φα (x) + 2πmα + 2π/3,

θα (x + 2π ) = θα (x) + 2πnα + 2πα/3. (61)

This can be absorbed into a shift of ni and mi,

mα → mα + 1

3
and nα → nα + α

3
. (62)

Plugging n,m into the zero mode Hamiltonian (40) gives
the zero mode energies of the spin chain with 3n + 1 sites. It
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is easy to verify that the six states

{n1 = +1/3, n2 = −1/3,m1 = −2/3,m2 = +1/3},
{n1 = +1/3, n2 = −1/3,m1 = +1/3,m2 = −2/3},
{n1 = −2/3, n2 = −1/3,m1 = +1/3,m2 = +1/3},
{n1 = +1/3, n2 = +2/3,m1 = +1/3,m2 = +1/3},
{n1 = −2/3, n2 = −1/3,m1 = −2/3,m2 = +1/3},
{n1 = +1/3, n2 = +2/3,m1 = +1/3,m2 = −2/3}, (63)

are degenerate ground states at energy E = 1/3, which
matches the known results for SU(3)1 WZW [61]. This degen-
eracy is expected to break to two sets of threefold degenerate
states in finite-size systems by irrelevant or marginally irrel-
evant operators that break SU(3)L×SU(3)R

Z3
→ PSU(3). This is a

direct manifestation of the mixed LSM anomaly. A similar
relation also holds for 3n + 2 sites.

Moreover, it should be emphasized that the threefold
degeneracy is guaranteed as long as G ∝ GSU(3). That
is, all Z3 × Z3 symmetric points have the same mixed
LSM anomaly. To see this note that for G ∝ GSU(3), the
zero mode Hamiltonian (40) is invariant under the Z3

action (
n
m

)
→

(
(MT )−1 0

0 M

)(
n
m

)
. (64)

Unless the total charge (n,m) = 0, the action above generates
three different degenerate ground states. Therefore, when the
zero charge state is forbidden by having 3n ± 1 sites on the
lattice or equivalently having nontrivial Tx flux in the field
theory, the ground state is at least threefold degenerate. We
note that this calculation is independent of the value of B, as
long as the Z3 × Z3 × Ztrans symmetry is preserved.

V. STABILITY OF TWO-COMPONENT
LUTTINGER LIQUID

The most generic perturbations that can be added to the
fixed point action and that can potentially destabilize the crit-
ical phase consist of superpositions of vertex operators

Omn = exp(i(miθ i + niφi )). (65)

Note that P� is an antiunitary operator that takes Omn →
Omn. Therefore P� allows only the cosine combinations to
appear

Omn + O†
mn ∝ cos(miθ i + niφi ). (66)

The scaling dimension of the operator above is given by
Eq. (40) [right/left scaling dimension are also given in
Eq. (45)].

The most relevant operators that are consistent with all of
the symmetries are

V1 = cos(φ1 − φ2) + cos(2φ2 + φ1) + cos(2φ1 + φ2), (67)

V2 = cos(θ1 + θ2) + cos(2θ2 − θ1) + cos(2θ1 − θ2)

+ cos(φ1− φ2− θ1− θ2)+ cos(φ1+2φ2 + 2θ1 − θ2)

+ cos(2φ1 + φ2 + θ1 − 2θ2),

V3 = cos[2(θ1 + θ2) + (φ2 − φ1))]

+ terms related by the action of X symmetry. (68)

V1 has scaling dimension 2/g and is relevant for g > 1. V2 has
scaling dimension 1+3g2

2g and is relevant for 1
3 < g < 1. At the

PSU(3) symmetric point g = 1, V1, and V2 are marginal. V3
has scaling dimension 6g and is therefore relevant for 0 < g <

1/3, where V1 and V2 are irrelevant. At the g = 1 point, V3 has
scaling dimension 6 and is strongly irrelevant.

Therefore, away from the point g = 1, a relevant
symmetry-allowed operator is always present. This naively
suggests that unless additional symmetries can be enforced
that could rule out these operators, the critical phase of these
systems should be unstable. If the RG flow is to a gapped
state, on general grounds one also expects an energy gap of
order 1 in units set by the microscopic energy scales, unless
the system is fine-tuned to be close to the gapless SU(3) point.
However this deduction appears to be in direct contradiction
with the numerical results presented here and obtained by
other groups [47,48].

The numerical results strongly suggest that these crit-
ical phases are in fact stable—at least to an excellent
approximation—for a wide range of microscopic parameters
of the nearest-neighbor Hamiltonian. For example, for the
quantum torus chain Hamiltonian, Eq. (33), for a large region
of the phase diagram, we find a gapless phase with c = 2 (see
Fig. 5). Alternatively, starting at the PSU(3) invariant point,
we can increase Jz to be arbitrarily large, with the gapless na-
ture of the system appearing to persist throughout. A potential
way to understand this behavior is to assume the perturbations
are only weakly relevant so that the numerically accessible
system sizes are smaller than the correlation length. However,
since the numerical parameter ranges of order infinity in di-
mensionless units even if the perturbations are only weakly
relevant, by changing the parameter enough, we expect to be
able to tune the system such the correlation length becomes
smaller than the system size (unless one also has the unusual
scenario where the bare coupling for the relevant operators
always remains small throughout these large changes of the
microscopic parameters).

In the next sections, we provide evidence that the g > 1
regime of the Luttinger liquid can be accessed when Jw =
Jx = Jy = J and Jz > |J|, and that the g < 1 regime can be
accessed when Jw = Jx = Jy = J and −|J| < Jz < |J|. Note
that in these parameter regimes, the PSU(3) symmetry is bro-
ken to Z3 � U(1)2. We thus provide numerical and analytical
evidence that despite the apparent existence of symmetry-
allowed relevant operators in the field theory, the critical phase
is still stable, at least to an excellent approximation, for a wide
range of parameters of the microscopic Hamiltonian. At its
core, this surprising result can be related to the fact that the pa-
rameters of the spin chain Hamiltonian are associated with mi-
croscopic terms that are frustrated, in the sense that the ground
state subspace associated with them is exponentially large.

