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The semi-classical Korteweg-de Vries equation for
step-like data is considered with a small parameter
in front of the highest derivative. Using perturbation
analysis, Whitham theory is constructed to the
higher order. This allows the order one phase and
the complete leading-order solution to be obtained;
the results are confirmed by extensive numerical
calculations.

1. Introduction

Whitham modulation theory has been widely used
since it was first developed in 1965 [1]; see also
the classic book [2]. An important application of the
theory is the Korteweg—de Vries (KdV) equation with
small dispersion. Averaging over the fast dynamics that
occur over scales on the order of the small dispersion
parameter €, Whitham constructed PDEs governing
the slowly varying parameters that change over order
one space and time scales. These Whitham equations
are hyperbolic first-order PDEs in space and time.
Another breakthrough came several years later when
Gurevich & Pitaevskii [3] found an important special
self-similar solution of Whitham-KdV equations for the
step initial condition (IC). The solution is a rarefaction
wave solution of Whitham’s equations; physically, it
describes a collisionless shock wave, also called dispersive
shock wave (DSW), which is a consequence of the small
dispersion; there is no dissipation. At leading order in ¢,
the theory describes a modulated travelling wave KdV
solution where the slowly modulated parameters obey
the Whitham equations. The travelling wave fast phase of
order 1/¢ is determined from these parameters. However,
the finite phase shift of order O(1) was not computed,
so the description of the leading-order solution has
remained incomplete until now. After this seminal work,
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Whitham theory developed in many different directions and its applications keep growing. Yet,
for many years finding the finite phase shifts from Whitham theory was an open problem. In the
Whitham approach, this determination requires the computation of higher orders, in particular,
the next-to-leading order of Whitham theory which can be viewed as a nonlinear WKB-type
expansion.

For integrable nonlinear PDEs like KdV, there is another way to find solutions—the inverse
scattering transform (IST); see, e.g. [4,5]. This is equivalent to constructing and solving a
Riemann-Hilbert type problem (RHP). It was originally developed for initial value problems
with rapidly decaying ICs in both directions in space. Within the RHP framework, the small
dispersion limit of KdV with fast decaying ICs was studied in [6] extending earlier work, see [7,8]
and references therein, and using the steepest descent approach developed in [9,10]. In [6], a
trivial, i.e. constant, finite phase shift was established and supporting numerical results were
obtained in [11]. For step-like ICs the long time asymptotics have been considered by IST/RHP
methods in [12,13], with space and time-dependent O(1) phase shift as a result. Long time and
small dispersion are, in general, different limits. However, the dispersion parameter ¢ can be
removed from the KdV equation by rescaling space x and time f variables. Then, step IC is seen
as very special since it remains intact by this rescaling. Thus, the Cauchy problem and solution
for KdV with step IC depends only on x/e and t/e. Therefore, the long-time asymptotics for this
IC should apparently be equivalent to the small dispersion limit. In appendix B, we express the
long-time result of [13] for pure step IC in a simpler form. This facilitates comparison with the
result of Whitham theory which we remark upon.

The IST/RHP approach, however, is only applicable to PDEs with known integrable
structure. For non-integrable PDEs one has to resort to other methods, and here the nonlinear
WKB/Whitham approach has been indispensable. Nevertheless, it is important to analyse the
well-known PDEs such as KdV and develop key ideas in order to pave the way for understanding
more complicated models. Moreover, even for the relatively simple situation of KdV with step
IC, to our knowledge, the question of finding the O(1) phase shift via Whitham theory remains
unsettled. A large number of papers use the leading-order theory, associated simulations and
experiments involving DSWs; see reviews [14,15]. However, very few deal with higher-order
corrections. An early discussion of higher-order effects can be found in [16]. Finding the phase
shift remains a vital part of the leading order modulated periodic solution.

In this paper, we derive the higher-order Whitham theory for the KdV equation, the leading
order of which was established in [2,3]. The key ideas and main results of our approach to higher
orders in € are explained in §2. Using the (implicit) assumption that the phase shift is included
in the total fast phase 6 ~1/¢, we systematically compute the higher-order corrections in € via
singular perturbation theory, cf. e.g. [16,17]. This approach leads to an expansion in powers of ¢?
rather than e for the slow (Whitham) variables. Then eventually only a constant finite (i.e. O(1), at
next-to-leading order in €) phase shift appears in this theory. In other words, every O(1) spacetime
varying shift can be absorbed into a redefinition of the (other) basic slow variables and the fast
phase 6 determined by them. These results are presented in detail in §§3 and 4. In §5, we compare
the numerical solution of KdV with step IC to the leading-order Whitham-GP solution of O(1/e¢).
The result indicates that the residual phase shift, apart from a constant, is O(e). Then, the value
of the constant can be found from the condition at the leading edge of DSW that the solution
vanishes; see, e.g. [3,18] and below in §5.

In Whitham theory, the phase shift arises as an integration constant when integrating the
leading-order ODE equation (4.4) in its fast oscillation phase variable. Any such ‘constant” can,
in general, be an arbitrary slow variable, i.e. a function of space and time which does not change
significantly over a period of fast oscillations. Motivated by this observation, in §6 we also explore
a modified Whitham theory approach by explicitly introducing a spacetime-dependent phase
shift 0,(x,t) into the Whitham-KdV theory from the beginning, i.e. represent the total phase
as 6 =6p/€ + 0. This changes the look of the higher-order Whitham perturbation theory and
leads to the apparent possibility of non-trivial 6, dynamics. Such a consideration was initiated
back in 1988 by Haberman [19] who derived equations governing the phase shift 6, but did
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not present any solution. We consider this approach in more detail here but do not find a
non-singular/non-trivial phase shift consistent with our numerical results.

As an instructive comparison, we treat in §7 the linearized KdV equation in the Whitham
framework; see also [2]. The linearized KdV equation with, for example, the same step IC has an
exact Fourier solution (the analogue of IST solution for nonlinear case). Using Whitham theory,
we also derive the corresponding approximate (WKB) solution in the region of fast oscillations.
The Whitham approach here yields the exact leading-order amplitude and fast phase of the
oscillations and allows one to conclude unambiguously that the O(1) phase shift is constant.
Only its value remains undetermined; it can be found from the exact solution. The simpler linear
problem gives additional insight for the nonlinear case. Our conclusions are presented in §8.

2. Approach to higher-order Whitham theory; main results
We look for an asymptotic solution u(x, t; €) of the KdV equation,
oru + 6udu + ezaxxxu =0, (2.1)

with fast and slow scales,
u=u(,x,te), 0<exl, (2.2)

where the single fast phase 6 is O(1/¢). The fast phase 6 satisfies equations

k kv
W0=- and 80=——, (2.3)
€ €
with slowly varying quantities k and V. Then,
Atk + 9, (kV) =0. (2.4)

This ‘kinematic” equation remains intact at all higher orders in € since it is just a consequence
of definition of 6. The other Whitham equations are derived as secularity conditions ensuring
that the solution u is periodic rather than growing in . In the next section, by the separation of
fast and slow scales method, we find the Whitham—-KdV equations to all orders—see equations
(3.15)-(3.17).

