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A B S T R A C T   

Despite the adoption of electronic waste recycler certification schemes in the United States, there remain notable 
instances in which recyclers might engage in dishonest practices. To better understand mechanisms that may 
encourage honest electronics end-of-life management, we develop a framework to analyze the decision calculus 
of electronic waste recyclers facing a decision between an honest choice that might be more expensive or a 
dishonest choice that saves money but has some probability of being caught. Building an analytical decision tree 
model under which a recycler maximizes expected returns, we explore the influence of supervision on the choices 
a recycler faces and provide an analytical solution that describes the boundaries that separate those choices. 
Using our framework, we systematically catalog which interventions may help and which may not. The model 
suggests that direct unqualified subsidies to recyclers may not be particularly effective, although properly tar-
geted subsidies have promise. We also find that there are substitution effects between increasing the cost of fraud 
and decreasing the costs of proper electronic waste recycling. That is, increasing the cost of fraud can serve as a 
policy instrument to produce effects similar to decreasing a recycler’s costs from engaging in honest behavior. 
We also discuss the role of digital fraud prevention technologies such as blockchain as another mechanism to 
help achieve sustainability outcomes in e-waste management while lowering the costs of third-party supervision.   

1. Introduction 

Electronic waste (e-waste) presents a complex challenge to the 
growing field of circular economy (CE). Electronic products have 
become integral to modern society, and their use can provide sustain-
ability benefits, particularly if they provide digital alternatives to 
resource-intense goods and services (Coroama et al., 2015). However, 
electronics are also responsible for significant impacts across their life 
cycle. This starts with the extraction of a diverse mix of valuable, scarce, 
and hazardous raw materials (Greenfield and Graedel, 2013); continues 
with the energy-intense manufacturing of components (Deng et al., 
2011; Williams, 2004); and ultimately ends with a complex, continu-
ously evolving e-waste stream (Althaf et al., 2020). CE strategies such as 
reuse and re-manufacturing offer the potential to mitigate these impacts. 
For example, these strategies might extend product lifespan, reduce 
demand for new products, or provide broader access to essential tech-
nology. Recycling also provides an opportunity to keep valuable mate-
rials in productive use, minimize future demand for primary material 
extraction, and reduce the release of hazardous materials into the 

environment. 
However, numerous barriers exist to achieving CE aims in the elec-

tronics sector, and less than 40% of e-waste is currently estimated to be 
reused or recycled (United States Environmental Protection Agency, 
2020a). Electronics are typically not designed to be easily disassembled, 
increasing the labor costs associated with product repair and component 
recovery (Tansel, 2017). Volatility in commodity markets leads to un-
predictable shifts in the economic incentives driving material recovery 
(Bangs et al., 2016). Consumer awareness and participation in e-waste 
recycling programs are variable, making it more challenging for recy-
cling businesses to effectively forecast the timing, composition, and 
magnitude of products requiring management (Brown-West et al., 
2010). Even under the best circumstances, current recycling methods 
are not perfect and lead to the loss of critical materials present in low 
concentrations (Graedel et al., 2011; Reck and Graedel, 2012). While 
policy interventions could potentially help overcome some of these 
challenges, the U.S. currently lacks a federal e-waste policy. The current 
patchwork of 25 state e-waste laws have inconsistent product coverage, 
compliance mechanisms, and recycling targets (Schumacher and 
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Agbemabiese, 2020). 
These challenges may also give rise to situations where dishonest 

actors try to circumvent economic and policy constraints by engaging in 
fraudulent practices. Notable recent examples of fraud center on man-
agement of legacy cathode ray tube (CRT) devices, which have high 
costs of recycling and low resale or commodity market value (Kang and 
Schoenung, 2006; United States Environmental Protection Agency, 
2020b; Xu et al., 2013). Some US firms who touted safe, ethical, and 
green recycling practices to gain business actually engaged in illegal 
stockpiling, abandoning, or exporting waste CRTs (Paben, 2019; 2020). 
The primary threat of stockpiling, or speculative accumulation, is that it 
increases the risk of mismanagement or abandonment of CRTs, which 
contain leaded glass and other potentially harmful materials (United 
States Environmental Protection Agency, 2020b). The EPA notes that in 
order to demonstrate that used CRTs and CRT glass are not being 
speculatively accumulated, both parts of the provision must be met — 
that is, (1) the person accumulating the used CRTs and CRT glass can 
show that the material is potentially recyclable and has a feasible means 
of being recycled and (2) that during the calendar year the amount of 
material that is recycled, or transferred to a different site for recycling, 
equals at least 75 percent by weight or volume of the amount of that 
material accumulated at the beginning of the period (see title 40 of the 
Code of Federal Regulations section 261.1(c)(8) (Office of the Federal 
Register, 2021)). When caught, firms have faced lawsuits, criminal 
charges, and stiff financial penalties. Another widely studied issue is 
export of used electronics to developing countries where some products 
may be recycled via unregulated and harmful methods (Williams et al., 
2008). New examples of fraud or dishonest practices include lapses in 
personal data security when used electronics are resold (Qu et al., 2019; 
Tan et al., 2018), non-functioning products included in trans-boundary 
shipments under the guise of reuse (Wong et al., 2012), buyer or seller 
fraud during online resale or product auctions (Dong et al., 2009; 
Esenduran et al., 2020), and electronics repair with counterfeit com-
ponents (Pecht and Tiku, 2006). 

A variety of policy and market solutions have been deployed to 
prevent or reduce harm from fraudulent electronics management, with 
varied degrees of success. For example, the Basel Convention was 
drafted to limit off-shoring e-waste to developing countries, and all 
OECD countries but the United States ratified this treaty (United Nations 
Environment Programme, 2020). The U.S. lacks a federal e-waste policy 
and has favored voluntary mechanisms, such as recycler certification 
programs, with e-Stewards (Basel Action Network, 2020) and R2 (Sus-
tainable Electronics Recycling International, 2020) serving as examples. 
These programs designate participating recyclers as compliant with best 
practices concerning worker health and safety, data security, and proper 
management of discarded electronics through the entire recycling sys-
tem. The United States Environmental Protection Agency (EPA) studied 
the implementation of these standards and concluded that these pro-
grams have brought order and a growing understanding of regulations 
and best practices to electronics recyclers and related stakeholders 
(United States Environmental Protection Agency, 2016). However, the 
EPA also notes in its report that opportunities for improvement are 
apparent across all dimensions it assessed in the study. 