A. Stability of the critical phase for g > 1

In the regime g > 1, the most relevant operator is given by

V1 = cos(φ1 − φ2) + cos(2φ2 + φ1) + cos(2φ1 + φ2).
(69)

045151-10



ANOMALIES AND UNUSUAL STABILITY … PHYSICAL REVIEW B 104, 045151 (2021)

The other operators introduced in Eq. (67) are irrelevant in
this regime.

If V1 enters the Hamiltonian with a negative sign, at strong
coupling it can pin both its arguments φ1 = φ2 = 0,± 2π

3 ,
giving rise to gapped phase with threefold ground state de-
generacy. However, if V1 comes with a positive sign, all three
of the cosine operators cannot be simultaneously minimized.
Yet, there are 6 minima φ1 = 0,± 2π

3 , φ2 = φ1 ± 2π
3 , favoring

a period-3 antiferromagnetic pattern · · · g1g2g3g1g2g3 · · · or
· · · g3g2g1g3g2g1 · · · . Therefore it is natural to expect that if
the CFT is perturbed by this relevant operator, the RG flow
will be towards a gapped symmetry-breaking phase.

Below we provide a series of arguments to support the
claim that the regime g > 1 can be accessed in the spin chain
Hamiltonian by setting Jw = Jx = Jy = J and Jz > |J|. This
is surprising since the numerics indicate that this region of the
phase diagram is gapless, despite the fact that V1 is relevant
and symmetry-allowed in this regime.

First, that g > 1 can be accessed in the above stated regime
can be seen by considering the

∑
i ZiZ

†
i+1 + Z†

i Zi+1 term in the
spin chain Hamiltonian (22), which can be expanded in terms
of the fields at long wavelengths as

∑
i

ZiZ
†
i+1 + Z†

i Zi+1 =
∫

dx[aGi j∂xφ
i∂xφ

j + bV1 + · · · ],

(70)

where a and b are in general functions of the couplings Ji
and the · · · indicate less relevant operators. Note that the
above expansion can be deduced purely on the basis of sym-
metry principles; V2 and V3 do not appear in the expansion
above as they break the U(1)2 symmetry. ∂xθ dependent terms
also do not appear as they violate the local charge conserva-
tion symmetry (on-site charge is conserved not just global
charge) θα (x) → θα (x) + f α (x) respected by

∑
i ZiZ

†
i+1 +

Z†
i Zi+1. One can check that a positive a effectively increases g

while also renormalizing the velocity of the excitations, while
negative a decreases g.

The bosonization results (see Appendix) imply that a
should be positive near the SU(3) point, which therefore sug-
gests that increasing Jz should take the field theory to the
g > 1 parameter regime. We note that the fact that g > 1 in
the regime Jw = Jx = Jy = J and Jz > |J| is also in agreement
with results of Ref. [48], where the scaling dimensions were
numerically calculated and it was argued that the system is
described by the two-component Luttinger liquid with g > 1.
However, this is a highly nontrivial result, because Eq. (70)
would naively suggest that perturbing by a small positive
δH = α

∑
i(ZiZ

†
i+1 + Z†

i Zi+1) should trigger an RG flow con-
trolled by the relevant operator V1, and thus would gap the
system. Reference [48] did not consider the presence of this
relevant operator. It is thus worth further confirming that in
this regime, the spin chain is indeed described by g > 1, which
we do in the subsequent subsections.

If the spin chain is indeed described by g > 1 in the regime
Jw = Jx = Jy = J and Jz > |J|, the gaplessness (or near gap-
lessness) of the system for an essentially infinite range of
Jz/|J| is extremely surprising. One possibility is that b ≈ 0
for a wide range of Ji, in Eq. (70). As discussed in Appendix,
the bosonization at the SU(3) point is actually ambiguous,

and there is a way of carrying out the bosonization in which
b = 0 at the SU(3) point. In principle there could be additional
conserved quantities, or the model could even be integrable,
away from the SU(3) point which could potentially explain
why b = 0 throughout a large region of the phase diagram. On
the other hand, it could be the case that accidentally b ≈ 0 for
a large region of the phase diagram, although this is unusual
from the perspective of the field theory.

Equation (70) also contains a tower of higher order ir-
relevant operators in the expansion and also breaks Lorentz
symmetry. It is therefore not a priori clear what the result
of the RG flow would be when the system is perturbed in
this direction, even for nonzero b. Additionally, because the
perturbation breaks Lorentz invariance, the c theorem cannot
be used to anticipate that the central charge must necessarily
decrease under the RG flow. Therefore, in principle, the sys-
tem can remain gapless and stay at the same central charge for
nonzero b, although this would be surprising.

We note that the microscopic operator
∑

i(ZiZ
†
i+1 +

Z†
i Zi+1) is frustrated. The ground state of the

∑
i(ZiZ

†
i+1 +

Z†
i Zi+1) term is given by all spin configurations |{gi}〉 where

no nearest-neighbor spins are the same gi �= gi+1. In the n = 2
case, this ground state subspace would have been twofold
degenerate. However, for n = 3, this ground state subspace
is exponentially large, as there are dg = 3 × 2N−1 such states.
The factor of 2N−1 in the degeneracy can be seen to arise from
the existence of a U(2)N−1 symmetry of the term

∑
i(ZiZ

†
i+1 +

Z†
i Zi+1). One can verify that associated with each bond (i, i +

1), there is a U(2) group of unitary transformations that com-
mute with

∑
i(ZiZ

†
i+1 + Z†

i Zi+1). The unitaries associated with
each bond are highly nonlocal in terms of the original spin
variables.

