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Pareto Optimal Multirobot Motion Planning
Guoxiang Zhao , Student Member, IEEE, and Minghui Zhu , Member, IEEE

Abstract—This article studies a class of multirobot coor-
dination problems where a team of robots aim to reach their
goal regions with minimum time and avoid collisions with
obstacles and other robots. A novel numerical algorithm is
proposed to identify the Pareto optimal solutions where no
robot can unilaterally reduce its traveling time without ex-
tending others’. The consistent approximation of the algo-
rithm in the epigraphical profile sense is guaranteed using
set-valued numerical analysis. Experiments on an indoor
multirobot platform and computer simulations show the
anytime property of the proposed algorithm, i.e., it is able to
quickly return a feasible control policy that safely steers the
robots to their goal regions and it keeps improving policy
optimality if more time is given.

Index Terms—Multirobot coordination, Pareto optimality,
robotic motion planning.

I. INTRODUCTION

ROBOTIC motion planning is a fundamental problem
where a control sequence is found to steer a mobile robot

from an initial state to a goal set while enforcing dynamic
constraints and environmental rules. It is well-known that the
problem is computationally challenging. For example, the piano-
mover problem is shown to be PSPACE-hard in general [1].
Sampling-based algorithms are demonstrated to be efficient in
addressing robotic motion planning in high-dimensional spaces.
The Rapidly-exploring Random Tree (RRT) algorithm [2] and
its variants are able to quickly find feasible paths. However, the
optimality of returned paths is probably lost. In fact, computing
optimal motion planners is much more computationally chal-
lenging than finding feasible motion planners [3]. It is shown
that computing the shortest path in R3 populated with obstacles
is NP-hard in the number of obstacles [3]. Recently, RRT* [4]
and its variants are shown to be both computationally efficient
and asymptotically optimal.

Multirobot optimal motion planning is even more compu-
tationally challenging, because the worst-case computational
complexity exponentially grows as the robot number. Current
multirobot motion planning mainly falls into three categories:
centralized planning [5], [6], decoupled planning [7], [8], and
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priority planning [9], [10]. Noticeably, none of these multirobot
motion planners are able to guarantee the optimality of returned
solutions. Recent papers [11], [12] employ game theory to
synthesize open-loop planners and closed-loop controllers to
coordinate multiple robots, respectively. It is shown that the
proposed algorithms converge to Nash equilibrium [13] where
no robot can benefit from unilateral deviations. As RRTs, the
algorithms in [11] and [12] leverage incremental sampling and
steering functions, the latter of which require to solve two-point
boundary value problems. There are only a very limited number
of dynamic systems whose steering functions have known ana-
lytical solutions, including single integrators, double integrators,
and Dubin’s cars [14]. Heuristic methods are needed to compute
steering functions when dynamic systems are complicated.

In the control community, distributed coordination of mul-
tirobot systems has been extensively studied in last decades
[15]–[17]. A large number of algorithms have been proposed to
accomplish a variety of missions, e.g., rendezvous [18], forma-
tion control [15], vehicle routing [19], and sensor deployment
[20], [21]. This set of work is mainly focused on the design
and analysis of algorithms, which are scalable with respect
to network expansion. To achieve scalability, most algorithms
adopt gradient descent methodologies, which are easy to imple-
ment. Their long-term behavior, e.g., asymptotic convergence,
can be ensured but usually there is no guarantee on transient
performance, e.g., aggregate costs, due to the myopic nature of
the algorithms. Another set of more relevant papers is about
(distributed) receding-horizon control or model predictive con-
trol (MPC) for multirobot coordination. Representative works
include [22], [23] on formation stabilization, [24], [25] on vehi-
cle platooning, and [26] on trajectory optimization. MPC bears
the following benefits [27]–[29]. First, it has a unique ability to
cope with hard constraints on controls and states. Second, it can
deal with system uncertainties and control disturbances and its
robust stability can be formally guaranteed. Third, it is suitable
for control applications requiring rapid computations thanks to
its online fashion of implementation. The infinite-horizon per-
formance of N -horizon MPC policy exponentially converges to
the optimal value function of the infinite-horizon optimal control
problem as the computing horizon N extends to infinity [30]. In
contrast, multirobot motion planning aims to find controllers that
can optimize certain cost functionals over entire missions, e.g.,
finding collision-free paths with shortest distances or minimum
fuel consumption.

Differential games extend optimal control from single players
to multiple players. Linear-quadratic differential games are the
most basic, and their solutions can be formulated as coupled
Riccati equations [31]. For nonlinear systems with state and
input constraints, there are a very limited number of differen-
tial games whose closed-form solutions are known, and some
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examples include the homicidal chauffeur and the lady-in-the-
lake games [31], [32]. Otherwise, numerical algorithms are
desired. Existing numerical algorithms are mainly based on
partial differential equations [33]–[35] and viability theory [36]–
[38]. Noticeably, this set of papers only considers zero-sum
two-player scenarios.

Contribution statement: This article investigates a class of
multirobot closed-loop motion planning problems where mul-
tiple robots aim to reach their respective goal regions as soon
as possible. The robots are restricted to complex dynamic con-
straints and need to avoid the collisions with static obstacles and
other robots. Pareto optimality is used as the solution notion
where no robot can reduce its own travelling time without
extending others’. A numerical algorithm is proposed to identify
the Pareto optimal solutions. It is shown that under mild regu-
larity conditions, the algorithm can consistently approximate
the epigraph of the minimal arrival time function. The proofs
are based on set-valued numerical analysis [36]–[38], which
are the first to point out the promise in extending set-valued
tools to multirobot motion planning problems. Experiments
on an indoor multirobot platform and computer simulations
on unicycle robots are conducted to demonstrate the anytime
property of our algorithm, i.e., it is able to quickly return a
feasible control policy that safely steers the robots to their goal
regions and it keeps improving policy optimality if more time is
given. Detailed proofs are provided in Section VII. Preliminary
results are included in [39] where all the proofs and experimental
results are removed due to space limitation.

II. PROBLEM FORMULATION

Consider a team of mobile robots labeled byV � {1, . . . , N}.
The dynamic of robot i is governed by

ẋi(s) = fi(xi(s), ui(s)) ∀i ∈ V (1)

where xi(s) ∈ Xi is the state of robot i and ui : [0,+∞) → Ui

is the control of robot i. Here, the state space and the set of all
possible control values for robot i are denoted by Xi ⊆ Rdi and
Ui ⊆ Rmi , respectively. The obstacle region and goal region
for robot i ∈ V are denoted by XO

i ⊆ Xi and XG
i ⊆ Xi \XO

i ,
respectively. Denote the minimum safety distance between
any two robots as σ > 0. The free region for robot i is de-
noted by XF

i � {xi ∈ Xi \XO
i |‖xi − xj‖ ≥ σ, xj ∈ XG

j , i 	=
j}. Let X �

∏
i∈V Xi, XG �

∏
i∈V X

G
i , and XF �

∏
i∈V X

F
i .

Assume ‖xi − xj‖ ≥ σ ∀x ∈ XG, i 	= j. Define the safety re-
gion as S � {x ∈ XF |‖xi − xj‖ ≥ σ, i 	= j}. Here, ‖ · ‖ de-
notes the two-norm.

The sets of state feedback control policies for robot i and
the whole robot team are defined as �i � {πi(·) : X → Ui}
and � � {

∏
i∈V πi(·)|πi(·) ∈ �i}, respectively. Consider the

scenario where the robot team starts from x ∈ X and executes
policy π ∈ �. The induced minimal arrival time vector is
characterized as ϑ(x, π) � inf{t ∈ R̄N

≥0| ∀i ∈ V, xi(0) =

xi, ẋi(s) = fi(xi(s), πi(x(s))), x(s) ∈ S, xi(ti) ∈ XG
i , 0 ≤

s ≤ maxi∈V ti}, where the infimum uses the partial order in
footnote 1. The ith element of ϑ(x, π) represents the first

1Throughout this article, product order is imposed, i.e., two vectors a, b ∈
RN are said “a is less than b in the Pareto sense,” denoted by a � b, if and
only if ai ≤ bi ∀i ∈ {1, . . . ,N}. Similarly, strict inequality can be defined by
a ≺ b ⇐⇒ ai < bi ∀i ∈ {1, . . . ,N}.

time robot i reaches its goal region without collisions when
the robot team starts from initial state x and executes policy
π. In our multirobot motion planning problem, the minimal
arrival time function Θ∗ : X ⇒ R̄N

≥0 is a set-valued map and
is defined as Θ∗(x) � E[cl({ϑ(x, π)|π ∈ �})], where E is
the Pareto minimization defined as E(T ) � {τ ∈ T |�τ ′ ∈
T s.t. τ ′ 	= τ and τ ′ � τ} for T ⊆ RN

≥0 and cl(·) is the closure.
The closure ensures the existence of Θ∗(x) per [ 40, Th. 4.1].
The vectors in Θ∗(x) indicate that no robot can unilaterally
reach its goal region earlier without extending other robots’
travelling times. The associated set of Pareto optimal solutions
is defined as U∗(x) � {π∗ ∈ �|ϑ(x, π∗) ∈ Θ∗(x)}. Note that
the elements of ϑ(x, π∗) could be infinite, indicating that
some robots cannot safely reach their goal regions. Infinite
time may cause numerical issues. To tackle this, transformed
minimal arrival time function is defined as v∗(x) � Ψ(Θ∗(x)),

where Kruzhkov transform Ψ(t) �

⎡
⎢⎣

1− e−t1

1− e−t2

.

.

.
1− e−tN

⎤
⎥⎦ for t ∈ R̄N

≥0

normalizes [0,+∞] to [0,1]. Notice that Kruzhkov transform is
bijective and monotonically increasing.

The objective of this article is to identify optimal control
policies in U∗(x) and the corresponding minimal arrival time
function Θ∗(x) (or equivalently v∗(x)).

III. ASSUMPTIONS AND NOTATIONS

This section summarizes the assumptions, notions, and nota-
tions used throughout this article. Most notions and notations on
sets and set-valued maps follow the presentation of [41].

The multirobot system (1) can be written in the differential in-
clusion form: ẋi(s) ∈ Fi(xi(s)) ∀s ≥ 0, where the set-valued
map Fi : Xi ⇒ Rdi is defined as Fi(xi) � {fi(xi, ui)|ui ∈
Ui}. Let F (x) �

∏
i∈V Fi(xi). The following assumptions are

imposed.
Assumption III.1: The following properties hold for i ∈ V .
A1) Xi and Ui are nonempty and compact.
A2) fi(xi, ui) is continuous over both variables.
A3) fi(xi, ui) is linear growth, i.e., ∃ci ≥ 0 s.t. ∀xi ∈ Xi

and ∀ui ∈ Ui, ‖fi(xi, ui)‖ ≤ ci(‖xi‖+ ‖ui‖+ 1).
A4) For each xi ∈ Xi, Fi(xi) is convex.
A5) Fi(xi) is Lipschitz with Lipschitz constant li.

Assumptions (A1) and (A2) imply ‖fi(xi, ui)‖ is bounded for
each i ∈ V . Define Mi � maxxi∈Xi,ui∈Ui

‖fi(xi, ui)‖ and let
M+ �

√∑
i∈V M

2
i and l+ �

√∑
i∈V l

2
i . Then, F is bounded

by M+ and is l+-Lipschitz.
Remark III.1: One sufficient condition of Assumption (A4)

is that fi(xi, ui) is linear with respect to ui and Ui is convex.
One sufficient condition of Assumption (A5) is that fi(xi, ui)
is Lipschitz continuous with respect to both variables on Xi

× Ui. �
Define the distance from a point x ∈ X to a set A ⊆ X

as d(x,A) � inf{‖x− a‖|a ∈ A}. A closed unit ball around
x ∈ X in space X is denoted as x+ BX � {y ∈ X |‖y −
x‖ ≤ 1}. Similarly, δ expansion of a set A ⊆ X is defined
as A+ δBX � {x ∈ X |d(x,A) ≤ δ} for some δ ≥ 0. Specif-
ically, we denote x+ BN � {y ∈ RN |‖y − x‖ ≤ 1} if x ∈
RN . Similar notation applies to a set A. The subscript of
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closed unit ball may be omitted when there is no ambi-
guity. The Hausdorff distance that measures the distance
of two sets A and B is defined by dH(A,B) � inf{δ ≥
0|A ⊆ B + δB, B ⊆ A+ δB}. Kuratowski lower limit and
Kuratowski upper limit of sets {An} ⊆ X are denoted
by Liminfn→+∞An = {x ∈ X | limn→+∞ d(x,An) = 0} and
Limsupn→+∞An = {x ∈ X | lim infn→+∞ d(x,An) = 0}, re-
spectively. If Liminfn→+∞An = Limsupn→+∞An, the com-
mon limit is defined as Kuratowski limit Limn→+∞An.