While recycler certification has helped move the field toward more 
transparent practices, it is not a universal fail-safe against fraud and does 
not necessarily guarantee sustainable outcomes. One particular chal-
lenge is that detecting fraud is costly and labor-intense when considered 
against the complex global scale of used electronics flows (Lee et al., 
2018). Some organizations have sought to use lower-cost technology 
solutions to identify dishonest practices. For example, between 2014 
and 2016, BAN implanted GPS trackers in electronics delivered to a set 
of U.S. recyclers and then used the resulting data to show that about 30% 
of the products ended up overseas (Basel Action Network, 2016). While 
this initiative received much public attention, and recyclers and man-
ufacturers pledged to improve operations, fraudulent activities have 
continued, as evidenced by recent lawsuits, criminal charges, and stiff 

financial penalties to firms, including the notable example of Total 
Reclaim (Staub, 2019). Further, such strategies can potentially erode 
public trust and participation in electronics recycling or eliminate 
legitimate product reuse pathways, which offer significant potential to 
reduce life cycle impacts of consumer electronics (Deng et al., 2011). In 
addition, without trust, shared decision making, and meaningful 
engagement of global partners, strategies aimed at accountability can 
actually limit partnerships that effectively link formal and informal 
electronics reuse and recycling sectors (Lepawsky et al., 2017; Williams 
et al., 2013). 

There is a clear need to better understand mechanisms that can foster 
reuse and recycling practices that maximize the social, economic, and 
environmental outcomes for electronics while minimizing social and 
health risks. Recent studies have looked at the complex interactions 
between consumers, governments and recyclers using game-theoretic 
reasoning. For example, it has been observed that consumers some-
times store used electronic devices for a relatively long time. Subse-
quently, game theory has been used to estimate the optimal monetary 
incentive for take-back programs to encourage consumers to return their 
used electronics (Sabbaghi et al., 2016; 2015). A related study by Li et al. 
has modeled the efficacy of various subsidy schemes, where they found 
that the deposit-refund subsidy pioneered in Shenzhen, China can in-
crease the collection rate of batteries used in electric vehicles (Li et al., 
2020). In similar spirit, Ma and Zhang have applied an evolutionary 
game model to China’s construction space and found that government 
subsidies to construction enterprises are essential for recycling. Inter-
estingly, in this last model the authors discovered that subsidizing re-
cyclers is not generally necessary since the recyclers’ behaviors tend to 
be coupled to those of the construction enterprises (Ma and Zhang, 
2020). However, some studies suggest that, in developing countries like 
China, regulations are less effective due to the “pull” of informal recy-
cling enterprises (Zhang et al., 2020). Consequently, official recovery 
rates of electronics have not followed suit. This is not unlike the 
demand-side pull of electronics at the international scale, where used 
electronics and e-waste often flow from developed to developing coun-
tries where there is strong demand for reuse and recoverable materials 
(Chika et al., 2012; Kahhat and Williams, 2009; Zhang et al., 2012). 
Indeed, the import of electronics has many social and economic benefits 
in developing countries, albeit with the potential of negative environ-
mental externalities (Williams et al., 2008). 

Closely related work by Wang et al. has considered the role illegal or 
unqualified disposal plays in the equilibrium strategies of governments, 
consumers and recyclers (Wang et al., 2020b). This work acknowledges 
the important role the informal sector plays in developing countries and 
uses evolutionary game theory to study the conditions under which 
compliance among recyclers can be achieved. This analysis suggests 
government intervention through a “reward-penalty-supervision” 
mechanism may help the e-waste recycling space mature to broader 
compliance. For this mechanism to be effective, government supervision 
must be effective and always “catch” recyclers that do not comply with 
environmental law. However, the methods by which a government or 
regulator can efficiently and effectively supervise recyclers is not clear. 
Therefore, the goal of this study is to model decision making and fraud in 
electronics management to identify means of more efficient and effec-
tive supervision. 

1.1. Research approach 

Here we present a model framework that analyzes dishonest end-of- 
life electronics management in the presence of probabilistic supervision. 
Such dishonest activity could take many forms, such as improper 
handling or storage of e-waste, illegal exports, or product resale for reuse 
without adequate data security measures. Similarly, supervision could 
also take many forms relevant to the nature of fraud, such as facility 
inspection, verification of shipment manifests, or the use of a GPS 
location tracker (Lee et al., 2018). The decision model includes 
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conditions that may lead recyclers to pursue fraudulent activities: cheap 
dishonest alternatives combined with high costs and low short-term 
returns of honest recycling or reuse alternatives. Our model also con-
siders the effects of subsidies to recyclers that would incentivize honest 
practices. Here we also develop an analytical framework that describes 
the boundary conditions between alternate decisions in scenarios with 
varying degrees (i.e., probabilities) of third party supervision. 

To this end, we begin by constructing a simplified, binary model in 
which a recycler must choose between honest or dishonest management 
practices, broadly construed. We then enrich the model to describe the 
role of supervision in altering a recycler’s choice set. By maximizing 
expected utility, we obtain a formula delineating the boundary between 
a recycler’s choices. Using this formula we can then analyze the 
connection between the choice of honest management and the under-
lying structural parameters. Notably, we look at the implications this 
model has for fraud prevention and apply the principles in a brief case 
study. Our discussion is primarily focused on those consumer electronics 
widely owned in US households and covered by existing state laws, and 
which tend to have mature markets where material opportunities and 
risks are known. Such products typically include cathode ray tube (CRT) 
monitors and televisions, printers, laptop and desktop computers, and 
exclude large household appliances, which are managed separately in 
the US (Althaf et al. (2019); Electronics TakeBack Coalition (2015)). 

