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Pareto Optimal Multirobot Motion Planning

Guoxiang Zhao

Abstract—This article studies a class of multirobot coor-
dination problems where a team of robots aim to reach their
goal regions with minimum time and avoid collisions with
obstacles and other robots. A novel numerical algorithm is
proposed to identify the Pareto optimal solutions where no
robot can unilaterally reduce its traveling time without ex-
tending others’. The consistent approximation of the algo-
rithm in the epigraphical profile sense is guaranteed using
set-valued numerical analysis. Experiments on an indoor
multirobot platform and computer simulations show the
anytime property of the proposed algorithm, i.e., it is able to
quickly return a feasible control policy that safely steers the
robots to their goal regions and it keeps improving policy
optimality if more time is given.

Index Terms—Multirobot coordination, Pareto optimality,
robotic motion planning.

[. INTRODUCTION

OBOTIC motion planning is a fundamental problem
R where a control sequence is found to steer a mobile robot
from an initial state to a goal set while enforcing dynamic
constraints and environmental rules. It is well-known that the
problem is computationally challenging. For example, the piano-
mover problem is shown to be PSPACE-hard in general [1].
Sampling-based algorithms are demonstrated to be efficient in
addressing robotic motion planning in high-dimensional spaces.
The Rapidly-exploring Random Tree (RRT) algorithm [2] and
its variants are able to quickly find feasible paths. However, the
optimality of returned paths is probably lost. In fact, computing
optimal motion planners is much more computationally chal-
lenging than finding feasible motion planners [3]. It is shown
that computing the shortest path in R? populated with obstacles
is NP-hard in the number of obstacles [3]. Recently, RRT* [4]
and its variants are shown to be both computationally efficient
and asymptotically optimal.

Multirobot optimal motion planning is even more compu-
tationally challenging, because the worst-case computational
complexity exponentially grows as the robot number. Current
multirobot motion planning mainly falls into three categories:
centralized planning [5], [6], decoupled planning [7], [8], and
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priority planning [9], [10]. Noticeably, none of these multirobot
motion planners are able to guarantee the optimality of returned
solutions. Recent papers [11], [12] employ game theory to
synthesize open-loop planners and closed-loop controllers to
coordinate multiple robots, respectively. It is shown that the
proposed algorithms converge to Nash equilibrium [13] where
no robot can benefit from unilateral deviations. As RRTs, the
algorithms in [11] and [12] leverage incremental sampling and
steering functions, the latter of which require to solve two-point
boundary value problems. There are only a very limited number
of dynamic systems whose steering functions have known ana-
Iytical solutions, including single integrators, double integrators,
and Dubin’s cars [14]. Heuristic methods are needed to compute
steering functions when dynamic systems are complicated.

In the control community, distributed coordination of mul-
tirobot systems has been extensively studied in last decades
[15]-[17]. A large number of algorithms have been proposed to
accomplish a variety of missions, e.g., rendezvous [18], forma-
tion control [15], vehicle routing [19], and sensor deployment
[20], [21]. This set of work is mainly focused on the design
and analysis of algorithms, which are scalable with respect
to network expansion. To achieve scalability, most algorithms
adopt gradient descent methodologies, which are easy to imple-
ment. Their long-term behavior, e.g., asymptotic convergence,
can be ensured but usually there is no guarantee on transient
performance, e.g., aggregate costs, due to the myopic nature of
the algorithms. Another set of more relevant papers is about
(distributed) receding-horizon control or model predictive con-
trol (MPC) for multirobot coordination. Representative works
include [22], [23] on formation stabilization, [24], [25] on vehi-
cle platooning, and [26] on trajectory optimization. MPC bears
the following benefits [27]-[29]. First, it has a unique ability to
cope with hard constraints on controls and states. Second, it can
deal with system uncertainties and control disturbances and its
robust stability can be formally guaranteed. Third, it is suitable
for control applications requiring rapid computations thanks to
its online fashion of implementation. The infinite-horizon per-
formance of N-horizon MPC policy exponentially converges to
the optimal value function of the infinite-horizon optimal control
problem as the computing horizon N extends to infinity [30]. In
contrast, multirobot motion planning aims to find controllers that
can optimize certain cost functionals over entire missions, e.g.,
finding collision-free paths with shortest distances or minimum
fuel consumption.

Differential games extend optimal control from single players
to multiple players. Linear-quadratic differential games are the
most basic, and their solutions can be formulated as coupled
Riccati equations [31]. For nonlinear systems with state and
input constraints, there are a very limited number of differen-
tial games whose closed-form solutions are known, and some
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examples include the homicidal chauffeur and the lady-in-the-
lake games [31], [32]. Otherwise, numerical algorithms are
desired. Existing numerical algorithms are mainly based on
partial differential equations [33]-[35] and viability theory [36]—
[38]. Noticeably, this set of papers only considers zero-sum
two-player scenarios.

Contribution statement: This article investigates a class of
multirobot closed-loop motion planning problems where mul-
tiple robots aim to reach their respective goal regions as soon
as possible. The robots are restricted to complex dynamic con-
straints and need to avoid the collisions with static obstacles and
other robots. Pareto optimality is used as the solution notion
where no robot can reduce its own travelling time without
extending others’. A numerical algorithm is proposed to identify
the Pareto optimal solutions. It is shown that under mild regu-
larity conditions, the algorithm can consistently approximate
the epigraph of the minimal arrival time function. The proofs
are based on set-valued numerical analysis [36]-[38], which
are the first to point out the promise in extending set-valued
tools to multirobot motion planning problems. Experiments
on an indoor multirobot platform and computer simulations
on unicycle robots are conducted to demonstrate the anytime
property of our algorithm, i.e., it is able to quickly return a
feasible control policy that safely steers the robots to their goal
regions and it keeps improving policy optimality if more time is
given. Detailed proofs are provided in Section VII. Preliminary
results are included in [39] where all the proofs and experimental
results are removed due to space limitation.

[I. PROBLEM FORMULATION

Consider a team of mobile robots labeledby V £ {1,..., N}.

The dynamic of robot 7 is governed by

zi(s) = fi(wi(s), ui(s)) VieV ()
where x;(s) € X; is the state of robot ¢ and u; : [0, +00) — U;
is the control of robot ¢. Here, the state space and the set of all
possible control values for robot i are denoted by X; C R% and
U; C R™:, respectively. The obstacle region and goal region
for robot 7 € V are denoted by X C X; and X& C X; \ X2,
respectively. Denote the minimum safety distance between
any two robots as o > 0. The free region for robot : is de-
noted by X[ £ {z; € X; \ XP|||w; — a5]| > 0,25 € XT,i #
g} LetX 2 T ey Xio X9 2 [ ;0 X and X7 £ [T, X
Assume ||z; — ;]| > o Vo € XY, i # j. Define the safety re-
gion as S £ {x € XF|||z; — z;|| > 0,i # j}. Here, || - || de-
notes the two-norm.

The sets of state feedback control policies for robot ¢ and
the whole robot team are defined as w; = {m;(-) : X — U;}
and @ = {[[,., m(")|mi(-) € w;}, respectively. Consider the
scenario where the robot team starts from = € X and executes
policy 7 € w. The induced minimal arrival time vector is
characterized as J(x,7) £ inf{t € RY)| Vie V,z;(0) =
zi, #i(8) = fi(zi(s), mi(x(s))), 2(s) € S, 4(t;) € XF,0 <
s < max;ey t; }, where the infimum uses the partial order in
footnote 1. The ith element of ¥(x,7) represents the first

IThroughout this article, product order is imposed, i.e., two vectors a, b €
RN are said “a is less than b in the Pareto sense,” denoted by a < b, if and
onlyifa; <b; Vie {1,...,N}.Similarly, strict inequality can be defined by
a<b <= q;<b; Vie{l,...,N}.

time robot ¢ reaches its goal region without collisions when
the robot team starts from initial state x and executes policy
7. In our multirobot motion planning problem, the minimal
arrival time function ©* : X = RY{ is a set-valued map and
is defined as ©*(z) = Elcl({V(x, )7 € w})], where & is
the Pareto minimization defined as &(7) £ {r € T|#r' €
Tst.7 #7and 7 < 7} for T C RLY| and cl(-) is the closure.
The closure ensures the existence of ©*(x) per [ 40, Th. 4.1].
The vectors in @*(x) indicate that no robot can unilaterally
reach its goal region earlier without extending other robots’
travelling times. The associated set of Pareto optimal solutions
is defined as U*(z) £ {r* € w|Y(x,7*) € O*(x)}. Note that
the elements of ¥(x,7*) could be infinite, indicating that
some robots cannot safely reach their goal regions. Infinite
time may cause numerical issues. To tackle this, transformed

minimal arrival time function is defined as v*(x) £ ¥(0*(z)),
1_et
1- z*t; _
where Kruzhkov transform W(t) £ : for t € RY;
1-etn

normalizes [0, +00] to [0,1]. Notice that Kruzhkov transform is
bijective and monotonically increasing.

The objective of this article is to identify optimal control
policies in U*(z) and the corresponding minimal arrival time
function ©*(z) (or equivalently v*(z)).

[ll. ASSUMPTIONS AND NOTATIONS

This section summarizes the assumptions, notions, and nota-
tions used throughout this article. Most notions and notations on
sets and set-valued maps follow the presentation of [41].

The multirobot system (1) can be written in the differential in-
clusion form: z;(s) € Fj(z;(s)) Vs > 0, where the set-valued
map F;: X; = R% is defined as F;(x;) = {fi(zi,us)|u; €
U;}. Let F(z) £ [[,cy, Fi(z;). The following assumptions are
imposed.