The Pareto frontier of a nonempty set A ⊆ X is denoted as
E(A) � {t ∈ A|�t′ ∈ A s.t. t′ 	= t, t′ � t}. Let A+B � {a+
b|a ∈ A, b ∈ B} be the sum of two sets A and B. Denote
the n-fold Cartesian product of a set A by An. Specifically,
when A is an interval, e.g., A = [a, b], its n-fold product is
denoted by [a, b]n. When A is a singleton, e.g., A = {a}, its
n-fold product is written as {a}n. Let A× {b} � {(a, b)|a ∈
A} be the Cartesian product of a set A and a point b. De-
fine Hadamard product for two vectors a, b ∈ RN as a ◦ b �[
a1b1 · · · aNbN

]T
. Define a ◦B � {a ◦ b|b ∈ B}. Denote

N -dimensional zero vector and all-ones vector by 0N and 1N ,
respectively. The subscript may be omitted when there is no
ambiguity. The cardinality of a set is denoted as | · |.

Define the distance between two set-valued maps g, ḡ : X ⇒
[0, 1]N by dX(g, ḡ) � supx∈X dH(g(x), ḡ(x)).

Definition III.1 (Epigraph): The epigraph of Θ is defined by
Epi(Θ) � {(x, t) ∈ X × RN |∃t′ ∈ Θ(x) s.t t � t′}.

Definition III.2 (Epigraphical Profile): The epigraphical pro-
file of Θ is defined by EΘ(x) � Θ(x) + RN

≥0.
Remark III.2: For a Kruzhkov transformed function v, we

define its epigraphical profile by Ev(x) � (v(x) + RN
≥0) ∩

[0, 1]N . �

IV. ALGORITHM STATEMENT AND PERFORMANCE

GUARANTEE

In this section, we present our algorithmic solution and sum-
marize its convergence in Theorem IV.1.

A. Algorithm Statement

The proposed algorithms, Algorithms 1–3, are informally
stated as follows. The state space of each robot is discretized by
a sequence of finite grids {Xp

i } ⊆ Xi s.t.Xp
i ⊆ Xp+1

i ∀p ≥ 1,
where p is the grid index and by convention X0

i = ∅. The state
space for the robot team is discretized by {Xp} ⊆ X with
monotonic spatial resolutions hp → 0, where Xp �

∏
i∈V X

p
i .

The safety region S is discretized as Sp � (S+ hpBX) ∩Xp.
On each grid Xp, our algorithm chooses temporal resolution
εp > 2hp. Denote Rp

≥0 as an integer lattice on R≥0 consisting
of segments of length hp, and (RN

≥0)
p as a lattice on RN

≥0.
With these spatial and temporal discretizations, Algorithm 1

leverages the idea of multigrid methods to search for the minimal
arrival time function. Specifically, Algorithm 1 iteratively exe-
cutes the following two phases: initializing the solution onXp by
utilizing the results fromXp−1 and partially solving a multirobot
optimal control problem on grid Xp. We start with the second
phase, which consists of two steps: construction of set-valued

Algorithm 1: Pareto-Based Anytime Algorithm.
1: Input: System dynamics f , state space X,

discretization grids {Xp}Pp=1, the associated
resolutions hp, εp and the number of value iterations to
be executed np.

2: for 1 ≤ p ≤ P do
Grid refinement
3: αp = 2hp + εphpl

+ + ε2pl
+M+

4: Sp = (S+ hpBX) ∩Xp

Value function interpolation
5: for x ∈ Xp−1 do
6: ṽp−1(x) = vp−1

n̄p−1
(x)

7: end for
8: for x ∈ Sp \Xp−1 do
9: for i ∈ V do

10: if d(xi, X
G
i ) ≤ Miεp + hp then

11: ṽp−1
i (x) = 0

12: else
13: ṽp−1

i (x) = 1
14: end if
15: end for
16: end for
17: for x ∈ Xp \ (Sp

⋃
Xp−1) do

18: ṽp−1(x) = {1N}
19: end for
Value function initialization

20: for x ∈ Xp−1 do
21: vp0(x) = ṽp−1(x)
22: end for
23: for x ∈ Xp \Xp−1 do
24: vp0(x) =

⋃
x̃∈Xp

E(x) ṽ
p−1(x̃)

25: end for
Value function update

26: for x ∈ Sp \ (XG + (M+εp + hp)BX) do
27: (X̃p(x), T̃ p(x)) =

Set_Valued_Dynamic(x,Sp)
28: end for
29: n = 0
30: while n ≤ np and vpn 	= vpn−1 do
31: n = n+ 1
32: for x ∈ Sp \ (XG + (M+εp + hp)BX) do
33: (vpn(x),Up(x)) = Value_Iteration

(x, X̃p(x), T̃ p(x), vpn−1)
34: end for
35: end while
36: n̄p = n
37: for

x ∈ (Xp ∩ (XG + (M+εp + hp)BX)) ∪ (Xp \ Sp)
do

38: vpn̄p
(x) = ṽp−1(x)

39: end for
40: end for
41: Output: vpn̄p

, Up
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Algorithm 2: Set_Valued_Dynamic (x,Sp).

1: Input: x,Sp

2: for i ∈ V do
3: if d(xi, X

G
i ) > Miεp + hp then

4: T̃ p
i = εp + 2hpB1;

X̃p
i = xi + εpFi(xi) + αpBXi

;
5: else
6: T̃ p

i = {0}; X̃p
i = {xi};

7: end if
8: end for
9: T̃ p = (

∏
i∈V T̃

p
i ) ∩ (RN

≥0)
p; X̃p = (

∏
i∈V X̃

p
i ) ∩ Sp;

10: Output: X̃p, T̃ p

Algorithm 3: Value_Iteration (x, X̃p, T̃ p, vpn−1).

1: Input: x, X̃p, T̃ p, vpn−1

2: vpn(x) = E({τ + τ̃ − τ ◦ τ̃ |τ̃ = E(Ψ(T̃ p)), x̃ ∈
X̃p, τ ∈ vpn−1(x̃)})

3: Up(x) = {the solutions to u in the above step}
4: Output: vpn,Up

Fig. 1. Set-valued discretization of robot dynamics.

dynamics as Algorithm 2 and execution of value iteration as
Algorithm 3.

Step 1: In lines 2–8 of Algorithm 2, the following set-valued
dynamics are constructed to approximate system (1)

X̃p
i (xi) =

⎧⎪⎨
⎪⎩
xi + εpFi(xi) + αpBXi

if d(xi, X
G
i ) > Miεp + hp

xi, otherwise

(2)

and time dynamic ṫ = 1 is approximated by

T̃ p
i (xi) =

{
εp + 2hpB1, if d(xi, X

G
i ) > Miεp + hp

0, otherwise
(3)

where αp � 2hp + εphpl
+ + ε2pl

+M+. Let X̃p(x) �∏
i∈V X̃

p
i (xi) ∩ Sp and T̃ p(x) �

∏
i∈V T̃

p
i (xi) ∩ (RN

≥0)
p as

line 9 in Algorithm 2. The balls αpBXi
in (2) and 2hpB1 in (3)

represent perturbations on the dynamics. The perturbations
ensure that the image set of any x is nonempty and the
set-valued dynamic is well-defined. Fig. 1 illustrates the
set-valued dynamics (2), where robot i at state xi takes a
constant control ui for a time duration εp and transits to the

red cross. The next state of robot i could be any red diamond,
which lies in the intersection of the grid and the ball centered at
xi + εpfi(xi, ui) with radius αp. Let εp → 0 and hp

εp
→ 0, i.e.,

the spatial resolution hp diminishes faster than the temporal
resolution εp. This ensures the validity of the approximation
in three phases: when αp is very small compared to εp and
hp, the set-valued dynamics transit on the grid Xp; since hp

is diminishing faster than εp, the set-valued dynamics can
well approximate the discrete-time system on X when p is
sufficiently large; finally, as εp converges to 0, the discrete-time
system further converges to the continuous-time system. When
d(xi, X

G
i ) ≤ Miεp + hp, robot i is considered in the goal

region, and hence, it could stay still and stop counting traveling
time.

Step 2: Given the aforementioned set-valued dynamics,
Algorithm 3 searches for Pareto optimal solutions of minimal
arrival time vectors and stores values in Θp

n and the last controls
in Up. The Bellman operator in the Pareto sense is defined by

(TΘp
n)(x) � E({t̃+ t|t̃ ∈ T̃ p(x), x̃ ∈ X̃p(x), t ∈ Θp

n(x̃)})
(4)

where Θp
n : Xp ⇒ R̄N

≥0 is the estimate of Θ∗ after n value itera-
tions on grid Xp. Since E(T̃ p(x)) is a singleton, t̃ = E(T̃ p(x)).
When no feasible control policy exists at x, Θp

n(x) is infinity. To
remedy this numerical issue, we apply Kruzhkov transform on
both sides of (4) and replace Θp

n with Ψ−1vpn, which produces
the transformed Bellman operator in the Pareto sense

(Gvpn)(x) = E({τ̃ + τ − τ̃ ◦ τ |τ̃ = Ψ(E(T̃ p(x)))

x̃ ∈ X̃p(x), τ ∈ vpn(x̃)})
(5)

where G � ΨTΨ−1 summarizes line 2 of Algorithm 3. Let
Up(x) be the set of controls that solve the last value iteration
vpn(x) = (Gvpn−1)(x) on grid Xp. It corresponds to line 3 of
Algorithm 3.

With the aforementioned two steps, Algorithm 1 iteratively
calls Algorithms 2 and 3 to search for the minimal arrival
time function. Denote the last estimate of minimal arrival time
function on Xp by vpn̄p

, where n̄p denotes the total number of
value iterations executed on Xp. When proceeding to grid Xp,
Algorithm 1 first interpolates vp−1

n̄p−1
to generate ṽp as lines 5–19

to reuse previous computational results, then initializes value
function vp0 as lines 20–25 to reduce coupling among robots. In
particular, we maintain the estimates of minimal arrival time on
the last gridXp−1, assuming the fixed points on two consecutive
grids are close to each other. On new nodes x ∈ Xp \Xp−1,
ṽp(x) sets its ith element as 0 if robot i is considered in the
goal region, indicating that robot i is not supposed to move and
affect other robots’ motions, and as 1 otherwise, meaning no
feasible solution has been found for robot i yet. Define the set
of equivalent nodes Xp

E(x) of x ∈ Xp by

Xp
E(x) � {x′ ∈ Xp|xi = x′

i ∀i ∈ V \ VG
p (x)

d(x′
i, X

G
i ) ≤ Miεp + hp ∀i ∈ VG

p (x)}
(6)

where VG
p (x) � {i ∈ V|d(xi, X

G
i ) ≤ Miεp + hp} denotes the

set of robots that are close to or already in the goal regions.
Since robots in the goal regions never interfere with others and,
thus, are excluded in value iterations, the values of equivalent
nodes are the same. Then, the value function is initialized by
vp0(x) =

⋃
x̃∈Xp

E(x) ṽ
p−1(x̃) ∀x ∈ Xp \Xp−1, i.e., line 24 in
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Algorithm 1. With the initialized value function, Algorithm 1 in
lines 26–28 first calls Algorithm 2 to construct set-valued dy-
namics and then in lines 30–35 calls Algorithm 3 to execute value
iterations for np times or until a fixed point is reached. Notice
that the total number of value iterations n̄p may be less than np.
After that, Algorithm 1 refines the grid and begins a new cycle of
updates.

B. Performance Guarantee

Recall that np at line 30 of Algorithm 1 is the number of value
iterations to be executed on grid Xp. The choice of np needs to
satisfy the following assumption to ensure the convergence of
Algorithm 1.

Assumption IV.1: There is a subsequence {Dk} of the grid
index sequence {p} withD0 = 0 s.t.Dk −Dk−1 ≤ D̄ for some
constant D̄ and all k ≥ 0 and exp(−

∑Dk

p=Dk−1+1 npκp) ≤ γ <

1 for every k ≥ 0, where κp � (� εp
hp

� − 2)hp is the minimum
running cost.

Assumption IV.1 implies that the distance between the esti-
mate and the fixed point on the Dkth grid reduces at least by
γ ∈ [0, 1) over the update window length {Dk−1 + 1, . . . , Dk}.

The choice of εp and hp should satisfy the following technical
assumptions.

Assumption IV.2: The following hold for the sequences of
{εp} and {hp}.

A6) εp > 2hp ∀p ≥ 1.
A7) εp → 0 and hp

εp
→ 0 monotonically as p → +∞.