The analog of this lattice frustration is missing from the
leading terms in the field theory expansion [Eq. (70)]. It is
clear then that the higher order terms in Eq. (70) are neces-
sarily important in determining the effect of a perturbation by
(ZiZ

†
i+1 + Z†

i Zi+1). Moreover, it is not clear what the conse-
quences are of the U(2)N−1 symmetry for the long wavelength
expansion of

∑
i(ZiZ

†
i+1 + Z†

i Zi+1), and in particular whether
it would force b = 0 in Eq. (70).

To help establish that we are in the g > 1 regime, below
we provide numerical evidence that second neighbor pertur-
bations and also inversion symmetry breaking perturbations
induce perturbations to the field theory that are relevant for
g > 1.

1. Evidence for relevance of second neighbor perturbations

Let us consider adding second nearest-neighbor terms of
the form

∑
i ZiZ

†
i+2 + Z†

i Zi+2 to the Hamiltonian. In the con-
tinuum description, we have

∑
i

[Jz(ZiZ
†
i+1 + Z†

i Zi+1) + J2z(ZiZ
†
i+2 + Z†

i Zi+2)]

=
∫

dx[ãGi j∂xφ
i∂xφ

j + b̃V1 + · · · ], (71)

where Jz and J2z are positive constants, and again ã and
b̃ are, in principle, functions of the microscopic parame-
ters Ji. We argue that ã is positive, which keeps us in
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FIG. 9. Finite size scaling of the energy difference between Sz = 0 and Sz = 1 sectors in the Jz > |J| gapless regime at J = Jw = Jx = Jy =
1. We use open boundary condition and consider systems sizes up to N = 195. We find that a nonzero second nearest-neighbor term induces a
finite gap in the thermodynamic limit. Subfigure (b) is the zoomed-in version of subfigure (a).

the g > 1 regime, which is reproduced from the bosoniza-
tion results of the Appendix. The relevant operator V1 (with
positive b̃ as expected from the bosonization) again favors
a period-3 antiferromagnetic pattern · · · g1g2g3g1g2g3 · · · or
· · · g3g2g1g3g2g1 · · · . However, in this case, the microscopic
term also favors the same state. That is, the presence of
the second nearest-neighbor term removes the frustration and
leads to an agreement between the microscopic and the con-
tinuum descriptions. In this case, we expect that a small
perturbation involving Jz and J2z together is expected to gap
the system. To check the above hypothesis numerically, we
have simulated the Hamiltonian in presence of the second
nearest-neighbor term,

H =
∑
i

(WiW
†
i+1 + XiX

†
i+1 + YiY

†
i+1

+ JzZiZ
†
i+1 + J2zZiZ

†
i+2) + H.c. (72)

Figures 9(a) and 9(b) show the energy difference between
Sz = 0 and Sz = 1 sectors in this regime. Consistent with our
expectation, we find that (at least a strong enough) second
nearest-neighbor term induces a finite gap in the thermody-
namic limit. By choosing a large enough J2z, we can make
this gap arbitrarily large.

We note that the gap of Eq. (72) provides further evi-
dence that the spin chain is in the regime g > 1. For g <

1, V1 is irrelevant, and therefore one would not expect that
adding a small second neighbor J2z term would gap the
system.

2. Relevant inversion and charge-conjugation symmetry-breaking
perturbations from imaginary Jz

Let us further consider adding a symmetry-breaking imag-
inary part to the Jz term,

i
∑
i

(ZiZ
†
i+1 − Z†

i Zi+1). (73)

This term breaks both inversion and charge conjugation sym-
metries. As opposed to the term with real Jz, the ground

state of this term favors a period-3 antiferromagnetic pattern
(· · · g1g2g3g1g2g3 · · · or · · · g3g2g1g3g2g1 · · · depending on
the sign of the term above) and has no exponential ground
state degeneracy. In the effective field theory, this term gener-
ates the operator

Ṽ1 = sin(φ1 − φ2) + sin(2φ2 + φ1) + sin(−2φ1 − φ2). (74)

Similar to V1, Ṽ1 also has scaling dimension 2/g and is there-
fore relevant in the g > 1 regime. Since the corresponding
microscopic term has no exponential degeneracy, we expect
this term to induce a finite gap. To test this numerically, we
have simulated the spin chain with Hamiltonian (Jz > 1),

H =
∑
i

(WiW
†
i+1 + XiX

†
i+1 + YiY

†
i+1

+ Jz(1 + iγ )ZiZ
†
i+1) + H.c. (75)

As expected, we find that for γ < 0 the system is in a
gapped phase with a period-3 antiferromagnetic ground state,∑

j

e2π i j/3〈Zj〉 �= 0 and
∑
j

e−2π i j/3〈Zj〉 = 0. (76)

For γ > 0, the system is in a different gapped antiferromag-
netic state,∑

j

e2π i j/3〈Zj〉 = 0 and
∑
j

e−2π i j/3〈Zj〉 �= 0. (77)

This further corroborates the fact that the field theory is in
the g > 1 regime; otherwise this would be an irrelevant per-
turbation and should not gap the system for small values of
γ . In Sec. VB, we show that in the regime that we expect
g < 1, adding the γ �= 0 term indeed does not gap the system,
as expected (see Fig. 12).

The two phases associated with γ < 0 and γ > 0 are sym-
metric with respect to two different symmetry subgroups XTx
and X †Tx. Sample numerical results for the order parameters
are shown in Fig. 10(a). Within this picture, the inversion-
symmetric γ = 0 point is the critical point separating these
two gapped phases. To confirm that this phase transition is not
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FIG. 10. Order parameter and ground state energy as function of γ [defined in Eq. (75)] at J = Jw = Jx = Jy = 1 and Jz = 4. Here we
have used open boundary conditions and set the system size N = 150. The results are consistent with a continuous phase transition.

first order, we have also calculated the ground state energy
as a function of γ . Results of this calculation are shown in
Fig. 10(b), showing clear sign of a continuous phase transi-
tion.