However, model applicability is not limited to electronics. An anal-
ysis similar to the one we conduct here could be adopted for any scenario 
in which there are two players R and G and  

(a) R has a choice among two or more actions, with each action 
having different returns; 

(b) G has a preference over which action R chooses and this prefer-
ence is codified in policy or market mechanisms;  

(c) The action of R that G prefers most has lower returns for R, at 
least in some cases;  

(d) G has some (not necessarily perfect) mechanism for monitoring 
R’s actions and subsequently punishing R for any wrongdoing. 

Requirement (c) is necessary, for otherwise the situation would be 
trivial: R’s preferences would align with G’s preferences and we would 
not have a problem. Requirement (d) is necessary for player G to put 
downward pressure on the actions of R; if there were no repercussions for 
R, then there would be little we could do to influence R’s choice outside 
of making G’s preferred action more profitable for R. It is important to 
note that in the absence of a player G who can monitor R, then our model 
cannot be applied. Thus the strategies we develop cannot be used to 
study fraud in the absence of supervision. 

Our study of electronics in the United States satisfies these criteria, 
where the e-waste recycler plays the role of R and a regulator plays the 
role of G. In fact, most regulatory situations satisfy these criteria, and we 
discuss possible extensions of this model along these dimensions in 
Section 4.3. Now, although in the United States there does not exist a 
unified, federal e-waste policy, that does not violate assumptions of the 
model. State regulators still administer supervision in the 25 states that 
have an e-waste policy (NCER, 2021), and furthermore third party or-
ganizations also engage in supervision through market mechanisms and 
voluntary certification programs. The lack of federal e-waste policy in 
the United States is arguably more reason to systematically analyze 
fraudulent recycling practices to look for novel solutions. 

2. A two-choice model 

We begin by first considering a recycler R. We assume there is only 
one type of electronic product requiring management and R is a passive 
receiver of this product. It is also assumed that external organizations 
are unable to directly observe R’s business operations. 

Figure 1 shows the two options facing R: H engage in honest man-
agement; and D engage in dishonest management. Dishonest 

management has a payoff, ψ, defined by a single marginal cost param-
eter, ψ(χ) = − χ. On the other hand, honest recycling has a payoff of π(α,
ϕ, γ), where γ is the marginal cost of recycling (e.g. labor), α is the 
downstream revenue potential, and ϕ ∈ [0, 1] tells us the fraction of 
electronics that can be harvested for downstream resale. Examples of 
downstream revenue sources for electronics include the resale of prod-
ucts for reuse as well as the resale of components to brokers for the 
purposes of recycling in commodity markets. Choosing a functional 
form, the payoff per unit of recycled e-waste is 

π(α,ϕ, γ) = ϕα − γ. (1)  

For convenience, Table 1 summarizes the parameters discussed so far in 
addition to more parameters we will soon discuss. 

We make the following additional assumptions: R is paid some 
amount for every unit of product that is delivered; R does not influence 
the price level on downstream markets (e.g., the price of raw scrap 
materials, products or components on the resale market); and R’s fixed 
costs do not enter into its calculus at the margin. Note that with the first 
assumption, we can normalize all returns by whatever that purchase 
price may be since both actions H and D would increase by the same 
amount. That is, although we could explicitly include the revenue ob-
tained by R upon receipt of a unit of e-waste, this would increase both π 
and ψ by the same amount. Thus in any direct comparison between π and 
ψ , the returns of H and D, this revenue term will cancel. Therefore, since 
we are most interested in a comparison of π and ψ to determine a 
threshold condition for the decision of R, we do not make explicit the 
dependence on any payments R receives for conducting business. 

R will choose H for a unit of the product when 

π(α,ϕ, γ) ≥ ψ(χ) (2)  

Although the right hand side of Equation (2) is strictly negative, it 
should be unsurprising that e-waste recyclers may “play” D on occasion, 
and as discussed in Section 1, recyclers have indeed been observed 
engaging in fraudulent management practices. According to our model, 
if the marginal cost of honest recycling is too high or downstream 
markets do not afford lucrative revenues, dishonest management be-
comes alluring. Combining Equations (2) and (1), we can assert that R 
will engage in honest management precisely when 

γ ≤ ϕα + χ. (3)  

In other words, R will engage in honest management only when its 
marginal costs are sufficiently small. 

Although this conclusion is straightforward, it is nevertheless 
important to emphasize here. High relative costs of recycling may lead e- 
waste recyclers to engage in socially suboptimal behavior. Moreover, 
simply increasing the price paid to R will not influence their behavior, 
and so a direct unqualified subsidy may not be sufficient to encourage 
honest recycling. However, this simplified model does suggest one 

Table 1 
Summary of model parameters  

Parameter Definition Example 

χ  Cost of dishonest 
management 

Purchasing a warehouse for speculative 
accumulation 

γ  Cost of honest 
management 

Wages for labor to disassemble a CRT TV 

α  Downstream revenue 
potential 

Price received for selling harvested 
copper wire 

ϕ  Fraction of e-waste 
recoverable 

Fraction of gold recoverable from a 
circuit board 

ζ  Benefits of “provable” 
honesty 

Increased business from green 
certification 

κ  Court costs Legal fees 
ρ  Cost of punishment Fines 
λ  Cost of lying Difficulty of forging evidence  
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possible mechanism through which to leverage subsidies. We can 
decompose α into 

α = αm + αs, (4)  

where αm is the per-unit revenue available via downstream channels and 
αs is some subsidy afforded to R along those same channels. Under these 
circumstances, provided that 

αs >
γ − χ

ϕ − αm, (5)  

the inequality in Equation (2) will be satisfied, and R will find it 
favorable to choose H instead of D. We frame downstream revenues α in 
the abstract to aid in generalizing this reasoning: α can represent any 
positive return afforded by honest recycling. In our model, branch H 
separates honest recycling from dishonest recycling. By subsidizing only 
along channels reachable through branch H, we can unambiguously 
benefit and encourage desired behavior. An unqualified subsidy would 
not differentiate between behaviors and, at least in this simplified 
model, would not change a recycler’s decision at the margin. This 
refinement to the subsidy scheme could increase the efficacy of the 
“reward” component of the policy mechanism outlined by Wang et al. 
and described in Section 1 (Wang et al., 2020b). 