The solution u is expanded in €, u =ug + €y + €2uy + - - -, where up(0; x, t; €) is the leading-
order solution given in equation (4.4), and further corrections satisfy linear equations of the form

d2
Luy =Fplug,uq, ..., up—1], n=12,... L :kzﬁ + 6up(0) — V.
The forcing terms F, at each order depend only on the solution at previous orders of
e-perturbation theory. The wavenumber k is determined from equation (4.3) ensuring the constant
period of fast oscillations in 6. The solutions to the homogeneous equation Lw = 0 here are known,
the first being w1 = u((6), and the second, w»(8), explicitly given by equations (4.18), (4.19), is of
the form

wy = Kouyh + pluol,

where Kj is a slow variable and ¢ is a periodic function of & determined by ug. Therefore, using
variation of parameters, the particular solutions u, are given by the integral formulas

L (0 Jo wa)Fa(z) dz — wa(0) [ g (2)F(z) d

n k2W 7 (25)
where W = ujw), — ugw, is the Wronskian which is independent of 6. Then, we can calculate
U=y + euy + €y + - at any order in terms of integrals. Moreover, 11 depends on ug; 1>

depends on 1 and u; hence it depends only on ug; similarly uj, j=3,4,...., depends only on uy.
The well-known equation (4.4) for 1 is periodic in 6, so it can be written as a Fourier series in the
variable 6. Hence all successive terms uj, j=1,2..., from equation (2.5) can be written in terms of
a Fourier series in 6. We further show in §4 and appendix A how the initial/boundary conditions
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are satisfied. Thus, we have provided a method to solve for u, and satisfy the initial/boundary
conditions at all orders of €.

Then, we express the Whitham equations in terms of three Riemann invariants order by order
and find the higher-order corrections to them given the corrections u, described above. The
non-trivial corrections at O(¢?) are given by equation (4.22) and more explicitly in the following
equations, which is one of the main results of the paper.

As mentioned above, we first find the Whitham equations to all orders in the original ‘physical’
variables: the conservation of waves equation (2.4) and the secularity equations (3.15) and (3.16).
Equations (3.15) and (3.16) are another important result of the paper. This is the first time such
equations have appeared in Whitham—-KdV theory; for a simpler system, the nonlinear Klein—
Gordon equation, a similar result was obtained long ago in [16]. For KdV, there are only three
equations for five dependent variables so they are not closed. However, these ‘non-perturbative’
Whitham equations can be expanded in €2 order by order. Their leading order, equations (4.6),
(4.7) and (2.4), is classical [2]. In this case, the Whitham system is closed by using two additional
relations, equations (4.3) and (4.5). Equation (4.3) must hold to all orders since it enforces the
constant period condition. Equation (4.5) is replaced at higher orders by corrections u;, integrated
over a period in 6. This allows one to find corrections to all slow Whitham variables order by
order. Equations (2.4), (3.15) and (3.16) are a convenient means to derive higher orders of Whitham
theory.

The fact that these equations contain only €2, and not ¢, and the oddness of u; as a function of
0 lead eventually to the triviality (constancy) of the O(1) phase shift to the order 1/¢ fast phase of
the single DSW solution. This is confirmed by extensive numerics for the special important case
of pure step IC; the figures and comments in §5b are also key results in this paper.

3. Whitham equations to all orders

After introducing fast and slow scales, the KdV equation takes the form

3% k k 3
(——89+8t)u+6u <769+8x>u+62 <739+ax> u=0. (3.1)
€ € €

We denote dyf =f and f the average of f over a period in 6. Equation (3.1) can be written as
k(" + 3u? — Vu) + ekF' =0, (3.2)
3
kE' = dsu + 6udyu + 3291 + Eax(kz)u” + € (Bkdxxtt’ + 30ykdxu + dycku') + €2 pxxll. (3.3)

Imposing periodicity of the solution u and integrating equation (3.2) over a period in 6 yields an
exact (non-perturbative and asymptotic to all orders) secularity condition F' = 0, or, explicitly,

A + 30 (12) + €205 = 0. (3.4)
The other needed secularity condition is readily derived when one notices that u(kPu” + 3u? —
Vu) = (kK*(uu” — (')?/2) 4 2u3 — Vu?/2)’ is a total derivative in 6. Thus, multiplying equation (3.2)
by u and integrating over the period, one finds the second exact secularity condition uF’ =0, or,

explicitly,

12 + 43, (u3) — 30, (K2(u)2) + 3edy[k(udxi’ — ' dgut)] + €29 [dxti2 — 3(dx11)2] = 0. (3.5)

To derive equation (3.5) we used the identities 11(3kdyx + 30xkdy + dxxk)u’ = %(u(kaxx + Oxkoy)u’ —
w/ (kdyy + 0xkoy)ut), k(uoyytt! — 1/ 0xxtt) + Oxk(udtt’ — 1/ dxut) = Oy [k(udtt’ — u'0511)], Uyl =
A [Oxui? — 3(0y1)2]/2. Using the notation Q=1u, Qu =u',n>1, G=k*u')?, the two derived
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secularity equations read:
#Q +30:Q) + €20xxQ =0, (3.6)
3Q2 + 40,Q3 — 30:G + 3¢y (k(quu’ - u/axu)) + 20, (axeZ - 3(8xu)2> —0. (3.7)

Next, we transform the obtained equations to a more convenient form with fewer
dependent variables, guided by the well-known leading-order KdV manipulations. We integrate
equation (3.2) to obtain

Ku” +3u? — Vu+eF=Cy, (3.8)

where C1 =Cj(x,t) is an arbitrary integration constant, i.e. slow variable in our case, and F is
defined as a certain antiderivative of equation (3.3),

KE = 3¢J1 + 39x]2 + 3k (kut') + € (Bkdgxtt + 305kdytt + dxxkit) + €2dyax )1 (3.9)

Functions [, such that J;, = u" contain secular (non-periodic) terms proportional to 6 which we
explicitly separate writing

=u"0+], and J,=u"—u", (3.10)
so that f,, are periodic. We define all fn so that
ﬁ:o, neN. (3.11)

Next, we multiply equation (3.8) by 2u’ and integrate it again over 6 obtaining
0
K@) + 218 — Vi 4 2¢ (uF - J uF/> =2Cqu + Co, (3.12)

with the arbitrary integration slow variable C; and fe uF’, as follows from equation (3.3), of the
form

6
kJ uF = % + By <213 - %Gl> + 3k udeu’ + %ax(kz)m/
3 0 , , u 62 0 )
+ € Eax kJ (woyu’ — u'dyu) | + E(Skaxx + 30ykdy + dxyk)u ) + 5 OxxxJ2 — 3axJ (0xu)~ ).
(3.13)
Here, we defined Gy = k2 [*(1/)2 = G0 + Gy, G1 = 0. Equations (3.10), (3.11) imply that J; = Q/2,