To check consistency, we add a second nearest-neighbor
term and study the same phase transition with a nonzero J2z.
Again we find that for γ < 0 and γ > 0 the system is in
different gapped phases (g1g2g3 and g3g2g1). However, the
phase transition at the γ = 0 point is now first order with a
sixfold ground state degeneracy. In Figs. 11(a) and 11(b), we
have plotted the ground state energy as a function of γ for two
different values of J2z �= 0, showing clear signs of a first-order
phase transition.

We further remark that this phase transition is also present
in a Z3 × Z3 symmetric integrable deformation of the SU(3)
spin chain,

H =
∑
i

(
WiW

†
i+1 + XiX

†
i+1 + YiY

†
i+1

+
(
cosh(η) + i√

3
sinh(η)

)
ZiZ

†
i+1

)
+ H.c. (78)

This spin chain has been exactly solved using Bethe-ansatz
methods [28,29,62,63]. In agreement with our results, this
system is gapped for η > 0 and η < 0 corresponding to the
two gapped phases discussed above. The gap closes at the
PSU(3) symmetric critical point separating the two phases
η = 0. The continuous phase transitions discussed in this sec-
tion, which occur in the regime Jz > |J| at γ = 0 and away
from the PSU(3) symmetric point, are continuously connected
to this η = 0 phase transition.

3. Frustration and constrained Hamiltonians

To help in understanding the effect of the frustration as-
sociated with Jz, we can consider the limit Jz/|J| → ∞. In
this limit, the Jz term acts as a projection into its ground state
subspace, forbidding neighboring spins from pointing in the
same direction, gi �= gi+1. Note that despite being exponen-
tially large, this subspace has no local tensor product structure.
This situation is somewhat similar to the Rydberg blockade
effect in quantum simulators made of cold Rydberg atoms
where two neighboring sites cannot both be excited [64–66].
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FIG. 11. Ground state energy as function of γ with nonzero second nearest-neighbor terms J2z = 2 and J2z = 1 at J = Jw = Jx = Jy = 1
and Jz = 4. Here we have used open boundary conditions and set the system size N = 150. The results are consistent with a first-order phase
transition
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In the Jw = Jx = Jy = J and Jz/|J| → ∞ limit, we can
write an effective Hamiltonian,

He = P0

∑
i

Pi,i+1P0, (79)

where P0 is projection operator into the ground state subspace
of the Jz term, and Pi,i+1 is the permutation operator that swaps
the state at i and i + 1. The quantum torus chain, Eq. (33), is
also described by Eq. (79) in the θ close to zero regime [47].
From the numerical results of the quantum torus chain, we can
thus conclude that the projected Hamiltonian, Eq. (79), also
appears to be described by a c = 2 CFT. In other words, the
nearest-neighbor spin chain with parameters Jw = Jx = Jy =
J remains gapless in the limit Jz/|J| → ∞.

We remark that a similar effect has been found in con-
strained XXZ spin chains. That is, XXZ spin chains with a
hardcore constraint that forbids two spin ups in two neigh-
boring sites. This problem has been exactly solved using
Bethe-ansatz methods in Ref. [67]. There, it was found that the
system remains gapless and that the effect of the constraint is
to simply renormalize the Luttinger parameter and the Fermi
velocity. Using a similar idea, Ref. [68] was able to identify
microscopic models without a U(1) symmetry where a c = 1
Luttinger liquid phase with an emergent U(1) charge is stabi-
lized.

Therefore, since the Jz term has an exponentially large
degeneracy by itself, its effect on the low-energy physics
is not clear. Nevertheless the numerical results of the spin
chain for finite values of J , together with the extreme limiting
case Jz/|J| → ∞ of Eq. (79), suggest that the system indeed
remains gapless and is adiabatically connected to the PSU(3)
invariant point, which is described by the SU(3)1 WZW CFT.

Finally we remark that for large enough values of g, other
cosine operators, for example,

cos(3φ1) + cos(3φ2) + cos(3φ1 + 3φ2), (80)

with scaling dimension 6/g, will also become relevant, al-
though still less relevant than V1. Nevertheless, the arguments
above indicate that the spin chain does remain gapless in the
Jz/|J| → ∞ limit.

B. Stability of the critical phase for 1/3 < g < 1

Here we first present evidence that the regime g < 1 can
be accessed by setting −J < Jz < J , with Jx = Jy = Jw =
J . As discussed in the last section, this is expected from
the bosonization of the Z†

i Zi+1 + H.c. term near the PSU(3)
symmetric point. Subsequently, we provide evidence that the
gapless nature of the spin chain continues to be stable as the
U(1)2 global symmetry is broken by further perturbing Jx
away from Jy = Jw.

1. Irrelevant P and C symmetry breaking term from imaginary Jz

As discussed in the previous section, we expect that Ṽ1
would be generated by an imaginary Jz term [γ �= 0 in
Eq. (75)], which breaks inversion, and charge-conjugation
symmetry. Since Ṽ1 has scaling dimension 2/g, it is relevant
for g > 1 but irrelevant for g < 1. Therefore, in the g < 1
regime, we expect that the system would remain gapless in the
presence of a small γ �= 0 term. We have indeed numerically
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1
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FIG. 12. Finite size scaling of the energy difference between
Sz = 0 and Sz = 1 sectors in the −|J| < Jz < |J| gapless regime at
J = Jw = Jx = Jy = 1. We use open boundary condition and con-
sider systems sizes up to N = 195. One data set in |J| < Jz regime is
included for comparison purposes.

confirmed that adding the γ �= 0 term [Eq. (75)] indeed does
not gap the system. Specifically, we observed that the finite-
size scaling of the energy gap is consistent with a vanishing
gap in the thermodynamic limit. Figure 12 shows the energy
difference between Sz = 0 and Sz = 1 sectors in this regime.
We have used a fit of the form � = a

N + b
N ln(N ) + c, where the

logarithmic corrections are induced by marginal operators.