3. The role of supervision 

Here we extend the model to include supervision. Let G be a gov-
ernment or third-party organization that takes on the role of supervision. 
Suppose G applies supervision to R with frequency σ, and that the 
outcome of supervision can later bring R’s actions under scrutiny based 
on the ability to observe the means through which the product was ul-
timately transported, stored, reused, recycled, or disposed. 

Figure 2 shows a decision tree representing R’s possible actions in 
this context. At stage 0, G applies supervision to the recycler with 
probability σ. At stage 1 when R receives the product, they do not know 
if they are being supervised. The left half of the tree represents the 
subsequent outcomes when no supervision is present. In this version of 
events, R’s choices and subsequent payoffs are the same as those dis-
cussed in Section 2. 

The right half of the tree in Figure 2 differs slightly and represents a 
sequence of events occurring when R’s management is supervised. In 
this scenario, if R engages in honest management, they achieve a return 

π′ = π + ζ = ϕα − γ + ζ, (6)  

where we use π as defined earlier in Equation (1) and we use ζ to account 
for additional benefits R may reap from having been observed to be 
honest. Such benefits may, for example, come in the form of subsidies or 
greater market share due to third party certification or increased con-
sumer confidence. 

However, should R take part in dishonest management, we reach 
decision node 2 at which R faces consequences from evidence suggesting 

dishonest behavior. Such consequences may include litigation by envi-
ronmental regulators or a negative public opinion that decreases busi-
ness or their ability to secure future contracts. At this stage, R faces two 
choices: A, accept its fate, or L, craft a defense to contradict G’s claims. 
We denote R’s returns from A by 

ψ ′

A = −ρ − κ − χ, (7)  

where ρ is a measure of “punishment” rendered against R; κ is litigation 
costs, the costs of “going to court”, should the consequences entail liti-
gation; and χ remains as before, the marginal cost of dishonest 
management. 

We similarly denote R’s returns from mounting a defense by 

ψ ′

L = −λ − κ − χ. (8)  

The parameters κ and χ are the same as those in the payoffs to A, while λ 
represents the costs of mounting a defense. There may be some proba-
bility that the defense fails and so λ represents the expected return from L 
net the fixed costs κ and χ. We refer to λ as the “cost of lying” because it 
represents R’s return from arguing they had not engaged in dishonest 
management when indeed they have. Possible behaviors encompassed 
by λ include bribery, forgery, and intimidation. 

Given σ, we want to know whether R will engage in dishonest 
management. We denote R’s optimal share of dishonest behavior by δ ∈
[0,1]. Figure 3a plots the correspondence between δ and σ. The vertical 
segment denoted by σ∗ traverses the entire interval [0,1] and tells us the 
level of monitoring at which R is indifferent between actions H and D. 
Indifference is met when expected returns from either action are 
equivalent, that is when E[H|σ] = E[D|σ]. Were we to consider a game 
theoretic model in which the strategy of G is determined by a host of 
tradeoffs, we would find that the intersection of G’s decision corre-
spondence with that of R shown in Figure 3a would determine the level 
at which R would engage in dishonest management. A value of δ be-
tween 0 and 1 in this context would represent the probability that R will 
dishonestly manage a given unit of the product. 

R’s expected returns from playing H in this context are simply 

E[H|σ] = (1− σ)π + σπ′
. (9)  

To calculate E[D|σ] we need one additional piece of information, namely 
R’s return at stage 2. Since R will choose whichever of L or A has a higher 
return we define 

ψ ′
:= max

{
ψ ′

L,ψ
′

A
}
, (10)  

through which we have 

E[D|σ] = (1− σ)ψ + σψ ′
. (11)  

This gives us R’s decision point: 

σ∗ = ψ − π
Δπ − Δψ , (12)  

where we’ve defined Δπ := π′ − π and Δψ := ψ ′ − ψ. 
Again, σ∗ tells us the level of supervision at which R is indifferent 

between honest and dishonest management practices; σ∗ delineates the 
boundary between R’s decision. For values of σ less than σ∗, R finds it 
optimal to behave dishonestly when handling all products it receives, 
yet for values above σ∗ the likelihood of facing negative consequences is 
a sufficient deterrent and so R engages in honest management. 

3.1. Shift effects 

Figure 3 b illustrates how changes in underlying parameters produce 
a shift in the decision boundary σ∗. The figure considers a decrease from 
σ∗

A to σ∗
B and provides geometric intuition for why such a shift is desir-

able: The closer σ∗ is to zero, the smaller the region over which dishonest 

Fig. 1. A recycler R’s core decision tree. Upon receipt of a product at decision 
node 0, R has two choices: H engage in honest management, or D take part in 
dishonest management. Each choice has a distinct payoff shown at the end of 
each decision branch. 
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management remains an optimal decision. 
Ultimately, in the real world, we know that levels of supervision are 

often inadequate, and our model can illustrate this theoretically. We are 
interested in studying the ways we may be able to influence the un-
derlying parameters of our model to see which interventions may help 
and in what way. To begin, we rewrite (12) with the parameters 
explicitly substituted: 

σ∗ = γ − χ − ϕα
ζ + κ + min{λ, ρ}. (13)  

Note that R wants to maximize returns at decision node 2, which cor-
responds to picking whichever of {L,A} has a higher payoff. Based on (7) 
and (8), that means the payoff from decision node 2 will be λ or ρ,
whichever is smallest, and so that is why the denominator contains 
min{λ,ρ}. An interesting consequence, of course, is that the punishment 
would need to be sufficiently high to produce useful outcomes. For the 
purposes of this analysis, we assume that ρ is sufficiently large so that R 
faces negative consequences that pose an adequate threat. With that 
assumption, min{λ, ρ} = λ. In theory it should be easy to make ρ arbi-
trarily large (e.g., adding an extra year on a prison sentence or an 
additional fine). In practice, however, no punishment can be arbitrarily 
large and what is important is that ρ be made sufficiently large. 

