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a b s t r a c t

Achieving citywide building energy reduction goals require extensive understanding of energy use at
scale, which is challenging due to scarce and disparate data. Despite attention to urban building energy
models (UBEM), unexplored aspects and missing details in this emerging field have remained, including
further exploring non-homogenous commercial buildings, providing a detailed structure to create UBEMs
for replication purposes, and developing methods to mitigate data scarcity and dependency. In this study,
a structure is proposed using commercial buildings in Pittsburgh, Pennsylvania. We provide a description
of an archetype library with relevant sources to improve reproducibility and describe a novel framework
to create a database focusing on façade reconstruction through photogrammetry and image processing.
For our UBEM, twenty archetypes that comprised eight commercial use types were identified. The aver-
age annual energy use intensity was estimated between 74 and 1302 kWh/m2 for different use types. The
simulation results also showed discrepancy in energy use of the buildings with similar use types.
Validating the results utilizing actual data revealed an overall 7% error. Employing the model to evaluate
energy conservation strategies showed energy use reduction of 2–5% for the entire stock. Outcomes of
this research can aid policy makers in instituting energy goals and efficiency regulations.

! 2021 Elsevier B.V. All rights reserved.

1. Introduction

In the past decades, scientists have addressed the urgency of
energy consumption and greenhouse gas (GHG) emissions from
different sectors including the building sector. The building sector
in the U.S. accounts for 39% of energy use with commercial build-
ings responsible for approximately half of this portion [1]. The con-
tinuous and growing rate of urbanization has resulted in urban
buildings becoming the center point of energy consumption and
GHG emission reduction strategies and ambitious targets. In this
context, cities and countries around the world have formulated
short-term and long-term energy and environmental goals that
include energy reduction [2], shifting towards renewable energy
sources [2], and selecting building materials with less environmen-
tal impacts [3]. For example, Los Angeles, California planned to
reduce energy use per floor area of buildings 22% and 44% by
2025 and 2050, respectively [4]. Another example is California Title
24 which mandates new buildings to be equipped with photo-

voltaic systems for electricity generation [5]. The City of Pittsburgh,
a member of the 2030 District Network and accounting for nearly
25% of floor spaces committed to this network, has established
building energy and water reduction goals [6]. Achieving these
goals for all cities and regions requires actionable and effective
energy conservation (EC) strategies for buildings, especially exist-
ing buildings through renovation and retrofit. In addition to the
demand side, launching actions and planning for renewable energy
generation and supply systems, distributed energy resources (DER)
[7], and district heating and cooling systems can also aid in accom-
plishing the energy goals. For regional decision makers to institute
practical and effective energy efficiency policies and climate
actions, thorough understanding of energy use of buildings in an
urban area is essential.

Critical to understanding energy use is data and information
about energy consumption and characteristics of buildings. Some
cities have building energy data obtained through disclosure and
benchmarking laws, along with voluntary approaches including
the aforementioned 2030 District [6,8,9]. However, there are a sig-
nificant number of cities and areas that lack benchmarking ordi-
nances and laws. Another challenge facing of local governments
is budget limitations for enforcement and processing of the data
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into meaningful reports and visualizations. Hence, urban energy
modeling tools and frameworks can be beneficial to overcome
these challenges, as they can enable studying trends of citywide
building energy demand, evaluating impacts of EC strategies on
heating and cooling energy consumption, finding hotspots related
to energy and emissions, and identifying suitable locations for
developing district energy systems.

In this article, a modeling structure, established on advanced
imaging and remote sensing techniques, is proposed and used for
acquiring data and simulating urban building energy use. This
structure is designed to maximize the use of actual data as a sub-
stitute for secondary data or assumptions and provide a road map
to extract information from resources and standards. The commer-
cial buildings in Pittsburgh, Pennsylvania is selected to develop
and test the modeling structure. In addition, the outcomes of this
research aid the city in its efforts toward reducing energy and
emissions and combating climate change and aims to serve as a
precedent for urban areas.

Urban scale studies are categorized into two major approaches -
top-down and bottom-up [10,11]. The top-down approaches
encompass macro-level variables and adopt statistical or machine
learning methods to explore the energy use of buildings at a large
spatial scale in relation to socio-economic aspects (e.g., income,
education) [12]. For instance, Mostafavi et al. [13] developed a
model based on the Residential Energy Consumption Survey (RECS)
to predict residential energy use based on several factors such as
household size and ages of the occupants. While top-down
approaches provide a broad view of energy demands, their ability
to associate building- or stock-level characteristics with energy
consumption are limited. Alternatively, bottom-up approaches
(e.g., cluster analysis and urban building energy modeling) can
incorporate individual buildings characteristics into the modeling
process and study energy use at finer spatial scale such as
building-, neighborhood-, and zip code-level. One bottom-up
approach is cluster analysis in which the energy use of a building
stock is examined based on different characteristics or features of
buildings such as use type, ownership status, and thermo-
physical attributes [14,15]. Conducting cluster analysis for a his-
toric district in Italy, Lucchi et al. [15] concluded that geometric
and thermo-physical features had higher correlation to building
energy use compared to building age and can be utilized for energy
demand assessment. Using cluster analysis requires extensive
information about features and energy use of all buildings at scale.
Another bottom-up approach is urban building energy modeling.

While definitions of this emerging area are evolving, the litera-
ture is gathering consensus that urban building energy models

(UBEM) are bottom-up, physics-based models that unlock the
capability of spatiotemporal energy demand analysis in an urban
area. These models couple heat and mass transfer mechanisms of
clusters of buildings with 3D models to simulate energy use
[16,17]. Principally, UBEMs are developed using either building
prototypes or archetypes. In order to create prototypes, buildings
are clustered into groups and for every group average values of ge-
ometric parameters (e.g., height, aspect ratio) along with predomi-
nant classes for non-geometric parameters (e.g., window U-value,
HVAC coefficient of performance) are determined and utilized to
create energy models. On the other hand, archetypes are groups
of buildings that only share similar non-geometric parameters
which are determined based on predominant classes for every
group. Defining archetypes for an urban building stock will be
described in detail further in this paper. Many studies have
explored urban building energy modeling for different cities
worldwide [18–29]. We have reviewed these articles to identify
gaps and best practices (see Table 1).

1.1. Urban building energy modeling – Residential buildings

A review of the existing literature has revealed that several
approaches for developing UBEMs have emerged to assess the
energy consumption of residential buildings. In one of the earlier
studies, Shimoda et al. [18] created 460 residential prototypes for
Osaka, JP based on 23 household types (e.g., household with two
employed members) and 20 dwelling types (e.g., detached house
with floor area more than 150 m2, apartment with floor area of
110–119 m2) and simulated hourly energy use of every prototype
over one year. Through accessing the number of buildings grouped
under every prototype, the annual energy consumption of homes
in the city was estimated. An 18% lower estimation from the model
compared to the field surveys from 1999 was attributed to irregu-
lar occupants’ behavior in using appliances, air conditioner, and
lighting. Despite a comprehensive description of non-geometric
parameters, it was unclear how the prototypes for the 3D models
were developed, such as how to determine the geometric parame-
ters or envelope properties.

Further, Cerezo et al. [19] and Sokol et al. [20] explored the
importance of probabilistic approaches for determining non-
geometric parameters of archetypes in Kuwait City, KW and Cam-
bridge, Massachusetts, respectively in simulating the urban resi-
dential building energy use. In Kuwait City, their probabilistic
approach focused on occupancy rate, lighting density, plug load,
hot water peak flow, and heating/cooling set points; these param-
eters were modeled from either arrays of predefined values or

Nomenclature

AI Artificial intelligence
API Application Programing Interface
ASHRAE American Society of Heating, Refrigerating and Air-

Conditioning Engineers
CBECS Commercial Building Energy Consumption Survey
CBES Commercial Building Energy Saver
DEM Digital Elevation Model
DER Distributed Energy Resources
DOE Department of Energy
DSM Digital Surface Model
EC Energy conservation
EUI Energy use intensity
fov field of vision
GHG Greenhouse Gas
GIS Geographic Information System

ID Identification
KS Kolmogorov-Smirnov
LED Light Emitted Diodes
LiDAR Light Detection and Ranging
PDF Probability distribution function
PE Percent error
RECS Residential Energy Consumption Survey
SVS Street View Static
TMY Typical Meteorological Year
UBEM Urban building energy model
USGS United States Geological Survey
WPRDC Western Pennsylvania Regional Data Center
WWR Window to wall ratio
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Bayesian calibrations. Deterministic parameters (window to wall
ratio, glazing type, wall material, roof material, cooling system)
were gathered through in-person audits. When compared with
the metered annual energy use, the Kuwait City results showed
significant improvement in the model’s accuracy due to using
probabilistic approaches versus a deterministic approach (the
mean error reduced from 16% (deterministic approach) to 1%
(probabilistic approach)) [19]. However, calculation methods
specifically related to window to wall ratio (WWR), an envelope
property, were not clarified, for example, how were the in-person
audits conducted.