2. Relevant P, �, and C symmetry breaking term
from imaginary Jx

Let us now consider adding a symmetry-breaking imagi-
nary part to the Jx term,

i
∑
i

(XiX
†
i+1 − X †

i Xi+1). (81)

This term is odd under time reversal, inversion and charge
conjugation symmetries. The ground state of this term favors
two different period-3 antiferromagnetic patterns depending
on the sign of the term above, and is thus not frustrated.
Therefore we expect this term to destabilize the critical phase.

Based on symmetry properties, this term can generate the
operator

Ṽ2 = cos(θ1 + θ2) + cos(2θ2 − θ1) + cos(2θ1 − θ2)

− cos(φ1−φ2− θ1− θ2) − cos(φ1+ 2φ2 + 2θ1 − θ2)

− cos(2φ1 + φ2 + θ1 − 2θ2), (82)

which is a relevant perturbation for 1/3 < g < 1 in the effec-
tive field theory.

Therefore we expect that if the regime −J < Jz < J , with
Jx = Jy = Jw = J is described by the 1/3 < g < 1 regime of
the Luttinger liquid theory, then a small imaginary part to Jx
should gap the system. To test our hypothesis numerically, we
have simulated the spin chain with Hamiltonian

H =
∑
i

(JwWiW
†
i+1 + JyYiY

†
i+1 + JzZiZ

†
i+1

+ Jx(1 + iγx )XiX
†
i+1) + H.c. (83)
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FIG. 13. Order parameter and ground state energy as function of γx (defined in Eq. (83)). Here we have set Jw = Jx = Jy = 1 and Jz = 0.1.
The results are consistent with a continuous phase transition, with a gapped ordered phase developing for small nonzero γx . We have verified
that the size of the region near γx = 0 where both order parameters are approximately zero itself decreases as the system size is increased,
which helps provide evidence that indeed a small γx does lead the system to spontaneously order and develop a gap.

As expected, we find that for γx �= 0 the system is in one of
two gapped phases with a period-3 antiferromagnetic ground
state depending on the sign of γx. In Figs. 13(a) and 13(b),
we have plotted the order parameters and the ground state
energy as a function of γx. This also shows clear signs of a
continuous phase transition, which further indicates that the
system is gapless when γx = 0.

3. Explicitly breaking U(1)2 and persistence of gapless phase

An obvious way to guarantee the stability of the critical
phase in the g < 1 regime is to enforce the microscopic U(1)2

symmetry. In this case, V2 and V3 are forbidden and the entire
g < 1 phase is obviously stable. However, the system does not
host emergent charges, as the U(1)2 charges are microscopi-
cally conserved.

We would also like to understand the fate of the critical
phase without the microscopic U(1)2 symmetry. Thus we con-
sider perturbing the model with Jw = Jx = Jy = J and −|J| <

Jz < |J| by tuning Jx away from Jw = Jy = J . Based on sym-
metry arguments, we observe that theWiW

†
i+1 + YiY

†
i+1 + H.c.

and XiX
†
i+1 + H.c. operators, each of which individually break

the microscopic U(1)2 symmetry, can generate V2. Therefore
naively the field theory would suggest that tuning Jx away
from Jw = Jy = J in the regime Jz < |J| would induce the
relevant V2 perturbation and destabilize the gapless phase.

Next, we note that the XiX
†
i+1 + 3 term is frustrated, in

that it has an exponentially large ground state degeneracy.
Thus, by analogy with the analysis of the preceding section,
we actually expect that tuning Jx away from Jw = Jy = J
will also not destabilize the critical phase. Similarly, the
WiW

†
i+1 + YiY

†
i+1 + H.c. term is itself gapless as it corresponds

to the quantum torus chain [Eq. (33)] at θ = π/4. We thus
expect that the system remains gapless as Jx and Jw = Jy are
tuned away from each other; this is numerically supported
by the gapless nature of the system along the one-parameter
flow described by Eq. (34) and in the quantum torus chain
[Eq. (33)]. Specifically, the numerical study of Eq. (34) shows
that if we start with the PSU(3) symmetric point and tune Jx, Jz

continuously to zero to obtain the quantum torus chain, the
system stays gapless.

We do not discuss the 0 < g < 1
3 regime where the most

relevant operator is given by V3 in Eq. (67) and which is
allowed in principle if the U(1)2 symmetry is broken. We
have not studied whether the microscopic model accesses this
regime of the field theory.

VI. NEAREST-NEIGHBOR HAMILTONIAN
WITH Zn × Zn SYMMETRY

In this section, we generalize the discussion above to the
case of Zn × Zn symmetry for arbitrary n > 2. We have not
studied these systems numerically for n > 3. Nevertheless,
as we argue below, it is consistent and natural to expect that
for n odd the phase diagrams of these models will also have
stable gapless phases described by n − 1 component Luttinger
liquids. For even n > 2, our considerations further suggest
that nearest-neighbor Sn × Zn symmetric spin chains may
also harbor gapless phases for large regions of their phase
diagrams.