Assumption II1.1: The following properties hold for 7 € V.

Al) X; and U; are nonempty and compact.

A2) fi(z;,u;) is continuous over both variables.

A3) fi(zi,u;)is linear growth, i.e., 3¢; > 0s.t. Va; € X;
and  Vu; € Uy, || fi(@i, wi)[| < il + [|luill +1).

A4) For each z; € X;, F;(x;) is convex.

A5) F;(x;) is Lipschitz with Lipschitz constant [;.

Assumptions (A1) and (A2) imply || f; (x;, u;)]| is bounded for
each i € V. Define M; & max,,cx, u,cv, || fi(zi,u;)|| and let
M* &/ ., MZand it £ /3., 1?. Then, F is bounded
by M and is [ -Lipschitz.

Remark II1.1: One sufficient condition of Assumption (A4)
is that f;(x;,u;) is linear with respect to w; and U; is convex.
One sufficient condition of Assumption (A5) is that f;(z;, u;)
is Lipschitz continuous with respect to both variables on X;
x U;. (|

Define the distance from a point z € X to a set A C X
as d(x, A) = inf{||z — al||a € A}. A closed unit ball around
r € X in space X is denoted as z+ By £ {y € X||ly —
x|l < 1}. Similarly, § expansion of a set A C X is defined
as A+ 6By = {x € X|d(x, A) < &} for some § > 0. Specif-
ically, we denote = + By = {y e RN||ly —z| <1} if z €
RY. Similar notation applies to a set A. The subscript of
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closed unit ball may be omitted when there is no ambi-
guity. The Hausdorff distance that measures the distance
of two sets A and B is defined by dy (A, B) = inf{j >
0JAC B+ B,B C A+ dB}. Kuratowski lower limit and
Kuratowski upper limit of sets {A,} C X are denoted
by Liminf, A, = {x € X|lim, 1 d(x, A,) = 0} and
Limsup,, ,, A, = {z € X|liminf, ;- d(z, A,) = 0}, re-
spectively. If Liminf,, , A, = Limsup,, ,, A, the com-
mon limit is defined as Kuratowski limit Lim,, ,; ,A,,.

The Pareto frontier of a nonempty set A C X is denoted as
EA) 2 {tc AP c Ast.t' 1,8 <t}.Let A+ B = {a+
bla € A,b € B} be the sum of two sets A and B. Denote
the n-fold Cartesian product of a set A by A™. Specifically,
when A is an interval, e.g., A = [a, ], its n-fold product is
denoted by [a,b]™. When A is a singleton, e.g., A = {a}, its
n-fold product is written as {a}™. Let A x {b} £ {(a,b)|a €
A} be the Cartesian product of a set A and a point b. De-
fine Hadamard product for two vectors a,b € RY as aob =

T
aNbN} .Definea o B £ {aoblb € B}. Denote

N-dimensional zero vector and all-ones vector by Ox and 1,
respectively. The subscript may be omitted when there is no
ambiguity. The cardinality of a set is denoted as | - |.

Define the distance between two set-valued maps g, g : X =
0, 1% by dx (g, 9) 2 sup,cx dir(9(x), §(x)).

Definition I11.1 (Epigraph): The epigraph of © is defined by
Epi(O) 2 {(x,t) € X x RN |FH' € O(x) s.tt = t'}.

Definition I11.2 (Epigraphical Profile): The epigraphical pro-
file of @ is defined by Eg(7) 2 O(z) + RY,.

Remark II1.2: For a Kruzhkov transformed function v, we
define its epigraphical profile by E,(z) £ (v(z) + RN
[0, 1]V, O

arby

IV. ALGORITHM STATEMENT AND PERFORMANCE
GUARANTEE

In this section, we present our algorithmic solution and sum-
marize its convergence in Theorem IV.1.

A. Algorithm Statement

The proposed algorithms, Algorithms 1-3, are informally
stated as follows. The state space of each robot is discretized by
asequence of finite grids { X7} C X s.t. X¥ C Xf“ Vp > 1,
where p is the grid index and by convention X = (). The state
space for the robot team is discretized by {X”} C X with
monotonic spatial resolutions h,, — 0, where X? £ Hiev X f .
The safety region S is discretized as SP £ (S + h,Bx) N XP.
On each grid XP, our algorithm chooses temporal resolution
€p > 2h,. Denote RY ;) as an integer lattice on R~ consisting
of segments of length h,, and (RY,)P as a lattice on RL.

With these spatial and temporal discretizations, Algorithm 1
leverages the idea of multigrid methods to search for the minimal
arrival time function. Specifically, Algorithm 1 iteratively exe-
cutes the following two phases: initializing the solution on X? by
utilizing the results from X?~! and partially solving a multirobot
optimal control problem on grid X?. We start with the second
phase, which consists of two steps: construction of set-valued
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Algorithm 1: Pareto-Based Anytime Algorithm.

1:

2:

Input: System dynamics f, state space X,

discretization grids {X?}[”_ |, the associated

resolutions A, €, and the number of value iterations to

be executed n,.
for1 <p< Pdo

Grid refinement

3:
4.

ap = 2hy, + ephplt + It MY
SP = (S + h,Bx) NX?

Value function interpolation

18:
19:

for z € XP~! do
P (z) =k ! (2)

end for o
for z € SP\ X1 do
fori €V do
if d(x;, X&) < Mye, + hy, then
PN x)=0
else
P z) =1
end if
end for
end for

for x € X?\ (SP|JXP 1) do
P (z) = {1n}
end for

Value function initialization

20:
21:
22:
23:
24

25:

for z € X~ ! do
vp(x) = 0P~ (2)
end for
for r € X\ X?~! do
(%) = Uzexs @) 771 (@)
end for

Value function update

26:
27:

28:
29:
30:
31:
32:
33:

34.
35:
36:
37:

38:
39:
40:
41:

for z € SP\ (X + (M*e, + hy)Bx) do
(X7 (2), TP(2)) =
Set_Valued_Dynamic(z,SP)
end for
n=>0
while n < n, and v£ # vP_, do
n=n+1
for z € SP\ (X + (M*e, + hy)Bx) do
(vP(x),UP(x)) = Value_Iteration
(2, XP(z), TP(2),07_,)
end for
end while
np ="n
for

z € (XP N (XE + (M*e, + hy)Bx)) U (XP\ SP)

do
oh, (2) = 77\ ()
end for
end for
Output: vf{p, ur
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Algorithm 2: Set_valued_Dynamic (z,SP).

1: Input: z, SP
2: fori e Vdo
3: ifd(zi, XF) > M;e, + hy, then
4: TP = €, + 2h,By;
Xf =x; + €, Fi(z;) + apBx;;
5: else ~
6 T = {0} X7 = {x:}s
7. end if
8: end for ~ ~ R
9: TP = ([Liey I)) N (RE)P; X7 = ([];0 XP) N SP:

10:  Output: X7, TP

Algorithm 3: Value_TIteration (z, XP, TP v ).

n—1
1: Input: z, X?, TP v |
2: vP(z)=E({r+ 7 —Tof|F=E&(U(TP)),i¢c
Xv,revh (%)}
UP (x) = {the solutions to u in the above step}
4:  Output: v UP

n?

(O8]

[~
2 o I
) * @i+ epfi(wi, w)
00 2 4 6 8

Fig. 1. Set-valued discretization of robot dynamics.

dynamics as Algorithm 2 and execution of value iteration as
Algorithm 3.

Step 1: In lines 2—-8 of Algorithm 2, the following set-valued
dynamics are constructed to approximate system (1)

X+ €pFi(in) + OépBXi
if d(w;, X&) > Mie, + hy (2)
x;, otherwise

X0 (i) =

and time dynamic # = 1 is approximated by

- i L XG ;
TP(2s) = ep + 20, By, if d(xl,.Xl ) > Mie, + hy 3)
0, otherwise
where a2 2R, + e, hylt + 1T M*T. Let  XP(z) £

[Licy XP(2:) NSP and TP(x) £ [[;0 T7(2:) N (RY,)P as
line 9 in Algorithm 2. The balls o, Bx; in (2) and 2h,5; in (3)
represent perturbations on the dynamics. The perturbations
ensure that the image set of any x is nonempty and the
set-valued dynamic is well-defined. Fig. 1 illustrates the
set-valued dynamics (2), where robot i at state x; takes a
constant control u; for a time duration ¢, and transits to the

red cross. The next state of robot ¢ could be any red diamond,
which lies in the intersection of the grid and the ball centered at
x; + €p fi(x;, u;) with radius . Let ¢, — 0 and }2—: — 0, i.e.,
the spatial resolution h, diminishes faster than the temporal
resolution ¢,. This ensures the validity of the approximation
in three phases: when c,, is very small compared to ¢, and
hy, the set-valued dynamics transit on the grid XP?; since h,
is diminishing faster than ¢,, the set-valued dynamics can
well approximate the discrete-time system on X when p is
sufficiently large; finally, as ¢, converges to 0, the discrete-time
system further converges to the continuous-time system. When
d(z;, XZG) < M;e, + hy,, robot i is considered in the goal
region, and hence, it could stay still and stop counting traveling
time.