T2 =Q2/2, J3 =Q3/2, G1 = G/2. We similarly fix the other antiderivatives in equation (3.13) as
secular 6-term plus periodic ‘hat’-term with zero average so that

g e g 02102
J (udyu’ — u'dyu) = w and J (Oyu)? = ( x;) ) (3.14)
Proposition 3.1. Secularity conditions equations (3.6) and (3.7) for KAV are equivalent to
30k Oxxk
90+ 3:(VQ + Cn) - 4 (2000 + a0+ 2E0) =0, (3.15)
Oxx P Ok Oxxk
WP + 9.H — € [ath + 0:(VQq) + dx ( ";‘ + 32; 9P + z‘ P>]
a 30yk Oxxk
+E43x( xszd X axQd xXx Qd) (3.16)
where we denoted
30 (ka dxxk
P—VQ+C, H=VP—3C, Q= 2koxQ+dukQ (3.17)

k
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Proof. Integration of equations (3.8) and (3.12) over a period gives, respectively,
30, —VQ+eF=Cy (3.18)
and

R
G+20Q3 —VQy + 2¢ (uF — J uF' | =2C1Q + Cy, (3.19)

while multiplying equation (3.8) by u and integrating over a period, one gets
—G+3Q3 — VQo + euF =C1Q. (3.20)

Taking into account the secularity condition equation (3.4) in equation (3.9) brings the ‘forcing” F
to the explicitly periodic form

kF = 8tjl + 38xj2 + 3k8x(ku/) + € (BkOxxtt + 30xkdu + dxrku) + 628xxxf1~ (3.21)
The last equation integrated over a period becomes very simple
KF = €(3kdyy + 30ykdy + 0xxk)Q. (3.22)

In turn, taking into account the secularity condition equation (3.5) in equation (3.13) lets one bring
the quantity fa uF’ to explicitly periodic form and its average over a period reads

4 ) — 3k (9 —\ 3 3
kJ uF = T(uaxu/ — w0 u)+¢€ [? (%Qz - (axu)Z) + Eaxk X;gz + axxk%] . (3.23)

Taking the combination of averaged equations 2 - (3.20) - (3.19) yields

6
405 — 3G — VQ, + 2€J uF = —C. (3.24)

Upon using equation (3.23), equation (3.24) acquires the form containing exactly the combination
entering the secularity equation (3.5)

R 2 3
4Q3 — 3G + 3ek(udy’ — w'dyit) — 3€(dyu)2 = VQo — Cp — % (E(’)x(kaxQz) + Bxku2> . (3.25)
We substitute the right-hand side of equation (3.25) into equation (3.5) and the last becomes
el 3ok dxxk
102+ 3:(V02 - Co) - 3 (452 + a0 + 2 0a) -0, (3.26)

Finally, we substitute into equations (3.4) and (3.26) Q> expressed from equations (3.18) and
(3.22) as

Q2

_ VO+ (G _ 2 <8x(k3xQ) i Oxxk Q) ) (3.27)

3 k 3k

Thus, we obtain the secularity conditions in their final form of equations (3.15) and (3.16), as
claimed. |

The secularity equations (3.15), (3.16) and the kinematic equation (2.4) comprise exact non-
perturbative Whitham-KdV equations in physical variables V,Cy,Co,k and Q. The system of
Whitham PDEs is not closed as it stands. Still it is a very convenient starting point to get the
Whitham equations to any needed higher order in €. We see that the system (3.15), (3.16) is
perturbed only by €2. This suggests that under a perturbation expansion of u in powers of €
the secularity conditions will have all non-trivial higher-order corrections expanded in €2. We
demonstrate in some detail that this is indeed the case in the next section. This, in particular,
implies that the first non-trivial correction to the fast phase 6 is going to be of order €. As for an
order O(1) phase shift, it can then only be a pure constant, the value of which only affects the
initial /boundary conditions but not the equations. As we will see in §5b, this picture is consistent
with the numerical results.
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4, Perturbations of Whitham variables

Let u = ug + €ii, where 1 is defined as the solution of first-order ODE
K2 (up)* = —2u3 + Vud +2Cyug + Co, (4.1)

compare with equation (3.12). Equation (4.1) includes all leading-order terms of equation (3.12);
therefore, 1 — ug starts at order € indeed. Let A1 < A2 < A3 be the roots of the cubic in the right-hand
side of equation (4.1). They are related to V, C; and C; as

14 C
5 =e1=M+t A2+ A3, Ci=—e2=—(A1A2 + A2A3 + A3A1), 72 =e3=A1A2A3. 4.2)

The normalization of the elliptic cnoidal solution to equation (4.1) with unit period in # implies
that

A3 — A
2 3 1
= ) 43
8K2(m) (43)
where K(im) is the first complete elliptic integral; hence the solution to equation (4.1) is
2 A3 — A2
ug =rp + (A3 — A22)en“(2K(m)8; m) and m= PP 4.4
2 =M
Also we have Q = Qg + €Q, where Qg = i so that
E(m)
=i A3 — Ap)—, 4.5
Qo =21+ (A3 1)K(m) (4.5)

in terms of the first and second complete elliptic integrals K(m) and E(m). Then, keeping only
terms starting at leading order in equations (3.15), (3.16) and adding the relations (4.3), (4.5) yields
the closed familiar Whitham-KdV system of equations (2.4), (4.3), (4.5), and equations

Qo + 3x(VQo + C1) =0, (4.6)
3(VQo + C1) + dx (V(VQp + C1) — 3C2) =0. 4.7)

At this point the Whitham—-KdV system can be viewed as three equations (2.4), (4.6) and (4.7) for
three unknowns Aj, j=1,2,3, where the constraints equations (4.3) and (4.5) were substituted. We
introduce the KdV Riemann invariants r; <r <r3 [2,3] in terms of which this system diagonalizes
with respect to space and time derivatives and takes the form

Oty + v]-(rl, 2, Vg)axrj =0.
Explicitly rj-variables are linearly related with the cubic roots A;
M=ri+r—r3, Jdp=ri—rn+r, A=-r+n+rs, (4.8)

and the other slow variables are the following functions of the three r-s: m = (rp — r1)/(r3 — 1),

E(m) %4

=rp—r3+r+20—r)—, —=r1+ry+r3,
Qo=ro—r3+r1+2rs 1)K(m) 7 =rtrtrs
C r2—|—r2—|—r2
—=1"2"3 —nn—nr -, (49)
2 2

r3—nr

Cr= 2(—7'? — rg — rg + r%(rz +1r3) + 1’%(7‘3 +r1)+ r%(rl + 1) — 2r11213), K= 2K

On the other hand, the all orders Whitham system derived before is equation (2.4) and

#Q + 0(VQ + C1) — 2®1 =0, (4.10)
3(VQ + C1) + 0 [V(VQ + C1) — 3Ca] — €20, =0, (4.11)
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ko Dk
P=VQ+Cy, Qd_w

k 7
30k Bk
o=, (2020+ 00+ 25q), @)
0P B30ck Ok
Py = 0rQq + 0x (VQd+ x; + 2; P + J;:P)

23x ((kaxx + 30kdy + 23xxk)Qd> ) (4.13)