Similar to the construction of Eq. (22), we can write the
most general nearest-neighbor Zn × Zn symmetric Hamil-
tonian in terms of clock variables. At the maximally
symmetric (antiferromagnetic) point, this spin chain will have
a PSU(n) = SU(n)/Zn on-site symmetry. At this point, the
low-energy description is given by the SU(n)1 WZW CFT
[38–40]. We can then modify the parameters around the SU(n)
symmetric point to break the PSU(n) symmetry down to
Zn × Zn. We emphasize that these systems still obey the same
LSM restrictions. Additionally, similar to the discussion of
Z3 × Z3, there existsZn × Zn symmetry-preserving marginal
deformations of the SU(n)1 WZW CFT, which give rise to
n − 1-component Luttinger liquids. These Luttinger liquids
have the same mixed LSM anomalies as the microscopic
lattice models and are thus also natural candidate theories to
describe the gapless phases of these systems.

Below we show how to explicitly see the LSM anomaly
in these n − 1 component Luttinger liquids. Similar to the
previous cases, the form of the fixed point action is given by
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the sigma model action of Eq. (35). For the SU(n) invariant
point, we can choose [55]

GSU(n)
i j = 1

4 for i �= j, and GSU(n)
ii = 1

2 ,

BSU(n)
i j = 1

4 for i > j, and BSU(n)
i j = −1

4 for i < j. (84)

We also define the Luttinger variables θ i, φi as in Eq. (46).
We can again use abelian bosonization at the SU(n) in-

variant point to find the symmetry action on the fields in
the effective long wavelength field theory. This calculation is
analogous to the Z3 × Z3 case presented in Appendix. Here
we just quote the results.

The action of the symmetry associated with X is

X : φi → Mi jφ
j

θ i → (MT )−1
i j θ j, (85)

for

M =

⎛
⎜⎝

−1 −1 −1 · · ·
+1 0 0 · · ·
0 +1 0 · · ·
0 0 +1 · · ·

⎞
⎟⎠, (86)

Again we can introduce an extra field ϕn
L/R, such that∑n

i=1 ϕi
L/R = 0, in which case X acts as a Zn cyclic permu-

tation of ϕ fields.
The action of the symmetry associated with Z is

Z : θα → θα + 2πα/n,

φi → φi. (87)

The action of translation symmetry by one site, Tx, is given by

Tx : θα → θα + 2πα/n,

φα → φα + 2π/n. (88)

Inversion P acts as

P : θ i → θ i − 4BSU(n)
i j φ j,

φi → −φi. (89)

Finally, time reversal (complex conjugation in Z basis) acts as

� : θ i → −θ i + 4BSU(n)
i j φ j,

φi → φi. (90)

Similar to theZ3 × Z3 case, inversion and time-reversal fix
the Bmatrix such that 4B is an integer matrix. However, the G
matrix can vary as long asMTGM = G.

To see the LSM anomaly, we insert a unit of Tx flux. This
changes the boundary conditions such that

φα (x + 2π ) = φα (x) + 2πmα + 2π/n,

θα (x + 2π ) = θα (x) + 2πnα + 2πα/n. (91)

This in turn can be absorbed into a shift of ni and mi,

mα → mα + 1

n
and nα → nα + α

n
. (92)

As shown above, inserting a flux of translation symmetry
through the system then fractionalizes the allowed values of
U(1)n charges (ni,mi). Since the total charge cannot be zero,

in this case the ground state is at least n-fold degenerate. The
ground states are generated by the transformations

(
n
m

)
→

(
(MT )−1 0

0 M

)(
n
m

)
. (93)

We now proceed to discussing the stability of the critical
phase. The generic perturbations that could potentially gap the
bosonic fields are the vertex operators

Omn = cos(miθ i + niφi ), (94)

with scaling dimension given by Eq. (40). Enumerating all
allowed operators is more complicated in the SU(n) case.
However, at least in the particular case of G = gGSU(n) with
g > 1, the most relevant symmetry allowed terms are n − 2
distinct operators of the form,

Vj = cos(φ1 − φ1+ j ) + terms related by X symmetry

for j = 1, . . . , n − 2. (95)

These operators are related by the permutation group Sn.
At the SU(n) symmetric point g = 1, all such operators are
marginal. As we increase g these operators become relevant.
Note that as long as the G matrix is proportional to GSU(n),
we have an enlarged symmetry group Sn × Zn. In this case,
only the sum of all the cosine operators above can appear; due
to incompatibility of arguments (with a positive sign), all of
the cosines cannot be simultaneously minimized. It is easy to
come up with a microscopic term with the same symmetries
that has an exponentially large dg = n(n − 1)N−1 ground state
degeneracy (N is the number of sites). The physics here is
analogous to the Z3 × Z3 case with Jz �= 1. We thus expect
stable critical phases with emergent charges to be also present
in this case.

We can then break the Sn × Zn symmetry all the way
down to Zn × Zn by deforming the G matrix so that it is not
proportional to GSU(n) (this is possible for n > 3). In this case,
the operators above do not have the same scaling dimension.
Without any loss of generality, assume that the most relevant
operator is

n∑
i=1

cos(φi − φi+1), (96)

where the auxiliary field φn = −∑n−1
i=1 φi. In this case, if n

is odd, all of the cosines cannot be simultaneously minimized.
We can write a microscopic term with this symmetry ZiZ

†
i+1 +

H.c. that has an exponentially large dg = n2N−1 ground state
degeneracy (N is the number of sites). We expect stable criti-
cal phases to be also present in this case. However, if n is even,
the arguments are compatible, and all the cosine term can be
simultaneously minimized, e.g., φ2i = 0 and φ2i = π , giving
a rise to a conventional gapped antiferromagnetic phase. The
associated microscopic term is also not frustrated in this case.