We can now write the differential dσ∗ as 

ηdσ∗ = dγ − dχ − dϕα − ϕdα − σ∗(dζ+ dκ+ dλ), (14)  

where η := ζ + κ + λ is the denominator of σ∗ with min{λ, ρ} = λ 
substituted appropriately. The variables on the right-hand side of 
Equation (14) are those over which we have some level of control. 
Structurally, they represent interventions that can be used to influence 
R’s decision point. 

How could one efficiently influence R’s choice? The decision 
boundary σ∗ reports the minimum level of supervision necessary to have 
R choose H. In this context, by efficient we mean not supervising more 
often than σ∗. As illustrated by Figure 3b, σ∗ is not necessarily a static 
variable according to our model. By decreasing σ∗ we can require less 
supervision and still achieve honest recycling on behalf of R. We can use 
Equation (14) to list off the the parameters we should target: an increase 
in a term that is preceded by a negative sign or a decrease in a term that is 
preceded by a positive sign will produce the desired decrease in σ∗. 

Such shifts in individual decision boundaries are to be expected 
when considering real world situations with more than one individual. 
Many examples in the field of behavioral ecology illustrate the evolution 
of frequency-dependence with regards to genes that underpin cheating 
and policing behavior in social groups at all levels of life forms. These 

Fig. 2. A recycler R’s decision tree within the context 
of supervision by a third party G. A product is delivered 
to R at decision node 0, but unlike in Figure 1, there is 
some probability σ that G is supervising R’s manage-
ment of the product. The left branch F of the tree traces 
a path in which R is not being supervised; the right 
branch T, on the other hand, represents a sequence of 
events in which R is being supervised. At decision node 
1, R does not know which path it is on, a situation we 
denote as a dashed line between the two decision 
nodes.   

Fig. 3. A recycler R’s: 3(a) decision correspondence with a boundary at σ∗; and 3(b) shift in decision boundary from σ∗
A→σ∗

B, with σ∗
A > σ∗

B.  
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dynamics exist because the calculus of individual risk-reward to fitness 
with respect to policing behavior is a natural function of how much 
policing is happening at any given time in a population (Hauser, 1992; 
Ratnieks and Visscher, 1989; Santorelli et al., 2008; Sinervo and Lively, 
1996). 

Unsurprisingly, the only parameter we should decrease is γ, the 
marginal cost of honest management; all other parameters should be 
increased to achieve desired effects. There are various mechanisms to 
achieve reduced e-waste management costs, such as upstream product 
design that is optimized for later disassembly to enable repair and reuse 
(Vanegas et al., 2018) or improved recycling technology (e.g., robots 
with advanced computer vision (Wang et al., 2020a; 2019; Wegener 
et al., 2015)). As an added benefit, these mechanisms have positive 
spillover effects including higher system throughput and increased 
product and material recovery rates. 

4. Analysis of the cost of fraud 

According to our model, in a world where it is cheap to improperly 

manage e-waste, the only way to guarantee that an e-waste recycler will 
engage in honest practices is to reduce the costs of recycling below the 
downstream revenue potential of e-waste reuse or recycling. In this case, 
supervision would not be necessary, regardless of the other parameters. 
However, for some kinds of e-waste, proper recycling costs may be 
relatively too high, and so supervision may be necessary. Although 
ideally we would address the root causes of fraudulent e-waste recycling 
— through policy, designing for disassembly, and reducing recycling 
costs — our model offers an opportunity to study ways of mitigating the 
fraud that may result as a symptom of these deeper problems. 

Figure 4 provides three contour plots to summarize our discussion of 
the parameters. Each plot shows the minimum level of supervision σ∗ as 
a function of γ and λ, the costs of management and lying, respectively. 
The plots differ in the level of α chosen to show the effects of various 
levels of subsidy; the first plot shows a scenario with zero subsidy, while 
the subsequent plots illustrate the effects of larger subsidies. Although 
levels of α can also be interpreted as levels of downstream revenue po-
tential, we choose to view α as a subsidy in this section since presumably 
that is something over which policy makers have greater control. The 

Fig. 4. Contour plots of R’s decision boundary as a function of management costs (γ) and costs of lying (λ) for various levels of subsidy (α). Illustrative values for the 
other parameters were chosen as follows: ϕ = 1 and χ = ζ = κ = 0.5. The cross hairs in each plot indicate σ∗, the minimum level of supervision required to influence 
R to choose honest recycling when γ = 4 (relatively “low”) and λ = 6 (relatively “high”). The positive effects of subsidy are shown for α = 0 (4 a), α = 2.5 (4 b) and α 
= 5 (4 c). The region in which no supervision is needed is depicted in dark blue. Relative to γ = 4 and λ = 6, the region in which relatively less supervision is needed 
is depicted in light blue; the region in which relatively more supervision is needed is depicted in orange. 
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other parameters in our model are given illustrative values of ϕ = 1 and 
χ = ζ = κ = 0.5. Since the framework does not rely on specific units for 
these parameters (e.g., USD), and these parameters are not the focus of 
our analysis, we will not discuss them further. 

Every point in Figure 4 tells us the minimum amount of supervision 
required to achieve honest management. For example, in each plot we 
focus on the location of the decision boundary when γ = 4 (relatively 
“low”) and λ = 6 (relatively “high”), indicated by the arrows (or cross-
hairs) in the planes of Figures 4a and 4 b. In Figure 4a where there is zero 
subsidy, we see that supervision must occur with a frequency of 0.5 — i. 
e., 50% of e-waste received by R must be supervised — for honest 
recycling to occur. 