A8) 2hp + εphpl
+ + ε2pl

+M+ ≥ hp−1 ∀p ≥ 1.
A9) [XG

i + (σ +Miε1 + h1)BXi
] ∩XF

j = ∅ ∀i 	= j.
The consistent approximation of v∗ via Algorithm 1 in the

epigraphical profile sense is summarized in Theorem IV.1.
Theorem IV.1: Suppose Assumptions III.1, IV.1, and IV.2

hold, then the sequence {vpn̄p
} in Algorithm 1 converges to v∗

in the epigraphical profile sense, i.e., for any x ∈ X

Ev∗(x) = Lim
p→+∞

⋃
x̃∈(x+hpBX)∩Xp

Evp
n̄p
(x̃).

C. Discussion

Our proposed algorithm extends [36] to multirobot scenario.
For single robot scenario, i.e.,N = 1, if we set D̄ = 1 and γ = 0
and only impose Assumptions III.1, (A6), and (A7), Algorithm 1
and Theorem IV.1 become [36, Algorithm 3.2.4, p. 211 and Cor.
3.7, p. 210], respectively.

However, from the analysis point of view, nonzero γ and
nonuniform lengths for update windows in the multirobot sce-
nario, i.e., N ≥ 2, require a set of novel analysis, which is
provided in Sections V and VII.

The progress toward v∗ slows down or even stops as more
value iterations are performed on a single grid. A γ close to one
ensures that excessive value iterations are postponed to finer
grids, and a longer update interval reduces each grid’s efforts to
reach the discount factor.

V. ANALYSIS

In this section, we provide the major theoretic results that lead
to the proof of Theorem IV.1, which consist of following four
steps.

Step 1: We characterize the convergence of fixed points vp∞
to the minimal arrival time function v∗, i.e., in
Theorem V.1. The fixed point vp∞ functions as a bench-
mark and we will show later that the last value function
vpn̄p

on each gridXp can closely followvp∞ to converge.

Step 2: We introduce an auxiliary Bellman operator Ĝ defined
in (9) to facilitate the analysis of the contraction prop-
erty of the transformed Bellman operator G in the next
step. Specifically, the contraction property requires to
add perturbations around all nodes in value iteration,
but G imposes zero perturbation when robots are close
to their goal regions. Then, Ĝ bridges this technical
gap and is equivalent to G in terms of updating value
functions, which is shown in Lemma V.5.

Step 3: We prove the contraction property of G via Ĝ in Step 2
and it is summarized in Theorem V.2. The contraction
property shows that the distance between the estimate
of minimal arrival time function vpn and the fixed point
vp∞ is exponentially discounted as value iterations are
executed.

Step 4: We integrate Step 3 with Step 1 and show that vpn̄p

can closely follow vp∞ and, thus, converge to v∗. In
particular, the approximation errors induced by grid
refinement are shown to be suppressed by sufficient
value iterations and thereby the distance between vpn̄p

and vp∞ is decreasing to zero.
This section is organized as follows. Section V-A corresponds

to Step 1 and introduces the convergence of fixed points, i.e.,
Theorem V.1. Section V-B corresponds to Step 2 and confirms
the equivalence of G and Ĝ in terms of updating value functions.
Section V-C corresponds to Step 3 and proves the contrac-
tion property of G. Step 4 is summarized in Section VII-D,
which shows the proof of Theorem IV.1. We only keep theo-
rem statements in this section and postpone all the proofs to
Section VII.

A. Convergence of Fixed Points

The following theorem characterizes the convergence of fixed
points vp∞ to the optimal arrival time function v∗.

Theorem V.1: Suppose Assumption III.1 holds and let εp >

2hp, hp → 0, and hp

εp
→ 0. Construct the sequence {vpn : Xp ⇒

[0, 1]N} as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
vp0(x) =

{
{0N}, if x ∈ Sp

{1N}, otherwise

vpn+1(x) =

{
Gvpn(x), if x ∈ Sp

vpn(x), otherwise

where G is defined in (5). Then, for each p, there exists vp∞
s.t. Gvp∞ = vp∞ and vp∞(x) = Limn→+∞vpn(x) ∀x ∈ Xp. Fur-
thermore, the fixed points converge to v∗ in the epigraphical
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sense, i.e., for any {ηp} s.t. ηp ≥ hp and limp→+∞ ηp = 0, the
following holds:

∀x ∈ X, Ev∗(x) = Lim
p→+∞

⋃
x̃∈(x+hpBX)∩Xp

Evp
∞(x̃).

The proof of Theorem V.1 mainly follows those of [ 36,
Lemma 3.6 and Cor. 3.7]. For the sake of completeness, we
include the details of proofs in [42]. Please refer to [ 42, Th. IX.3
and Cor. IX.1].

B. Auxiliary Bellman Operator Ĝ: Lemma V.5

In this section, an auxiliary Bellman operator Ĝ is introduced
as a stepping stone toward the contraction property of G in
Section V-C. This section consists of following three phases.

1) First, Ĝ is formally defined as (9). The auxiliary Bellman
operator Ĝ differs from G in the perturbations around
nodes within one hop of the goal regions.

2) Second, the properties of Ĝ are analyzed and it is shown
that Ĝvpn is no less than Gvpn, as Lemmas V.3 and V.4.

3) Finally, Ĝvpn is no larger than Gvpn, either, and thereby
the equivalence of Ĝ and G is established in Lemma V.5.

We proceed to the first phase and derive the Bellman operator
in terms of epigraphical profiles and its Kruzhkov transformed
version. We start with (4) by adding RN

≥0 to both sides

ETΘp
n
(x) = (TΘp

n)(x) + RN
≥0

= {t̃+ t|t̃ = E(T̃ p(x)), x̃ ∈ X̃p(x), t ∈ Θp
n(x̃) + RN

≥0}

= {E(T̃ p(x)) + t|x̃ ∈ X̃p(x), t ∈ EΘp
n
(x̃)}

= E(T̃ p(x)) +
⋃

x̃∈X̃p(x)

EΘp
n
(x̃).

Recall that vpn(x) = (ΨΘp
n)(x). Denote Δτ(x) �

Ψ(E(T̃ p(x))). Applying Kruzhkov transform to both sides
yields

EGvp
n
(x) = Δτ(x) + (1−Δτ(x)) ◦

⋃
x̃∈X̃p(x)

Evp
n
(x̃). (7)

The ith element of Δτ can be written as

Δτi(x) =

{
0, if i ∈ VG

p (x)

1− e−κp , otherwise
(8)

where κp follows the definition in Assumption IV.1.
Now, we define the auxiliary Bellman operator Ĝ by

EĜv
(x) � Δτ(x) + (1−Δτ(x)) ◦

⋃
x̂∈X̂p(x)

Ev(x̂) (9)

where X̂p(x) � (
∏

i∈V X̂
p
i (xi)) ∩ Sp and

X̂p
i (xi) �{
xi + εpFi(xi) + αpB, if d(xi, X

G
i ) > Miεp + hp

xi + αpB, otherwise.

If d(xi, X
G
i ) ≤ Miεp + hp, then X̃p

i (xx) = xi in G and
X̂p

i (xi) = xi + αpB in Ĝ. This is the only difference between
G and Ĝ.

Before we move on to the second phase, intermediate results
are required to facilitate our analysis. The next lemma shows
that the equivalent nodes of x ∈ Sp are also in the safety region.

Lemma V.1: Suppose Assumptions (A7) and (A9) are satis-
fied. Then, for any p ≥ 1 and x ∈ Sp, it holds that Xp

E(x) ⊆ Sp.
The next lemma shows that for any robot i ∈ VG

p (x), its
estimate of travelling time is always 0.

Lemma V.2: For any p ≥ 1, the following hold.
1) VG

p (x) ⊆ VG
p (x̃) for any x ∈ Xp and x̃ ∈ X̃p(x).

2) VG
p (x) ⊇ VG

p+1(x) for any x ∈ Xp.
3) τi = 0 for any x ∈ Sp τ ∈ vpn(x), 0 ≤ n ≤ n̄p and i ∈

VG
p (x).

Remark V.1: Notice that vpn = Gnvp0 . Fix p ≥ 1. It fol-
lows from the proof of the third property of Lemma V.2 that
τi = 0 for any τ ∈ Gmvp0(x), m ≥ 0 and i ∈ VG

p (x). Specif-
ically, by Theorem V.1, we have vp∞ = Limn→+∞vpn(x) =
Limn→+∞Gnvp0(x). Then, the third property of Lemma V.2 also
applies to vp∞. �

Remark V.2: Fix x ∈ Sp and m ≥ 0 and let VG
p (x) =

{1, . . . , Np}, where 0 ≤ Np ≤ N . By the third property
of Lemma V.2, we have ∀τ̃ ∈ [0, 1]Np × {1}N−Np , ∃τ ∈
Gmvp0(x) s.t. τ̃ � τ . This implies [0, 1]Np × {1}N−Np ⊆
EGmvp

0
(x) = (Gmvp0(x) + RN

≥0) ∩ [0, 1]N . �
Define the set of partially perturbed state nodes x′ ∈ Xp

P (x)
of x ∈ Xp by

Xp
P (x) � {x′ ∈ Sp|x′

i = xi ∀i ∈ V \ VG
p (x)}.

The term “partially perturbed state node” means that x′ differs
from x only at the perturbations added to the positions of robots
i ∈ VG

p (x). It is a superset of Xp
E(x) in (6).

The following lemma shows that on a fixed grid, the partially
perturbed nodes cannot have less value.

Lemma V.3: Fix p ≥ 1 s.t. Assumptions (A7) and (A9) are
satisfied. Consider vpn : Xp ⇒ [0, 1]N . If Evp

n
(x′) ⊆ Evp

n
(x)

for any pair of x ∈ Sp and x′ ∈ Xp
P (x), then EGmvp

n
(x′) ⊆

EGmvp
n
(x) holds for all m ≥ 1 and any pair of x ∈ Sp and

x′ ∈ Xp
P (x).

The next lemma extends Lemma V.3 to all the iterations of
Algorithm 1.

Lemma V.4: For any pair of x ∈ Sp and x′ ∈ Xp
P (x), if As-

sumptions (A7) and (A9) are satisfied, it holds that Evp
n
(x′) ⊆

Evp
n
(x) for any p ≥ 1 and 0 ≤ n ≤ n̄p.

The next corollary shows that the values of all equivalent
nodes are the same.

Corollary V.1: If all conditions in Lemma V.4 are satisfied, for
any p ≥ 1, 0 ≤ n ≤ n̄p and any pair of x ∈ Sp and x′ ∈ Xp

E(x),
Evp

n
(x) = Evp

n
(x′). In addition, Evp

∞(x) = Evp
∞(x

′).
Finally, we arrive at the last phase and the next lemma is the

main result of this section that reveals the equivalence of G
and Ĝ.

Lemma V.5: If Assumptions (A7) and (A9) are satis-
fied, for any p ≥ 1, 0 ≤ n ≤ n̄p and x ∈ Sp, it holds
that

⋃
x̃∈X̃p(x) Evp

n
(x̃) =

⋃
x̂∈X̂p(x) Evp

n
(x̂) and EGvp

n
(x) =

EĜvp
n
(x). In addition,

⋃
x̃∈X̃p(x) Evp

∞(x̃) =
⋃

x̂∈X̂p(x) Evp
∞(x̂)

and EGvp
∞(x) = EĜvp

∞
(x).

C. Contraction Property of G: Theorem V.2

In this section, Theorem V.2 shows that the transformed
Bellman operator G in (5) is contractive with factor e−κp .

Before we proceed to the final conclusion, the following
notations are defined to facilitate our analysis. Given a set-valued
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map v : Xp ⇒ [0, 1]N , define the interpolation operation Ip by

(Ipv)(x) �

⎧⎪⎨
⎪⎩
v(x), if x ∈ Xp

{V p(x)}, if x ∈ Sp+1 \Xp

{1N}, if x ∈ Xp+1 \ (Sp+1 ∪Xp)

where interpolation function V p : Xp → {0, 1}N is defined as

V p
i (x) �

{
0, if d(xi, X

G
i ) ≤ Miεp+1 + hp+1

1, otherwise.
(10)

Then, the interpolated value function ṽp : Xp+1 ⇒ [0, 1]N in
Algorithm 1 can be represented by ṽp � Ipvpn̄p

. The interpo-

lated fixed point ṽp∞ : Xp+1 ⇒ [0, 1]N is written as ṽp∞ � Ipvp∞.
Correspondingly, define the initialization operator P by

EPv(x) �
{
Ev(x), if x ∈ Xp−1⋃

x̃∈Xp
E(x) Ev(x̃), if x ∈ Xp \Xp−1.

Define the distance between two consec-
utive fixed points at x ∈ X by bp(x) �
dH(

⋃
x̃∈(x+αpB)∩Xp EP ṽp−1

∞
(x̃),

⋃
x̃∈(x+αpB)∩Xp Evp

∞(x̃)).

Define bp � supx∈X bp(x). The next lemma shows the distance
diminishes.