Step 2: Given the aforementioned set-valued dynamics,
Algorithm 3 searches for Pareto optimal solutions of minimal
arrival time vectors and stores values in © and the last controls
in U?. The Bellman operator in the Pareto sense is defined by

(TOP)(x) £ E({t +t|t € TP(x),% € XP(x),t € OP(%)})

“
where 07 : X? = RY; is the estimate of ©* after n value itera-
tions on grid X?. Since &(T”(x)) is a singleton, £ = &(T?(z)).
When no feasible control policy exists at =, OF () is infinity. To
remedy this numerical issue, we apply Kruzhkov transform on
both sides of (4) and replace ©F with W~1v?, which produces
the transformed Bellman operator in the Pareto sense

(Gul) (@) = E({F + 7 — T o 7|7 = W(E(TP(x)))
i€ XP(z),T €vh(i)})

where G £ UT W' summarizes line 2 of Algorithm 3. Let
UP(x) be the set of controls that solve the last value iteration
vP(z) = (GvP_,)(x) on grid XP. It corresponds to line 3 of
Algorithm 3.

With the aforementioned two steps, Algorithm 1 iteratively
calls Algorithms 2 and 3 to search for the minimal arrival
time function. Denote the last estimate of minimal arrival time
function on X? by vﬁp, where 7, denotes the total number of
value iterations executed on X”. When proceeding to grid XP,
Algorithm 1 first interpolates vfil:l to generate v” as lines 5-19
to reuse previous computational results, then initializes value
function v{ as lines 20-25 to reduce coupling among robots. In
particular, we maintain the estimates of minimal arrival time on
the last grid XP~!, assuming the fixed points on two consecutive
grids are close to each other. On new nodes r € X\ XP~1,
0P (x) sets its ith element as O if robot 4 is considered in the
goal region, indicating that robot ¢ is not supposed to move and
affect other robots’ motions, and as 1 otherwise, meaning no
feasible solution has been found for robot 7 yet. Define the set
of equivalent nodes X%, (x) of z € X? by

XV(z) 2 {2 € XPlz; =2} Vie V\ V()

(&)

o . o (6)
d(z}, Xi') < Miep, +hy Yie V) ()}

where VS (z) £ {i € V|d(zi, X) < M;e, + hyy} denotes the
set of robots that are close to or already in the goal regions.
Since robots in the goal regions never interfere with others and,
thus, are excluded in value iterations, the values of equivalent
nodes are the same. Then, the value function is initialized by
v (z) = Usexz @) oP1(7) Vo € XP\ XPL ie., line 24 in
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Algorithm 1. With the initialized value function, Algorithm 1 in
lines 26-28 first calls Algorithm 2 to construct set-valued dy-
namics and then in lines 30-35 calls Algorithm 3 to execute value
iterations for n,, times or until a fixed point is reached. Notice
that the total number of value iterations 7i,, may be less than n,,.
After that, Algorithm 1 refines the grid and begins a new cycle of
updates.

B. Performance Guarantee

Recall that n, at line 30 of Algorithm 1 is the number of value
iterations to be executed on grid X?. The choice of n,, needs to
satisfy the following assumption to ensure the convergence of
Algorithm 1.

Assumption IV.1: There is a subsequence { Dy} of the grid
index sequence {p} with Dy = 0s.t. Dy — D,y < D for some
constant D and all k > 0 and exp(— fz’ﬁDkilJrl Npkp) <y <
1 for every k > 0, where r, £ ( ;—‘;1 — 2)hy, is the minimum
running cost.

Assumption I'V.1 implies that the distance between the esti-
mate and the fixed point on the Dyth grid reduces at least by
~ € [0, 1) over the update window length {Dy_1 + 1,..., Dy }.

The choice of €, and h,, should satisfy the following technical
assumptions.

Assumption IV.2: The following hold for the sequences of
{ep} and {hy}.

A6) €, > 2h, Vp>1.

AT) ¢, — 0and }Z—: — 0 monotonically as p — —+oo0.
A8) 2hy, + eyhylt + ITMT > hy oy Vp > 1

A9) [XE + (0 + Miey + h1)Bx,JN XF =0 Vi #j.

The consistent approximation of v* via Algorithm 1 in the
epigraphical profile sense is summarized in Theorem IV.1.

Theorem 1V.1: Suppose Assumptions III.1, TV.1, and IV.2
hold, then the sequence {vf{p} in Algorithm 1 converges to v*
in the epigraphical profile sense, i.e., for any z € X

B, (z) = Lim U Eyr

p——+00
ze(z+hpBx)NXP

C. Discussion

Our proposed algorithm extends [36] to multirobot scenario.
For single robot scenario, i.e., N = 1, if we set D =1land v=0
and only impose Assumptions I1I.1, (A6), and (A7), Algorithm 1
and Theorem I'V.1 become [36, Algorithm 3.2.4, p. 211 and Cor.
3.7, p. 210], respectively.

However, from the analysis point of view, nonzero ~ and
nonuniform lengths for update windows in the multirobot sce-
nario, i.e., N > 2, require a set of novel analysis, which is
provided in Sections V and VII.

The progress toward v* slows down or even stops as more
value iterations are performed on a single grid. A ~y close to one
ensures that excessive value iterations are postponed to finer
grids, and a longer update interval reduces each grid’s efforts to
reach the discount factor.

V. ANALYSIS

In this section, we provide the major theoretic results that lead
to the proof of Theorem IV.1, which consist of following four
steps.

Step 1: We characterize the convergence of fixed points v2,
to the minimal arrival time function v*, i.e., in
Theorem V.1. The fixed point vZ, functions as a bench-
mark and we will show later that the last value function

v%p oneach grid X can closely follow v%, to converge.

Step 2: We introduce an auxiliary Bellman operator G defined
in (9) to facilitate the analysis of the contraction prop-
erty of the transformed Bellman operator G in the next
step. Specifically, the contraction property requires to
add perturbations around all nodes in value iteration,
but G imposes zero perturbation when robots are close
to their goal regions. Then, G bridges this technical
gap and is equivalent to G in terms of updating value
functions, which is shown in Lemma V.5.

Step 3: We prove the contraction property of G via G in Step 2
and it is summarized in Theorem V.2. The contraction
property shows that the distance between the estimate
of minimal arrival time function v2 and the fixed point
vL_ is exponentially discounted as value iterations are
executed.

Step 4: We integrate Step 3 with Step 1 and show that v%p
can closely follow v%, and, thus, converge to v*. In
particular, the approximation errors induced by grid
refinement are shown to be suppressed by sufficient
value iterations and thereby the distance between v%p
and vZ is decreasing to zero.

This section is organized as follows. Section V-A corresponds
to Step 1 and introduces the convergence of fixed points, i.e.,
Theorem V.1. Section V-B corresponds to Step 2 and confirms
the equivalence of G and G in terms of updating value functions.
Section V-C corresponds to Step 3 and proves the contrac-
tion property of G. Step 4 is summarized in Section VII-D,
which shows the proof of Theorem IV.1. We only keep theo-
rem statements in this section and postpone all the proofs to
Section VII.

A. Convergence of Fixed Points

The following theorem characterizes the convergence of fixed
points vZ to the optimal arrival time function v™.

Theorem V.1: Suppose Assumption III.1 holds and let €, >
2hyp, hy — 0, and }EL—;’ — 0. Construct the sequence {vE : X? =

[0, 1]V} as follows:

Ug($) _ {ON}, if z € SP
{1y}, otherwise
o () = GoP(x), ifzeSP
s vP (), otherwise

where G is defined in (5). Then, for each p, there exists v8,
s.t. GuR, = o2 and v? () = Lim,,,4oovP (x) Vo € XP. Fur-
thermore, the fixed points converge to v* in the epigraphical
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sense, i.e., for any {n,} s.t. 7, > h, and lim,_, ;. 7, = 0, the
following holds:

Ve e X, Ey(x) = pI:}_sr_réo U Er (7).
Fe(z4-hyBx)NXP

The proof of Theorem V.I mainly follows those of [ 36,
Lemma 3.6 and Cor. 3.7]. For the sake of completeness, we
include the details of proofs in [42]. Please refer to [ 42, Th. IX.3

and Cor. IX.1].

B. Auxiliary Bellman Operator G : Lemma V.5

In this section, an auxiliary Bellman operator G is introduced
as a stepping stone toward the contraction property of G in
Section V-C. This section consists of following three phases.

1) First, Gis formally defined as (9). The auxiliary Bellman
operator G differs from G in the perturbations around
nodes within one hop of the goal regions.

2) Second, the properties of G are analyzed and it is shown
that @vﬁ is no less than Gv?, as Lemmas V.3 and V.4.

3) Finally, @vﬁ is no larger than Go?, either, and thereby
the equivalence of G and G is established in Lemma V.5.

We proceed to the first phase and derive the Bellman operator
in terms of epigraphical profiles and its Kruzhkov transformed
version. We start with (4) by adding R%, to both sides

Erer(z) = (TO})(x) +RE,
={l +t|l = &(T?(v)),& € XP(z),t € OL(F) + RL,
= {e(fp(x)) +t|z € Xp(w),t € Egr (2)}

=&(T%)+ |J FEex(d
zeXrP(z)
Recall ~ that  of(z) = (VOL)(z). Denote Ar(z) =
U(E(TP(x))). Applying Kruzhkov transform to both sides
yields
Eg.z(z) = Ar(z) + (1= Ar(z))o ] Eul o
FeXr(z)
The ith element of A7 can be written as
.f . G
Ari(a) = 0, . ifi e l{p (x) ®)
1 — e "r,  otherwise

where r,, follows the definition in Assumption I'V.1.
Now, we define the auxiliary Bellman operator G by
Bg, (x) £ Ar(z) + (1 - Ar(x)o | Eu( )
2eXr(z)
2 ([Liey XP(2s)) NSP and

z; + e Fy (i) + apB, if d(z;, X&) > Mie, + hy
x; + o, B, otherwise.