Bases on this argument, we believe that extended critical
phases with emergent charges should be present in generic
Z2n+1 × Z2n+1 spin chains with time-reversal and inversion
symmetries.
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VII. DISCUSSION

In this paper, we have argued that a wide class of
translationally invariant Z3 × Z3 symmetric spin chains are
described at long wavelengths by a two-component Luttinger
liquid. Importantly, the Luttinger liquid, with the appropriate
symmetry actions, reproduces the mixed anomaly associated
with the generalized LSM constraint of this system. With
time-reversal, inversion or charge-conjugation symmetry, the
two-component Luttinger liquid theory has a single continu-
ous free parameter. Remarkably, despite the apparent presence
of symmetry-allowed relevant operators in the field theory
away from the SU(3) invariant point, the system appears
to remain gapless for a large range of microscopic param-
eters. These systems therefore host, at least to an excellent
approximation, emergent U(1)2 conserved charges, as the
microscopic model only has discrete global symmetries. Re-
markably, these emergent charges seem to continue to exist
throughout a large portion of the phase diagram. We discussed
the importance of microscopic frustration in stabilizing the
gaplessness of the model.

These results are rather surprising, and suggest a number
of possible scenarios that at present we cannot distinguish.
First, it is, in principle, possible that the gapless (or near
gapless) nature of the system for an essentially infinite range
of dimensionless microscopic parameters is accidental, in the
sense that the RG flows happen to not generate the relevant
operators, or do so with extremely small amplitudes. However
such a scenario, while conceptually consistent, is in tension
with the notion of naturalness in effective field theory. On the
other hand, it is conceivable that the nearest-neighbor micro-
scopic Hamiltonians we consider have additional conserved
quantities, such as due to a previously unnoticed integrability
or partial integrability that is present in the lattice model even
away from the SU(3) point. In this case, the relevant operators
may be forbidden due to the associated hidden symmetries of
the model, which might generically be broken by adding next
neighbor terms.

We have also shown that the mixed anomaly associated
with the generalized LSM constraint in translationally in-
variant Zn × Zn spin chains is also satisfied for c = n − 1
multicomponent Luttinger liquids with appropriate symmetry
actions. We provided a series of arguments for why stable
critical phases with emergent charges may be expected to exist
in: (a) Zn × Zn symmetric spin chains with n odd, and (b)
Sn × Zn symmetric spin chains with all n > 2. It would be
interesting to study these systems (with n > 3) in more detail
in future work.

Inspection of the c = n − 1 multicomponent Luttinger liq-
uids theories shows that it does not appear to be possible to
gap any of the n − 1 modes while preserving the Zn × Zn and
translational symmetries. This raises an interesting question of
what is the minimum central charge cmin of field theories that
can possess such a mixed anomaly and, in particular, whether
there is a universal lower bound to cmin that grows with n.
The results of this paper are consistent with cmin � n − 1 and
thus raise the question of whether there is any theory with c <

n − 1 that has the appropriate mixed anomaly. We note that a
bound on cmin for such mixed LSM anomalies is closely re-
lated to a bound recently conjectured in Ref. [69] for the cen-

tral charge of CFTs that appear at phase transitions between
gapped SPT states. We also note that Ref. [70] recently estab-
lished bounds on the number of charged degrees of freedom
from anomalies in (3 + 1)D superconformal field theories.

Another interesting feature of the theories studied here is
that they offer the possibility of having distinct CFTs with
the same central charge and symmetries that are described
with different topological Bmatrices. Interestingly all of these
theories (with different B’s) also reproduce the same LSM
anomaly. It would be interesting to understand whether both
of these phases can exist in the same system and if so, to study
their domain walls.
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APPENDIX: ABELIAN BOSONIZATION TO DERIVE
SYMMETRY ACTIONS

Here we review the derivation of the Abelian bosoniza-
tion for the SU(3) spin chain, which can be used to derive
the symmetry actions on the scalar fields of the c = 2 Lut-
tinger liquid. We then use the same symmetry action on the
fields throughout the moduli space of the Z3 × Z3 × Ztrans

symmetric models. All of the calculations of this section are
straightforwardly generalizable to the case of SU(n).

Interestingly, the bosonization, even at the PSU(3) sym-
metric point, has an inherent ambiguity that is related to the
question of whether b = 0 in the expansion of Eq. (70).

Following Refs. [40,57,58], we start with the Hamiltonian
for the SU(3) Hubbard model,

H = −t
3∑

α=1

∑
i

[ψα†
i ψα

i+1 +H.c.]+U
∑
i

[
3∑

α=1

ψ
α†
i ψα

i − 1]2.

(A1)

Here, ψα are the usual fermionic annihilation operators trans-
forming in the fundamental representation of SU(3). In the
large coupling limit U/t � 1 where the band is 1/3 filled,
this Hamiltonian maps onto the PSU(3) symmetric spin chain
described in Eq. (30). In the noninteracting limit U = 0, we
can write a continuum expansion for the fermion fields around
the Fermi wave vector kF = ±π/3 as

ψα
j ≈ [

e−iπ j/3ψα
L (x j ) + e+iπ j/3ψα

R (x j )
]
, (A2)

where x = ja and a is the lattice spacing. From here on, we
work in dimensionless length units where a = 1. In this limit,
the low-energy field theory is the U(3)1 WZW model. In the
Abelian bosonization approach, we can bosonize the fermion
fields as

ψα
L (x) ∝: e−iϕ̃α

L (x) :, ψα
R (x) ∝: e+iϕ̃α

R (x) : . (A3)
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We assume that the limit U/t → ∞ can be described by
constraining the occupation number at each site∑

α

(
ψ

†α
L (x j )ψ

α
L (x j ) + ψ

†α
R (x j )ψ

α
R (x j )

+ (
e+2π i j/3ψ

†α
L (x j )ψ

α
R (x j ) + H.c.