Lemma V.6: If Assumptions (A7) and (A8) are satisfied, it
holds that limp→+∞ bp = 0.

The following lemma shows that under G, the distance of vpn
and vp∞ at any node x ∈ Xp is discounted by e−κp .

Lemma V.7: If Assumptions (A7) and (A9) are satisfied, then
the following holds for any p ≥ 1, n ≥ 0 and x ∈ Sp:

dH((1−Δτ(x)) ◦A, (1−Δτ(x)) ◦B) ≤ e−κpdH(A,B)

where A �
⋃

x̃∈X̃p(x) Evp
n
(x̃) and B �

⋃
x̃∈X̃p(x) Evp

∞(x̃).

Finally, we come to the contraction property of G.
Theorem V.2: If Assumptions (A7) and (A9) are satisfied, the

following holds for any p ≥ 1, n ≥ 0 and x ∈ Sp:

dSp(EGvp
n
, EGvp

∞)

≤ e−κpdX(
⋃

x̃∈(x+αpB)∩Xp

Evp
n
(x̃),

⋃
x̃∈(x+αpB)∩Xp

Evp
∞(x̃)).

(11)

In addition, the following is also true:

dSp(EGvp
n
, EGvp

∞) ≤ e−κpdSp(Evp
n
, Evp

∞). (12)

The next lemma derives a recursive relation of
dXp(Evp

n̄p
, Evp

∞).
Lemma V.8: If Assumptions III.1 and IV.2 are satisfied, the

following inequality holds for each grid Xp:

dXp(Evp
n̄p
, Evp

∞) ≤ γpdXp−1(Evp−1
n̄p−1

, Evp−1
∞

) + bp (13)

where γp � e−npκp and bp is defined in Lemma V.6.

VI. EXPERIMENTS AND SIMULATIONS

This section presents the experiments on an indoor multi-
robot platform and computer simulations conducted to assess
the performance of Algorithm 1. The experiment environment,
shown in Fig. 2, is a four-way intersection with no signs or
signals. Each road is 420 mm wide and consists of two lanes
of same width with opposite directions. Three Khepera III
robots of diameters 170 mm can neither sense the environment

Fig. 2. Three Khepera III robots arrive at the intersection at the same
time.

nor communicate with each other. A centralized computer can
measure robots’ locations and heading angles via Vicon system,
a motion capture system, and remotely command each robot’s
motion via Bluetooth.

Each robot is modeled as a unicycle and its dynamics are
given by ṗxi = vi cos θi and ṗyi = vi sin θi, where xi = (pxi , p

y
i )

denotes the ith robot’s position and ui = (θi, vi) ∈ Ui = Uθ
i ×

Uv
i is its control, including heading angle θi and linear speed vi.

The goal for each robot is to pass the crossroads and arrive at
its goal region without colliding with curbs or any other robot.
The robots stop as long as they pass their respective white goal
lines in Fig. 2.

In practice, the allowable computational times for the robots
are varying and uncertain. Therefore, it is desired to compute
control policies, which can safely steer the robots to their goal
regions within a short time and keep improving the control
policies if more time is given. This property is referred to the
anytime property, which is widely adopted in robotic motion
planning literature [43]–[46]. In the following, we demonstrate
that our algorithm is an anytime algorithm, i.e., it is quickly
feasible and increasingly optimal. In addition, the simulations
are also used to analyze the computational complexity of our
algorithm.

A. Demonstration of Quick Feasibility

In this section, an experiment on three physical robots is
conducted to examine the quick feasibility of our algorithm for
multiple robots. In our MATLAB codes, we normalize the road
width to 1 and scale robot radii to 0.2. We choose εp =

√
hp. The

constraint sets of controls are given as: Uv
i = [0, 0.25], Uθ

1 =
[−π,−π/2], Uθ

2 = [−π/2, π/2], and Uθ
3 = [0, π]. The dimen-

sion of state space is 6. For the purpose of collision avoidance, we
set the inter-robot safety distance as 0.6 and ignore perturbations
added toS in line 4 of Algorithm 1, i.e., we chooseSp = S ∩Xp.
In order to efficiently address the failure of arrival caused by
coarse resolutions of discrete grids, we use finer grids near
goal regions. Specifically, in the one-hop expansion of each
robot’s goal region {x ∈ X|d(xi, X

G
i ) ≤ Miεp + hp, i ∈ V},

we refine the grids, perform Algorithm 1 on the new nodes,
and replace coarse controller with the refined one. Since Al-
gorithm 1 only returns control policies on discrete grids, we
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Fig. 3. Trajectories of centers of three robots when the computation
time is 1.05 s.

Fig. 4. Inter-robot distances over time.

need to interpolate the control policies into the continuous
state space. In particular, Unif(·) is used to uniformly select
one control from Up(x) for x ∈ Sp. For state x ∈ X \ Sp, the
control is interpolated by nearest neighbor method, i.e., we take
u = Unif(Up(argminx̂∈Sp ‖x̂− x‖)). Algorithm 1 is executed
in MATLAB on a 3.40-Ghz Intel Core i7 computer.

Each physical robot has inertia in changing its heading angle
θi and is subject to θ̇i = ωi, where ωi is the angular velocity
that robot i can directly command. To address this difference
in dynamics, a PID controller is leveraged to modulate robots’
heading angles, i.e., ωi = PID(ui,1 − θi), where ui,1 is the
returned heading angle of robot i.

Fig. 3 shows the trajectories of the robots when they apply the
interpolated control policies computed in 1.05 s. Fig. 4 shows
the inter-robot distances over time corresponding to Fig. 3,
indicating that no collision is caused throughout the movement
of the robots. Fig. 5 displays the linear speeds of each robot over
time. At around 2 s, robot 2 and robot 3 slow down so that robot
1 can first pass the intersection. At 8 s, robot 3 is no more than
one hop away from its goal region and stops owing to the coarse
resolution of the grid. After this moment, the robots switch to the
refined controller, hence robot 3 continues to move until it rests at

Fig. 5. Robot linear speeds over time.

its goal region. The results show that given short computational
time, i.e., 1.05 s, our algorithm can already generate a feasible
policy that accomplishes the planning task without violating any
hard constraint. Therefore, the quick feasibility is verified.

B. Demonstration of Increasing Optimality

A set of computer simulations is performed to examine
the increasing optimality of Algorithm 1. The parameters are
identical to the previous experiment with the differences that
robot 3 is excluded and safety distance is 0.4. The operat-
ing region of the robot team is discretized by the sequence
of uniform square grids {Xp} for p ∈ {1, . . . , 4} with res-
olutions hp ∈ {0.2, 0.1, 0.05, 0.025}, each of which contains
145, 3403, 34 344, 416 689 nodes, respectively. All the grids are
within the same update window. We choose εp =

√
hp/M+.

In computations, we only update values of nodes in the safety
region Sp as nodes inXp \ Sp indicate collisions and, therefore,
are irrelevant. In addition, we ignore the perturbation added
to Sp to avoid excessive computations. In line 24 of Algo-
rithm 1, we choose any single node xE(x) ∈ Xp

E(x) ∩X1 to
represent the whole equivalent set Xp

E(x) as it is the min-
imizer of

⋃
x̃∈Xp

E(x) ṽ
p−1(x̃). Our algorithm refines grids if

the relative difference between two consecutive value func-
tions vpn and vpn−1 is less than 10% of the total difference
between vpn and vp0 , i.e., Dp

n−1,n/D
p
0,n ≤ 10%, where Dp

n1,n2
�√∑

x∈Sp d2H(vpn1(x), v
p
n2(x)) is the two-norm difference be-

tween vpn1
and vpn2

. The benchmark v� is the estimate of min-
imal arrival time function computed on the finest grid S4 with
resolution hp = 0.025. To measure approximation errors, we
use nearest neighbor method to interpolate each estimate of
minimal arrival time function vpn into v̂pn so that both v̂pn and
v� share the finest grid as their domains. Note that v̂pn(x) �
vpn(argminx̂∈Sp ‖x̂− x‖) for every x ∈ S4. Then, approxima-
tion error of v̂pn is measured by

√∑
x∈S4 d2H(v̂pn(x), v�(x)).

Fig. 6 shows the approximation errors over time. The nth dot
from the left in Fig. 6 represents the total computational time af-
tern value iterations and the associated approximation error. The
peak at 2 s is caused by the nonlinearity of Kruzhkov transform,
where the initial value 12 is closer to the benchmark values.
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TABLE I
COMPUTATIONAL TIMES ON EACH GRID

Fig. 6. Approximation errors over time.

Fig. 7. Value iteration time over approximation errors.

Other than this, the approximation errors are monotonically
decreasing over time.

C. Computational Complexity

Algorithms 2 and 3 correspond to two steps: construction of
set-valued dynamics and execution of value iteration. In Fig. 7,
the nth dot from the right represents the time to execute n
value iterations and the resulting approximation error except
the rightmost ones around 250. Fig. 7 shows the time to perform
value iteration exponentially increases as approximation errors
decrease.

Table I summarizes the total time to compute the last estimate
vpn̄p

on each grid Sp and its size. The total computational time

grows polynomially with respect to the grid size. Specifically,
the time to construct set-valued dynamics is linear with respect
to the grid size while the time to execute value iteration grows
polynomially. As a result, most of the total computational time
is spent on constructing set-valued dynamics on the coarse grids
while the time to execute value iteration dominates on the fine
grids.

VII. PROOFS

In this section, detailed proofs of theoretic results in Section V
are provided.

A. Preliminary

In this section, some preliminary properties of Hausdorff
distance are introduced. All the proofs are removed in this
section due to space limitation. Please refer to [42] for details.

The following lemma shows the union of two expanded sets
is the expansion of their unions.

Lemma VII.1: Given two sets A,B ⊆ X and η > 0, the fol-
lowing holds (A+ ηB) ∪ (B + ηB) = (A ∪B) + ηB.

The following lemma compares set distances given their set
inclusion relationships.

Lemma VII.2: Given four nonempty compact setsA ⊆ B and
C ⊆ D, the following relationships hold:

dH(A ∪D,B) ≤ dH(D,B) ≤ max{dH(A,D), dH(B,C)}.
(14)

The next lemma shows the triangle inequality holds for dH .
Lemma VII.3: Given three set-valued maps gl : X ⇒ [0, 1]N ,

gl(x) is compact for all x ∈ X , l ∈ {1, 2, 3}. It holds that
dX (g

1, g2) ≤ dX (g
1, g3) + dX (g

3, g2).
Lemma VII.4 reveals that for two perturbed set-valued maps,

the union of images of fewer nodes contributes to larger distance.
Lemma VII.4: Given two subsets X 1,X 2 ⊆ X , consider two

set-valued maps g1, g2 : X ⇒ [0, 1]N and perturbation radii
ηl > 0 s.t. (x+ ηlB) ∩ X l 	= ∅ ∀x ∈ X , l ∈ {1, 2}. The fol-
lowing holds for any set-valued map Y : X ⇒ X s.t. Y (x) 	=
∅ ∀x ∈ X :

dX (
⋃

x̃∈(Y (x)+η1B)∩X 1

g1(x̃),
⋃

x̃∈(Y (x)+η2B)∩X 2

g2(x̃))

≤ dX (
⋃

x̃∈(x+η1B)∩X 1

g1(x̃),
⋃

x̃∈(x+η2B)∩X 2

g2(x̃)).
(15)

If X 1 = X 2 � X̄ and η1 = η2 � η̄, we have

dX (
⋃

x̃∈(x+ηB)∩X̄

g1(x̃),
⋃

x̃∈(x+ηB)∩X̄

g2(x̃)) ≤ dX̄ (g1, g2). (16)

Lemma VII.5 shows that an exponentially diminishing se-
quence subject to diminishing perturbations remains diminish-
ing.

Authorized licensed use limited to: Penn State University. Downloaded on September 14,2021 at 19:48:31 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO AND ZHU: PARETO OPTIMAL MULTIROBOT MOTION PLANNING 3993

Lemma VII.5: A sequence {ap} ⊆ R≥0 satisfies
ap+1 ≤ γ(ap + cp), where γ ∈ [0, 1), cp ≥ 0 ∀p ≥ 1 and
limp→+∞ cp = 0. Then, limp→+∞ ap = 0.

B. Auxiliary Bellman Operator Ĝ

In this section, an auxiliary Bellman operator Ĝ is introduced
to facilitate the analysis of G in Section V-C.