2k

It is remarkable that only the mean of the KdV solution Q =1 has to be found using the higher-
order corrections to KdV itself, no other information from them is needed. These corrections
Uy to u=ug + ety + €2up + - - - are found from

KPul + (6ug — Vyuy + F1 =0, kK2ul + (6ug — V)ug + F2 =0, ..., (4.14)
the forcing terms F; and Fj are, with (f{l)/ =Uy — Uy, (jg)’ =u? - LT%, ﬁ =0,
kFy = ] + 30x]5 + 3k2dutfy + 3kdcku (4.15)
and
kFy = 3u2 + 3]} + 30x]3 + 3k2dx1t; + 3kdyku] + 3kdyxiig + 3dxkdyig + dxxkitg. (4.16)
Using variation of parameters, the solution to equation (4.14) is given by the integral formulas

uy(0) fo wr(2)Fy(z)dz — w2(9)f uy(2)Fn(2) dz
K2W
Here, 11 depends on ug only, 1z depends on ug and w1 only and every subsequent 1, depends

only on the previous ones, ug through u,,_1. In equation (4.17), w>(0) is the second homogeneous
solution of the linear operator £ = k2d?/d6? + 6ug — V, the first being u((0). Explicitly, w, reads

n=1,2,.... 4.17)

n=

wy = a(up]) — 2u) + (@Qo + B)upb + dug + x, (4.18)
it can be normalized so that the constants in equation (4.18) are

V2 vC 4C1a -V,
w=+4C, B=-1 +3Cs, 5=26+Va, X:%ﬂ.

This w, can be obtained, for example, by looking for a solution of a form like equation (4.18),
which gives §, x in terms of «, 8 as in equation (4.19) and fixes the ratio /g as (VC1 +9Co)a =
(V2 +12C1)B. Then, the Wronskian W:146w’2 —ué’wz, a slow variable independent of 6, is

given by
4c? 1%
KW (VC2 - 3) o+ (ﬁ + 3c2> B. (4.20)

(4.19)

3

The lower limits of integration in equation (4.17) ensure that u;(x,0) =0 for n > 1, i.e. the IC has
to be satisfied by the leading order solution ug. This is true when 6(x, 0) =0, see next section and
equation (5.4) in particular, when the fast phase is ‘born” after wave breaking at time ¢ = 0, which
is the situation we study here. More general, IC consideration is given in appendix A. There it is
also shown that u;, in equation (4.17) are indeed periodic hence non-secular.

Since 11 is odd in 0 because F; is, we have 11 = 0. This is also true of all odd order corrections
upy41- Therefore, the total mean Q can be written as

Q=1 +€e*q=Qo+ e*(qa + 2qs + O(e*), qa=1ip, qa=1ia,..., (4.21)

and g is determined order by order by averages of even u-corrections 5.
The Whitham equations can be represented order by order in terms of the three Riemann
variables rjs j=1,2,3, defined exactly as in the leading-order equations above. We transform
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equations (2.4), (4.10) and (4.11) using equations (4.8) and (4.9) and obtain the Whitham equations
diagonalized to leading order in Riemann variables:

2(Xz + 6(rj — 11— rm)X1)

077 + vjOxT; = j#1 j,j=1,2 422
i e =y — gk I IEM A=V G2
2 ok _ 8k
Xi=0g+ (Vg) — D1, Xo=0:(Vq) + 0x(Vgq) — P2, S
]

The quantity q defined in equation (4.21) is also expressed order by order in terms of the 7;-
variables by solving equation (4.14), etc. Asymptotically, the Whitham equations, e.g. in Riemann
form equation (4.22), can be solved order by order in the r-variables. The first corrections come at
order €2 which implies a non-trivial (non-constant) correction to the fast phase 6 of order ¢ only.
Thus, the most important O(1) phase shift has to be a pure constant rather than a slow variable.
The value of the constant is then fixed by initial/boundary conditions. For example, in the case
of pure step IC of [3] or §5, the constant is fixed by the condition at the leading (solitonic) edge
of the DSW. We also note that when solving order by order, 1, do not have any singularities for
0 < m < 1. For example, Whitham equations to order O(e?) take the form of equation (4.22) where

30k Oxxk
X1 =012 + 3x(Vq2) — 9x (23xe0 + TxaxQO + YI:

Qo>, Qp=up, Po=VQy+Cy

a 3dyk Oxxk
Xa= (V) + V) Q)+ 0 (VR + [ 5 + o+ 25 ),

0 33x(k3xQ0) + 8xkuO
Qd = k ’
and k, Qp, V, C; are given in terms of 1, j=1,2,3, by equation (4.9). One could obtain the Fourier
series for up and take the average in 0 to get g2, leaving only slow variables.

The system (4.22) can, in principle, also be solved numerically. In this regard, we consider an
iteration where the terms without €2 are iterates at level 11 4+ 1 and the terms with €2 are iterates at
level n. At n =0, we take the perturbing iterate with € = 0; i.e. we have our unperturbed solution.
The n =1 term is solved by calculating the perturbed terms with equation (4.21), and ODEs and
definitions given above for equation (4.22), u1, up, etc.

5. Step initial value problem: numerical results
Consider the step IC for the KdV equation

1, x<0,

u(x, 0) = 0, x>0

(5.1)
Then, Whitham theory gives the famous Gurevich—-Pitaevskii (GP) DSW solution involving the
leading-order cnoidal function with modulated parameters. In the GP solution, r1 =0, r3 =1 and
rp =m = m(x/t) is implicitly given by

4m(1 — m)K(m)
E(m) — (1 — m)K(m)”

X nm)=2(1 + m) —

; (5.2)

Only the leading-order phase 0y(x, t)/€ is known in the GP solution. It is determined by formula

Oo(x, 1)  [* k(n,t) " k(0,7)V(0,7)
c =J0 — dn—J'OiE dr.

(5.3)

The lower limits of integration here reflect the fact that the fast phase is ‘born” at time t =0 at the
jump point x = 0. Explicitly,
t 2m(1 — m)

box,t) —  ap bt
P (r3 —11) eK'(m) ~ € E(m)—(1—m)K(m) G
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Hence 0(x,0) = 0 and the lower limits of integration in equation (4.17) vanish. The leading-order
modulated travelling wave solution 1 in equation (4.4) which now takes the form

ug=1—m+2m cn? 2K(m)o; m), (5.5)

satisfies the step IC behind the step for x < 0 where the amplitude of the cnoidal function 2m = 0.
In order for ug to satisfy also the IC 1y =0 in front of the step for x >0, where m — 1, one
needs to have lim,,_,1 cn(2K(m)0;m) =0 there which implies 0(x,0) = £1/2 for x > 0. Thus, for
consistency with equation (5.4), the total phase 6 must contain a constant phase shift +1/2,
ie. O(x,t)=6(x,t)/e £1/2+ ---, where dots stand for any possible further corrections of order
zero or higher in € which must vanish identically at t =0. Then, all higher-order corrections to
up must also vanish identically at t =0. The numerics presented below for the step IC clearly
demonstrate that the additional phase shift described by dots in the last equation is of order €. We
numerically determine the positions of the maxima of the computed solution u(x, t) and compare
them with those of the approximate theoretical leading order solution 1o with 6 =6y/e + 1/2.