Although these studies [18–20] and others listed in Table 1
[21,22,29,30] investigated many aspects of residential UBEMs
and proposed strategies to improve urban models, there are unex-
plored spaces especially regarding the diversity of envelope prop-
erties and building facades, along with reproducibility challenges.
We aim to address these gaps in our work.

1.2. Urban building energy modeling – Commercial and residential
buildings

As shown in Table 1, while the majority of UBEMs focused
on residential buildings, in part due to less complexity of envel-
ope properties and mechanical systems, some studies focused
on both residential and commercial buildings [23–27]. In the
absence of building- and energy-related data, Heiple and Sailor
[24] used aggregated information from Commercial Building
Energy Consumption Survey (CBECS) [31] and RECS [32] to
create residential and commercial prototypes for Houston,
Texas. The prototype building energy models, created using
eQuest and DOE-2, simulated the daily energy use of the city.
Through validating the aggregated results with the surveys data,
the authors showed marginal difference between the model and
survey results of 2.5% and !1.3% for August and January,
respectively [24]. However, a gap remains related to the perfor-
mance of various building types and which building type
requires a more detail prototype. Ding and Zhou [27] utilized
the prototype methodology to explore energy data scarcity of
a city in China. First, they formed three prototypes, a residential
apartment and two office buildings. Second, a building energy
database was developed by stochastic analysis that encom-
passed various mechanical- and occupancy-related variables.
Characterizing and modeling the citys’ buildings using aggre-
gated information (e.g., [24]) or without accounting for actual
use types, envelope properties, geometric parameters, and
orientation (e.g., [27]) may lead to building energy performance
challenges. We aim to resolve these concerns for cities and

areas, which suffer from data paucity, through our proposed
modeling structure.

In a thorough study, Cerezo et al. [23] hypothesized whether
developing an UBEM was feasible for residential and commercial
buildings using publicly available Geographic Information System
(GIS) data. To test the hypothesis, the authors created a model
for Boston, Massachusetts and validated results based on CBECS
and RECS since metered energy use data was not available for
the city at the time of study. While Boston has a richer GIS data,
which included building footprint, roof and ground heights, con-
struction year, use type and number of floors, compared to many
cities in U.S. like Pittsburgh, Pennsylvania, lack of both building
archetypes and data were still introduced as major barriers by
the authors [23].

1.3. Urban building energy modeling – Commercial buildings

To date at the time of this writing, only one study by Chen et al.
[28] focused on two types of commercial buildings (office and
retail) by developing a tool that automized creation of UBEM.
The tool generates 3D models of buildings based on footprint,
height, and number of floors. The tool uses secondary data from
Commercial Building Energy Saver (CBES) to build the energy mod-
els; it does not compile an archetype library that reflects on non-
geometric parameters and envelope properties specific to an urban
area. The modeling structure in this article intends to describe a
holistic approach for developing databases and to mitigate depen-
dency of UBEMs on secondary data, which is the key barrier to the
converging UBEM outcomes and energy use of buildings in real-
world. In this study, the pattern and variation of the energy con-
sumption relative to different commercial buildings are also
analyzed.

1.4. Objectives of the study

The objectives of this study were to:

" Compile a unified modeling structure that maps methods,
resources, and the steps essential to develop a comprehensive
database of commercial buildings with a focus on actual envel-
ope properties and façade reconstruction.

" Focus on commercial buildings to close the gap regarding the
building use type.

" Validate the results of the UBEM with the actual energy data.
" Employ the model to evaluate impacts of low to medium cost
EC strategies on the total energy use and different end uses
which is not explored as shown in Table 1.

Table 1
Overview of scopes in existing literature on urban building energy modeling. R, C, and EC are abbreviations for residential buildings, commercial buildings, and energy
conservation, respectively.

Articles General building use
type

Prototype vs Archetype Envelope properties Incorporating EC strategies

R R and C C Prototype Archetype Not described/Assumption Actual/Measured High cost Low/Medium cost

[18] d d d d

[19] d d d

[20] d d d

[21] d d d

[22] d d d

[23] d d d

[24] d d d

[25] d d d

[26] d d d

[27] d d d

[28] d d d d

[29] d d d

[30] d d d

R. Mohammadiziazi, S. Copeland and M.M. Bilec Energy & Buildings 248 (2021) 111175

3



By achieving the objectives, this paper aimed to contribute both
to the field of urban building energy modeling and the region,
while providing a path for other regions as well.

Based on the earlier discussion, the energy use of residential
buildings has been investigated. The consistency in energy perfor-
mance of residential stock has enhanced the overall results that
focuses on this type of buildings. While some studies have included
both residential and commercial buildings, the results of these
models are still overshadowed by the consistent performance
and simple characteristics of residential buildings. Increasing the
knowledge about the energy performance of buildings at scale
and improving UBEMs require special attention to commercial
buildings. In addition, in the time of unforeseen crisis like Covid-
19 pandemic, when there is a drastic energy demand shift from
commercial to residential buildings, it is useful to have an urban
model focusing on commercial building stock. This model will
enable energy suppliers and utilities to estimate the energy
demand reduction from the commercial stock and how the capac-
ity could be directed toward residential buildings. While this is not
the first study concentrating on commercial buildings [28]; it is the
first, to our knowledge, that incorporates advanced imaging and
remote sensing techniques to obtain envelope properties, which
are not available in many city databases, and have been largely
based on assumption and expert judgement in urban models. By
using street-level digital images, the modeling related to the build-
ing envelope, especially WWR will be refined.

As mentioned, many regions have aggressive energy reduction
goals without adequate planning. The region of this study, Pitts-
burgh, Pennsylvania, is a part of the 2030 District Network, in
which each region or district commits to 50% reduction in building
energy, water consumption, and emissions from transportation
below a baseline by the year 2030. In Pittsburgh, the majority of
its district is comprised of commercial buildings. This study, there-
fore, can provide policy makers, urban planners, and entities work-
ing towards these goals with actionable strategies to aid in
ensuring success.

2. Materials and methods

Development of an UBEM is a multi-layer process especially
because in many cities, including Pittsburgh, the required data is
not readily available and is scattered over various references or
resources. This section provides a detailed modeling structure
regarding creating a comprehensive database and generating the
model through five phases. Phase one describes the commercial
buildings in the studied region together with available data. In
the second phase, development of an archetype library is
explained. The third phase presents a novel photogrammetry and
image processing framework that was used to retrieve the envel-
ope properties and for constructing the facades of buildings. To
estimate building’s height, LiDAR analysis was conducted (phase
four). Finally, integrating all the information to generate the urban
model for commercial buildings is explained in phase five. A visu-
alization, that displays the integration of these phases, is shown
after their description in Fig. 4. Moreover, the graphical synthesis
of methods and results is provided in Supplementary Materials,
Fig. S1.

2.1. Phase 1 – Description of the commercial buildings in the studied
region

Pittsburgh is a city in western Pennsylvania located in cold cli-
mate (zone 5A) according to the U.S. DOE climatic boundaries [33].
The city houses the University of Pittsburgh and Carnegie Mellon
University both with sizable commercial spaces. Recently, compa-

nies like Google, FedEx, and Facebook have opened offices in the
city, which is another indicator of the growing commercial stock.
This specific study contains a commercial building stock that
belongs to the University of Pittsburgh and the City of Pittsburgh
[34] and comprises total number of 209 buildings. This stock was
selected because of a few reasons. First, the 2030 District goals
motivated this work. Second, the commercial stock consisted of a
variety of different commercial building use types. Table 2 shows
the percentage of floor area for different use types. Finally, the
actual annual energy use of buildings from 2017 was reported to
our research team, which was used for validating the results. In
addition to the actual annual energy use, the floor area, property
tax identification (ID), and the construction year were provided
to our team. Essential to urban energy modeling is geolocating
buildings to identify the location on map, orientation, and footprint
(i.e., polygon shape of a building plan). For this purpose, the
geospatial data that included Pittsburgh’s building footprint was
obtained from the Western Pennsylvania Regional Data Center
(WPRDC) in GIS format [35]. The property tax ID of the buildings
was cross referenced with GIS data in order to identify the
corresponding footprints. However, this information was insuffi-
cient to develop an UBEM; the additional input information for
creating the model was the geometric parameters, non-geometric
parameters, and envelope properties. The subsequent sections are
allocated to illustrate how the missing information was gathered
or measured.