Proof of Lemma V.1: Fix p ≥ 1, x ∈ Sp and x̃ ∈ Xp
E(x) ⊆

Xp. Without loss of generality, we denote Vp
G(x) =

{1, . . . , Np}. It follows from the definition of Xp
E that

Vp
G(x̃) = {1, . . . , Np}. It follows from the definition of Sp

that ∃x′ ∈ S s.t. ‖x− x′‖ ≤ hp. Construct x̃′ s.t. x̃′
i �{

x̃i, if i ∈ {1, . . . , Np}
x̃i + x′

i − xi, otherwise.
Clearly, ‖x̃− x̃′‖ ≤ ‖x− x′‖ ≤ hp.
Now, we proceed to show that x̃′ ∈ S. It again follows from the

definition of Xp
E that x̃i = xi ∀i ∈ {Np + 1, . . . , N}. There-

fore, we may rewrite x̃′ as

x̃′
i =

{
x̃i, if i ∈ {1, . . . , Np}
x′
i, otherwise.

By Assumptions (A7) and (A9), we have ∀i ∈ {1, . . . , Np}
and j ∈ {1, . . . , N}, ‖x̃i − x̃j‖ ≥ σ. Since x′ ∈ S, it follows
from the definition of S that ‖x′

i − x′
j‖ ≥ σ ∀i 	= j and i, j ∈

{Np + 1, . . . , N}. This indicates that ‖x̃′
i − x̃j‖ ≥ σ ∀i 	= j

and i, j ∈ {Np + 1, . . . , N}. In summary, we have ‖x̃′
i − x̃j‖ ≥

σ holds for every i 	= j, which implies x̃′ ∈ S.
Since ‖x̃− x̃′‖ ≤ hp and x̃ ∈ Xp, we arrive at x̃ ∈ (S+

hpB) ∩Xp = Sp. �
Proof of Lemma V.2: The first property follows from the

definition of X̃p. For any pair of i ∈ VG
p (x) and x̃ ∈ X̃p(x),

it holds that x̃i = xi, then i ∈ VG
p (x̃).

Now, we proceed to show the second property. Since
both εp and hp are monotonically decreasing, ∀i ∈ VG

p+1(x),
d(xi, X

G
i ) ≤ Miεp+1 + hp+1 < Miεp + hp. It follows from

the definition of VG
p that i ∈ VG

p (x). Then, the second property
is proven.

We are now in a position to prove the third property. Through-
out the rest of the proof, given any p ≥ 1, n ≥ 0, and x ∈ Sp,
define a value in vpn(x) by τp,n ∈ vpn(x). The ith element of τp,n

is denoted by τp,ni . The grid index p in τp,n may be omitted when
omission causes no ambiguity. The proof is based on induction
on p. Denote the induction hypothesis for p byH(p) as τp,ni = 0
for any x ∈ Sp, i ∈ VG

p (x), 0 ≤ n ≤ n̄p and τp,n ∈ vpn(x).
For p = 1, fix x ∈ Sp and i ∈ VG

p (x) and take n = 0. Since
X0 = ∅, v10(x) = V 0(x). It follows from (10) that τ0i = 0

for every τ0 ∈ v10(x). Moreover, T̃i(xi) = 0 and X̃i(xi) = xi.
Now, we adopt induction on n to prove that τ1,ni = 0 for
all x ∈ S1 ⊆ X1, i ∈ VG

1 (x) and 0 ≤ n ≤ n̄p. For n = 0, it
has been proven. Assume it holds up to 0 ≤ n ≤ n̄p. Then,
τ1,ni + T̃i(xi)− τ1,ni T̃i(xi) = τ1,ni = 0 holds for any x ∈ S1,
i ∈ VG

1 (x), and τ1,n ∈ vpn(x). Therefore, it follows from (5) that
τ1,n+1
i = 0.

Assume H(p) holds and let us consider p+ 1. Fix x ∈
Sp+1 and i ∈ VG

p+1(x). By the second property of this

lemma, i ∈ VG
p (x). Take τ0 ∈ vp+1

0 (x). If x ∈ Xp, that is,

x ∈ Sp+1 ∩Xp = (S+ hp+1B) ∩Xp+1 ∩Xp ⊆ Sp, we have
vp+1
0 (x) = ṽp(x) = vpn̄p

(x). Therefore, ∀τ0 ∈ vp+1
0 (x), it fol-

lows from H(p) that τ0i = 0. If x ∈ Sp+1 \Xp, vp+1
0 (x) =⋃

x̃∈Xp+1
E (x) ṽ

p(x̃). Notice that when x ∈ Sp+1, it follows from

Lemma V.1 that x̃ ∈ Sp+1. Then, if x̃ ∈ Sp+1 \Xp, ṽp(x̃) =
V p(x̃); hence, it follows from the definition of V p in (10) that
we have V p

i (x) = 0. If x̃ ∈ Sp+1 ∩Xp ⊆ Sp, ṽp(x̃) = vpn̄p
(x̃);

hence, it follows fromH(p) that ∀τ̃ ∈ ṽp(x̃), τ̃i = 0. Therefore,
∀x̃ ∈ Xp+1

E (x) and τ̃ ∈ ṽp(x̃), τ̃i = 0. That is to say, we have
τ0i = 0 for x ∈ Sp+1 \Xp and τ0 ∈ vp+1

0 (x). In summary,
τ0i = 0 for every x ∈ Sp+1, i ∈ VG

p+1(x), and τ0 ∈ vp−1
0 (x).

For 1 ≤ n ≤ n̄p, we follow the arguments for p = 1 and it holds
that τni = 0 ∀τn ∈ vp+1

n (x). Then,H(p+ 1) is proven and the
proof of the third property is finished. �

Proof of Lemma V.3: Throughout the proof, we adopt the
shorthand notation v � vpn. Without loss of generality, let
VG
p (x) = {1, . . . , Np} for some 0 ≤ Np ≤ N and VG

p (x′) =
{1, . . . , N ′

p} for some 0 ≤ N ′
p ≤ Np. Specifically, when Np =

0 (resp. N ′
p = 0), VG

p (x) = ∅ (resp. VG
p (x′) = ∅).

Notice that when Np = N , i.e., all robots are in their goal
regions at statex, it follows from the third property of Lemma V.2
that EGmv(x) = Ev(x) = [0, 1]N ⊇ EGmv(x

′) for any x′ ∈
Xp

P (x), hence the lemma trivially holds. When Np = 0, it holds
that N ′

p = 0, x = x′, and the lemma also trivially holds. In the
following proof, we restrict 1 ≤ Np ≤ N − 1.

The lemma is proven by induction onm. Denote the induction
hypothesis for m by H(m). Then, H(0) trivially holds. Assume
H(m) holds and let us consider m+ 1. It follows from (7) that

EGm+1v(x) = Δτ(x) + (1−Δτ(x)) ◦
⋃

x̃∈X̃p(x)

EGmv(x̃)

EGm+1v(x
′) = Δτ(x′) + (1−Δτ(x′)) ◦

⋃
x̃′∈X̃p(x′)

EGmv(x̃
′).

First, we focus on the unions on the right-hand side, especially
the one-hop neighbors X̃p.

Claim VII.1: For all x̃′ ∈ X̃p(x′), ∃x̃ ∈ X̃p(x) s.t. x̃′ ∈
Xp

P (x̃).
Proof: Fix x̃′ ∈ X̃p(x′) and define x̃ ∈ Xp s.t.

x̃i =

{
xi, if i ∈ {1, . . . , Np}
x̃′
i, otherwise.

We proceed to show x̃ ∈ X̃p(x) = (
∏N

i=1 X̃
p
i (xi)) ∩ Sp.

For i ∈ {1, . . . , Np}, we have X̃p
i (xi) = {xi}; therefore,

x̃i ∈ X̃p
i (xi). For i ∈ {Np + 1, . . . , N}, it follows from x′ ∈

Xp
P (x) that xi = x′

i. Then, x̃i = x̃′
i ∈ X̃p

i (x
′
i) = X̃p

i (xi).
Therefore, x̃ ∈

∏N
i=1 X̃

p
i (xi).

Notice that x̃′ ∈ X̃p(x′) ⊆ Sp, thus ∃ỹ′ ∈ S s.t. ‖x̃′ − ỹ′‖ ≤
hp. Define ỹ s.t.

ỹi =

{
xi, if i ∈ {1, . . . , Np}
ỹ′i, otherwise.

Clearly, ‖x̃− ỹ‖ ≤ ‖x̃′ − ỹ′‖ ≤ hp. Since ỹ′ ∈ S, it
holds that ‖ỹi − ỹj‖ = ‖ỹ′i − ỹ′j‖ ≥ σ ∀i, j ∈ {Np +
1, . . . , N}, i 	= j. For i ∈ {1, . . . , Np}, we have x̃i = xi ∈
XG

i + (Miεp + hp)B. Then, by Assumptions (A7) and (A9),
we have ‖ỹi − ỹj‖ = ‖xi − ỹj‖ ≥ σ ∀i ∈ {1, . . . , Np} and
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j ∈ {1, . . . , N}. Therefore, ỹ ∈ S and x̃ ∈ (ỹ + hpB) ∩Xp ⊆
Sp. Thus, x̃ ∈ X̃p(x) is proven.

Now, we proceed to show x̃′ ∈ Xp
P (x̃). By the first property

of Lemma V.2, VG
p (x̃) ⊇ VG

p (x). Then, for i ∈ V \ VG
p (x̃) ⊆

V \ VG
p (x) = {Np + 1, . . . , N}, x̃′

i = x̃i. By the definition of
Xp

P , x̃′ ∈ Xp
P (x̃) and, therefore, the claim is proven. �

It follows from Claim VII.1 and H(m) that ∀x̃′ ∈
X̃p(x′), ∃x̃ ∈ X̃p(x) s.t. EGmv(x̃

′) ⊆ EGmv(x̃). Hence,⋃
x̃′∈X̃p(x′) EGmv(x̃

′) ⊆
⋃

x̃∈X̃p(x) EGmv(x̃) and we have

EGm+1v(x
′) ⊆ Δτ(x′) + (1−Δτ(x′)) ◦

⋃
x̃∈X̃p(x)

EGmv(x̃).

(17)

Next, we prove that the right-hand side of (17) is a subset of
EGm+1v(x).

Claim VII.2: The following relationship holds:

Δτ(x′) + (1−Δτ(x′)) ◦
⋃

x̃∈X̃p(x)

EGmv(x̃)

⊆ Δτ(x) + (1−Δτ(x)) ◦
⋃

x̃∈X̃p(x)

EGmv(x̃).

Proof: For any x̃ ∈ X̃p(x) and τ ∈ EGmv(x̃), construct

τ̂ s.t. τ̂i =

{
(1− e−κp) + e−κpτi, if i ∈ {N ′

p + 1, . . . , Np}
τi, otherwise

.

Since τ̂ � τ , τ̂ ∈ EGmv(x̃). Recall Δτ(x′) = Ψ(E(T p(x′)))

and Δτi(x
′) =

{
0, if i ∈ {1, . . . , N ′

p}
1− e−κp , otherwise.

Then, the following holds:

Δτ(x′) + (1−Δτ(x′)) ◦ τ

=

⎡
⎢⎣ 0N ′

p

(1− e−κp)1Np−N ′
p

(1− e−κp)1N−Np

⎤
⎥⎦+

⎡
⎢⎣ 1N ′

p

e−κp1Np−N ′
p

e−κp1N−Np

⎤
⎥⎦ ◦ τ

=

⎡
⎢⎣ 0N ′

p

0Np−N ′
p

(1− e−κp)1N−Np

⎤
⎥⎦+

⎡
⎢⎣ 1N ′

p

1Np−N ′
p

e−κp1N−Np

⎤
⎥⎦ ◦ τ̂

= Δτ(x) + (1−Δτ(x)) ◦ τ̂ .

In summary, for every x̃ ∈ X̃p(x) and τ ∈ EGmv(x̃), there
is τ̂ ∈ EGmv(x̃) s.t. Δτ(x′) + (1−Δτ(x′)) ◦ τ = Δτ(x) +
(1−Δτ(x)) ◦ τ̂ . Hence, the proof of the claim is finished. �

Together with (17), Claim VII.2 indicates EGm+1v(x
′) ⊆

Δτ(x) + (1−Δτ(x)) ◦
⋃

x̃∈X̃p(x) EGmv(x̃) = EGm+1v(x).

Then, H(m+ 1) holds and the lemma is proven. �
Proof of Lemma V.4: Fix a pair of x ∈ Sp and x′ ∈ Xp

P (x).
Without loss of generality, let VG

p (x) = {1, . . . , Np} and
VG
p (x′) = {1, . . . , N ′

p} for some 0 ≤ N ′
p ≤ Np ≤ N . Specifi-

cally, when Np = 0 (resp. N ′
p = 0), VG

p (x) = ∅ (resp. VG
p (x′)

= ∅).

Notice that when Np = N , by the third property of
Lemma V.2, Evp

n
(x′) ⊆ [0, 1]N = Evp

n
(x) for any x′ ∈ Xp

P (x)
and 0 ≤ n ≤ n̄p, and the lemma trivially holds. When Np = 0,
it holds that N ′

p = 0 and x = x′, and the lemma also trivially
holds. In the following proof, we restrict 1 ≤ Np ≤ N − 1.