If d(z;, X&) < Mie, + hy, then XP(z,)==; in G and
XP(x;) = x; + B in G. This is the only difference between
G and G.

Before we move on to the second phase, intermediate results
are required to facilitate our analysis. The next lemma shows
that the equivalent nodes of x € S? are also in the safety region.

Lemma V.1: Suppose Assumptions (A7) and (A9) are satis-
fied. Then, forany p > 1and = € SP, itholds that X7,(x) C S”.
The next lemma shows that for any robot i € VpG (x), its
estimate of travelling time is always 0.
Lemma V.2: For any p > 1, the following hold.
1) VS (z) C VS (&) forany = € XP and & € XP(x).
2) VS (x) 2 VS, (z) for any z € XP.
3) Ti:OforanymESpTEU%(JC),OSnSﬁp and i €
Remark V.1: Notice that vE = G”vg. Fix p>1. It fol-
lows from the proof of the third property of Lemma V.2 that
7 = 0 for any 7 € G™vf/(x), m > 0 and i € VS (x). Specif-
ically, by Theorem V.1, we have v? = Lim,,, v (z) =
Lim,,—,+ G0 (). Then, the third property of Lemma V.2 also
applies to vE.. (|
Remark V.2: Fix x €SP and m >0 and let Vi (z) =
{1,...,N,}, where 0 <N, <N. By the third property
of Lemma V.2, we have V7 € [0,1]Vr x {1}VN-"Ne, I7 €
G™uvf(z) st. 7= 7. This implies [0, 1]V x {1}V -Ne C
Egomyg (@) = (G™of(x) + RY) 1 [0, 1]7. 0
Define the set of partially perturbed state nodes =’ € X7, (z)
of z € X? by

XP(x) & {2 € SPlaf = a; VieV\ VS (2)}

The term “partially perturbed state node” means that 2’ differs
from x only at the perturbations added to the positions of robots
i € V§ (x). Itis a superset of X}, (x) in (6).

The following lemma shows that on a fixed grid, the partially
perturbed nodes cannot have less value.

Lemma V.3: Fix p > 1 s.t. Assumptions (A7) and (A9) are
satisfied. Consider v? : XP :{ 0,1V, If Eyp(2)) C Eype(x)
for any pair of x € SP and 2/ € X7 (z), then Egm,»(2') C
Egmy» ( ) holds for all m > 1 and any pair of = € 'SP and
2 € XP 2(x).

The next lemma extends Lemma V.3 to all the iterations of
Algorithm 1.

Lemma V.4: For any pair of z € SP and 2’ € X} (z), if As-
sumptions (A7) and (A9) are satisfied, it holds that E,» (2') C
E,p(z)foranyp > 1and 0 < n < nyp.

The next corollary shows that the values of all equivalent
nodes are the same.

Corollary V.1: If all conditions in Lemma V.4 are satisfied, for
anyp > 1,0 < n < i, and any pairof x € SPand 2’ € X7, (z),
Evﬁ () = Evﬁ (:L‘/) In addition, Evfo (CU) = Evgc (CL'/)

Finally, we arrive at the last phase and the next lemma is the
main result of this section that reveals the equivalence of G
and G.

Lemma V.5: If Assumptions (A7) and (A9) are satis-
fied, for any p>1, 0<n<n, and x €SP, it holds
that UIGXP )Evf,, () = UieXp(x) Eyr (2) and EGuz (z) =
EGq;ﬁ( x). In addition, Ufcexp(x) Epr(Z) = Ui:e)??(z) Er(2)
and Eg,z (z) = Eg,» (2).

C. Contraction Property of G: Theorem V.2

In this section, Theorem V.2 shows that the transformed
Bellman operator G in (5) is contractive with factor e~"».

Before we proceed to the final conclusion, the following
notations are defined to facilitate our analysis. Given a set-valued
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map v : X? = [0, 1]V, define the interpolation operation I? by

v(x), ifr e XP
(IPv)(z) £ L {VP(x)}, ifz e SPHL\XP
{1y},  ifx € XPTL\ (SPHLUXP)

where interpolation function V? : X? — {0, 1}" is defined as

Vp(x) A O, if d(iL‘Z,XZG) S M¢€p+1 + hp+1 (10)
‘ 1, otherwise.

Then, the interpolated value function o7 : XP+1 = [0,1]" in

Algorithm 1 can be represented by o7 £ ]Ipvf—;p. The interpo-

lated fixed point 2, : XP*! = [0, 1]"V is written as 92, = [PoL .

Correspondingly, define the initialization operator I by

s | Bu(z), ifz € XP~!
EJP’U(*T) = ~ : -1
UieX%(m) EU(.’IJ), ifz € Xp\Xp :
Define the distance between two consec-
utive  fixed points at x€X by by(z)=

dH(Uie(w—i—apB)ﬂXp EJP’ag;l (@), U:ie(a:-‘roch)ﬁXp By, ().
Define b, = sup,cx b,(z). The next lemma shows the distance
diminishes.

Lemma V.6: If Assumptions (A7) and (A8) are satisfied, it
holds that lim,,_, ;o b, = 0.

The following lemma shows that under G, the distance of v?
and v? at any node x € X? is discounted by e "».

Lemma V.7: If Assumptions (A7) and (A9) are satisfied, then
the following holds for any p > 1,n > 0 and z € SP:

dg((1 = At(x)) 0 A, (1 — A7(x)) 0o B) < e "rdy(A, B)

where A £ ;¢ 20 (o) Bop () and B £ U 500y Bor ()
Finally, we come to the contraction property of G.
Theorem V.2: If Assumptions (A7) and (A9) are satisfied, the
following holds for any p > 1, n > 0 and « € SP:

dSp (EG’Ug ; EG’U& )

<etrdx( Y E.r(2), U Er ().
ze(x+a,B)NXP Te(z+a,B)NXP
(1)
In addition, the following is also true:
dsr(Egor, Egor) < € "Pdse (Eyr, By ). 12)

The next lemma derives a recursive relation of
dxp(EUg 7Evg;)~
Lemma V.8: If Assumptions III.1 and IV.2 are satisfied, the

following inequality holds for each grid XP?:
dxr(Eyy s Evr) < ypdxr (Bt EBpt) 0, (13)

where 7, £ e "#%» and b,, is defined in Lemma V.6.

VI. EXPERIMENTS AND SIMULATIONS

This section presents the experiments on an indoor multi-
robot platform and computer simulations conducted to assess
the performance of Algorithm 1. The experiment environment,
shown in Fig. 2, is a four-way intersection with no signs or
signals. Each road is 420 mm wide and consists of two lanes
of same width with opposite directions. Three Khepera III
robots of diameters 170 mm can neither sense the environment

Fig. 2.
time.

Three Khepera Il robots arrive at the intersection at the same

nor communicate with each other. A centralized computer can
measure robots’ locations and heading angles via Vicon system,
a motion capture system, and remotely command each robot’s
motion via Bluetooth.

Each robot is modeled as a unicycle and its dynamics are
given by p¥ = v; cos 6, and p! = v; sin 6;, where x; = (p¥, p?)
denotes the ith robot’s position and u; = (0;,v;) € U; = U? x
Uy is its control, including heading angle 6, and linear speed v;.
The goal for each robot is to pass the crossroads and arrive at
its goal region without colliding with curbs or any other robot.
The robots stop as long as they pass their respective white goal
lines in Fig. 2.

In practice, the allowable computational times for the robots
are varying and uncertain. Therefore, it is desired to compute
control policies, which can safely steer the robots to their goal
regions within a short time and keep improving the control
policies if more time is given. This property is referred to the
anytime property, which is widely adopted in robotic motion
planning literature [43]-[46]. In the following, we demonstrate
that our algorithm is an anytime algorithm, i.e., it is quickly
feasible and increasingly optimal. In addition, the simulations
are also used to analyze the computational complexity of our
algorithm.

A. Demonstration of Quick Feasibility

In this section, an experiment on three physical robots is
conducted to examine the quick feasibility of our algorithm for
multiple robots. In our MATLAB codes, we normalize the road
width to 1 and scale robot radii to 0.2. We choose €, = +/h,,. The
constraint sets of controls are given as: UY = [0, 0.25], Uf =
[—m, —7/2],Uf = [-7/2,7/2], and U¢ = [0, 7]. The dimen-
sion of state space is 6. For the purpose of collision avoidance, we
set the inter-robot safety distance as 0.6 and ignore perturbations
addedto Sinline4 of Algorithm 1, i.e., we choose SP = S N XP.
In order to efficiently address the failure of arrival caused by
coarse resolutions of discrete grids, we use finer grids near
goal regions. Specifically, in the one-hop expansion of each
robot’s goal region {z € X|d(z;, X&) < Mie, + hy,i € V},
we refine the grids, perform Algorithm 1 on the new nodes,
and replace coarse controller with the refined one. Since Al-
gorithm 1 only returns control policies on discrete grids, we
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Fig. 3. Trajectories of centers of three robots when the computation
time is 1.05 s.
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Fig. 4. Inter-robot distances over time.

need to interpolate the control policies into the continuous
state space. In particular, Unif(-) is used to uniformly select
one control from UP(x) for x € SP. For state x € X \ S?, the
control is interpolated by nearest neighbor method, i.e., we take
u = Unif(UP (arg mingesy | & — z||)). Algorithm 1 is executed
in MATLAB on a 3.40-Ghz Intel Core i7 computer.