2.2. Phase 2 – Archetype library development

Urban building energy modeling streamlines the modeling
process by classifying buildings into homogenous groups,
known as archetypes, that have similar characteristics [12].
One robust example is the TABULA project in which an arche-
type library was developed for the building stock of fifteen
European countries [36].

Creating an archetype library consists of two major steps: clas-
sification and characterization [19,37]. With respect to classifica-
tion, buildings are ‘binned’ into groups based on one or more
categories. In this article, the selected categories were based on
two criteria: first, the categories must be available for all build-
ings; second, they should be relevant to energy consumption.
According to these criteria, several categories have been proposed
and utilized for classification by different studies such as use
type, construction period, shape ratio, heating and cooling
systems, and climate condition [14,16,24]. As Monteiro et al.
suggested, defining more detailed archetypes increases the homo-
geneity of groups and may improve the precision or accuracy of
urban energy models [21]. The challenge, in this regard, is that
these categories are usually not available in public databases or
are labor intensive to obtain for all the buildings in the stock or
the city [19].

In this study, use type and construction periodwere used for clas-
sification; twenty archetypes were created for the commercial
stock, comprised of eight commercial use types that were built
during three construction periods (not all use types spanned the
construction periods). Table 3 provides a list of the archetypes with
additional descriptions. The majority of the publicly available
resources like building codes, standards (e.g., ASHRAE standards),
and surveys (e.g., CBECS) have included non-geometric parameters
according to use type and construction periods [38]. Therefore, the
classification of use type and construction period facilitated
extracting these parameters of buildings from various resources
during the characterization step.

Characterization is described as assigning values or classes of
non-geometric parameters to every archetype. Drawing on the
work from [19,20], these parameters can be determined through
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either deterministic (single value or class for each parameter) or
probabilistic (multiple values or classes for each parameter)
approaches which both have their own advantages and disadvan-
tages. The non-geometric parameters that are required for energy
simulation depend on zoning (single zone or multi zone), the soft-
ware engine used for simulation, and the thermal modeling
approach. For this research, the three sets of non-geometric char-
acterization parameters were occupancy, envelope composition,
and mechanical/electrical systems. We found that characterizing
the archetypes via gathering information from several resources
is cumbersome mostly because a thorough outline that can guide
urban modelers on where to find a certain parameter does not
exist. Therefore, Table 4 was compiled as a road map to fill this
gap and aid future modelers in conducting urban studies.

Some of the parameters needed modification or additional pro-
cessing prior to being imported into the energy simulation. For
example, ASHRAE standards on ventilation and indoor air quality
[39,40] specified the minimum ventilated air per occupant (cfm/
person); however, the ventilation rate (cfm/m2) was needed for
energy simulation in this study. Thus, the minimum ventilation
(cfm/person) was divided by occupancy rate (m2/person), obtained
from [38,41,42], and the ventilation rate was calculated for every
archetype. Additionally, the predominant classes of roofs for all
archetypes (e.g., built up, slate or tile shingle, asphalt, concrete,
metal surfacing) were determined by analyzing CBECS data for cli-
mate zone 5A, where Pittsburgh is located. Further, based on these
classes, roof compositions and corresponding specifications such as
the u-value were extracted from ASHRAE standards on energy effi-
cient design [43–45]. Determining specifications of windows (u-
value and solar heat gain coefficient) and flooring for all archetype
followed the same process as was done for roofs. Ultimately, the
non-geometric parameters, that are listed in Table 4, formed the
archetype library and were stored in a csv file used in energy
simulation.

2.3. Phase 3 – Photogrammetry and image processing framework

Envelope properties including external wall material, WWR,
and floor count (number of floors above ground) are known to
influence energy consumption [34,52,53], yet they have been
under-reported in UBEMs due to cities’ database deficiency and
technological barriers. For instance, in the Boston work, WWRs
were considered between 0.1 and 0.8 per use type based on
authors’ judgement [23]; how the WWR and external wall materi-
als were determined was not clarified in other studies [22,24]. As
previously delineated in the introduction, incorporating detailed
envelope properties through reconstructing facades is one of the
objectives of this research. To achieve this objective, a framework,
comprising photogrammetry (acquiring façade images) and image
processing (interpreting images), was developed and utilized.

Information about the surrounding environment and objects
including building facades can be obtained by taking and analyzing
aerial or street-level images. The quality and availability of aerial
images are usually impacted by high-rise buildings in dense urban
areas as they block vision of neighboring facades [54]. Hence, our
framework was built using street-level images of facades obtained
from Street View Static (SVS), which is an application program-
ming interface (API) designed by Google to provide 360" images
of numerous locations on the earth [55]. Employing SVS API pro-
vided the opportunity to download images in JPEG or PNG formats,
that is not possible through regular Google Street View. Moreover,
SVS API enabled us to adjust image attributes without using point-
ing devices, which mitigates randomness and enhances accuracy.
To obtain the images, the buildings’ centroids were found using
GIS analysis to determine the latitudes and longitudes coordinates
of the centroid points for all buildings. These coordinates were
then imported to the SVS API for every building, separately, to
access the façade images. As mentioned above, this semi-
automatic API enables users to remotely control the attribute of

Table 2
Percentage of floor area for different use types of the 209 commercial buildings in the studied region.

Commercial building use type

Education Lodging Office Parking garage Public assembly Public order and safety Warehouse Other

Floor area (%) 31 24 14 7 14 5 1 4

Table 3
Archetypes defined by construction period and use type for the commercial building stock in Pittsburgh. The third column is a description of sub-categories that formed the
broader use types. Note: sub-categories are coded by Latin numeric to avoid redundancy.

Construction period Commercial use type Commercial use type sub-categories

Pre-1980 Education School, college, university I
Lodging Dormitory, fraternity, sorority, nursing home II
Office Administrative office, social services, city hall III
Parking garage Multistory parking, underground parking IV
Public assembly Recreation center, senior center, library, museum V
Public order and safety Police station, fire station, medic center VI
Other Laboratory, observatory, mixed-use VIII

1980–2004 Education I
Lodging II
Office III
Parking garage IV
Public assembly V
Public order and safety VI
Warehouse Non-refrigerated warehouse, distribution center VII
Other VIII

Post 2004 Education I
Lodging II
Public assembly V
Public order and safety VI
Other VIII
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an image by changing the vertical angel of camera (pitch), horizon-
tal angel of camera (heading), field of vision (fov), and resolution
(size) in order to find images with desired quality. Also, the
remote-control capacity allowed our team to check images and
maintain consistency (similar pitch, fov, and size) for different
facades, which is critical to determine the material of the facades.
Ultimately, the images of all buildings were downloaded, stored,
and further processed.

We relied on agent-based processing for this study. Fig. 1 illus-
trates the process. The external wall material (eight types as shown
in Fig. 1) and floor count were identified. According to the external
wall type, the wall compositions and corresponding specifications
were extracted from ASHRAE standards [43–45]. Accurate informa-
tion about the floor count is important in energy simulations since
it affects number of thermal zones. Next, the images were trans-

ferred into an area calculator software, SketchAndCalc, to measure
the total area of the windows and the gross wall area, and then
estimate the WWR, that is defined as area of window divided by
area of wall above the ground [56,57]. Following Eq. (1), the
WWR of building i with n facades was estimated. This process
was replicated for all buildings.

WWRi ¼
Pn

j¼1WWR
n

ð1Þ

In order to investigate the importance of including the mea-
sured WWR of buildings in every region and city, the WWR values
of the studied buildings, estimated through this framework, were
compared to values derived from CBECS [49] for the same commer-
cial use types that were located in U.S. cold climate. As displayed in
Fig. 2, in Pittsburgh approximately 26% of commercial buildings

Fig. 1. Process flow diagram of photogrammetry and image processing framework for retrieving envelope properties. SVS API and WWR refer to Street View Static API and
window to wall ratio, respectively.