)) = 0. (A4)

In the bosonic language, this gives the three constraints,∑
α

∂zϕ̃
α
L = 0,

∑
α

∂z̄ϕ̃
α
R = 0,

∑
α

sin(2π j/3 + ϕ̃α ) = 0, (A5)

where ϕ̃α = ϕ̃α
L + ϕ̃α

R . The first two constraints can be sat-
isfied by setting ϕ̃1

L + ϕ̃2
L + ϕ̃3

L = 0 (and similarly for ϕ̃R).
This constraint gaps out the U(1)1 total charge mode, leaving
behind the SU(3)1 WZW model describing the spin degrees
of freedom. However note that, using this relation alone, the
large U constraint is only imposed at a mean-field level, as
only the nonoscillating part of Eq. (A4) vanishes.

For the SU(2) case, the third constraint is also automati-
cally satisfied. However, it is not clear how to fully incorporate
the effects of the third constraint in the bosonization scheme
for n > 2. Following Ref. [58], we ignore this constraint from
here on.

The conserved SU(3) currents are given by [40]

JaL ∝
3∑

α,β=1

ψ
α†
L λa

αβψ
β
L , JaR ∝

3∑
α,β=1

ψ
α†
R λa

αβψ
β
R , (A6)

where λa are the Gell-Mann matrices.
The microscopic spin-chain operators λa

j can be written as
follows. First, we note that in the SU(3) Hubbard model, the
spin operators λa

j are written as

λa
j = ψ

α†
j λa

αβψ
β
j . (A7)

When passing to the continuum, we then obtain

λa
j ∝ JaL + JaR +

3∑
α,β=1

[
e2π i j/3ψ†α

L λa
αβψ

β
R + H.c.

]
. (A8)

Using the fact that Xj and Zj are linear superpositions of
the λa

j , we can then obtain their expression in terms of the
long-wavelength bosonic fields.

The fixed point part of the field theory Hamiltonian can be
written in the Sugawara (current squared) form,

H ∝
∫

dx
[(
J3L

)2 + (
J8L

)2 + L → R
]
. (A9)

Note that λ3,8 generate the Cartan subalgebra of SU(3) and
can be explicitly written down as

J3L ∝ ∂z
(
ϕ̃1
L − ϕ̃2

L

)
,

J8L ∝
√
3∂z

(
ϕ̃1
L + ϕ̃2

L

)
. (A10)

Matching the two equations above with the Hamiltonian in
the main text Eq. (45), we can make the identification

(
ϕ1
L, ϕ

2
L

) = (
ϕ̃1
L, ϕ̃

2
L

)
. (A11)

As stated above, using Eq.(A8), we can obtain expressions
for microscopic operators. For example,

Zj ∼
3∑

α=1

e2π iα/3

(
1

2π
∂xϕ

α + c sin(2π j/3 + ϕα )

)
, (A12)

where c is a nonuniversal short distance physics dependent
number.

The symmetry actions can now be read off from their
action on the microscopic operators (e.g., Zj and Xj). For
example, Eq. (A12) shows that a translation by one site,
j → j + 1, requires ϕα → ϕα + 2π/3. The action on θα can
similarly be obtained by considering the expansion for Xj ,
with the result reported in the main text. Note that these
symmetry actions are not necessarily unique in terms of ϕi

L
and ϕi

R, however, their action on physical (nonchiral) variables
φi and θ i is unique.

As mentioned in the beginning of this section, we assume
that the symmetry actions remain the same throughout the
moduli space. This must be the case for the X , Z , C, �, and P
symmetries, as they are all finite order discrete symmetries,
and the only continuous symmetry of the two-component
Luttinger liquid theory (for generic g) corresponds to U(1)2L ×
U(1)2R. There is thus no possible way to continuously deform
the action of these symmetries while respecting the fact that
they have finite order.

Since translation symmetry is of infinite order, it is in
principle possible that the action of translation symmetry Tx
changes continuously, such that Tx does not act as Z3 away
from the PSU(3) point. However, we have explicit numerical
evidence (see Fig. 8) that the action of Tx remains as Z3 even
far away from the PSU(3) point. Furthermore, even if one
imagines that the action of translation symmetry is modified
in some portion of the phase diagram, this cannot rule out the
appearance of the operators V1, V2 and V3 unless the action
of translation symmetry is different for ϕ1 and ϕ2, in which
case, the X symmetry would be necessarily broken. However,
again we have a significant amount of numerical evidence that
the ground state is in fact X invariant throughout the gapless
phase.

Ambiguity in the bosonization scheme

Using Eq. (A12), we can easily derive Eq.(70) of the main
text, with a = 3

(2π )2 and b = ( c2 )
2 [c defined in Eq. (A12)].

However, we remark that there is an alternative way to
bosonize this term by writing it in terms of fermionic variables
as

ZjZ
†
j+1 + H.c. = −

∑
α �=β

ψ†α (x j )ψ
α (x j )ψ

†β (x j+1)ψ
β (x j+1) + 2

∑
α

ψ†α (x j )ψ
α (x j )ψ

†α (x j+1)ψ
α (x j+1)

= −1 + 3
∑

α

ψ†α (x j )ψ
α (x j )ψ

†α (x j+1)ψ
α (x j+1). (A13)
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In going from the second line to the third, we used the large
U Hubbard constraint

∑
α ψ†α (x j )ψα (x j ) = 1. The final ex-

pression can now be bosonized to give

∑
j

Z jZ
†
j+1 + Z†

j Z j+1 ∼
∫

dx
3

(2π )2
Gi j∂xϕ

i∂xϕ
j . (A14)

As compared with Eq.(70), the above equation does not in-
clude the perturbation term V1. This suggests that the term∑

j Z jZ
†
j+1 + H.c. term might in fact not generate V1 in the

continuum limit [b = 0 in Eq. (70)]. This ambiguity in the
bosonization can be traced back to the third constraint in
Eq. (A5), which was ignored at the mean-field level. We
again emphasize that a similar ambiguity does not exist for
the SU(2) case as the additional constraint is automatically
satisfied.
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