Each physical robot has inertia in changing its heading angle
0; and is subject to ; = w;, where w; is the angular velocity
that robot ¢ can directly command. To address this difference
in dynamics, a PID controller is leveraged to modulate robots’
heading angles, i.e., w; = PID(u;1 — 6;), where u, 1 is the
returned heading angle of robot .

Fig. 3 shows the trajectories of the robots when they apply the
interpolated control policies computed in 1.05 s. Fig. 4 shows
the inter-robot distances over time corresponding to Fig. 3,
indicating that no collision is caused throughout the movement
of the robots. Fig. 5 displays the linear speeds of each robot over
time. At around 2 s, robot 2 and robot 3 slow down so that robot
1 can first pass the intersection. At 8 s, robot 3 is no more than
one hop away from its goal region and stops owing to the coarse
resolution of the grid. After this moment, the robots switch to the
refined controller, hence robot 3 continues to move until it rests at

)
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Fig. 5. Robot linear speeds over time.

its goal region. The results show that given short computational
time, i.e., 1.05 s, our algorithm can already generate a feasible
policy that accomplishes the planning task without violating any
hard constraint. Therefore, the quick feasibility is verified.

B. Demonstration of Increasing Optimality

A set of computer simulations is performed to examine
the increasing optimality of Algorithm 1. The parameters are
identical to the previous experiment with the differences that
robot 3 is excluded and safety distance is 0.4. The operat-
ing region of the robot team is discretized by the sequence
of uniform square grids {X?} for p € {1,...,4} with res-
olutions h, € {0.2,0.1,0.05,0.025}, each of which contains
145, 3403, 34 344, 416 689 nodes, respectively. All the grids are
within the same update window. We choose €, = +/h, /M.
In computations, we only update values of nodes in the safety
region SP as nodes in X? \ S? indicate collisions and, therefore,
are irrelevant. In addition, we ignore the perturbation added
to SP to avoid excessive computations. In line 24 of Algo-
rithm 1, we choose any single node zg(z) € X&(z) N X! to
represent the whole equivalent set X% (xz) as it is the min-
imizer of (J;. X2 (x) ©P~1(Z). Our algorithm refines grids if
the relative difference between two consecutive value func-
tions v2 and vP_; is less than 10% of the total difference

D D - P P 14 A
between v}, and v, i.e., D, /Dg, < 10%, where D} =

VY wese A2 (08, (), 08, (x)) is the two-norm difference be-
tween v}, and v} . The benchmark v* is the estimate of min-
imal arrival time function computed on the finest grid S* with
resolution h,, = 0.025. To measure approximation errors, we
use nearest neighbor method to interpolate each estimate of
minimal arrival time function v2 into 9% so that both 92 and
v* share the finest grid as their domains. Note that o (z) =
vP (arg mingegs |2 — x||) for every = € S*. Then, approxima-
tion error of 92 is measured by /", g1 d%; (05 (z), v*(x)).
Fig. 6 shows the approximation errors over time. The nth dot
from the left in Fig. 6 represents the total computational time af-
ter n value iterations and the associated approximation error. The
peak at 2 s is caused by the nonlinearity of Kruzhkov transform,
where the initial value 15 is closer to the benchmark values.
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TABLE |
COMPUTATIONAL TIMES ON EACH GRID
Grid index | Grid size | Total time/sec Construction of set-valued dynamics Execution of value iteration
Computational time/sec | Percentage in total time | Computational time/sec | Percentage in total time
1 145 2.21 2.14 96.8% 0.07 3.2%
2 3403 54.35 50.08 92.1% 4.27 7.9%
3 34344 624.56 494.03 79.1% 130.53 20.9%
4 416689 21586.20 6206.59 28.7% 15379.61 71.3%
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Fig. 7. Value iteration time over approximation errors.

Other than this, the approximation errors are monotonically
decreasing over time.

C. Computational Complexity

Algorithms 2 and 3 correspond to two steps: construction of
set-valued dynamics and execution of value iteration. In Fig. 7,
the nth dot from the right represents the time to execute n
value iterations and the resulting approximation error except
the rightmost ones around 250. Fig. 7 shows the time to perform
value iteration exponentially increases as approximation errors
decrease.

Table I summarizes the total time to compute the last estimate
vﬁp on each grid SP and its size. The total computational time

grows polynomially with respect to the grid size. Specifically,
the time to construct set-valued dynamics is linear with respect
to the grid size while the time to execute value iteration grows
polynomially. As a result, most of the total computational time
is spent on constructing set-valued dynamics on the coarse grids
while the time to execute value iteration dominates on the fine
grids.

VII. PROOFS

In this section, detailed proofs of theoretic results in Section V
are provided.

A. Preliminary

In this section, some preliminary properties of Hausdorff
distance are introduced. All the proofs are removed in this
section due to space limitation. Please refer to [42] for details.

The following lemma shows the union of two expanded sets
is the expansion of their unions.

Lemma VII.1: Given two sets A, B C X and n > 0, the fol-
lowing holds (A + nB) U (B +nB) = (AU B) + nB.

The following lemma compares set distances given their set
inclusion relationships.

Lemma VII.2: Given four nonempty compactsets A C B and
C C D, the following relationships hold:

(14)

The next lemma shows the triangle inequality holds for d .

Lemma VII.3: Given three set-valued maps g' : X = [0, 1],
g'(x) is compact for all x € X, [ € {1,2,3}. It holds that
dx(g",9%) < dx(g",¢°) + dx (g% ¢°).

Lemma VII.4 reveals that for two perturbed set-valued maps,
the union of images of fewer nodes contributes to larger distance.

Lemma VIL4: Given two subsets X1, X2 C X, consider two
set-valued maps g1, g2 : X = [0,1]" and perturbation radii
m>0st (x+pB)NX #£0 Vae X, € {1,2}. The fol-
lowing holds for any set-valued map YV : X = X s.t. V() #

0 Vrei:
U gl(i% U

dx(
ze(Y (z)+mB)nx?t ze(Y (z)+n2B)Nx?
<d+o( U 91(Z), U 92(1))-
ze(z+n1 B)NXL ze(z+n2B)NX2
IfX'= X224 Xandn, =y £ 7, we have
dx( U 91(Z), U 92(%)) < dy(g1,92). (16)

Fe(z+nB)NX ze(z+nB)NX

92(%))

5)

Lemma VILS shows that an exponentially diminishing se-
quence subject to diminishing perturbations remains diminish-
ing.
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Lemma  VIL5: A sequence {a,} C Ry  satisfies
ap+1 < v(ap +¢p), where y€[0,1), ¢, >0 Vp>1 and
lim,_, 4 ¢, = 0. Then, lim;,_, { c a, = 0.

B. Auxiliary Bellman Operator G

In this section, an auxiliary Bellman operator G is introduced
to facilitate the analysis of G in Section V-C.

Proof of Lemma V.1: Fix p> 1,z € S” and & € X},(z) C
XP. Without loss of generality, we denote V7 (z)=
{1,...,Np}. It follows from the definition of X%, that
V& (z) ={1,...,N,}. It follows from the definition of S?

that 32’ € S s.t. |z — 2| < h,. Construct & st 7} =

i, ifie{l,... N}

Z; + o — x;, otherwise.

Cleatly, ||z — @'|| < ||z — 2'|| < hyp.

Now, we proceed to show that 7’ € S.Ttagain follows from the
definition of X, that #; = »; Vi € {N,+1,..., N}. There-
fore, we may rewrite 2’ as

o {x ifie{l,...,N,}

! x}, otherwise.

By Assumptions (A7) and (A9), we have Vi € {1,...,N,}
and j € {1,...,N}, ||Z; — ;|| > 0. Since 2’ € S, it follows
from the definition of S that ||z} — 2| > o Vi # jandi,j €
{N, +1,...,N}. This indicates that ||Z} — Z;|| > o Vi#j
andi,j € {N, +1,..., N}.Insummary, we have |Z} — Z;| >
o holds for every i # j, which implies @’ € S.

Since ||Z — Z'|| < h, and T € XP, we arrive at & € (S +
h,B) N XP = SP. O

Proof of Lemma V.2: The first property follows from the
definition of XP. For any pair of i € Vf(%) and T € X?(x),
it holds that &; = z;, theni € VpG(:%).

Now, we proceed to show the second property. Since
both ¢, and h, are monotonically decreasing, Vi € VEH(JJ),
d(z;, X&) < Mi€p1 + hypi1 < Mie, + hy,. It follows from
the definition of VS’ that i € Vf (z). Then, the second property
is proven.

We are now in a position to prove the third property. Through-
out the rest of the proof, given any p > 1, n > 0, and = € SP,
define a value in v? (z) by 77" € v (x). The ith element of 77"
isdenoted by 77" . The grid index p in 77>™ may be omitted when
omission causes no ambiguity. The proof is based on induction
on p. Denote the induction hypothesis for p by H (p) as 77" = 0
forany z € SP,i € VS(x),0 <n < i, and 77" € vE ().