Table 4
Outline of resources and references for developing an archetype library. Note: operating schedules encompass several sub-schedules like occupancy schedule, heating setpoint
schedule, cooling setpoint schedule, HVAC schedule, etc.

Non-geometric parameter Resources/References

Occupancy-related Operating schedules - Engineering assumption
- DOE commercial reference buildings [38]
- Consulting with local experts

Occupancy rate - DOE commercial reference buildings [38]
- Literature [41,42]

Plug and process loads - DOE commercial reference buildings [38]
- Literature [41,42,46]

Ventilation rate - Literature [41,42,46]
- ASHRAE standards [39,40]

Service hot water demand - Literature [47,48]

Envelope composition Roof - CBECS [49]
- ASHRAE standards [43–45]

Window - CBECS [49]
- ASHRAE standards [44,45]
- DOE commercial reference buildings [38]

Flooring - ASHRAE standards [44,45]

Infiltration/Air leakage - Literature [50]
- DOE commercial reference buildings [38]

Mechanical/Electrical systems Lighting density - ASHRAE standards [44,45]
- DOE commercial reference buildings [38]

HVAC system - ASHRAE standards [44,45]
- DOE commercial reference buildings [38]
- Consulting with local experts

Water heating system - Literature [51]
- ASHRAE standards [44,45]
- Consulting with local experts
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have aWWR less than 0.1; on the other hand, based on CBECS data,
almost 56% of buildings have a WWR less than 0.1. Also, the major-
ity of the studied buildings (60%) have a WWR between 0.11 and
0.25; whereas, 29% of the buildings in CBECS fall into this category.
The comparison reveals that employing CBECS would have resulted
in underestimating WWR of Pittsburgh commercial buildings. This
difference confirmed the fact that surveyed data like CBECS may
not represent façade architecture and the WWR that are specific
to a region or city. It should be noted that while selecting equal
WWR intervals or ranges for this comparison would be beneficial,
the WWR of buildings were specified as predefined ranges in
CBECS rather than exact values [49]. Therefore, we were not able
to select equal ranges and the predefined ranges in CBECS were uti-
lized for this comparison.

2.4. Phase 4 – LiDAR analysis

GIS data at the municipal- or city-level is often 2-dimensional
and lacks the elevation or height, a key geometric parameter for
energy modeling. Some studies [19,58] tried to reconstruct the vol-
umetric models of buildings via visual inspection and site surveys,
but logistics and time consideration can limit adoption at scale.
Others [26,30] used standard reference building heights but preci-
sion of this method remains uncertain [38,59]. We addressed the
height issue by using LiDAR analysis. LiDAR, Light Detection and
Ranging, is a remote sensing technique to examine earth and

objects on the earth. Fig. 3 displays the procedure used in this
paper for determining the building height. Two sets of GIS compat-
ible datasets were utilized: 1) the commercial building footprint in
shape file format (see section 2.1), 2) airborne LiDAR data in las for-
mat obtained from U.S. Geological Survey (USGS).

The raw LiDAR data was adopted to create the elevation mod-
els; Digital Elevation Model (DEM) and Digital Surface Model
(DSM). The DEM contains the elevation of the earth’s surface with
reference to a specific datum, whereas the DSM contains the eleva-
tion of different objects on the earth (i.e., buildings, city furniture,
vegetation, and bridges) with reference to the same datum. Thus,
subtracting the DEM’s elevations from the DSM’s elevations results
in a new model that only includes the object’s height above the
earth. To distinguish the height of the commercial building from
other objects across the city; first, the new height model was fil-
tered in relationship to the building footprint. Next, several ran-
dom points, that were inscribed by the building footprint, were
generated and synthesized with the height model; therefore, every
point was assigned a height. Sometimes roofs are pitched or having
height variations, and reconstruction of these types of roof was dif-
ficult and time consuming. So, a simplified approach was used in
which heights of points (inscribed by a building footprint) were
averaged for every building independently and considered as the
final value of a building’s height. While this simplification may
affect precision of the thermal modeling, we believe that the asso-
ciated error is negligible as it is averaged out when estimating the
aggregated energy use for the entire stock.

2.5. Phase 5 – Urban model generation

When all required input information was gathered or esti-
mated, an energy model of each building in the stock was gener-
ated to simulate energy use utilizing EnergyPlus, an open source
program designed by U.S. DOE [60]. Model generation was a
multi-step task that included creating 3D models, assigning envel-
ope properties, defining thermal zones, and assigning non-
geometric parameters to zones (see Fig. 4).

The 3D models represented the volumetric shape and orienta-
tion of the buildings. In the most basic models, a combination of
a rectangle footprint and height forms the volumetric shape that
is known as a shoe box model. However, we aimed to develop
more detailed 3D models. The building footprints, from phase 1,
were imported from ArcGIS to SketchUp, which is a drawing com-
puter program, using Spirix Import Shapefile add-in tool, then they
were extruded based on the buildings’ height, from phase 4, to
form the volumetric shapes. This approach provided a volumetric
shape similar to the actual building. Next, the floor count and
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WWR, from phase 3, were assigned to the 3D models of every
building, separately. It was assumed that windows were evenly
distributed among facades and located one meter above the
ground. Considering five thermal zones per floor, a common prac-
tice in energy modeling of individual buildings, increases both
model generation and running time [23]. So, in order to have a
multi-zone model and avoid run time issues, one thermal zone
was defined for each floor of buildings. The boundary condition
of the external walls, floors, and roof were completed in SketchUp
and by leveraging the OpenStudio add-in tools. Upon completion of
the 3D models, they were converted to idf format, the operational
format of EnergyPlus, and imported into EnergyPlus.

To complete the energy modeling, according to use type and
construction period, an appropriate archetype, from phase 2, was
selected for a respective building and non-geometric parameters
were appointed to different thermal zones of the building. As an
example, one thermal zone in the archetype, that represented the
lodging buildings constructed prior to 1980, was specified for laun-
dry activities. The plug and process load of this zone was defined in
a way that included energy consumption of laundry appliances
such as washer and dryer. Weather variables such as dry bulb tem-
perature, wind velocity, also have substantial impact on energy
consumption. Typical Meteorological Year (TMY) data has been
broadly used in building energy analysis as weather input. TMY
data embodies 8760 sample points representing median values of
weather variables for every hour over one year [61]. One of the
recent TMY data is TMY3 for which hourly weather variables were
calculated based on historical data between 1991 and 2005. For
this urban model, TMY3 from the Pittsburgh International Airport
weather station, which represented the average weather condition
of Pittsburgh, Pennsylvania, was employed. Once the weather data
was imported into EnergyPlus, the energy models were completed,
and simulations were run for every building in the stock.

The simulation results were analyzed in section 3 to identify the
pattern of energy use for different commercial use types and to val-
idate the UBEM. The implications of different EC strategies on the
annual energy use of the building stock were assessed through
adopting the UBEM. Three EC strategies including temperature
set points adjustment, upgrading lighting systems, and plug and
process load reduction were selected. To implement these strate-
gies, the primary values for heating and cooling set points, lighting
density, and plug and process loads, which were determined dur-
ing characterization, were modified in the energy models and sim-
ulations were run for every building again.

3. Results and discussion

3.1. Energy use pattern correlated with commercial use types

The simulated annual energy use intensity (EUI) of the buildings
was calculated and mapped as displayed in Fig. 5. EUI is summa-
tion of energy consumed by various end uses including space heat-
ing, space cooling, ventilation, lighting systems, internal
equipment and appliances, water systems (e.g., pumps), and water
heating systems normalized by floor area. The simulated annual
EUI, averaged over the use types, ranged from 74 kWh/m2 to
1302 kWh/m2 for parking garages and warehouses, respectively.
The high annual EUI for warehouse can be attributed to high inten-
sity internal equipment and their schedules such as refrigerators
and fans that are operating throughout the day without interrup-
tion. Buildings categorized as ‘other’ followed by education build-
ings had second and third highest average annual EUI. The
former housed mixed-use spaces including offices, medical centers,
restaurants, and retail stores which typically have higher energy
consumption. The latter housed research activities, laboratories,
and server rooms with high intensity equipment that resulted in
greater energy consumption compared to the rest of commercial
use types. Finding the lowest annual EUI for parking garages was
expected given that these buildings did not have space heating
and cooling, which dominated the energy use compared to the
other end uses.