The lemma is proven by induction on p. Denote the induction
hypothesis for p by H(p) as Evp

n
(x′) ⊆ Evp

n
(x) holds for all

x ∈ Sp, x′ ∈ Xp
P (x), and 0 ≤ n ≤ n̄p.

For p = 1, it follows from the definition of V 0 that Ev1
0
(x) =

EV 0(x) = [0, 1]N1 × {1}N−N1 ⊇ [0, 1]N
′
1 × {1}N−N ′

1 =

Ev1
0
(x′), where EV 1(x) � ({V 1(x)}+ RN

≥0) ∩ [0, 1]N is the
epigraphical profile of interpolation function V 1(x). Since
this holds for every x ∈ S1 and x′ ∈ X1

P (x), it follows from
Lemma V.3 that Ev1

n
(x) ⊇ Ev1

n
(x′) holds for all 0 ≤ n ≤ n̄p.

Hence, H(1) holds.
Assume H(p) holds for p ≥ 1. For p+ 1, pick a pair of x ∈

Sp+1 and x′ ∈ Xp+1
P (x). There are four cases, which are as

follows:
Case 1: x, x′ ∈ Sp;
Case 2: x ∈ Sp+1 \ Sp and x′ ∈ Sp;
Case 3: x ∈ Sp and x′ ∈ Sp+1 \ Sp;
Case 4: x, x′ ∈ Sp+1 \ Sp.
Claim VII.3: Evp+1

0
(x′) ⊆ Evp+1

0
(x) holds for Case 1.

Proof: It follows from the definitions of vp+1
0 and ṽp that

Evp+1
0

(x) = Eṽp(x) = Evp
n̄p
(x) and Evp+1

0
(x′) = Eṽp(x′) =

Evp
n̄p
(x′). By H(p), we have Evp+1

0
(x′) = Evp

n̄p
(x′) ⊆

Evp
n̄p
(x) = Evp+1

0
(x). Then, Evp+1

0
(x′) ⊆ Evp+1

0
(x) holds for

Case 1. �
Claim VII.4: Evp+1

0
(x′) ⊆ Evp+1

0
(x) holds for Case 2.

Proof: Notice that Evp+1
0

(x) =
⋃

x̃∈Xp+1
E (x) Eṽp(x̃) and

Evp+1
0

(x′) = Evp
n̄p
(x′). Now, we are going to construct x̃ ∈

Xp+1
E (x) s.t. x̃ ∈ Sp and prove that Evp

n̄p
(x′) ⊆ Eṽp(x̃). For

i ∈ {Np+1 + 1, . . . , N}, let x̃i = xi; for i ∈ {1, . . . , Np+1},
pick x̃i ∈ XG

i ∩Xp
i . Since x′ ∈ Sp and x′ ∈ Xp+1

P (x), we have
x̃i = xi = x′

i ∈ Xp
i ∀i ∈ {Np+1 + 1, . . . , N}. Therefore, we

have x̃ ∈ Xp+1
E (x) and x̃ ∈ Sp.

Then, we show that x′ ∈ Xp
P (x̃). Consider j ∈ {1, . . . , N}

s.t. x̃j /∈ XG
j + (Mjεp + hp)B. By Assumption (A7), we have

x̃j /∈ XG
j + (Mjεp+1 + hp+1)B. The fact that x̃ ∈ Xp+1

E (x)

implies x̃i ∈ XG
i + (Miεp+1 + hp+1)B ∀i ∈ {1, . . . , Np+1}.

Therefore, j ∈ {Np+1 + 1, . . . , N} and, hence, x̃j = xj . More-
over, since x′ ∈ Xp+1

P (x), it follows from j ∈ {Np+1 +
1, . . . , N} that x′

j = xj = x̃j . This holds for every j ∈ V s.t.
x̃j /∈ XG

j + (Mjεp + hp)B. By the definition of Xp
P , we con-

clude that x′ ∈ Xp
P (x̃).

By utilizing H(p), it follows from x′ ∈ Xp
P (x̃) that

Evp+1
0

(x′) = Evp
n̄p
(x′) ⊆ Evp

n̄p
(x̃). Since x̃ ∈ Sp, Evp

n̄p
(x̃) =

Eṽp(x̃). Moreover, it follows from x̃ ∈ Xp+1
E (x) thatEṽp(x̃) ⊆⋃

x̃∈Xp+1
E (x) Eṽp(x̃) = Evp+1

0
(x). In summary, Evp+1

0
(x′) ⊆

Evp+1
0

(x). Then, Evp+1
0

(x′) ⊆ Evp+1
0

(x) holds for Case 2. �
Claim VII.5: Evp+1

0
(x′) ⊆ Evp+1

0
(x) holds for Case 3.

Proof: Notice Evp+1
0

(x) = Eṽp(x) = Evp
n̄p
(x) and

Evp+1
0

(x′) =
⋃

x̃′∈Xp+1
E (x′) Eṽp(x̃′). For each x̃′ ∈ Xp+1

E (x′),
following two cases arise.

Authorized licensed use limited to: Penn State University. Downloaded on September 14,2021 at 19:48:31 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO AND ZHU: PARETO OPTIMAL MULTIROBOT MOTION PLANNING 3995

Case 3.1, x̃′ ∈ Sp+1 \ Sp: Then, ṽp(x̃′) = {V p(x̃′)}.
Since x̃′ ∈ Xp+1

E (x′), Eṽp(x̃′) = EV p(x̃′) = [0, 1]N
′
p+1 ×

{1}N−N ′
p+1 . It follows from N ′

p+1 ≤ Np+1 that [0, 1]N
′
p+1 ×

{1}N−N ′
p+1 ⊆ [0, 1]Np+1 × {1}N−Np+1 . By the third property

of Lemma V.2, [0, 1]Np × {1}N−Np ⊆ Evp
n̄p
(x). Therefore, we

have Eṽp(x̃′) ⊆ Evp+1
0

(x).

Case 3.2, x̃′ ∈ Sp: Then, Eṽp(x̃′) = Evp
n̄p
(x̃′). Since x̃′ ∈

Xp+1
E (x′), thus for any i ∈ {Np+1 + 1, . . . , N}, we have x̃′

i =
x′
i = xi /∈ XG

i + (Miεp+1 + hp+1)B. Using the second prop-
erty of Lemma V.2, we have x̃′

i = xi ∀i ∈ V \ VG
p (x) ⊆ V \

VG
p+1(x) = {Np+1 + 1, . . . , N}. Therefore, x̃′ ∈ Xp

P (x). By
H(p), Evp

n̄p
(x̃′) ⊆ Evp

n̄p
(x) = Evp+1

0
(x). That is, Eṽp(x̃′) ⊆

Evp+1
0

(x).

In summary, ∀x̃′ ∈ Xp+1
E (x′), Eṽp(x̃′) ⊆ Evp+1

0
(x). Then,

Evp+1
0

(x′) ⊆ Evp+1
0

(x) holds for Case 3. �
Claim VII.6: Evp+1

0
(x′) ⊆ Evp+1

0
(x) holds for Case 4.

Proof: Then, Evp+1
0

(x) =
⋃

x̃∈Xp+1
E (x) Eṽp(x̃) and

Evp+1
0

(x′) =
⋃

x̃′∈Xp+1
E (x′) Eṽp(x̃′). Consider x′, and there

are two scenarios, which are as follows.
Case 4.1: ∃j ∈ {N ′

p+1 + 1, . . . , N} s.t. x′
j ∈ Xp+1

j \Xp
j .

Then, ∀x̃′ ∈ Xp+1
E (x′), we have x̃′

j = x′
j ∈ Xp+1

j \
Xp

j . This indicates x̃′ ∈ Sp+1 \ Sp. Following Case
3.1, we have Evp+1

0
(x′) =

⋃
x̃′∈Xp+1

E (x′) Eṽp(x̃′) =⋃
x̃′∈Xp+1

E (x′)([0, 1]
N ′

p+1 × {1}N−N ′
p+1) = [0, 1]N

′
p+1 ×

{1}N−N ′
p+1 and [0, 1]Np+1 × {1}N−Np+1 ⊆ Evp+1

0
(x). Notice

that N ′
p+1 ≤ Np+1. Then, Evp+1

0
(x′) ⊆ Evp+1

0
(x). Hence,

Evp+1
0

(x′) ⊆ Evp+1
0

(x) holds for Case 4.1.

Case 4.2: ∀j ∈ {N ′
p+1 + 1, . . . , N}, x′

j ∈ Xp
j while

∃j ∈ {1, . . . , N ′
p+1} s.t. x′

j ∈ Xp+1
j \Xp

j . We show

that ∃x̃ ∈ Xp+1
E (x) s.t. x̃ ∈ Sp. Since x′ ∈ Xp+1

P (x),
xi = x′

i ∈ Xp
i ⊆ Xp+1

i ∀i ∈ {Np+1 + 1, . . . , N} ⊆
{N ′

p+1 + 1, . . . , N}. By picking x̃i ∈ XG
i ∩Xp

i for
i ∈ {1, . . . , Np+1} and x̃i = xi ∀i ∈ {Np+1 + 1, . . . , 1},
we have x̃ ∈ Xp+1

E (x). In addition, since x ∈ Sp+1, we have
∃y ∈ S s.t. ‖x− y‖ ≤ hp+1 ≤ hp. Define ỹ s.t. ỹi = x̃i ∀i ∈
{1, . . . , Np+1} and ỹi = yi ∀i ∈ {Np+1 + 1, . . . , N}. Then,

‖ỹ − x̃‖ =
√∑N

i=Np+1+1(yi − xi)2 ≤ ‖y − x‖ ≤ hp+1.

Then, ∀i, j ∈ {Np+1 + 1, . . . , N}, ‖ỹi − ỹj‖ = ‖yi − yj‖ ≥
σ. Moreover, it follows from Assumptions (A7) and (A9)
that ∀i ∈ {1, . . . , Np+1} and j ∈ {1, . . . , N}, ‖ỹi − ỹj‖ =
‖x̃i − x̃j‖ ≥ σ. This indicates that ỹ ∈ S and, hence,
x̃ ∈ Sp. By the definition of Xp+1

E , Xp+1
E (x) = Xp+1

E (x̃).
This means we can replace Xp+1

E (x) with Xp+1
E (x̃) and

degenerate the current case to Case 3. Then, by Claim
VII.5, H(p+ 1) holds for x′ ∈ Sp+1 \ Sp and x̃ ∈ Sp.
Thus, Evp+1

0
(x′) =

⋃
x̃′∈Xp+1

E (x′) Eṽp(x̃′) ⊆ Evp
n̄p
(x̃) ⊆⋃

x̃∈Xp+1
E (x) Eṽp(x̃) = Evp+1

0
(x).

By the two cases discussed, Evp+1
0

(x′) ⊆ Evp+1
0

(x) holds for
Case 4. �

By the four cases above, Evp+1
0

(x′) ⊆ Evp+1
0

(x) holds for

all x ∈ Sp+1 and x′ ∈ Xp+1
P (x). By Lemma V.3, H(p+ 1) is

proven. Then, the lemma is established. �

Proof of Corollary V.1: Fix p ≥ 1, 0 ≤ n ≤ n̄p, x ∈ Sp and
x′ ∈ Xp

E(x). On one hand, by Lemma V.4, ∀x′ ∈ Xp
E(x) ⊆

Xp
P (x), Evp

n
(x′) ⊆ Evp

n
(x). On the other hand, x ∈ Xp

E(x
′);

thus again by Lemma V.4, we also have Evp
n
(x) ⊆ Evp

n
(x′),

which indicates that Evp
n
(x′) = Evp

n
(x).

Since Lemma V.3 holds for every m ≥ 0, the aforementioned
proof can be directly extended to Gmvp0 for any m > n̄p. By
Theorem V.1, vp∞ exists and vp∞(x) = Limm→+∞Gmvp0(x) for
any x ∈ Sp. Hence, the equivalence EGmvp

0
(x) = EGmvp

0
(x′)

can be further extended to Evp
∞(x) = Evp

∞(x) by taking m →
+∞. �

Proof of Lemma V.5: We fix p ≥ 1, 0 ≤ n ≤ n̄p and x ∈ Sp.
Recall that

EGvp
n
(x) = Δτ(x) + (1−Δτ(x)) ◦

⋃
x̃∈X̃p(x)

Evp
n
(x̃)

EĜvp
n
(x) = Δτ(x) + (1−Δτ(x)) ◦

⋃
x̂∈X̂p(x)

Evp
n
(x̂).

The difference of G and Ĝ solely depends on X̃p and X̂p. The
proof of either of the two equivalences automatically proves the
other.