The minimum level of necessary supervision can be reduced by 
decreasing recycling costs or increasing the costs of lying. Graphically, 
this amounts to moving the crosshairs into either the light or dark blue 
regions of the contour plots. This shift can also be achieved by increasing 
the area occupied by the blue regions which is illustrated in Figures 4b 
and 4 c where the level of α has been increased, resulting in a lower level 
of minimum supervision required. Once we have reached the relatively 
high level of subsidy shown in Figure 4c, not only is no supervision 
required with our example values of γ = 4 and λ = 6, the subsidy is 
perhaps too large: a smaller subsidy, one that would shrink the light and 
dark blue regions until the orange half of the plot rests on the cross hairs, 
would have the same outcomes. 

Shown in dark blue is the critical strip in which no supervision is 
necessary. Observe that increasing the level of subsidy increases the size 
of this region and consequently allows for R to engage in honest recy-
cling even when recycling costs may be high. Note that since the strip 
lies parallel to lines of constant γ, no variation in λ can help us traverse 
into the critical strip. 

To summarize, when recycling costs are large enough to require high 
levels of supervision, we can decrease the level of supervision by 
increasing lying costs, an implication we pursue further in Section 4.2. 
Another alternative presented by our model is to increase the returns 
from honest management, perhaps via subsidies. 

4.1. Case study 

We now use our model to compare recycling of printed circuit boards 
(PCBs) and cathode-ray tubes (CRTs) found in legacy analog televisions 
and monitors. Demand for CRTs and CRT glass has collapsed in recent 
years due to consumer tastes for flat screen monitors (Kasulaitis et al., 
2015). Decreased demand for recovered components and added ex-
penses of safe handling and treatment (Singh et al., 2016) have driven 
some recyclers to export or accumulate the devices indefinitely. As a 
result, the United States Environmental Protection Agency (EPA) has 
imposed strict regulations to limit these behaviors, classifying CRTs as 
hazardous e-waste due to their leaded glass (United States Environ-
mental Protection Agency, 2020b). On the other hand, PCBs continue to 
be recycled at a high level, due to the value of gold they contain (Zeng 
et al. (2018)). Recycling PCBs presents fewer technical challenges, as 
they can be removed during manual disassembly or pre-processed via 
mechanical shredder prior to recovery in established precious metal 
smelters. Their high commodity value tends to keep PCBs flowing into 
material recovery pathways, although they may also be characterized as 
hazardous depending on material content (legacy PCBs contain lead 
solder) and state regulations. Thus, mismanagement of PCBs could also 
pose legal risks for recyclers, although this risk is seldom realized. 

To put this in the context of our model, the cost of recycling a CRT is 
greater than that of a PCB: γCRT > γPCB. However, revenues from resale of 
PCBs exceeds that from CRTs: αCRT < αPCB. For the purposes of this 
simplified comparison, we can say the cost of dishonest management of 
both types of e-waste is the same, i.e. χCRT = χPCB = χ. However, 
mismanagement of CRTs warrants harsher punishment. That is, ρCRT 
> ρPCB. It is worth noting that recyclers typically have no reason to 
mismanage PCBs since they are valuable components in e-waste. 

Although ρPCB may not be realized in practice, it is important only that 
the punishment be a sufficiently credible threat; if not realized it must be 
realizable. 

In terms of the act of doing the lying (e.g., forging data to suggest 
waste was received more recently than it actually was) there is no reason 
to believe a recycler faces differential lying costs for each type of e- 
waste. Thus, λ = λCRT = λPCB. Again, λ denotes the cost of lying, not the 
ramifications from lying. Because punishment from illicit mismanage-
ment of e-waste is much more costly than lying, we can also say that λ <

ρPCB < ρCRT , and so the denominator of Equation 13 is the same for both 
types of e-waste, i.e. ηCRT = ηPCB = η. This gives the comparison 

σ∗
CRT − σ∗

PCB = 1
η [(γCRT − γPCB)+ (αPCB − αCRT)]〉0. (15)  

In other words, the minimum level of supervision required for honest 
management of CRTs is greater than that required for PCBs. 

We can also take the analysis a step further when we consider a 
change in lying costs. Note that from Equation (14), the first derivative 
of σ∗ with respect to lying costs is 

∂σ∗
i

∂λ = −σ∗
i

η (16)  

where the index i can represent either CRT or PCB. From Equation (15) 
we have σ∗

CRT > σ∗
PCB and so 

⃒⃒
⃒⃒∂σ∗

CRT
∂λ

⃒⃒
⃒⃒ >

⃒⃒
⃒⃒∂σ∗

PCB
∂λ

⃒⃒
⃒⃒. (17)  

The implications of this are that an increase in the costs of lying in the 
CRT space have a more significant impact than they would on the PCB 
space. 

The goal with this model is to provide a theoretical framework with 
which to reason about fraud and ways to prevent it and upon which 
future case studies can be applied to analyze systems with real data. 
However, we can give estimates for the case study analysis above to 
provide a suggestion of how to apply the model as an approximation. As 
Kang and Schoenung found, the most critical cost driver for an e-waste 
materials recovery facility is to have CRT glass recycled, and this ac-
counts for 30% of the facility’s annual operating costs (Kang and 
Schoenung, 2006). Without worrying about the precise cost to recycle a 
PCB, we can then make the conservative estimate that CRTs and PCBs 
have the same recycling cost profile, i.e., γCRT = γPCB. The critical pa-
rameters in Equation (15) then reduce to αCRT and αPCB, the revenue 
potential of CRTs and PCBS, respectively. This assumption un-
derestimates the difference in (15), but preserves the sign. 