Forp=1,fixx € SPandi € VpG(x) and take n = 0. Since
X9 =0, vi(z) =VO(x). It follows from (10) that 70 =0
for every 70 € v§(z). Moreover, T;(z;) = 0 and X;(x;) = ;.
Now, we adopt induction on n to prove that Til’" =0 for
all z € S' C XY, i€ VF(z) and 0 <n < np. For n=0, it
has been proven. Assume it holds up to 0 <n < n,. Then,
Til’" + Ty(x;) — Til’"fi(a:i) = Til’n = 0 holds for any = € S*,
i € V&(x),and 71" € P (z). Therefore, it follows from (5) that
bl —

7

Assume H(p) holds and let us consider p+ 1. Fix = €
SP+1 and ieV,ﬁ_l(x). By the second property of this

lemma, i € VS (x). Take 70 € vf ™' (x). If « € X, that is,

€ SPHINXP = (S + hy1B) N XPTINXP C SP, we have
Pt (@) = 0P (x) = v (). Therefore, V70 € vb (), it fol-
lows from H(p) that 70 = 0. If 2 € SPT1\ XP, oLt (2) =
Uzexzt (o) 77 (£). Notice that when z € SP+L it follows from
Lemma V.1 that # € SP*1. Then, if # € SPT1\ XP, 9P(3) =
VP(Z); hence, it follows from the definition of V? in (10) that
we have V(z) = 0.1f 7 € SP*T N XP C SP,oP(7) = vy, (Z);
hence, it follows from H (p) that V7 € o7 (Z), 7; = 0. Therefore,
Vi € X2 (z) and 7 € 9P(&), 7; = 0. That is to say, we have
70 =0 for x € SPT1\ X? and 7° € vf"! (). In summary,
79 =0 for every z € SP*, i € VS, (), and 7° € v§ ().
For1 < n < n,, we follow the arguments for p = 1 and it holds
that7* =0 V7" € vE*(x). Then, H(p + 1) is proven and the
proof of the third property is finished. (|

Proof of Lemma V.3: Throughout the proof, we adopt the
shorthand notation v = v2. Without loss of generality, let
VE(x) ={1,..., Ny} for some 0 < N, < N and V' (2/) =
{1,... ,NIQ} for some 0 < Nz/a < N,. Specifically, when NV, =
0 (resp. N}, = 0), VS (x) = 0 (resp. VS () = ).

Notice that when IV, = N, i.e., all robots are in their goal
regions at state x, it follows from the third property of Lemma V.2
that Egm,(z) = Ey(z) = [0,1]Y D Egm,(2) for any 2’ €
X7 (), hence the lemma trivially holds. When N,, = 0, it holds
that N;) =0, z = 2/, and the lemma also trivially holds. In the
following proof, we restrict 1 < N, <N — 1.

The lemma is proven by induction on m. Denote the induction
hypothesis for m by H(m). Then, H(0) trivially holds. Assume
H (m) holds and let us consider m + 1. It follows from (7) that

Egmiiy(2) = A(x) + (1 = Ar(2)) o ] Egmo(@)

zeXr(z)

U  Egmo@).

FeXr(z)

Egmi1y(2') = Ar(2') + (1 = Ar(a')) o

First, we focus on the unions on the right-hand side, especially
the one-hop neighbors XP. ~ ~

Claim VILI: For all ' € XP(a'), 3% € XP(x) st. &' €
Xp(2).

Proof: Fix ' € X?(z') and define & € X” s.t.

- x;, ifie{l,...,Np}

Ty =
~
T,

We proceed to show & € X?(x) = ([T, X”(x;)) N SP.

For i € {1,...,N,}, we have X”(x;) = {x;}; therefore,
T; € le(xz) For i € {N, +1,...,N}, it follows from 2’ €
XP(x) that x; =2 Then, i; =i, € XP(z}) = XP(x:).
Therefore, & € [, XP(z,).

Notice that #/ € XP(z') C SP, thus 37 € Ss.t. |# — 7| <
hy. Define 3 s.t.
zi, ifie{l,...,N,}

otherwise.

i ¥;, otherwise.
Clearly, |7 —g| < ||#' — 7| < hp. Since § €8S, it
holds that |5 — ;]| = [|7; — gjll = 0 Vi,j € {Np +

1,...,N},i#j. For i€ {1,...,Np,}, we have &; =z, €
X&+ (M€, + hyp)B. Then, by Assumptions (A7) and (A9),
we have |9; — g;|| = ||z — g;]| >0 Vie{l,...,Np} and
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je{l,...,N}. Therefore,§ € Sand Z € (y + h,B) N XP C
SP. Thus, & € X?(z) is proven.

Now, we proceed to show #’ € X% (). By the first property
of Lemma V.2, Vf(iﬂ) ) Vf(x). Then, for i € V'\ VE(&) C
V\VS(x) ={N,+1,...,N}, & = Z;. By the definition of
X%, &' € XP(Z) and, therefore, the claim is proven. O

It follows from Claim VILI and H(m) that Vi’ €
XP(2'), 3z € XP(z) st Egmy(i') C Egmy(Z). Hence,
Uzexr@n Eemo(@) € Usexr(2) Eemo(Z) and we have

Egmii,(2') CAT(2') + (1 — AT(2')) o U Egmy(T).
zeXP(z)
17

Next, we prove that the right-hand side of (17) is a subset of
EGm+1U(SC).
Claim VII.2: The following relationship holds:

AT(2') + (1 = AT(2')) o U Egm,(Z)
FeXr(x)
CAT(x)+ (1 —Ar(x)o [ Egno(d).

FeXr(x)

Proof: For any &€ XP(x) and 7 € Egm, (&), construct

st = (1—e ") + e rrry, ifiG{NZ’,+1,...,Np}'

Ti, otherwise
Since 7 = 7, 7 € Egm,(Z). Recall Ar(z') = U(E(TP(x')))
if 7 1,...,N/
and A7;(2') = 0, B IZE{.’ N
1 —e "r, otherwise.

Then, the following holds:

Ar(2)+ (1 — A7(2)))oT

= |(1 —67'%)1[\/!)_]\/;7 + €7KP1NP_N/p oT
_(]. — 67'{1’)11\[,1\[]) efnplNin
Ony, 1y,
= On,—ny, + | In-n, |oT
_(1 — 67'%)]_1\[_1\[p eiﬁplN_Np

=A7(z)+ (1 — A7(x)) o 7.

In summary, for every Z € XP(x) and 7 € Egm, (&), there
is 7 € Egmy(Z) st. AT(2)) + (1 — Ar(2')) o7 = A7(2) +
(1 — A7(z)) o 7. Hence, the proof of the claim is finished. [J

Together with (17), Claim VIL2 indicates Egm+1,(z') C
At(z) + (1 - A71(2)) 0 Ug'ce)"(p(z) Egny(T) = Egm+1,().
Then, H(m + 1) holds and the lemma is proven. O

Proof of Lemma V4: Fix a pair of x € SP and 2’ € X% (x).
Without loss of generality, let VS (z) ={1,...,N,} and
V§(a') ={1,...,N]} for some 0 < N < N, < N. Specifi-
caléy, when N, = 0 (resp. N}, = 0), V5 (z) = 0 (resp. VS (2')
= ).

Notice that when N, = N, by the third property of
Lemma V.2, E,» (/) C [0,1]Y = E,» (z) for any 2’ € Xp(z)
and 0 < n < 7, and the lemma trivially holds. When N, = 0,
it holds that N, = 0 and = = 2, and the lemma also trivially
holds. In the following proof, we restrict 1 < N, < N — 1.

The lemma is proven by induction on p. Denote the induction
hypothesis for p by H(p) as E,»(2") € E,»(x) holds for all
z €SP, 2’ € XP(x),and 0 < n < np.

For p = 1, it follows from the definition of V° that B, (z) =
Byo(x) = [0, 1N x {1}NN 2 [0, 1M x {1}V =
E,1(a'), where Eyi(z) 2 ({V'(z)} +RY) N[0,V is the
epigraphical profile of interpolation function V*!(z). Since
this holds for every z € S! and 2’ € X} (z), it follows from
Lemma V.3 that E,1 (z) 2 E,1 (') holds for all 0 < n < 7,
Hence, H (1) holds.

Assume H (p) holds for p > 1. For p + 1, pick a pair of = €
SP+1 and 2’ € X% (x). There are four cases, which are as
follows:

Case 1: x,2' € SP;

Case 2: x € SPT1\ SP and 2’ € SP;
Case 3: x € SP and 2/ € SPT1\ SP;
Case 4: z,x' € SPT1\ SP.

Claim VIL3: E p+s (a') C Epir (2) holds for Case 1.

Proof: Tt follows from the definitions of vgﬂ and oP that
Evg+1(w) = Em(z) = Ey (z) and Evg+1(x’) = Em(2) =
Ey (2'). By H(p), we have Epr (2') = Eyr (a') C
Evgp (:L‘) = Evg+1 (S(}) Then, Evg+1 (I/) g Evg+1 (J}) holds for
Case 1. 0

Claim VIL4: B pis (') C E,pir (z) holds for Case 2.

Proof: Notice that Ev5+1(x) = U£6X2+1(l_) Es(Z) and
Evg+1($/ )= By (2'). Now, we are going to construct & €
X (x) s.t. € SP and prove that Eyp (') C Er(Z). For
i€ {Nps1+1,...,N}, let & =a;; for i € {1,...,Npi1},
pick#; € X& N X?.Sincez’ € SPand 2’ € X5 (), we have
T =x; =, € X! Vie {Npp1 +1,..., N} Therefore, we
have # € X2 (x) and & € SP.

Then, we show that 2’ € X% (z). Consider j € {1,...,N}
st.ij ¢ X + (Mje, + hy)B. By Assumption (A7), we have
7 ¢ X§ + (Mjeps1 + hpi1)B. The fact that & € X5 ()
implies z; € XZG + (Mi€p+1 + hp+1)B Vi € {1, - ,Np+1}.
Therefore, j € {Np41 +1,..., N}and, hence, &; = x;. More-
over, since 2’ € X%"'(x), it follows from j € {N,4 i +
L,..., N} that 2, = z; = ¥;. This holds for every j € V s.t.
Zj ¢ XC + (M;e, + hy,)B. By the definition of X7, we con-
clude that 2’ € X% ().