Space heating, cooling, and lighting together comprised
between 36% and 93% of the total energy use for various use types.
Apart from parking garages with no heating systems, the share of
space heating from total energy use was estimated at 23% for edu-
cation buildings, which is the lowest compared to rest of use types
in the stock. Two reasons can be posited. First, energy consumed by
internal equipment and appliances (plug and process loads) dom-
inated energy use of education buildings. Second, heat gain due to
operation of these equipment compensated for heating and
reduced space heating demand for this use type. Whereas, for lodg-
ing buildings, 65% of the total energy use was allocated to space
heating since the majority of these buildings were dormitories
and not 100% operational during the cooling season. Therefore,
the energy consumed for space cooling along with the plug and
process loads was reduced and resulted in heating became the
dominant energy load. Aligned with significant impact of weather
condition on trend of energy use, we found that in this commercial
building stock the share of space cooling from total energy use
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Fig. 4. Graphical overview of generating the urban building energy model.
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(0–12%) was fairly lower than that of space heating because Pitts-
burgh is located in a cold climate with severe winter weather and
milder summers. Besides discrepancy in the simulated energy use
pattern of different commercial use types, there were variations in
the simulated energy use of buildings with similar use types.

3.2. Variations in the simulated energy use of buildings with the same
use type were identified

Frequency distributions for the annual simulated and actual
EUIs and probability distribution functions (PDF) for annual simu-
lated EUIs are shown in Fig. 6a and b, accordingly. While the ther-
mal zoning was similar for the buildings with the same use type,
the simulated annual EUI varied for different buildings (see
Fig. 6b). This variation was because the solar heat gain and heat
loss were different for buildings due to the diversity of the orienta-
tion and WWR, which their influential role on the energy use of
buildings are well-studied in the literature [62–64]. Thus, it can
be inferred that considering the actual building orientation,
obtained from geospatial data, and the WWR, measured through
photogrammetry and image processing, likely improved the urban
model’s accuracy. Moreover, incorporating the external wall mate-
rial specific to each building and consequently wall composition,
which impacts the heat transfer between buildings and uncondi-
tioned environment, was another reason for the variation of simu-
lation results within one use type.

The PDF of the annual simulated EUI for seven types of build-
ings (excluding lodging buildings) followed a lognormal distribu-
tion as shown in Fig. 6b. Buildings with lower EUIs had higher
frequency than buildings with high EUIs. Another important find-
ing to be addressed is that PDFs were right-skewed; therefore,
the higher EUIs are more scattered. Furthermore, through compar-
ing the frequency distributions of simulated and actual EUIs
(Fig. 6a), it can be concluded that the UBEM’s results were more
concentrated whereas actual data were dispersed. This was mostly
because when characterizing archetypes, the occupancy-related
and mechanical/electrical systems parameters were assumed fixed
for every archetype, which is a known limitation of UBEMs.

Nonetheless in the real-world, these parameters differ for every
individual building, consequently the actual EUI had a wider range.
The simulated frequency distributions of the public assembly and
public order and safety buildings showed more similarity with
actual frequency distributions compared to the rest of use types.
This similarity was likely due to less complex mechanical systems
and occupancy-related parameters of public assembly and public
order and safety buildings. By examining the average annual EUIs,
presented in Table 5, the difference between the overall simulated
and actual energy use was not significant in this building stock.
Thus, it pointed to the conclusion that despite inherent complexity
and diversity of commercial buildings, the UBEM was able to pro-
vide accurate estimation of energy consumption.

3.3. The UBEM was validated according to actual data

One of the contributions of this research was focusing on com-
mercial buildings to advance the field. To examine the accuracy of
the UBEM developed for solely commercial buildings without
leveraging steady energy performance of residential buildings, it
is imperative to validate results based on actual data. One path
for validation is estimating and interpreting modeling error, which
can be defined as deviation between simulated energy use and
actual energy use [65]. Modeling errors can be generated from
numerous sources from inaccuracy of simulation engine and the
uncertainty of input information, to simplification applied to vari-
ous stages of developing the model. In this order, the percent error
(PE) was estimated using the aggregated energy use of each use
type. The mean PE of the annual EUI was estimated based on Eq.
(2), where Mean EUIaj was the average annual actual EUI for use
type j, and Mean EUIsj was the average annual EUI obtained from
the UBEM for use type j.

Mean PEj ¼
Mean EUIaj !Mean EUIsj
!! !!

Mean EUIaj
& 100 ð2Þ

As shown in Table 6, the mean PE varied according to the use
type. The low PE for the education buildings was likely because
most of these buildings belonged to the University of Pittsburgh

Fig. 5. Simulated annual energy use intensity (EUI) of the commercial buildings in the urban building energy model (UBEM) for Pittsburgh, Pennsylvania. Note: we only
included buildings for which we had actual energy use for this UBEM for validation purposes.
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and consulting with building managers aided our team in charac-
terizing archetypes with greater similarity to real-world operation.
The error for lodging, other, and office buildings were almost sim-
ilar and can be mainly traced to various operating schedules and
internal equipment. Surprisingly, comparing average simulated

EUI with the average actual EUI of parking garages showed consid-
erable difference (63%). Ventilation systems were defined during
the archetype characterization for parking garages. However, some
of these buildings were designed with vehicular barrier walls
instead of external walls and used natural ventilation rather than

Fig. 6. a) Frequency distributions of annual simulated and actual EUIs for eight use types; b) PDF and frequency distribution of annual simulated EUIs. The average annual
simulated EUI (Sim) and the average annual actual EUI (Actual) are shown in blue and red texts, respectively. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 6 (continued)
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ventilation systems (e.g., fans). So, their actual energy use was
much lower than the simulated values, but this difference did
not have a considerable impact on overall model error since the
energy use of parking garages were low compared to other
buildings.

Overall modeled PE was 7%, which is within acceptable range
(1–15%) suggested by existing literature [23]. In addition to error
estimation, two-sample Kolmogorov-Smirnov (KS) test was
adopted to explore the similarity of distributions of simulated
EUI and actual EUI. The benefit of the test is showing if the UBEM’s
outcomes represent the commercial building stock of Pittsburgh
and whether the distributions of energy use, acquired from the
model, can be utilized in future to scale up outcomes to the entire
city or not.

The KS test is a non-parametric test providing insights on the
statistical difference of two samples [66]. The null hypothesis is
that the two distributions are not statistically different, and it is
not rejected when the p-value is greater than a specific significance
level. Usually, the significance levels are assumed to be 0.05 or
0.01. We compared the p-values for every use type with a signifi-
cance level of 0.05. According to the results of KS test, displayed
in Table 6, the null hypothesis was not rejected for all the buildings
except lodging buildings, which confirms that distributions of sim-
ulated and actual EUI are not distinct. The statistical difference for
lodging buildings may be correlated with operating schedules and
other occupant behaviors, which can be addressed through imple-
menting a probabilistic approach during the lodging archetype
characterization to define occupant-related parameters. However,
such this approach first requires comprehensive behavioral data
that is not currently available, and second is computationally
intensive. Another solution is to randomly select a sample of the
lodging buildings, conduct occupants’ surveys, and recalibrate
lodging archetypes based on surveys in a future study. Regardless
of minor difference for lodging buildings, from both error estima-
tion and KS test results it can be concluded that the UBEM repre-
sented the commercial stock of Pittsburgh and verified to be
accurate. So, it can be further employed to evaluate EC strategies.

3.4. Selected energy conservation strategies reduced energy
consumption of the commercial stock by 2–5%

For policy makers and urban planner, broad knowledge about
impacts of energy efficiency programs on energy performance of
existing buildings at scale is essential as it aids them in refining
codes and standards as well as structuring regional retrofit guide-
lines and regulations. On this basis the UBEMwas utilized to assess
energy reduction or savings of the studied building stock in concert
with EC strategies. As mentioned earlier, three low to medium cost
EC strategies [67]; temperature set points adjustment, upgrading
lighting systems to LEDs, and plug and process load reduction were
selected and applied. The rest of this section is allocated to discuss
findings.