By the definitions of X̃p(x) and X̂p(x), X̂p
i (xi) =

X̃p
i (xi) ∀i ∈ V \ VG

p (x). Therefore, ∀x̂ ∈ X̂p(x), ∃x̃ ∈∏
i∈V X̃

p
i (x) s.t. x̂i = x̃i ∀i ∈ V \ VG

p (x). It follows from

the definitions of X̃p
i and VG

p that x̃i = xi ∈ XG
i + (Miεp +

hp)B ∀i ∈ VG
p (x). By Assumptions (A7) and (A9), we see that

‖x̃i − x̃j‖ ≥ σ ∀i ∈ VG
p (x) and j ∈ V s.t. i 	= j. It follows

from x̃i = x̂i ∀i ∈ V \ VG
p (x) and x̂ ∈ X̂p(x) ⊆ Sp that

‖x̃i − x̃j‖ ≥ σ ∀i, j ∈ V \ VG
p (x) s.t. i 	= j. This indicates

x̃ ∈ Sp. Therefore, it follows from the definition of X̃p that
x̃ ∈ X̃p(x). Since VG

p (x̃) = VG
p (x), then x̂ ∈ Xp

P (x̃). By
Lemma V.4, Evp

n
(x̂) ⊆ Evp

n
(x̃). We see that this holds for all

x̂ ∈ X̂p(x), then
⋃

x̂∈X̂p(x) Evp
n
(x̂) ⊆

⋃
x̃∈X̃p(x) Evp

n
(x̃).

In addition, X̃p(x) ⊆ X̂p(x), we have
⋃

x̃∈X̃p(x) Evp
n
(x̃) ⊆⋃

x̂∈X̂p(x) Evp
n
(x̂). It is concluded that

⋃
x̃∈X̃p(x) Evp

n
(x̃) =⋃

x̂∈X̂p(x) Evp
n
(x̂) and EGvp

n
(x) = EĜvp

n
(x). Since this holds

for every p ≥ 0, 0 ≤ n ≤ np and x ∈ Sp, the first part of the
lemma is proven.

Since Lemma V.3 holds for every m ≥ 0, the aforemen-
tioned proof can be directly extended to Gmvp0 for any m >
n̄p. By Theorem V.1, the fixed point vp∞ exists and vp∞(x) =
Limm→+∞Gmvp0(x) for any x ∈ Sp. By the equivalence of
G and Ĝ, we have vp∞(x) = Limm→+∞Ĝmvp0(x) and Ĝvp∞ =
vp∞ = Gvp∞. Therefore, EGvp

∞(x) = EĜvp
∞
(x) and the second

conclusion is proven. �

C. Contraction Property of G

In this section, Theorem V.2 shows that the transformed
Bellman operator G in (5) is contractive with factor e−κp .

Proof of Lemma V.6: We first consider x ∈ X \ S.
Since S is closed and αp is monotonically decreasing,
then there exists q > 0 s.t. ∀p ≥ q, (x+ αpB) ∩ Sp−1 =
(x+ αpB) ∩ (S+ hp−1B) ∩Xp−1 = ∅. This renders
at

⋃
x̃∈(x+αpB)∩Xp EP ṽp−1

∞
(x̃) = {1N}. In addition, it

also indicates that (x+ αpB) ∩ Sp = ∅. This renders
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at
⋃

x̃∈(x+αpB)∩Xp Evp
∞(x̃) = {1N}. Therefore, we have

bp(x) = 0. This holds for all x ∈ X \ S.
Then, we fix x ∈ S. The following shorthand notations are

used throughout the proof:

Ap
11(x) �

⋃
x̃∈(x+αpB)∩(Sp\Xp−1)

⋃
x̃′∈Xp

E(x̃)\Xp−1

Eṽp−1
∞

(x̃′)

Ap
12(x) �

⋃
x̃∈(x+αpB)∩(Sp\Xp−1)

⋃
x̃′∈Xp

E(x̃)∩Xp−1

Eṽp−1
∞

(x̃′)

Ap
13(x) �

⋃
x̃∈(x+αpB)∩(Xp\(Sp∪Xp−1))

Eṽp−1
∞

(x̃′)

Ap
2(x) �

⋃
x̃∈(x+αpB)∩Xp−1

EP ṽp−1
∞

(x̃)

Bp(x) �
⋃

x̃∈(x+αpB)∩Xp

Evp
∞(x̃).

We drop the dependence of the aforementioned notations on x
for notational simplicity. Now, we are going to simplify Ap

11,
Ap

12, Ap
13, and Ap

2. From the definitions of V p and ṽp−1
∞ , the

following holds:

Ap
11 =

⋃
x̃∈(x+αpB)∩(Sp\Xp−1)

⋃
x̃′∈Xp

E(x̃)\Xp−1

EV p−1(x̃′)

=
⋃

x̃∈(x+αpB)∩(Sp\Xp−1)

EV p−1(x̃)

Ap
12 =

⋃
x̃∈(x+αpB)∩(Sp\Xp−1)

⋃
x̃′∈Xp

E(x̃)∩Xp−1

Evp−1
∞

(x̃′)

Ap
13 = {1N}.

By the definitions of P and ṽp−1
∞

Ap
2 =

⋃
x̃∈(x+αpB)∩Xp−1

Eṽp−1
∞

(x̃) =
⋃

x̃∈(x+αpB)∩Xp−1

Evp−1
∞

(x̃).

By Assumption (A8), we have (x+ αpB) ∩Xp−1 	= ∅ and
Ap

2 	= ∅. It follows from the third property of Lemma V.2
that ∀x̃ ∈ (x+ αpB) ∩Xp, EV p−1(x̃) ⊆ Evp

∞(x̃). This indi-
cates that Ap

11 ⊆ Bp. In addition, it trivially holds that Ap
13 ⊆

Bp. By the first inequality of (14) in Lemma VII.2, dH(Ap
11 ∪

Ap
12 ∪Ap

13 ∪Ap
2, B

p) ≤ dH(Ap
12 ∪Ap

2, B
p).

Claim VII.7: There is q ≥ 1 s.t. ∀p ≥ q, if xi ∈ XG
i ,

xi + αpB ⊆ XG
i + (Miεp + hp)B; if xi /∈ XG

i , (xi + αpB) ∩
(XG

i + (Miεp + hp)B) = ∅.
Proof: By Assumption (A7), we have ∃qi ≥ 0 s.t. ∀p ≥ qi,

αp ≤ Miεp + hp. Then, for any p ≥ qi, if xi ∈ XG
i , xi +

αpB ⊆ XG
i + (Miεp + hp)B. It again follows from Assump-

tion (A7) that for each i ∈ V s.t. xi /∈ XG
i , there exists qi ≥ 1

s.t. ∀p ≥ qi, (xi + αpB) ∩ (XG
i + (Miεp + hp)B) = ∅. Then,

the desired q is defined as q � maxi∈V qi. �
Claim VII.8: For p ≥ q and any pair of x̃ ∈ x+ αpB and

i ∈ VG
p (x̃), xi ∈ XG

i .
Proof: For every i ∈ VG

p (x̃), x̃i ∈ XG
i + (Miεp + hp)B. As-

sume xi /∈ XG
i . It follows from Claim VII.7 that (xi + αpB) ∩

(XG
i + (Miεp + hp)B) = ∅. This contradicts the fact that x̃i ∈

XG
i + (Miεp + hp)B. Then, xi ∈ XG

i . �

Fix p ≥ q and x̃ ∈ (x+ αpB) ∩ (Sp \Xp−1)
s.t. Xp

E(x̃) ∩Xp−1 	= ∅. Define x̂ s.t. x̂i ={
x̃i, if x̃i ∈ Xp−1

i

argminx̂i∈Xp−1
i

‖x̂i − xi‖, otherwise.

Notice that x̂ ∈ Xp−1. It follows from the definition of Xp−1

that ‖x̂i − xi‖ ≤ hp−1 ≤ αp ∀i s.t. x̃i /∈ Xp−1
i . Since x̃ ∈ x+

αpB, we have ‖x̂i − xi‖ = ‖x̃i − xi‖ ≤ αp ∀i s.t. x̃i ∈ Xp−1
i .

Then, it holds that x̂ ∈ x+ αpB.
Claim VII.9: For p ≥ q, x̂ ∈ Xp−1

E (x̃).
Proof: Since ∃x̃′ ∈ Xp

E(x̃) ∩Xp−1, it follows from the defi-
nition of Xp

E that x̃i = x̃′
i ∈ Xp−1

i ∀i ∈ V \ VG
p (x̃). Then, the

following two properties hold for x̃: (a) ∀i ∈ V \ VG
p (x̃), x̃i ∈

Xp−1
i ; (b) ∃i ∈ VG

p (x̃) s.t. x̃i ∈ Xp
i \Xp−1

i . Property (b) is a
result of x̃ ∈ Sp \Xp−1.

Fix j ∈ V s.t. x̂j 	= x̃j . Now, we are to show x̂j ∈ XG
j +

(Mjεp−1 + hp−1)B. By properties (a) and (b), j ∈ VG
p (x̃). It

follows from Claim VII.8 that xj ∈ XG
j . It follows from Claim

VII.7 that xj + αpB ⊆ XG
j + (Mjεp + hp)B. Therefore, x̂j ∈

xj + αpB ⊆ XG
j + (Mjεp + hp)B. By Assumption (A7), it

renders at x̂j ∈ XG
j + (Mjεp−1 + hp−1)B.

This holds for all j ∈ V s.t. x̂j 	= x̃j . By the definition of
Xp−1

E , we have x̂ ∈ Xp−1
E (x̃). �

Claim VII.10: There is q ≥ 1 s.t. Ap
12 ⊆ Ap

2 holds for all p ≥
q.

Proof: If Ap
12 = ∅, the claim trivially holds. Throughout

the proof, assume that ∃x̃ ∈ (x+ αpB) ∩ (Sp \Xp−1) s.t.
Xp

E(x̃) ∩Xp−1 	= ∅.
Pick any x̃′ ∈ Xp

E(x̃) ∩Xp−1. It follows from Assumption
(A7) that Xp

E(x̃) ⊆ Xp−1
E (x̃); then x̃′ ∈ Xp−1

E (x̃). It follows
from Claim VII.9 that ∃x̂ ∈ Xp−1

E (x̃). Since x̃′ ∈ Xp−1
E (x̃), by

the definition of Xp−1
E , we have x̃′ ∈ Xp−1

E (x̂). Then, by Corol-
lary V.1, Evp−1

∞
(x̃′) = Evp−1

∞
(x̂). Since x̂ ∈ (x+ αpB) ∩Xp−1,

then Evp−1
∞

(x̃′) ⊆ Ap
2. This holds for every pair of x̃ ∈ (x+

αpB) ∩ (Sp \Xp−1) and x̃′ ∈ Xp
E(x̃) ∩Xp−1. Then, Ap

12 ⊆
Ap

2. �
It follows from Lemma VII.2 and Claim VII.10 that

bp(x) ≤ dH(Ap
12(x) ∪Ap

2(x), B
p(x)) = dH(Ap

2(x), B
p(x))

holds for p ≥ q(x). Recall αp ≥ hp and Assumption
(A8). It follows from Theorem V.1 that limp→+∞ bp(x) ≤
limp→+∞ dH(Ap

2(x), B
p(x)) = 0. Since this holds for all

x ∈ X, the lemma is proven. �
Proof of Lemma V.7: Take δ′ > δ � dH(A,B). Then, A ⊆

B + δ′BN , B ⊆ A+ δ′BN . Focus on the first relationship and
we want to show

(1−Δτ(x)) ◦A ⊆ (1−Δτ(x)) ◦B + e−κpδ′BN . (18)

This is equivalent to show that ∀a ∈ A, ∃b ∈ B s.t. ‖(1−
Δτ(x)) ◦ a− (1−Δτ(x)) ◦ b‖ ≤ e−κpδ′.

We start with A ⊆ B + δ′BN , which implies ∀a ∈ A, ∃b′ ∈
B s.t. ‖a− b′‖ ≤ δ′. Fix a and b′. Denote the one-hop neighbor
of x that attains b′ by x̃, i.e., ∃x̃ ∈ X̃p(x) s.t. b′ ∈ Evp

∞(x̃). Con-
struct b ∈ [0, 1]N s.t. bi = ai, if i ∈ VG

p (x̃); bi = b′i, otherwise.
Since b′ ∈ Evp

∞(x̃), ∃τ ∈ vp∞(x̃) s.t. b′ � τ , that is, b′i ≥ τi for
all i ∈ V . Specifically, by the third property of Lemma V.2, for
i ∈ VG

p (x̃), b′i ≥ τi = 0. Since bi = ai ≥ 0 = τi ∀i ∈ VG
p (x̃)
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and bi = b′i ≥ τi ∀i ∈ V \ VG
p (x̃), we have b � τ and, thus,

b ∈ Evp
∞(x̃).