By utilizing H(p), it follows from 2’ € X% (Z) that
Evg+1 (a') = Evgp () C Evf{p (Z). Since T € SP, Evf{p () =

Eg» (Z). Moreover, it follows from & € X1 (z) that By (%) C
Uzexzst (o) Bor (2) = Ep+r (). In summary, E . (2')
Ep (x). Then, E per (2') C Ep+r (z) holds for Case 2. [J
Claim VILS: E,p+i (2') C E,pir (z) holds for Case 3.
Proof: Notice Evg+1(x) = Ep(x) = Evgp (x)
Evg+1<x/) = Uj,exgﬂ(m,) Eg (7). For each # € X0 ('),
following two cases arise.

and
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Case 3.1, &' € SPT1\SP: Then, oP(¥')= {VP(N/)}.
Since & € XM (2'), Eup(#) = Evo (&) = [0,1]Ve+1 x

{1}V Nos1 | Tt follows from N1 < Npya that [0, 1)Vp+1 x
{1}V "Nosr € [0,1])Np+1 x {1}N-Ne+1, By the third property
of Lemma V.2, [0, 1] x {1}¥~N» C E,» (). Therefore, we
have Egp (') C E p1 ().
0

Case 3.2, ¥’ € SP: Then, E»(2') = E,» (¥'). Since 7' €
X§+1(x’), thus for any ¢ € {Np41 +1,..., N}, we have T, =
v =x; ¢ XE + (Mi€ps1 + hpi1)B. Using the second prop-
erty of Lemma V.2, we have &} = 2; Vi€ V\ VS (z) CV\
Vi (@) ={Npp1 +1,...,N}. Therefore, # € X7, (x). By
H(p), Ev% (i‘/) - Evg (33) = Evg+1(x). That is, Eﬂp(i‘/) -
E,Ug+1 (.I‘)

In summary, V&' € X2 (2/), B (#) C E,Ug+1((E). Then,
Byt (x') C Eper («) holds for Case 3. O

Claim VIL6: E,p+: (2") C Eper (x) holds for Case 4.

Proof: Then, Eper (x) = Uiexgﬂ(z) Ew (2)
Epe (') = Ui,€X§+l(w,) Ez0 (). Consider 2/, and there
are two scenarios, which are as follows.

Case 4.1: Jj € {N} , +1,...,N} st 2 € XPT1\ X

and

Then, V#' € X2t'(2), we have i =a € Xp+1 \

X?. This indicates '€ SP*T\ SP. Followmg Case

31, we have F p+1( ") =Uspexrttp) EBor (&) =
Pl (g

Uz eXP+1(oc)([0 1] P+l X {1}N ”“) = [0’1]N1’7+1 X
{1}N Np_*_1 and [0 1] p+1 % {]_}N Npt1 g EU8+1 (.’E) Notice

that N,,; < Npy1. Then, Evg+1(m/) - Evg+1(w). Hence,
Evg+1( ) CE p+1( ) holds for Case 4.1.

Case 4.2: Vje{N, . +1,....,N}2}€X? while
Je{l,....N,,} st ale€ X;."“ \ XP. We  show

that 37 € X2 () st #e€SP. Since 2/ € XB (),
zi=a,€ XPCXP Vie {(Nyy1+1,...,N} C

{N,.,,+1,...,N}. By picking ;e XZnX! for
iE{l,...,Nerl} and 7; =x; ViE{Nerl—l—l,...,l},
we have T € X%‘H(aj). In addition, since = € SPT!, we have
JyeSsit |z —y|| < hpy1 < hp. Define gs.t. g, =2, Vie
{1,...,Nps1} and §; =vy; Vi€ {Npp1+1,...,N}. Then,

S N

15— 3l = /Sy i1 (s — )2 < lly = 2] < hopoa.
Then, Vi,j € {Npt1 +1,....N} 7 — 95l = llyi — vl =
o. Moreover, it follows from Assumptions (A7) and (A9)

that Vi € {1,...,Nps1} and je{l,.... N}, |5 —g;ll =
||Z; — ;|| > 0. This indicates that y €S and, hence,
i € SP. By the definition of X% X2H (z)= X2 (7).

This means we can replace X% '(z) with X2 (%) and
degenerate the current case to Case 3. Then, by Claim
VIL5, H(p+1) holds for 2/ € SP*1\SP and 7 € SP.
Thus, Eng(CL’/) = Ufc’eXZ’fl(z/) E;» (i‘/) - Ev%p (i‘) -
Ufexg“(x) Eg (2) = Evg“ ().

By the two cases discussed, 1 (2') C Ep+ () holds for
Case 4. ]

By the four cases above, Evg“(a:’ ) C Evg+1(x) holds for

all z € SP*! and 2’ € X% (). By Lemma V.3, H(p + 1) is
proven. Then, the lemma is established. O

Proof of Corollary V.1: Fixp>1,0<n <n,, x € SP and
z' € X5(x). On one hand, by Lemma V.4, V2’ € X1.(z) C
XP(x), E,p(2') C E,e(x). On the other hand, x € X},(2);
thus again by Lemma V.4, we also have E,»(x) C E,r(z'),
which indicates that E,» (z') = E,» ().

Since Lemma V.3 holds for every m > 0, the aforementioned
proof can be directly extended to G™v! for any m > n,. By
Theorem V.1, v2 exists and vZ (z) = Lim,,—, 4. G™vf (z) for
any x € SP. Hence, the equivalence Egm,z(x) = Egmz(2')
can be further extended to E,» (x) = E,» (v) by taking m —
~+o0. ]

Proof of Lemma V.5: Wefixp>1,0<n <nyandx € SP.

Recall that
Eguy(z) = At(x) + (1 - Ar(z)) o | Eul
FeXr(x)
Bgo(x) = Ar(x) + (1 - Ar(x))o | ) Eu().
zeXP(z)

The difference of G and G solely depends on XP and X?. The
proof of either of the two equivalences automatically proves the
other. ~ . .

By the definitions of XP(x) and XP(z), XP(z;)=
XP(x;) VieV\V§(z). Therefore, Vi e XP(x), 3Jie
[Licy XP(2) st & =a; VieV\ VY (x). It follows from
the definitions of X7 and V¢ that #; = z; € X& + (Mie, +
hp)B Vie Vf (x). By Assumptions (A7) and (A9), we see that
|Z; — %;]| > 0 VieV§(z) and j €V st i # j. It follows
from & =3; VieV\VS(z) and &€ XP(x) CSP that
| — ;|| > o Vi,j € V\VF(x) st i#j. This indicates
Z € SP. Therefore, it follows from the definition of XP that
i€ XP(z). Since VS(i) =Vf(z), then & e X}(Z). By
Lemma V.4, E,» (&) C E,» (). We see that this holds for all
e XP(x), ther~1 Uief(p(x) Eyp () C Usexr(a) Bor (7).

In addition, X7 (z) € XP(x), we have Uz v () Bz (T) ©
Usexr(a) Eop (2). It is concluded that Uz o,y Eur (2) =
Usexr(e) Eoz (2) and Eg,z(z) = Eg,» (). Since this holds
for every p > 0, 0 <n < n, and x € SP, the first part of the
lemma is proven.

Since Lemma V.3 holds for every m > 0, the aforemen-
tioned proof can be directly extended to G vf for any m >
i, By Theorem V.1, the fixed point v, exists and vZ (z) =
Limy,—4+G™vf (z) for any x € SP. By the equivalence of
G and G, we have v () = Lim,, 4+ G™v§ (x) and GuE, =
vh = GuE,. Therefore, Eg,» (¥) = Eg, » (7) and the second
conclusion is proven. |

C. Contraction Property of G

In this section, Theorem V.2 shows that the transformed
Bellman operator G in (5) is contractive with factor e="».

Proof of Lemma V.6: We first consider z € X\ S.
Since S is closed and «), is monotonically decreasing,

then there exists ¢ > 0 s.t. Vp >q, (z+apB)N Sp-l —
(z+apB)N (S + hy_1B)NXP~L =0 This renders
at  Uze(ota,pnxe Epor1(Z) ={1n}. In addition, it
also indicates that (2 + ,B)NS? =0. This renders
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at Uzewa,8)nxr Foz (2) = {1n}. Therefore, we have
b,(z) = 0. This holds forall x € X\ S.

Then, we fix z € S. The following shorthand notations are
used throughout the proof:

Ay (x) £ U U

Fe(ata,B)N(SP\XP 1) F/e X P (7)\XP1

Afy(z) £ U U Egpa (@)

ze(ztapB)N(SPA\XP1) #e XD (2)nXP-1

Afy(x) £ U

FE(wtapB)N(XP\(SPUXP-1))

YHOENEY

ze(ztap,B)NXpP-1

BP(x) £ U

ze(x+ap,B)NXP

Eypi (%)
By 1 (3)
Er (7).

We drop the dependence of the aforementioned notations on x
for notational simplicity. Now, we are going to simplify A7,
Al,, A%, and AB. From the definitions of V? and o2 !, the
following holds:

A = U U

Fe(v+a,B)N(SP\XP1) Fe XD (7)\XP1

= U Eyv (%)

ze(z+ap,B)N(SP\XP1)

A11)2 = U U Evfgl (55/)

ze(z+apB)N(SP\XP1) #e X T (2)NXP-1
Afy = {1n}.
By the definitions of P and o2, !