Raising cooling set point from 24 "C to 25.5 "C and lowering
heating set point from 21 "C to 20 "C was the first strategy with
no cost. The new temperature set points are within temperature
spectrums that provide comfortable indoor environment for occu-
pants [67,68]. The cumulative energy use of the building stock
prior to adjusting set points was simulated as 521 GWh which
reduced approximately 5% after changing set points to new values
in the UBEM. In addition to the cumulative energy use of the stock,
the total EUI averaged over the entire stock reduced by 4% (see
Table 7). Also, the impact of this EC strategy on dominant end uses
(space heating, space cooling, and lighting) was estimated, which
showed that the reduction in average cooling EUI (27%) was much
higher than other two end uses.

Replacing traditional incandescent bulbs, which convert 90% of
energy to heat, with Light Emitted Diodes (LEDs) is a well-known
strategy to conserve energy. As reported by the Department of
Energy, LEDs consume 4 to 5 times less energy than incandescent
bulbs [69]. In order to examine the impact of this strategy on the
building stock, lighting density (W/m2) was reduced between
50% and 75% for different buildings. Shifting to LEDs resulted in
percent decreases for the average total EUI, average cooling EUI,
and average lighting EUI as presented in Table 7. On the other
hand, average heating EUI increased by 3%. This is because heat
generated from lighting system decreased when using LEDs and
heating system should run more to compensate for the heat. Ulti-
mately heating demand was simulated to be increased.

Utilizing more energy efficient internal equipment and appli-
ances for example those with ENERGY STAR label would reduce
plug and process loads. The amount of energy conserved varies
greatly for different equipment and appliances. For instance,
ENERGY STAR refrigerators and washers consume about 10% and
40% less energy, respectively than standard ones [70]. In this study,
it was assumed that plug and process loads would reduce by 15%
and energy savings was estimated. The average reductions for total
and cooling EUIs were less than set point adjustment and upgrad-
ing lighting systems. Moreover, average lighting EUI was remained
unchanged, as expected, and the average heating EUI showed a
slight increase. When the plug and process load decreases, amount

Table 6
Percent error (PE) and Kolmogorov-Smirnov (KS) test results for annual energy use intensity.

Commercial use type Mean PE (%)
KS test

P-value 0: null hypothesis not rejected; 1: null hypothesis rejected

Education 4 0.071 0
Lodging 44 0.012 1
Office 36 0.156 0
Parking garage 63 0.980 0
Public assembly 4 0.429 0
Public order and Safety 10 0.342 0
Warehouse 10 0.771 0
Other 35 0.474 0

Table 5
Average annual simulated and actual energy use intensity for eight commercial use
types and for the overall studied building stock.

Average annual EUI (kWh/m2)

Simulated Actual

Education 641 617
Lodging 377 262
Office 399 295
Parking garage 74 46
Public assembly 275 287
Public order and Safety 318 290
Warehouse 1302 1184
Other 774 1198
Overall 126 117

R. Mohammadiziazi, S. Copeland and M.M. Bilec Energy & Buildings 248 (2021) 111175

12



of rejected heat by equipment and appliances reduces. Thus, heat-
ing system would run more to meet the demand of buildings. Eval-
uating the EC strategies at an urban scale provided insights on how
energy ecosystem of urban buildings would alter, and which strat-
egy yielded higher promise.

4. Limitations

One of the known limitations of simulating energy consumption
at scale using an UBEM is the uncertainty associated with charac-
terizing the non-geometric parameters during archetype develop-
ment. While we tried to mitigate the impact of this uncertainty
by close inspection of buildings in the commercial stock and con-
sulting with building managers about operation and systems, lack
of access to design documents of buildings and consequently their
non-geometric parameters still remain as a limitation. Another
limitation of this research pertains to photogrammetry. When
acquiring images of various facades of a building utilizing SVS
API, the goal was to maintain the consistency of images’ attributes.
Nonetheless, to attain full coverage of façades, image attributes of
few buildings were not consistent over different facades which is
being explored as part of our future research. Additionally, typical
meteorological data from the weather station, located outside the
City, may not represent the micro-climate condition in the City
as well as weather condition in 2017, which was employed as a
base year for validating simulation results from the UBEM.

5. Conclusions

This paper described a holistic and detailed modeling structure
for developing an UBEM focusing on commercial buildings. With
the aim of increasing reproducibility of future UBEMs, we provided
an archetype library with sources, along with proposing and imple-
menting an advanced imaging technique to retrieve envelope
properties and reconstruct façades as well as LiDAR analysis. The
major findings of this work are:

" The WWRs between 0.11 and 1 had higher frequencies in the
studied building stock (74%) when compared to CBECS build-
ings (44%). Therefore, using CBECS data, rather than measuring
WWR based on photogrammetry and image processing frame-
work, would have led to underestimating WWR.

" The average annual EUI for different building use types was
simulated between 74 kWh/m2 and 1302 kWh/m2. This range
showed that energy use of commercial buildings was highly
related to use type.

" Validating the simulation results with actual data showed the
overall acceptable PE of 7% for the studied building stock. The
PE for different building use types were estimated between 4%
(education buildings) and 63% (parking garages). Ventilation
systems were considered when simulating energy use of park-
ing garages; however, some of these buildings did not have ven-
tilation systems in real-world. Therefore, the average simulated
EUI was somewhat higher than the average actual EUI for park-
ing garages resulting in the highest PE compared to other use
types.

" The KS test results revealed that the distributions of simulated
and actual EUI were similar for seven use types (p-values were

greater than 0.05). However, the p-value for lodging buildings
was calculated as 0.012 showing that the distributions of simu-
lated and actual EUI were statistically different for this use type.
This difference can be attributed to variable schedules and
occupant behavior.

" The average EUI of the studied building stock was reduced 2–
10% as result of three EC strategies. All three EC strategies
reduced the average cooling EUI (2–27%); whereas, upgrading
lighting systems to LEDs and plug and process load reduction
slightly increased the average heating EUI by 3% and 1%, respec-
tively. These increases were because rejected heat from lighting
systems and different appliances and equipment was declined;
thus, heating demand increased.

In addition to providing policy makers, urban planners, and util-
ity companies with insights about trends of energy use, the results
of this study can be used to provide guidance about EC strategies
for the commercial building stock at urban scale. So, relying on this
information policy makers and urban planners can advocate for
converting EC strategies from voluntary actions to regulations.

As part of future work, the model can be utilized to evaluate
simultaneous implementation of the three EC strategies as well
as more aggressive and high-cost strategies such as upgrading
heating/cooling systems and improving envelope airtightness.
Additionally, the environmental impact associated with energy
consumption of the studied commercial buildings can be assessed
through employing the amount of different energy sources. There
are some studies that have integrated building energy use mostly
at individual building-level with climate change based on
physics-based or machine learning approaches [71–73]. The UBEM
can be employed to predict changes in energy use of buildings in
Pittsburgh, Pennsylvania region due to weather variation caused
by climate change. Furthermore, the resiliency of energy supply
network in time of extreme weather events (i.e., heat wave and
cold wave) can be evaluated by meshing the UBEM with extreme
meteorological year data. Technical aspects that require improve-
ment are accessing documents of all buildings in the city, that
includes basic data regarding buildings and their energy use,
together with automating the photogrammetry and image pro-
cessing framework. Artificial intelligence (AI) methods have been
used to automize image processing especially in medical fields;
therefore, we plan to resolve current challenges and implement
AI methods for façade image processing at urban scale.
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Table 7
Percentage of energy use change as a result of energy conservation strategies. Positive values represent reduction and negative values represent increase.

Cumulative energy use (%) Average total EUI (%) Average heating EUI (%) Average cooling EUI (%) Average lighting EUI (%)

Temperature set points adjustment 5 4 9 27 0
Upgrading lighting systems to LEDs 4 10 !3 11 72
Plug and process load reduction 2 2 !1 2 0
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Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.enbuild.2021.111175.

References

[1] U.S. Energy Information Administration, Monthly Energy Review, Washington,
DC (US), 2020.

[2] M.K. Singh, S. Mahapatra, J. Teller, An analysis on energy efficiency initiatives
in the building stock of Liege, Belgium, Energy Policy 62 (2013) 729–741,
https://doi.org/10.1016/j.enpol.2013.07.138.

[3] S. Trachte, A., De Herde, Choix des Matériaux - Ecobilan de Parois, Architecture
et, Climat (2010).

[4] Office of Los Angeles Mayor, L.A.’s Green New Deal: Sustainable City Plan, Los
Angeles, CA (US), 2019. Available: http://plan.lamayor.org/sites/default/files/
pLAn_2019_final.pdf.