(@) Numerical methods

This section describes the numerical scheme used to solve the KdV equation (2.1) with step initial
data equation (5.1). The idea is to introduce a source function that ‘cancels out’ the solutions of
equation (2.1) at x — %o0. This ‘cancellation” function reformulates the problem into one that has
zero boundary conditions (BCs) on both sides. From there, we utilize fast Fourier methods to
approximate spatial derivatives and implement an exponential time-differencing Runge-Kutta
(ETDRK) scheme to integrate. The ETD class of methods are ideal for problems like KdV since
they solve the rapidly oscillating part of the equation exactly.
To begin, consider decomposing the solution u(x, t) as

u(x, t) =v(x, t) + w(x), (5.6)

with the accompanying boundary conditions: v — 0 as |x| — oo, and w(x) satisfies the step BC
to match equation (5.1). The localized function v(x,t) is unknown and must be solved for. The
‘cancellation” function w(x) is chosen with the appropriate BCs. We typically take something
simple that is easy to differentiate exactly, such as

1 — tanh
w(x) = ai(x). (5.7)
2
For solutions of the form in equation (5.6), the governing equation (2.1) is expressed as
vt + 3(v2)x + 6(vw)x + GZUxxx = _3(w2)x - 6waxxr (5.8)

with IC: v(x, 0) = u(x,0) — w(x). The initial step u(x,0) is numerically approximated by a sharp
(relative to €) hyperbolic tangent function of

1 — tanh(x/3)

u(x,0) = > ,

(5.9)
where § =¢/10. Note that this equation has zero BCs at infinity. We approximate all spatial
derivatives of v(x, t) by Fourier methods. A wide computational domain is used to ensure waves
from the linear edge of the DSW do not propagate through the periodic BCs and back into the
DSW region. We integrate (5.8) by the ETDRK4 scheme described in [20].

After numerically solving for u(x,t), the maxima values in the DSW region are computed.
These points are all the local maxima located within the interval —6f<x <4t. A diagram
illustrating this is shown in figure 1. A maximum value Xmax at time t is converted to
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Figure 1. Locations of DSW maxima, Xpax. The maxima in terms of the modulus are computed via equation (5.10). (Online
version in colour.)

(b) (a)

0.5 0.05

Onu-6f/€
w(6fe+172)]
w(Bfe+172)]

16y,
16

04 0 0.40
-50 40 30 20 10 0 -50 40 30 20 -10 0 0 0.5 1.0

00m) o(m) m .

Figure 2. Left: The difference between the numerically computed DSW maxima (integers) and the asymptotic approximations
for different values of € at time t =1: (a) 6y /€ and (b) 6y/€ + 1/2 versus the function 6y(m) given by equation (5.4). This
is evaluated at the numerically computed maxima locations shown in figure 1. Right: The difference between the numerically
computed DSW maxima (integers) and the asymptotic approximations for different values of € at time t =1: (a) 6y /€ and
(b) 6y /€ + 1/2 versus the modulus m. (Online version in colour.)

corresponding value of the elliptic modulus #max through the GP formula equation (5.2)

4mmax (1 — Mmax)
1 — Mmax — E(mmax)/K(mmax),

Xmax

=2(1 + mMmax) +

(5.10)

using a root-finding method to invert equation (5.10). The maxima of the asymptotic solution
equation (5.5) occur at integer values of ¢, i.e. where

Omax = 0(Mmax) = 9—0 + 0 + - =ne. (5.11)
€ M=Mmax
To approximate the phase shift 6, we take the difference between a set of integers and 6p/e. It
is arbitrary where to begin the integers; different starting values result in 6, being shifted by an
integer amount. We take n = 0 at the largest DSW peak, that is the maximum nearest to m = 1. The
integers decrease as m decreases, resulting in the phase values 6max = {0, -1, -2,...}.

(b) Numerical results

The difference in the maximum phase values, fmax and 6y/e is shown in figure 2 left(a) at
time t=1. As € decreases, the number of maxima points increases. For each value of ¢, the
value of 0, is found to be approximately 1/2, i.e. /€ takes half-integer values at the maxima.
A comparison between Omax and the approximation 6y/€ + 1/2 is given in figure 2 left(b). Overall
there is excellent agreement between the two curves, with error less than 0.1 (i.e. <2e¢) for all
cases considered. The largest disagreement comes near m =0, where there is no improvement
as € decreases, and m =1, where there is a slight growth in the error as € decreases. Another
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Figure 3. Difference between DSW maxima 6,4 and 6y /€ at different times for € = 0.05. (Online version in colour.)
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Figure 4. Difference between 6, and 6,/ € for different values of ¢ /. Each curve corresponds to a different value of €, and
tis chosen so that t /€ is constant. (Online version in colour.)

enlightening view of these results is presented in figure 2 right. Here, the abscissa is converted to
values of m using the GP formula (5.4). We see that the results are tending to an asymptotic result
as € — 0. There might be intermediate/transition regions near m =1 and perhaps m =0 where
the solution is governed by different scalings and the formulae in the DSW region may not be
uniformly applicable.

Next, we seek to establish that, for large times, 6, depends only on m, and not both m and t.
The difference between Omax and 6y/e at several different times t is shown in figure 3. The
snapshot series in figure 3 indicates that once t/¢ is sufficiently large, the corrections 6, + O(¢)
approach a steady state. The small deviations can be attributed to the sensitive nature of tracking
the maximum point xmax and converting it into a modulus mmayx. Finally, numerics imply that
the mode profile has time dependence 6. (im(t/€)). In figure 4, the phase difference is shown for the
same value of t/e, but different values of €. These figures demonstrate that the phase does not
depend on t and € separately.

6. Whitham equations with additional phase shift

There is a variation of Whitham theory which explicitly introduces some phase shift that is
independent of the leading order fast phase. This was studied, for example, by Haberman [19]. We
employ this idea here. It is a natural generalization of the previous approach: when one integrates
the leading order ODE equation (4.1), the ‘integration constant’ 6, is in general a slow function of
x,t, independent of 6. We now look for a solution u of equation (2.1) with fast and slow scales in
the form

9
u=u(0,x,te), =246, 0<e«kl, 6.1)
€

where we define the slowly varying quantities k and V by 0:6) =k, 3;6p = —kV. Then, the
consideration parallels that of §3. Again we have equation (2.4) and the other Whitham equations
are derived as secularity conditions ensuring that u is periodic in 6. The KdV equation, after
introducing fast and slow scales, takes the form of equation (3.1) with substitutions —(kV/e) —
—(kV/€) + 80, and k/e — (k/€) + 0x0«. We again denote dygf =f and also use the notation
k =k + €d¢6,. Multiplied by ¢, equation (3.1) with the above replacements can be written as
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equation (3.2) with