Continuing, the most valuable components of both a CRT monitor 
and a PCB are the metals they contain. Recent mass balance analyses of 
CRT monitors indicate they are 3% copper and 0.005%-0.011% gold by 
mass (Zeng et al., 2018). Meanwhile a typical PCB is about 10%-20% 
copper and 0.011%-0.33% gold (Ghosh et al., 2015; Montero et al., 
2012). According to the London Metal Exchange for the month of 
January 2021, the price of copper was 8,000 USD per tonne while the 
price of gold was 1,800 USD per fine troy ounce (London Metal Ex-
change, 2021). With these calculations, the downstream revenue po-
tential for one kilogram of CRT is about αCRT = 6.60 USD in the best case 
while for one kilogram of PCB it is αPCB = 7.15 USD in the worst case. 
Thus the difference, and hence Equation (15), is indeed positive even 
under the most favorable circumstances for a CRT’s material and cost 
profile. This trend is anticipated to be true for product reuse as well. In 
one case study, the market values of laptop and desktop computers 
intended for reuse were observed to be 10-100 times higher than those 
for CRT monitors, which currently see limited demand in the U.S. 
(Babbitt et al., 2011). Based on the differences in revenue potential, 
fraud is more likely to occur while managing CRTs. The model also 
suggests efforts to prevent fraudulent management of CRTs should have 
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a greater impact on the decisions of a recycler than efforts to prevent 
mismanagement of PCBs. 

4.2. Fraud prevention and substitution effects 

We now study the equivalence between an increase in the cost of 
lying and a decrease in the cost of management. To develop this relation, 
we use (14) and imagine that we can change only the two parameters γ 
and λ and that we are constrained at dσ∗ = 0. That is, we ask: Were we to 
increase the difficulty of lying, by how much would we need to increase 
the marginal cost of management to keep R’s decision boundary un-
changed? From Equation (14) this relation is just 

dγ = σ∗dλ. (18)  

Graphically, the situation is illustrated by the contour lines in Figure 4. 
For interior points, where σ∗ ∈ (0, 1), we see that a one-unit increase in λ 
is less powerful in some sense, since the required increase in γ is less than 
one. Visually this corresponds to the relative steepness of the contour 
lines with respect to the γ (horizontal) axis in the figures. Indeed, σ∗’s 
decrease from λ is diminishing since ∂2σ∗

∂λ2 is positive1. Thus on theoretical 
grounds, increasing the cost of lying has effects proportional to 
decreasing recycling costs. 

We now consider the inputs to both γ and λ. That is, we consider both 
parameters as functions of other factors that, when combined, lead to 
the levels assumed by γ and λ. For example, the marginal cost of recy-
cling can implicitly be affected by product design, labor costs and pro-
ductivity, as well as the technology employed by the recycler. 
Technology, or technological capital, in this domain can include me-
chanical shredders, physical and optical separation, and hydrometal-
lurgical and pyrometallurgical material recovery processes. Similarly, 
the difficulty of lying may be influenced by the strength of institutions 
and their ability to enforce policy in addition to technology like block-
chain that makes it nearly impossible to falsify data. 

To formalize, let τγ denote the amount of technological capital used 
by R as input to its recycling practice, and let τλ denote the role tech-
nology plays in lying costs. That is, we regard γ as a function of τγ among 
other implicit factors (i.e., γ = γ(τγ)), and we regard λ as a function of τλ 
among other implicit factors (i.e., λ = λ(τλ)). Then using Equation (14) 
in conjunction with the chain rule we get 

dτγ

dτλ
= σ∗∂λ/∂τλ

∂γ/∂τγ
. (19)  

The right-hand side of the equation represents the marginal rate of 
substitution between τλ and τγ. Holding σ∗ fixed at a given level, it tells 
us how much we must decrease τγ given a marginal increase in τλ. This is 
useful because given relative prices of inputs τλ and τγ we can determine 
if we are achieving σ∗ optimally. If we are, then dτγ/dτλ = − pτλ /pτγ .

2 

Although a similar analysis can be conducted for any of the param-
eters in our model, there are reasons to focus on λ. Whereas technology 
to lower the costs of recycling is likely to develop slowly, require high 
capital costs, depend on recyclers’ willingness to adopt, and in some 
cases faces fundamental limits imposed by material dispersion and 
thermodynamics (e.g., the minimum energy required to separate a 
mixture into its component parts (Dahmus and Gutowski, 2007)), 
technology to increase the cost of lying can both increase rapidly and has 
no obvious bounds set by physical laws. Notably, recent advances in 
computing technology may play a role here, such as blockchains, which 

are immutable, append-only ledgers of data records that make retroac-
tive tampering practically impossible. Thus ∂λ/∂τλ may be relatively 
larger than ∂γ/∂τγ. If this is indeed the case, we may be able to achieve 
the same decision boundary σ∗ more efficiently by substituting toward 
technology that is built upon such improvements in data immutability. 

We also add that there are spillover effects of technologies such as 
blockchains. In its report on certification programs, the EPA offered 
suggestions for improvement, including: control of records, improved 
tracking, downstream accountability, and export practices (United 
States Environmental Protection Agency, 2016). Central themes in the 
report include the need for enhanced material tracking and records 
management and the inherent complexity of verifying compliance 
among downstream e-waste processors. Because of the short time span 
of audits, the EPA notes that it is difficult to conduct a thorough ac-
counting of all transactions into and out of recycling facilities. In prac-
tice, there is room for auditors to miss illegal activity at the facility (like 
CRT stockpiling, for example). The potential benefit of better record 
keeping technology is that it can allow for accurate and algorithmic 
mass balance analyses, reducing the time and costs of auditing. In 
addition, with increasing numbers of recyclers using similar software, it 
becomes easier to ensure compliance of downstream vendors. This also 
has implications for the study by Wang et al. in which, as described in 
Section 1, the authors propose a joint “reward-penalty-supervision” 
mechanism to achieve universal compliance among recyclers (Wang 
et al., 2020b). Our discussion suggests blockchain could play a role in 
reducing both the level and cost of supervision which could make their 
proposed mechanism more achievable in practice. In the US, where 
there is no unified e-waste policy, blockchain also has the potential to 
alleviate pain from differences in state and local policies. There may be 
other societal benefits from adopting this technology as well. As França 
et al. found in a study of waste management in small Brazilian munici-
palities, a blockchain-based system contributed to social inclusion, and, 
by offering a currency, also contributed to the local economies 
throughout the communities (França et al., 2020). 