[5] R.B. Weisenmiller, P. Bozorgchami, L. Froess, C. Meyer, D. Ashuckian, D. Bohan,
K. Douglas, A. McAllister, D. Hochschild, J.A. Scott, Building Energy Efficiency
Standards for Residential and Nonresidential Buildings, California Energy
Commission (2018).

[6] P. Colao, A. Mendicino, J. Cramer, M. Zeigler, J. McKinney, Pittsburgh 2030
District Progress Report, Green Building Alliance, 2019.

[7] J. Driesen, F. Katiraei, Design for distributed energy resources, IEEE Power
Energy Mag. 6 (3) (2008) 30-40.

[8] A. Agalloco, R. Freeh, Municipal Energy Benchmarking, The City of Philadelphia
Mayor’s Office of Sustainability (2014).

[9] B. Hooper, F. Apaliski, L. Hirsch, H. Gurfel, M. Brill, C. Liu, M. Henn, San
Francisco Existing Commercial Buildings Performance Report, San Francisco
Department of the Environment and Urban Land Institute, 2014.

[10] W. Li, Y. Zhou, K. Cetin, J. Eom, Y. Wang, G. Chen, X. Zhang, Modeling urban
building energy use: A review of modeling approaches and procedures, Energy
141 (2017) 2445–2457.

[11] S. Torabi Moghadam, C. Delmastro, S.P. Corgnati, P. Lombardi, Urban energy
planning procedure for sustainable development in the built environment: A
review of available spatial approaches, J. Clean. Prod. 165 (2017) 811–827,
https://doi.org/10.1016/j.jclepro.2017.07.142.

[12] L. Carnieletto, M. Ferrando, L. Teso, K. Sun, W. Zhang, F. Causone, P. Romagnoni,
A. Zarrella, T. Hong, Italian prototype building models for urban scale building
performance simulation, Build. Environ. 192 (2021), https://doi.org/10.1016/j.
buildenv.2021.107590 107590.

[13] N. Mostafavi, M. Farzinmoghadam, S. Hoque, Urban residential energy
consumption modeling in the Integrated Urban Metabolism Analysis Tool
(IUMAT), Build. Environ. 114 (2017) 429–444, https://doi.org/10.1016/j.
buildenv.2016.12.035.

[14] L. Filogamo, G. Peri, G. Rizzo, A. Giaccone, On the classification of large
residential buildings stocks by sample typologies for energy planning
purposes, Appl. Energy 135 (2014) 825–835, https://doi.org/10.1016/j.
apenergy.2014.04.002.

[15] E. Lucchi, V. D’Alonzo, D. Exner, P. Zambelli, G. Garegnani, A density-based
spatial cluster analysis supporting the building stock analysis in historical
towns, Proc. 16th IBPSA Int. Conf. Exhib. (2019) 2–4.

[16] C.F. Reinhart, C.C. Davila, Urban building energy modeling–A review of a
nascent field, Build. Environ. 97 (2016) 196–202, https://doi.org/10.1016/j.
buildenv.2015.12.001.

[17] M. Ferrando, F. Causone, T. Hong, Y. Chen, Urban building energy modeling
(UBEM) tools: A state-of-the-art review of bottom-up physics-based
approaches, Sustain. Cities Soc. 62 (2020), https://doi.org/10.1016/j.
scs.2020.102408 102408.

[18] Y. Shimoda, T. Fujii, T. Morikawa, M. Mizuno, Residential end-use energy
simulation at city scale, Build. Environ. 39 (8) (2004) 959–967, https://doi.org/
10.1016/j.buildenv.2004.01.020.

[19] C. Cerezo, J. Sokol, S. AlKhaled, C. Reinhart, A. Al-Mumin, A. Hajiah,
Comparison of four building archetype characterization methods in urban
building energy modeling (UBEM): A residential case study in Kuwait City,
Energy Build. 154 (2017) 321–334, https://doi.org/10.1016/j.enbuild.2017.
08.029.

[20] J. Sokol, C.C. Davila, C.F. Reinhart, Validation of a Bayesian-based method for
defining residential archetypes in urban building energy models, Energy Build.
134 (2017) 11–24, https://doi.org/10.1016/j.enbuild.2016.10.050.

[21] C.S. Monteiro, A. Pina, C. Cerezo, C. Reinhart, P. Ferrão, The use of multi-detail
building archetypes in urban energy modelling, Energy Proc. 111 (2017) 817–
825, https://doi.org/10.1016/j.egypro.2017.03.244.

[22] U. Ali, M.H. Shamsi, C. Hoare, E. Mangina, J. O’Donnell, A data-driven approach
for multi-scale building archetypes development, Energy Build. 202 (2019),
https://doi.org/10.1016/j.enbuild.2019.109364 109364.

[23] C.D. Cerezo, C.F. Reinhart, J.L. Bemis, Modeling Boston: A workflow for the
efficient generation and maintenance of urban building energy models from
existing geospatial datasets, Energy 117 (2016) 237–250, https://doi.org/
10.1016/j.energy.2016.10.057.

[24] S. Heiple, D.J. Sailor, Using building energy simulation and geospatial modeling
techniques to determine high resolution building sector energy consumption
profiles, Energy Build. 40 (8) (2008) 1426–1436, https://doi.org/10.1016/j.
enbuild.2008.01.005.

[25] É. Mata, A.S. Kalagasidis, F. Johnsson, Building-stock aggregation through
archetype buildings: France, Germany, Spain and the UK, Build. Environ. 81
(2014) 270–282, https://doi.org/10.1016/j.buildenv.2014.06.013.

[26] A. Krayem, A. Al Bitar, A. Ahmad, G. Faour, J.-P. Gastellu-Etchegorry, I.
Lakkis, J. Gerard, H. Zaraket, A. Yeretzian, S. Najem, Urban energy
modeling and calibration of a coastal Mediterranean city: The case of
Beirut, Energy Build. 199 (2019) 223–234, https://doi.org/10.1016/j.
enbuild.2019.06.050.

[27] C. Ding, N. Zhou, Using residential and office building archetypes for energy
efficiency building solutions in an urban scale: A China case study, Energies 13
(12) (2020) 3210, https://doi.org/10.3390/en13123210.

[28] Y. Chen, T. Hong, M.A. Piette, Automatic generation and simulation of urban
building energy models based on city datasets for city-scale building retrofit
analysis, Appl. Energy 205 (2017) 323–335, https://doi.org/10.1016/j.
apenergy.2017.07.128.

[29] I. De Jaeger, G. Reynders, C. Callebaut, D. Saelens, A building clustering
approach for urban energy simulations, Energy Build. 208 (2020), https://doi.
org/10.1016/j.enbuild.2019.109671 109671.

[30] C. Molina, M. Kent, I. Hall, B. Jones, A data analysis of the Chilean housing stock
and the development of modelling archetypes, Energy Build. 206 (2020),
https://doi.org/10.1016/j.enbuild.2019.109568 109568.

[31] U.S. Energy Information Administration, Commercial Buildings Energy
Consumption Survey (CBECS), Washington, DC (US), 1999.

[32] U.S. Energy Information Administration, Residential Energy Consumption
Survey (RECS), Washington, DC (US), 2001.

[33] M.C. Baechler, J. Williamson, T.L. Gilbride, P.C. Cole, M.G. Hefty, P.M. Love,
Guide to Determining Climate Regions by County, Pacific Northwest National
Laboratory (PNNL), Richland, WA (US), 2015.

[34] R. Mohammadiziazi, M.M. Bilec, Developing a framework for urban building
life cycle energy map with a focus on rapid visual inspection and image
processing, Proc. CIRP 80 (2019) 464–469, https://doi.org/10.1016/j.
procir.2019.01.048.

[35] Western Pennsylvania Regional Data Center, Open portal data. https://data.
wprdc.org/dataset, 2018 (accessed 15 June 2018).

[36] T. Loga, N. Diefenbach, B. Stein, C. Balaras, O. Villatoro, K. Wittchen, Typology
Approach for Building Stock Energy Assessment - Main Results of the TABULA
Project, Institut Wohnen und Umwelt, Darmstadt (DE), 2012.

[37] T.M. Gulotta, M. Cellura, F. Guarino, S. Longo, A bottom-up harmonized
energy-environmental models for europe (BOHEEME): A case study on the
thermal insulation of the EU-28 building stock, Energy Build. 231 (2021),
https://doi.org/10.1016/j.enbuild.2020.110584 110584.