(]23 B k3) " / / 72 7 3 7.2\,
——u" 4+ 810,u” + 60,0, unt” + 3k 0 u” + Eax(k u
€

kF' = 81 + 6udyu +
te (3kaxxu’ 4 30ckd’ + axxicu/) T 20, 6.2)
As in §3, two exact secularity conditions are obtained from equation (3.2) as F/ = 0 and uF' =0
#Q +30:Q2 + €20 Q=0 (6.3)
k2 . S
%Q2 +40:Qs — 30 | 5G| + et (k(uaxu’ = u/axu)) + €20, (axeZ - 3(8xu)2> —0. (64

Next, we bring equations (6.3), (6.4) to the form with fewer dependent variables, exactly like in §3.
We integrate equation (3.2) to get equation (3.8) again only with different F in it, now

3 i3 5 3 .
KF = 81 + 30yJ2 + Q )u” + 04051t + 30x014% + 3kZ0u’ + Eax(kZ)u’

te (3iéaxxu + 30ckgu + Bxxfcu) + 201, 6.5)

functions ], are defined by equations (3.10) and (3.11). Multiplying equation (3.8) by 2u’ and
integrating over 6 one obtains equation (3.12) only with different uF and f uF’,

B
k[ ur =22 4 ool - S60 + E20 Gy Sy + o0 200,00
+ 3kudy (ki) + € (gax <f< J(uaxu/ - u’axu)> + 2(3123,” + 30,k + axxfc)u>
62 2
+ ? <3xxx]2 — 30y J(ax”) ) . (6.6)

Here, we defined Gy =k2 [(u')? = (K2/k})GO + Gy, G1=0, so that Gy = k2/k2 - G/2 and the other
formulas before and in equation (3.14) of §3 still hold.

Proposition 6.1.

3Q + 3 (VQ + Cy) — €y (ate*Q + axe,;*(VQ + C1)>
— 2 <28xe + Saka Nop Bxku> o

and

8:0,.P + 0,0, H
P+ 0,H — ¢ [atQ* + 9¢(VQy) + 0y (MTH)]

P i
—é [&Qw&(@ﬁ—m(W)+ax<3xx 30ck, 1 O P)}

3P 4+ 28
2 ok k

3 [(ate* + Vaxe*)Qd (kdyx + 303k + Zaxxk)Q*:|
X ~
k 2%

k
+ 5439( <8szQd axQ 83}: Qd) =0, (6.8)

where we denoted (recall that k =k + €0y 0x) P=VQ+ C1,H=VP —3Cy,

kQi = 810,Q + 9:0,(VQ + C1),  kQq = 38x(kdxQ) + drxkQ. (6.9)
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The proof is similar to that of proposition 3.1 and is omitted. Equations (6.7), (6.8) and (2.4)
comprise the exact non-perturbative Whitham system in physical variables V,Cy,Cp, k, Q and 6y;
again it is not closed but is a starting point to get the Whitham equations to any order in e.

Recall the consideration in the beginning of §4. We keep the same definition equation (4.1) here
and obtain the same equations (4.4)-(4.7) leading to the KdV Riemann invariants r; <7, <r3 asin
equation (4.8) and to expressions in equation (4.9). To order ¢, secularity equations (6.7) and (6.8)
are

0105 Qo + 9x0:(VQo + C1)
k

#Q+x(VQ+C1 —€Qi)=0, Qu= (6.10)

#(VQ+C1) + 0 (V(VQ + (1) —3C2)

C10:05 — 3Cp0,0; )]

. =0, (6.11)

—€ |:atQ* + Oy <2VQ* +
where now Qs is the leading order of Q. in the previous subsection. We subtract the leading order
equation (4.6) from equation (6.10) and similarly equation (4.7) from equation (6.11). The result is
a linear homogeneous closed PDE system for the phase shift 6, and O(¢) correction to the mean
Q1,€Q1 =Q — Qo. We will work with the first of these, equation (6.12), and their combination, the
second minus V times the first, as the PDE system to study:

9 Q1 + 9x(VQ1 — Qi) =0 (6.12)

C10105 — 3Cp0x0, )
k

0V + Vo V)Q1 — 8:Qs — Qs 0xV — 3y (VQ* + 0. (6.13)

(a) Solution for the step IC

Consider the step IC equation (5.1) and recall the GP solution given by equations (5.2) and (5.4).
We try to solve equations (6.12) and (6.13) for 6, and Q; in this case. From step IC, we expect the
problem to be self-similar; this leads us to assume that 6, = 0,.(m). Then 8.0, = 0, (m)/ tvé(m), 010y =
—(v20,(m)/tv}(m)), by the GP formula. It is now convenient to change independent variables from
x,t to m, t; for the derivatives we obtain

y=——0Om, Or— 0 — I, (6.14)
Un(M

where in the last formula the t-derivative at constant x is expressed in terms of t-derivative at
constant m and m-derivative. For the step IC, we have, according to equations (4.8) and (4.9),

1 E(m)
:O/ = 7 :1/ 2:71 :27_1 7
1 rp=m, 13 I Qo K(m) +m
V=21+m), Ci=0-m? Co=-2(1—-m)l—m?), (6.15)

i.e. all of these quantities are functions of m only. We obtain

[C1 — (v2 — V)Qolo.(m) _ qx(m) [C1—(v2 — V)QO]Q:(’”).

— = .1

Qx tkvé(m) T gx(m) kvé(m) (6.16)
Thus, equations (6.12) and (6.13) become (from now on “prime’ means f' = df () /dm)
v -V \%4 !
- 2=V 0, YA g (617)
tvy tvy vy
=NV 4 (=V) 6 2V 1 ((Cr2a+3C)0\

EACIRSAS I - Rt e S ) 1

tv} Qi+ v} T v} T v} ku) 0 6-18)
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One is thus led to take Q; of the form Q1 = g1(m)/t, consistent with the implication of similarity,
i.e. the e-expansion is in fact an expansion in powers of €/t. Then, the PDEs become ODEs in m

[(va = V)q1 + gx] =0, = (v2 — V)q1 + g4 = 351 = const. (6.19)
, Civp +3C2)6L\
~V'[(v2 — V)g1 + g4 + ((vz — V) + %) =0. (6.20)
2

After using equation (6.19) in equation (6.20), the last becomes a total derivative and integrates to

(C1va +3Cr)f;

(v2 = V)gs + k]

— 351V =5 = const. (6.21)
Now 0, (m) is determined from equation (6.21) and then g1 () is found from equation (6.19). There
are two unknown constants s; and s, here. We find that 6, (m) has a singularity as m — 1. In order
to make the singularity the mildest possible, one has to choose sy such that 351V + s, = —6s1
(1 — m). Then equations (6.15), (5.2) and expressions K'(m) = (E(m) — (1 — m)K(m))/(2m(1 — m)),
E'(m) = (K(m) — E(m))/2m, when used in equation (6.21), give the final formula for 6}, with still
undetermined constant sq,

3s1[2(2m — 1)E(m) + (1 — m)(2 — 3m)K(m)]
(1 — m)[(1 4+ m)E2(m) 4 2(4m? + m — 1)K(m)E(m) + (1 — m2)(1 — 3m)K2(m)]"

Then one can verify that

BLm) = > (6.22)