Now, we have ‖(1−Δτ(x)) ◦ a− (1−Δτ(x)) ◦ b‖2 =∑
i∈V\VG

p (x̃)(1−Δτi(x))
2(ai − b′i)

2. By the first property of

Lemma V.2, V \ VG
p (x) ⊇ V \ VG

p (x̃). Then, it follows from (8)
that 1−Δτi(x) = e−κp ∀i ∈ V \ VG

p (x̃). Therefore

‖(1−Δτ(x)) ◦ a− (1−Δτ(x)) ◦ b‖2

= (e−κp)2
∑

i∈V\VG
p (x̃)

(ai − b′i)
2

≤ (e−κp)2‖a− b′‖2 ≤ (e−κpδ′)2.

Since this holds∀a ∈ A and b ∈ B, then (18) is proven. A similar
relationship for B ⊆ A+ δ′BN can be obtained by swapping A
and B

(1−Δτ(x)) ◦B ⊆ (1−Δτ(x)) ◦A+ e−κpδ′BN . (19)

Combining (18) and (19), we arrive at dH((1−Δτ(x)) ◦
A, (1−Δτ(x)) ◦B) ≤ δ′e−κp . Since these two relationships
hold for all δ′ > δ, the lemma is then proven. �

Proof of Theorem V.2: Fix x ∈ Sp. For simplicity, shorthand
notations listed below are used in the rest of the proof

Ã(x) =
⋃

x̃∈X̃p(x)

Evp
n
(x̃), B̃(x) =

⋃
x̃∈X̃p(x)

Evp
∞(x̃)

Â(x) =
⋃

x̂∈X̂p(x)

Evp
n
(x̂), B̂(x) =

⋃
x̂∈X̂p(x)

Evp
∞(x̂).

Since translating each term in the Hausdorff distance with a
common vector Δτ(x) does not change the distance, we focus
on the discounted terms in (7). The following holds:

dH(EGvp
n
(x), EGvp

∞(x))

= dH((1−Δτ(x)) ◦ Ã(x), (1−Δτ(x)) ◦ B̃(x))

≤ e−κpdH(Ã(x), B̃(x))

where the last inequality follows from Lemma V.7. By Lemma
V.5, the right-hand side of the above may be rewritten as
e−κpdH(Â(x), B̂(x)). Taking supremum over all x ∈ Sp on
both sides makes the left-hand side yield to dSp(EGvp

n
, EGvp

∞).
Then, the following holds:

dSp(EGvp
n
, EGvp

∞) ≤ e−κpdSp(Â(x), B̂(x)). (20)

It follows from (15) in Lemma VII.4 that

dSp(Â(x), B̂(x))

≤ dSp(
⋃

x̃∈(x+αpB)∩Xp

Evp
n
(x̃),

⋃
x̃∈(x+αpB)∩Xp

Evp
∞(x̃)).

Notice that ∀x̃ ∈ Xp \ Sp and x̃′ ∈ Xp, it holds that Evp
n
(x̃) =

{1N} ⊆ Evp
n
(x̃′). Then, the aforementioned inequality can be

extended to the following one:

dSp(Â(x), B̂(x))

≤ dSp(
⋃

x̃∈(x+αpB)∩Xp

Evp
n
(x̃),

⋃
x̃∈(x+αpB)∩Xp

Evp
∞(x̃))

≤ dX(
⋃

x̃∈(x+αpB)∩Xp

Evp
n
(x̃),

⋃
x̃∈(x+αpB)∩Xp

Evp
∞(x̃)).

(21)

Combine (20) and (21), then (11) is proven. Inequality (12) is a
direct result of (16) in Lemma VII.4. �

Proof of Lemma V.8: For each grid Xp, from line 30 of
Algorithm 1, one can see that the value iterations on grid Xp

terminate when (1) n > np; or (2) the fixed point vp∞ is reached.
Two cases arise, which are as follows.

Case 1: Value iterations terminate before the fixed point is
attained, i.e., vpn̄p

= vpnp
. Notice that ∀x ∈ Xp \ Sp, Evp

n
(x) =

Evp
∞(x) = {1N}. Then, the following holds:

dXp(Evp
np
, Evp

∞)

= max{dSp(EGvp
np−1

, EGvp
∞), dXp\Sp(Evp

np
, Evp

∞)}

= dSp(EGvp
np−1

, EGvp
∞).

We apply inequality (12) in Theorem V.2 for np − 1 times to
dXp(Evp

np
, Evp

∞), then the following inequalities are obtained:

dXp(Evp
np
, Evp

∞) = dSp(EGvp
np−1

, EGvp
∞)

≤ e−κpdSp(Evp
np−1

, Evp
∞) = e−κpdXp(EGvp

np−2
, EGvp

∞)

≤ · · · ≤ e−(np−1)κpdSp(EGvp
0
, EGvp

∞)

≤ e−npκpdX(
⋃

x̃∈(x+αpB)∩Xp

Evp
0
(x̃),

⋃
x̃∈(x+αpB)∩Xp

Evp
∞(x̃))

where the last equality is a result of (11) in Theorem V.2.
By Lemma VII.3, the right-hand side of the above becomes

dX(
⋃

x̃∈(x+αpB)∩Xp

EP ṽp−1
np−1

(x̃),
⋃

x̃∈(x+αpB)∩Xp

Evp
∞(x̃))

≤ dX(
⋃

x̃∈(x+αpB)∩Xp

EP ṽp−1
np−1

(x̃),
⋃

x̃∈(x+αpB)∩Xp

EP ṽp−1
∞

(x̃))

+ dX(
⋃

x̃∈(x+αpB)∩Xp

EP ṽp−1
∞

(x̃),
⋃

x̃∈(x+αpB)∩Xp

Evp
∞(x̃))

where the second term is bp in Lemma V.6. As for the first term,
it follows from (16) in Lemma VII.4 that

dX(
⋃

x̃∈(x+αpB)∩Xp

EP ṽp−1
np−1

(x̃),
⋃

x̃∈(x+αpB)∩Xp

EP ṽp−1
∞

(x̃))

≤ dXp(EP ṽp−1
np−1

, EP ṽp−1
∞

).

We focus on the right-hand side of the aforementioned inequality
and proceed to show that

dXp(EP ṽp−1
np−1

, EP ṽp−1
∞

) ≤ dXp−1(Evp−1
np−1

, Evp−1
∞

). (22)

For each x ∈ Xp, if x ∈ Xp−1, it follows from the definition
of P thatEP ṽp−1

np−1
(x) = Eṽp−1

np−1
(x) andEP ṽp−1

∞
(x) = Eṽp−1

∞
(x).

By the definition of ṽ, Eṽp−1
np−1

(x) = Evp−1
np−1

(x) and Eṽp−1
∞

(x) =

Evp−1
∞

(x). Therefore

dXp−1(EP ṽp−1
np−1

, EP ṽp−1
∞

) = dXp−1(Evp−1
np−1

, Evp−1
∞

). (23)

If x ∈ Xp \Xp−1, it follows the definition of P that
EP ṽp−1

np−1
(x) =

⋃
x′∈Xp

E(x) Eṽp−1
np−1

(x′) and EP ṽp−1
∞

(x) =⋃
x′∈Xp

E(x) Eṽp−1
∞

(x′). For eachx′ ∈ Xp
E(x), ifx′ ∈ Xp \Xp−1,

we have Eṽp−1
np−1

(x′) = EV p−1(x′) and Eṽp−1
∞

(x′) = EV p−1(x′).

Otherwise, i.e., x′ ∈ Xp, it follows from the definition of ṽ that
Eṽp−1

np−1
(x′) = Evp−1

np−1
(x′) and Eṽp−1

∞
(x′) = Evp−1

∞
(x′). By the
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third properties of Lemma V.2, EV p−1(x′) ⊆ Evp−1
np−1

(x′) and

EV p−1(x′) ⊆ Evp−1
∞

(x′). Then, we have

dXp\Xp−1(EP ṽp−1
np−1

, EP ṽp−1
∞

)

= dXp\Xp−1(
⋃

x′∈Xp
E(x)∩Xp

Evp−1
np−1

(x′),
⋃

x′∈Xp
E(x)∩Xp

Evp−1
∞

(x′))

= dXp−1(Evp−1
np−1

, Evp−1
∞

).

Then, (22) is a result of (23) and the aforementioned inequality.
Therefore, inequality (13) is obtained for this case.

Case 2: The fixed point is reached, i.e., vpn̄p
= vp∞. The left-

hand side of (13) is zero and it is trivially true.
In summary, the lemma is proven. �

D. Proof of Theorem IV.1

We set out to finish the proof of Theorem IV.1. For each grid
Xp, we distinguish the following two cases.

Case 1: p = Dk+1 for some k ≥ 0. We look back to Dkth
grid and apply Lemma V.8 for Dk+1 −Dk times

dXp(Evp
n̄p
, Evp

∞) ≤ γpdXp−1(Evp−1
n̄p−1

, Evp−1
∞

) + bp

≤ γpγp−1dXp−2(Evp−2
n̄p−2

, Evp−2
∞

) + γpbp−1 + bp

≤ (

Dk+1∏
q=Dk+1

γq)dXDk (Ev
Dk
n̄Dk−1

, E
v
Dk∞

) +

Dk+1∑
q=Dk+1

(

Dk+1∏
r=q+1

γr)bq

where bq is defined in Lemma V.6. By Assumption IV.1,∏Dk+1

q=Dk+1 γq = exp(−
∑Dk+1

q=Dk+1 nqκq) ≤ γ. Since Dk+1 −
Dk ≤ D̄ and γr ≤ 1

dXDk+1 (Ev
Dk+1
n̄p

, E
v
Dk+1
∞

) ≤ γdXDk (Ev
Dk
n̄Dk

, E
v
Dk∞

)

+

Dk+D̄∑
q=Dk+1

bq.

By Lemma V.6, bq → 0 as q → +∞; hence

limk→+∞
∑Dk+D̄

q=Dk+1 bq = 0. Therefore, by Lemma VII.5,
limk→+∞ dXDk (Ev

Dk
n̄Dk

, E
v
Dk∞

) = 0.

Case 2: p 	= Dk+1 for any k ≥ 0. Then, ∃k ≥ 0 s.t.Dk + 1 ≤
p < Dk+1. We apply Lemma V.8 for p−Dk times

dXp(Evp
n̄p
, Evp

∞) ≤ (

p∏
q=Dk+1

γq)dXDk (Ev
Dk
n̄Dk

, E
v
Dk∞

)

+

p∑
q=Dk

(

Dk+1∏
r=q+1

γr)bq ≤ dXDk (Ev
Dk
n̄Dk

, E
v
Dk∞

) + D̄B̄Dk

where B̄p � supq≥p+1 bq . It follows from Lemma
V.6 that limp→+∞ B̄p = 0. Hence, by Lemma VII.5,
limp→+∞ dXp(Evp

n̄p
, Evp

∞) = 0.
Combining the aforementioned two cases, we may rewrite the

result as limp→+∞ dXp(Evp
n̄p
, Evp

∞) = 0. Pick x ∈ X. By (16)
in Lemma VII.4, the following holds:

dH(
⋃

x̃∈(x+ηpB)∩Xp

Evp
n̄p
(x̃),

⋃
x̃∈(x+ηpB)∩Xp

Evp
∞(x̃))

≤ dXp(Evp
n̄p
, Evp

∞).

Take the limit p → +∞ on both sides, then the aforementioned
relationship yields

lim
p→+∞

dH(
⋃

x̃∈(x+hpB)∩Xp

Evp
n̄p
(x̃),

⋃
x̃∈(x+hpB)∩Xp

Evp
∞(x̃)) = 0.

Since this holds for all x ∈ X

lim
p→+∞

dX(
⋃

x̃∈(x+hpB)∩Xp

Evp
n̄p
(x̃),

⋃
x̃∈(x+hpB)∩Xp

Evp
∞(x̃)) = 0.

By Theorem V.1, Lim
p→+∞

⋃
x̃∈(x+hpB)∩Xp Evp

∞(x̃) exists for any

x ∈ X and equals to Ev∗(x). Hence, it holds that ∀x ∈
X, Lim

p→+∞

⋃
x̃∈(x+hpB)∩Xp Evp

n̄p
(x̃) = Ev∗(x). Then, the theo-

rem is proven.

VIII. CONCLUSION

In this article, a numerical algorithm is proposed to find the
Pareto optimal solution of a class of multirobot motion planning
problems. The consistent approximation of the algorithm is
guaranteed using set-valued analysis. A set of experiments on
an indoor multirobot platform and computer simulations are
conducted to assess the anytime property. There are a couple of
interesting problems to solve in the future. First, the proposed
algorithm is centralized. It is of interest to study distributed im-
plementation. Second, it is interesting to find more efficient ways
to construct set-valued dynamics and perform value iteration.
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