[38] M. Deru, K. Field, D. Studer, K. Benne, B. Griffith, P. Torcellini, B. Liu, M.
Halverson, D. Winiarski, M. Rosenberg, U.S. Department of Energy Commercial
Reference Building Models of the National Building Stock, National Renewable
Energy Laboratory (NREL), Golden, CO (US), 2011.

[39] ASHRAE, ASHRAE Standard 62-1989–Ventilation for Acceptable Indoor Air
Quality, Atlanta, GA (US), 1989.

[40] ASHRAE, ASHRAE Standard 62.1-2013–Ventilation for Acceptable Indoor Air
Quality, Atlanta, GA (US), 2013.

[41] B. Liu, R.E. Jarnagin, W. Jiang, K. Gowri, Technical Support Document: The
Development of the Advanced Energy Design Guide for Small Warehouse and
Self-storage Buildings, Pacific Northwest National Laboratory (PNNL),
Richland, WA (US), 2007.

[42] S. Pless, P. Torcellini, N. Long, Technical Support Document: Development of
the Advanced Energy Design Guide for K-12 Schools-30% Energy Savings,
National Renewable Energy Laboratory (NREL), Golden, CO (US), 2007.

[43] ASHRAE, ASHRAE Standard 90-1975–Energy Conservation in New Building
Design, Atlanta, GA (US), 1975.

[44] ASHRAE, ASHRAE Standard 90.1-1989–Energy Efficient Design of New
Buildings Except Low-Rise Residential Buildings, Atlanta, GA (US), 1989.

[45] ASHRAE, ASHRAE Standard 90.1-2004–Energy Standard for Buildings Except
Low Rise Residential Buildings, Atlanta, GA (US), 2004.

[46] R. Hendron, Building America Research Benchmark Definition: Updated
December 20, 2007, National Renewable Energy Laboratory (NREL), Golden,
CO (US), 2008.

[47] R.E. Jarnagin, B. Liu, D.W. Winiarski, M.F. McBride, L. Suharli, D. Walden,
Technical Support Document: Development of the Advanced Energy Design
Guide for Small Office Buildings, Pacific Northwest National Laboratory (PNNL)
, Richland, WA (US), 2006.

[48] ASHRAE, HVAC Applications–ASHRAE Handbook Fundamentals, 2007.
[49] U.S. Energy Information Administration, Commercial Buildings Energy

Consumption Survey (CBECS), Washington, DC (US), 2012.
[50] G.G. Akkurt, N. Aste, J. Borderon, A. Buda, M. Calzolari, D. Chung, V. Costanzo, C.

Del Pero, G. Evola, H.E. Huerto-Cardenas, F. Leonforte, A. Lo Faro, E. Lucchi, L.
Marletta, F. Nocera, V. Pracchi, C. Turhan, Dynamic thermal and hygrometric
simulation of historical buildings: Critical factors and possible solutions,
Renew. Sustain. Energy Rev. 118 (2020), https://doi.org/10.1016/j.
rser.2019.109509 109509.

[51] D.W. Winiarski, W. Jiang, M.A. Halverson, Review of Pre-and Post-1980
Buildings in CBECS-HVAC Equipment, Pacific Northwest National Laboratory
(PNNL), Richland, WA (US), 2006.

[52] ASHRAE, ASHRAE Handbook Fundamentals–Design Conditions for HARARE
KUTSAGA Airport, 2005.

[53] C. Massart, A. De Herde, Conception de Maisons Neuves Durables: Elaboration
D’Un Outil D’Aide à La Conception de Maisons à Très Basse Consommation
D’Energie, Architecture et, Climat (2010).

R. Mohammadiziazi, S. Copeland and M.M. Bilec Energy & Buildings 248 (2021) 111175

14



[54] T. Dogan, M. Knutins, CitySeek: towards urban daylight models based on GIS
data and semi-automated image processing, Proc. Symp. Simul. Archit, Urban
Des, 2018.

[55] Google, Google Street View Static API. https://cloud.google.com/, 2020
(accessed 10 August 2020).

[56] M. Deru, P. Torcellini, Standard Definitions of Building Geometry for Energy
Evaluation, National Renewable Energy Laboratory (NREL), Golden, CO (US),
2005.

[57] N. Nazarian, N. Dumas, J. Kleissl, L. Norford, Effectiveness of cool walls on
cooling load and urban temperature in a tropical climate, Energy Build. 187
(2019) 144–162, https://doi.org/10.1016/j.enbuild.2019.01.022.

[58] R. Gupta, M. Gregg, Using urban energy modelling to rapidly assess potential
for climate change mitigation and adaptation of UK homes, Build. Simul.
Optim, Conf, 2014.

[59] Y. Wu, L.S. Blunden, A.S. Bahaj, City-wide building height determination using
light detection and ranging data, Environ. Plan. B: Urban Anal. City Sci. 46 (9)
(2019) 1741–1755, https://doi.org/10.1177/2399808318774336.

[60] D.B. Crawley, L.K. Lawrie, C.O. Pedersen, F.C. Winkelmann, Energy plus: Energy
simulation program, ASHRAE J. 42 (4) (2000) 49–56.

[61] H. Yassaghi, P.L. Gurian, S. Hoque, Propagating downscaled future weather file
uncertainties into building energy use, Appl. Energy 278 (2020), https://doi.
org/10.1016/j.apenergy.2020.115655 115655.

[62] F.H. Abanda, L. Byers, An investigation of the impact of building orientation on
energy consumption in a domestic building using emerging BIM (Building
Information Modelling), Energy 97 (2016) 517–527, https://doi.org/10.1016/j.
energy.2015.12.135.

[63] B. Andersson, W. Place, R. Kammerud, M.P. Scofield, The impact of building
orientation on residential heating and cooling, Energy Build. 8 (3) (1985) 205–
224, https://doi.org/10.1016/0378-7788(85)90005-2.

[64] E. Nault, T. Jusselme, S. Aguacil, M. Andersen, Strategic environmental urban
planning - A contextual approach for defining performance goals and

informing decision-making, Build. Environ. 168 (2020), https://doi.org/
10.1016/j.buildenv.2019.106448 106448.

[65] H.E. Huerto-Cardenas, F. Leonforte, N. Aste, C. Del Pero, G. Evola, V. Costanzo,
E. Lucchi, Validation of dynamic hygrothermal simulation models for
historical buildings: State of the art, research challenges and
recommendations, Build. Environ. 180 (2020), https://doi.org/10.1016/j.
buildenv.2020.107081 107081.

[66] S.N. Goodman, Toward evidence-based medical statistics. 1: The P value
fallacy, Ann. Intern. Med. 130 (12) (1999) 995–1004.

[67] J.C. Lam, K.K. Wan, L. Yang, Sensitivity analysis and energy conservation
measures implications, Energy Convers. Manag. 49 (11) (2008) 3170–3177,
https://doi.org/10.1016/j.enconman.2008.05.022.

[68] A. Ghahramani, K. Zhang, K. Dutta, Z. Yang, B. Becerik-Gerber, Energy savings
from temperature setpoints and deadband: Quantifying the influence of
building and system properties on savings, Appl. Energy 165 (2016) 930–942,
https://doi.org/10.1016/j.apenergy.2015.12.115.

[69] U.S. Department of Energy, Lighting Choices, 2021. https://www.energy.gov/
energysaver/save-electricity-and-fuel/lighting-choices-save-you-money.

[70] U.S., Environmental Protection Agency, ENERGY STAR Certified Appliances
(2012).

[71] R. Mohammadiziazi, M.M. Bilec, Application of machine learning for predicting
building energy use at different temporal and spatial resolution under climate
change in USA, Buildings 10 (8) (2020) 139, https://doi.org/10.3390/
buildings10080139.

[72] X. Wang, D. Chen, Z. Ren, Assessment of climate change impact on
residential building heating and cooling energy requirement in Australia,
Build. Environ. 45 (7) (2010) 1663–1682, https://doi.org/10.1016/j.
buildenv.2010.01.022.

[73] L. Troup, M.J. Eckelman, D. Fannon, Simulating future energy consumption in
office buildings using an ensemble of morphed climate data, Appl. Energy 255
(2019), https://doi.org/10.1016/j.apenergy.2019.113821 113821.

R. Mohammadiziazi, S. Copeland and M.M. Bilec Energy & Buildings 248 (2021) 111175

15