351
(1 —m)In(16/(1 — m))
but even this mildest possible singularity is not integrable, therefore we do not get non-singular
solution for 6. Moreover, function g1 (1) can be then found from equation (6.19) in the form

ei(m)zél asm—1,

351K [(1 — m)(5m — 1)(K')* — 8mKK' — 2K?]
N0 = R A= m) P + (£ 3mKK £+ K]
Asm— 1, K(m)~In(16/(1 — m))/2 and K'(m)~ 1/(2(1 — m)), so one finds

(6.23)

351
~2(1 — m)In(16/1 — m)

the same non-integrable singularity. Recalling that Q1 =¢;/f is the first correction to the mean
1, its singularity looks particularly unrealistic. To remove it we need to take s; =0 which gives
0y = const and returns us to the situation of §3 and 4. One could ascribe the singularities at the
solitonic edge of the DSW region to the necessity of a transition layer there with different scaling
not captured by the current theory. Still then the only way to have s1 consistent with numerics in
§5 is to make it small, not larger than of order €. This again leads back to the setting of §3 and 4.
We also note another difficulty for the current approach: equations (2.4), (6.7), and (6.8) may not
suffice to solve for all the variables V, C1, Cp, Q and 0.

q1(m) ~ asm—1,

7. Whitham theory: linear case
To compare the above with what Whitham theory for linearized KdV equation
1t + €2 dyxtt =0, (7.1)

yields, we consider its leading order k*u)’ — Vi) =0 solved by

o
u0=c+Ac059=c+Acos<—O+9*>, Rbo=k, by =—kV, (7.2)
€

¢, A, V and 6, being independent parameters. The linear dispersion relation (or fixed constant
period condition which is equivalent to it here) implies

k=(=V)1/2, (7.3)
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where we have in effect chosen a normalization for 6y and the period. Then conservation of waves
is a Hopf equation for V,

0V +3Vo, V=0. (7.4)

The first usual secularity condition for the next order equation yields 9;119p = 0 which means that c
is a constant (not slowly varying). The second secularity condition from §3 (at leading order, with
terms only from linear part of KdV) fixes the evolution equation for the amplitude A as

A + 30, (VA%) = 0. (7.5)
The correction 17 has even and odd parts. Its even part 11, is again tied with 6, as
[, + 1) + Db, — 3cVd0,] =0, (7.6)
where D = 9; 4+ 3V d,. The general even solution of equation (7.6) reads

0

AD
Bupe = — > 0 sind — C, + ypAcosb, (7.7)

with arbitrary slow C. and yy. Enforcing periodicity yields the first-order PDE for 6.,
010 + 3V 0,0, =0. (7.8)

Thus, here, in contrast to the nonlinear case, the dynamics of 6y is fixed by a usual secularity
condition controlling periodicity rather than growth of the solution u as function of fast variable
0o/€. Then, the IC u1,(x,0) =0 is achieved if one takes Ce(x,0) = yp(x, 0) = 0. Both equations (7.5)
and (7.8) depend on the solution of Hopf equation (7.4) implicitly given by

x=3Vt+x9(V) and xo(V(x,0))=x, (7.9)
for a given IC V(x, 0). For example, if the IC for 6, is written as 6,(x, 0) = ¢(V(x, 0)), then
x=3¢""(6:)t + x0(¢ ™" (65)) (7.10)

is the implicit solution for 6(x, t). These formulae can describe the evolution of the total phase
given an IC for slow variables. For example, if 6,(x, 0) = const. initially, it remains constant for all
times.

On the other hand, e.g. for the step IC given by equation (5.1), the exact solution of linearized
KdV is obtained by Fourier transform (the analogue of IST here); it is

X

W . (7.11)

u(x, t) = LOO Ai(¢)d¢ and &=

Only its asymptotics for £ <« —1 can be described by periodic Whitham theory; it has indeed the
form of leading-order solution (7.2)

Ek—1: M(X,t)~1+WCOS <§|¢§| — T . (7.12)
This corresponds to the following solution for the Whitham variables: constant c =1 and
1 Hl2 6 2 2|x[%/2
v=> A= _ €Y , 702_7|é|3/2=_7|x| , 0*=3—n. (7.13)
3t m|EP2 m|x3/2 3 3e(3t)1/2 4

With this assignment all equations (7.4), (7.5), (7.2) with (7.3) and (7.8) are satisfied. However, V
and 6 are singular as t — 0; these solutions result from the asymptotics of the exact solution given
in equation (7.11). Any 6, = const is a solution of equation (7.8) but one needs to enforce ICs to get
the correct value 37 /4 from Whitham theory. It is unclear how to do this only within the context of
Whitham theory due to the singular nature of V and 6p. The numerics below clearly show that the
phase shift is constant; there is only small ‘numerical noise” around 6, = 37 /4 in this linear case.
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Figure 5. Difference between 6, (see text) and (a) 6y /€; (b) 6y /€ + 6. Each curve corresponds to a different value of €.
(Online version in colour.)

(@) Linear KdV numerics

For £ « —1, the asymptotic solution of the linearized KdV equation is equation (7.12) implying
equation (7.13). The maxima of cos(d) occur when Omax =271, n € Z. A comparison of the exact
phase maxima and the asymptotic approximations of equation (7.12) is shown in figure 5. The
difference between the exact maxima and the O(1/¢) approximation yields a nearly constant value
for all . In figure 5b, the constant is found to indeed be 6, = 37 /4 to within O(¢) error bounds. As
€ decreases, & decreases, resulting in a better approximation. This improvement is different from
the nonlinear case shown in figure 2 where there is more structure and indications of possible
intermediate/transition regions in the neighbourhoods of m =0, m=1 as € — 0. In figure 5, we
observe only small random fluctuations around the constant phase shift which do not imply any
functional dependence. This difference with the nonlinear case is expected and lends additional
support to our theoretical findings.

8. Conclusion

We developed higher-order Whitham theory with a single fast phase for the KdV equation. This
allowed us to determine the slow phase shift in the leading order solution and show that it is
asymptotically constant for a wide range of ICs including step or steplike ICs. Other analytical
possibilities which could be consistent with existing analytical results were ruled out. The role of
nonlinearity and existence of a non-trivial O(¢) phase shift due to it predicted by our analysis is
also clearly seen from comparison of our numerics for KdV. We also studied the linearized KdV
equation and found that its phase shift is a constant.

The conclusion that the phase shift as a function of space and time is asymptotically constant
illuminates why for so many years since the seminal work [3] the leading order solution
with constant phase shift is so widely and effectively used in applications; see, e.g. recent
reviews [14,15] and their rather comprehensive lists of references. We note that considerable work
has been devoted to the leading order solutions for multiple phases; see, e.g. [14,18] and references
therein.