4.3. Limitations and extensions 

It is worth noting some important considerations that our model does 
not address. We assume that a recycler’s operations are not observable 
by an outside organization. However, recyclers’ behavior is not deter-
mined under the assumption that no one can observe their business and 
that no one internally will report misdeeds. Also, our model allows for 
recyclers to fraudulently manage all of their e-waste (as opposed to just a 
small fraction), even though in practice that would be an obvious tell 
that something is amiss, and it would be difficult to conceal such 
behavior. Recyclers can also alter or modify their level of fraudulence 
depending upon the frequency of supervision (i.e., in response to 
frequency-dependent selection acting upon the calculus of risk and 
reward mentioned earlier). Additionally, there are different types and 
quality levels of e-waste, each with their own recycling costs and 
downstream revenue potentials. Recyclers may also actively seek for e- 
waste that maximizes profit. All of these considerations suggest that 
recyclers in practice are selective about the electronics they resell or 
recycle (or choose to fraudulently manage). Furthermore, our model 
does not study an e-waste recycler in the broader ecosystem of recyclers, 
and we ignore altruism and reputation effects, which influence both 
consumer choice as well as recycler behavior. 

As described in the Introduction, this model is applicable in other 
situations, provided the application domain satisfies the criteria 
enumerated in Section 1.1. The particular consequences of the model 
will depend on the region in which a policymaker or researcher believes 
the parameters of the application domain are situated. For example, one 
possible extension could be to consumer recycling of plastics. In this 
context the consumer would assume the role of the recycler R. Our 
model then gives another justification for why bottle deposits encourage 
consumers to recycle more (Saphores and Nixon, 2014): the bottle 

1 To see this, note that Equation (14) says ∂σ∗/∂λ = −σ∗/η, where η = ζ + κ +
λ. So then ∂2σ∗/∂λ2 = 2σ∗/η2, and recall that all parameters are positive by 
definition.  

2 Note that ∂γ
∂τγ

< 0 since an increase in technological capital that makes 
recycling easier means a decrease in the costs of recycling. 
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deposit functions as a subsidy to the consumer that is achievable only 
when the consumer recycles a bottle properly through official channels. 
The model may also find utility in mitigating fraudulent cross-border 
redemption in Bottle Bill states, where deposit-refund schemes allow 
consumers to return bottles after use and receive a small refund (Niu, 
2017). 

The model may also be applicable to comparisons of e-waste policy 
between the US and the European Union (EU). Validation of the model 
may come from the space of consumers of electronics and not recyclers. 
As noted by Ongondo et al., stockpiling is a common practice among US 
households where instead of taking their used products to a recycler 
where they may have to pay an end-of-life fee, households store used 
electronics (Ongondo et al., 2011). This is in contrast to the situation in 
the EU where extended producer responsibility (EPR) policies place the 
burden of product take-back onto the producer (Sachs, 2006). The 
“qualified subsidy” in this case is to consumers who share the burden of 
end-of-life fees with producers. Again, because this subsidy is targeted 
only along honest take-back pathways (i.e., not afforded to consumers 
who stockpile) this positive difference in the relative rate of consumer 
take-back between the US and EU aligns with expectations based on our 
model. Similar differences were also observed in Maine under the 
introduction of EPR policy in 2006 where the quantity of electronics 
collected and recycled increased by over 100% during the first three 
years of the policy (Wagner, 2009). Further research needs to be done to 
apply the model to understand the differences in the behaviors of re-
cyclers between the EU under EPR and the US which lacks unified federal 
policy on electronics product externalities. It may be that differential 
rates of illegal e-waste export could be due to EPR, via the subsidy 
channel suggested by the model, but there may be a variety of other 
factors at play. 

Future work can also extend the approach taken here as a game- 
theoretic analysis that examines a market with two or more competing 
recyclers to understand the strategic implications of their decisions. 
There is also a need to model the motivations of third-party entities to 
see how the incentives of auditors and certifiers influence the decisions 
of recyclers. Another natural extension would be the application of a 
machine learning decision tree model on real data; our model would 
offer one structural framework to interpret behavior observed in the 
data. In absence of observational data, agent based modeling could be 
used to generate output against which a decision tree model could be 
trained. The dynamics exhibited by recyclers and auditors could then be 
more readily ascertained, and, in particular, one could directly observe 
the shifts in the decision boundary under various conditions. 

5. Conclusion 

In this study, we have formulated the decision calculus of an e-waste 
recycler facing a trade-off between honest and dishonest e-waste man-
agement options. Within this framework we find that the cost of honest 
recycling is a key determinant of recyclers’ choices. Moreover, our de-
cision model illustrates why an unqualified government subsidy to re-
cyclers may not be sufficient to shift the choices of a recycler. Instead our 
model suggests a more targeted approach that benefits recyclers that 
engage honestly with downstream material or resale markets. 

In addition, our model gives special consideration to the influence of 
monitoring and supervision. The framework provides theoretical justi-
fication for why certain types of supervision that are probabilistic may 
be effective. It also suggests reasons why supervision may be inadequate, 
including high marginal costs of honest management. In such cases, our 
model recommends various interventions, such as targeted subsidies and 
increased costs of fraud, and describes the direction of influence they 
will have on outcomes. 

Ideally we would reduce recycling costs or allow for stronger pol-
icies. However, when these are not options, the analysis suggests that an 
increase in the cost of fraud plays a similar, albeit attenuated, role as 
would a decrease in the cost of recycling. We regard this relation as a 

substitution effect between a parameter we would like to target (i.e., the 
cost of recycling) and another variable over which we believe there is 
still unexplored potential (i.e., the cost of committing fraud). We posit 
that immutable record keeping technologies like blockchain may be one 
solution along this dimension. Thus, as the world becomes increasingly 
digitized, fraud-prevention technologies like blockchain may be another 
tool to align behaviors across recyclers and towards a circular economy. 
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