Certain interesting and important issues remain for future work, in particular, the clarification
of the relationship between small dispersion and long time limits originating from the space
and time scaling properties of KdV equation. Numerical results also indicate the existence
of intermediate/transition regions around the DSW edges. Their analytical description also
presents an important problem for future work. To our knowledge, these transition regions
from leading order DSW to constant solutions for steplike initial /boundary conditions have not
been analytically described except for some partial results at leading order by IST in [21] and
by matched asymptotic expansions assuming linear initial approximation and various matching
conditions in several regions for the pure step problem in [22], both for the long-time regime.
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Appendix A. Non-secular corrections to the solution

In general, formulas (4.17) should be written as

16 [0 ©2Fn(2) dz — w2(8) [, 0) 1 (2)Fu(z) dz
- W

+ Amug(0) + Apw:(0), (A1)

n

where n=1,2,.... Requiring periodicity of u; in equation (A1) leads one to consider the
difference u1(0 + 1) — u1(0) (recall that we normalize 6 to have period 1). We have

wa(0 +1) —wz(0) =Koup(0) and Kr=aQ+ B, (A2)
see end of §4. Let 0; = 6(x, 0). Consider the numerator of the first term in equation (A 1). We have,
using periodicity of u( and F and equation (A 2),

0+1
A= L (0 + Dwa(z) — wa (0 + 1)ug(2))kF1(z) dz

0
- ([ waoreato - waoyieners ey oz
0+1

=150

0+1
wy(2)kF1(z) dz — Kzug(H)J uy(z)kF1(z) dz
(4 0;

0+1

— wy(0) L 1 (z)kF1(z) dz. (A3)

The antiderivative [ u(2)F1(z) dz is an explicit odd periodic function found by direct integration
0
A1(0) = kJ uy(2z)F1(z) dz

io] V\. Ku)\  igDj; —JiDi
=(D+zaXV)(”gh+<Q_6)h+60>+”0h2h”o

k A \%4
+ gax (%h + 2k (uo - E) u6> , (A4)

where we denoted D = 9; + Vy, tig =1y — Q, j1 = f? Thus, the averages over the period

6+1 1
A1(0)=0, L 1y (2)F1(z) dz = L uy(2)F1(z) dz=0. (A5)

Next, writing w2(0) = Kau(,(0)0 + w2(6), where @,(6) is an even periodic function, and taking into
account that F1(0) is odd periodic, we obtain

0+1
J Wy(z)F1(z)dz =0. (A6)
0
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Thus, since | z+1 A1(z) dz =0 due to A1(z) being odd periodic by equation (A 4)
0+1

0+1
kJ wy(z)F1(z) dz=K> J zu((z)kF1(z) dz
0 0

P 0+1
=Ky ZA1(Z)|0+ —Kp L Aq(z)dz

0+1
— KA (0) — K L A1(2)dz = K A1 (6). (A7)

Finally, use of equations (A 5) and (A 7) in equation (A 3) yields
0
A1 = Koup(0)A1(0) — Koug(6) L ug(2)kF1(2) dz = Koup(0) A1(6y). (A8)

This depends on the ICs. When 6; =6(x,0) =0, also A1 =0 and the first term in equation (A 1) is
periodic in 6. Since it is zero at f = 0, we obtain equation (4.17) for n =1 indeed (i.e. slow variables
A11 = Agp =0in this case). In general, periodicity of u1 in equation (A 1) is achieved by taking, as
is seen from equations (A 8) and (A 2),

A1(6))

Ap=— . A9
12 B (A9)

Then, the IC u;(x,0) =0 is ensured by taking A1 such that
Aqqug(x, 0) + Arpwa(x, 0) =0. (A 10)

Quite similar considerations apply to u; and higher order corrections to the solution.

Appendix B. KdV with step IC phases from IST/RHP

For the KdV equation with steplike ICs, the total phase including the phase shift was computed
in [12,13] by solving a vector RHP via the steepest descent approach of Deift and Zhou [9,10].
The solution is constructed for long-time asymptotics rather than for the small dispersion limit.
However, for the pure step, the former appear to be equivalent to the latter since, by rescaling x
and f, the KdV equation is seen to depend only on x/e and t/e while the IC (5.1) does not depend
on scaling. Reintroducing € into the formulas of [12,13] (where € = 1) and taking the initial jump
¢ =1 there, their result for the total phase in the DSW region reads

o BE) | AE)

1
= —+ —, =
2me + 2w 2 §

X
12t

(B1)

where the leading order phase function is

1
B(s):24j - <5+1%m($)—52>1/%ds, (B2)

and the phase shift is determined by

1
AE) = 1 J’ log(4sy/1 — 52) ds.
Vm@E) /(1 —s2)(s> — m(§))

K(m)
The elliptic modulus parameter m(£) is implicitly given by an integral equation which is an
equivalent form of GP equation (5.2). Note that in [12,13] the solution is expressed in terms of
second log-derivative of elliptic theta-function; to match its total phase with that of the cnoidal
function one has to add 41/2 to their phase tB(§)/2mwe + A(£)/2n; see, e.g. [23]. Equations (B 2) and

(B3)
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(B3) can be expressed in terms of complete elliptic integrals. Using the identities; see, e.g. [23],

1 ds
Ip= — =K1 -m),
’ J T g T S
1 s2ds
L= e — -
| o m " (B4)
and _ Jl stds _ 2(14+m)EQ —m) —mK(1 — m)
Tla oD@ —m 3 ’

one gets the expression for B(£) in the form B(§)/24 = (§ + (1 + m)/2); — m(§ 4+ (1 — m)/2)Ip — I4.
This is further simplified using the Legendre relation K(m)E(1 — m) + K(1 — m)E(m) — K(m)K(1 —
m) = /2 to get the exact match of the fast phase equation (5.4) from Whitham theory

tB(E)  t 2m(1 — m)

2re € E(m)—(1—mK(m)

Also, using the formulas [23, p. 288],

Jl log(s)ds _ KA -=m)Inm
=2 -m 4
(B5)
J 1=m log(s) ds K1 —m)In(1 —m) 7K(m)
and — —_ ,
0 V(1 =21 —m —s?) 4 4
one brings the slow phase shift to the simple form
_AmE) 1 K(1—m) NS T7SN S
O, = o + T ) log[4(m(1 — m))*/*] 3 + 7 (B6)

As m — 1, the phase shift approaches a constant

1 A:tl 1:|:1
-1 —*-—>——*_-.
2r 2 4 2

Note this is not just the :I:% as it should be at this edge. In the other limit m — 0, A diverges as

A (Inm)?

27 8n?

The last formulas imply that proper matching of the solutions in the DSW region and, respectively,
the regions ahead and behind it should remove the discrepancy and the singularity.

We observe complete agreement for the leading order fast phase. The non-trivial result of [13]
for the next order phase shift contrasts sharply with our analytical and numerical findings. The
reason is a matter for future investigation. A possible source of the discrepancy could be short
times t ~ € where the apparent equivalence of small dispersion and long time results for scale-
invariant ICs could be broken by subtle effects related to interchange of the two limits. Also the
above limits as m — 1 and m — 0 of the phase shift of [13] at the very least imply the necessity
of intermediate/transition regions at the edges of DSW. Their existence at both edges could be
consistent with our numerical results in §5. For decaying ICs, such regions have been described
analytically in [24,25] in the small dispersion limit.

m—0:
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