AL = U B (3) = U Ep1 (7).

ze(z+a,B)NXr-1 ze(z+a,B)NXr-1

By Assumption (A8), we have (z + o, ) N XP~! = () and
AB £ (. Tt follows from the third property of Lemma V.2
that VZ € (z + ap,B) N XP, Eyy 1 (&) C B (#). This indi-
cates that A7, C BP. In addition, it trivially holds that A}, C
BP. By the first inequality of (14) in Lemma VIL2, dg (A}, U
Al U AT U AS BP) < dy(AY, U AS, BP).

Claim VIL7: There is ¢>1 st Vp>gq, if x; € X©,
z; + apB C X + (Myep + hy)B; if vy ¢ XE, (2 + a,B) N
(XE 4 (Micy -+ hy)B) = 0.

Proof: By Assumption (A7), we have dg; > 0 s.t. Vp > qi,

a, < Mie, + hy. Then, for any p > gq;, if v, € X&, z; +
ozpB C XZ + (M;ep + hy)B. Tt again follows from Assump-
tion (A7) that foreachi € Vst x; ¢ XZG, there exists ¢; > 1
s.t. Vp > q;, (2 + a,B) N (XE + (M;ep + hy)B) = 0. Then,
the desired ¢ is defined as ¢ = max;cy g;. O

Claim VII.8: For p > q and any pair of Z € v + a8 and
i€ VS (), z € X7

Proof: Foreveryi € Vf(i),fsi € X& + (M;ep + hy)B. As-
sume z; ¢ X It follows from Claim VIL7 that (z; + a;,8) N
(XE + (M;e, + hy)B) = (). This contradicts the fact that #; €
XE& + (M;ep + hy)B. Then, z; € XE. O

Efol (i’/)

Fix p>q and T € (z+a,B)N(SP\ XP 1)
st. XE(@)NnXPt£Q Define & st &=

i, if #; € XP7!

argming .y p-1 |Z; — a;]|, otherwise.

Notice that # € XP~L. It follows from the definition of X?P~!
that | &; — x4]| < hp 1 < @, Vist.Z; ¢ X' Sinces € x +
B, wehave || — x| = || — @il < o Vist.d; € XP
Then, it holds that & € x + o, B.

Claim VIL9: Forp > q, & € X¥ ().

Proof: Since 3i’ € X7,(Z) N XP~1, it follows from the defi-
nition of X% that#; = 7, € X*™" Vie V\ VE(Z). Then, the
following two properties hold for : (a) Vi € V \ V5 (&), Z; €
XI5 (b) 3i € VS (3) st & € XP\ XP'. Property (b) is a
result of 7 € SP\ XP~ 1,

Fix j € V s.t. &; # &;. Now, we are to show ; € X +
(Mjep—1 + hp—1)B. By properties (a) and (b), j € Vf(f). It
follows from Claim VIL.8 that z; € X ]G . It follows from Claim
VIL7 that 2; + oy, B € X§ 4 (Mje, + hy,)B. Therefore, &; €
z;+ a,B C X7G + (M€, + hy)B. By Assumption (A7), it
renders at j?j S XJG + (Mj€p,1 + hpfl)B.

This holds for all j € V s.t. £; # &;. By the definition of
XP7', we have & € X% (7). O

Claim VIL10: Thereisq > 1s.t. A]l’2 - Ag holds for all p >
! Proof: If A, =0, the claim trivially holds. Throughout
the proof, assume that 37 € (z + o, B) N (SP\ XP71) st
XB(7) 1 X2 £ ),

P1ck any ¥’ € X7 (z) N XP~1. It follows from Assumption
(A7) that X2 (%) C X2 '(2); then i e X27N(%). Tt follows
from Claim VII.9 that 32 € X2 7'(%). Since 7' € X% (), by
the definition of X% !, we have # € X% ' (). Then, by Corol-
lary V.1, E,Uafl(i'/) = Evg 1 (2). S1ncex € (z+a,B)NXPL,
then E ,-1(7') C A5. This holds for every pair of & € (x +
ap,B) N (SP\ XP1) and 7’ € X0, (#) N XP~1. Then, A}, C
AL, O

It follows from Lemma VII.2 and Claim VIL10 that
bp(x) < dp (A7, (x) U A5 (x), BP (2)) = d (A5(x), BP (x))
holds for p > g(x). Recall «,>h, and Assumption
(A8). Tt follows from Theorem V.1 that lim, i by(z) <
lim, 4o di(A5(z), BP(x)) = 0. Since this holds for all
x € X, the lemma is proven. O

Proof of Lemma V.7: Take §' > 6 = dg (A, B). Then, A C
B+ §Byx,B C A+ §By. Focus on the first relationship and
we want to show

(1-A7(x)) o AC (1 —A7(x)) o B+e "d'By. (18)

This is equivalent to show that Ya € A, 3b€ B s.t. ||(1 —
A1(z))oa— (1 —A7(x)) o bl < e "»d.

We start with A C B + ¢§'By, which implies Va € A, 3V €
Bs.t. ||a — V|| < ¢'. Fix a and V. Denote the one-hop neighbor
of x that attains b’ by 7, i.e., 37 € X?(z) s.t. V' € E,» (i). Con-
struct b € [0, 1]V s.t. b _al,lfz € VS (&); by = b, “otherwise.
Since V' € Ep (Z), 31 € v (T) s.t. b’>-7' thatls b, > 7; for
all 7 € V. Specifically, by the third property of Lemma V.2, for
i€ VS(T),b;>7=0.Since b =a; >0=1; Vie V()
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and b; =0, > 7, VieV\ VPG(:%), we have b = 7 and, thus,
be Evg; (5;‘)

Now, we have [(1— A7(z))oa— (1 —A7r(x))ob|? =
Zie}/\vpc(i»)(l — A7;(2))?(a; — b))%, By the first property of
Lemma V.2,V \ VS (x) 2 V \ VS (Z). Then, it follows from (8)
that 1 — Ary(x) = e "» Vi eV \ VS (Z). Therefore

(1 —AT(z))oca— (1 —A7(x)) o b||2

=(c)? Y (a-b)
iEV\VS ()
< (e la =¥ < (e d)?.

Since thisholds Va € Aandb € B, then (18)is proven. A similar
relationship for B C A + ¢'B can be obtained by swapping A
and B

(1-A7(z))oBC (1 —A7(z))o A+e "d'By. (19)

Combining (18) and (19), we arrive at dy((1 — A7(x)) o
A, (1 —A7(z)) o B) < §e "». Since these two relationships
hold for all ¢’ > ¢, the lemma is then proven. O
Proof of Theorem V.2: Fix « € SP. For simplicity, shorthand
notations listed below are used in the rest of the proof

A@)= |J Eup U Ex@
eXP(x) zeXr(zx)
A@)= | Eux@), = U EBEx@.
zeXP(z) zeXP(z)

Since translating each term in the Hausdorff distance with a
common vector A7 (z) does not change the distance, we focus
on the discounted terms in (7). The following holds:

dH(EGva (I)vEGvi(x))
=dy((1—Ar(x)) o A(z),(1 — Ar(z)) o

< e "rdy(A(x), B(x))
where the last inequality follows from Lemma V.7. By Lemma
V.5, the rlght hand side of the above may be rewritten as
e *rdy(A(x), B(x)). Taking supremum over all z € S? on
both sides makes the left-hand side yield to dsr (Eg,», Eg,z ).
Then, the following holds:

dSp (EGvﬁa EGUQ) S einpdsp (A(:E)7 B(IE))
It follows from (15) in Lemma VII.4 that
ds» (A(x), B(x))
< dSP( U Evﬁ(i‘)v U Ev&(i‘))
ze(x+a,B)NXr ze(z+ap,B)NXP

Notice that VZ € X? \ SP and ' € XP?, it holds that E,» (%) =
{1y} € E,»(2'). Then, the aforementioned inequality can be
extended to the following one:

ds» (A(z), B(x))
U Eyp (@), U

ze(z+a,B)NXP ze(z+ap,B)NXP

U  Ez@, U Ex@)

ze(x+a,B)NXP Te(z+a,B)NXP

B())

(20)

< dSP( Ev&(j))

21

< dx(

Combine (20) and (21), then (11) is proven. Inequality (12) is a
direct result of (16) in Lemma VIIL.4. O

Proof of Lemma V.8: For each grid XP, from line 30 of
Algorithm 1, one can see that the value iterations on grid X?
terminate when (1) n > ny; or (2) the fixed point vZ, is reached.
Two cases arise, which are as follows.

Case 1: Value iterations terminate before the fixed point is
attained, i.e., vi = v} . Notice that Vo € XP \ SP, E,p(2) =
E,r (x) = {1n}. Then, the following holds:

dx» (Evf{p 5 Evﬁ)

= max{dsp (la([;vfipf1 ’ EGfo)a dXP\S]‘7 (Evf,’,p ) E’ufo)}

= ds» (E‘(Grvszr1 ’ EGU&)'
We apply inequality (12) in Theorem V.2 for n,, — 1 times to
dx»(E,; p , E,» ), then the following inequalities are obtained:

pr (Evﬁ Evg’c) = dSP (‘E(szlr1 ) EGU&)

e dso (B Eyr) = e "dxe(Egor , Egoz)

< e < e—(np—l)f-cpdsp (EGuga EGvfo)
<em™tdx( ) Ep@, U
ze(z+apB)NXP ze(z+ap,B)NXP

where the last equality is a result of (11) in Theorem V.2.
By Lemma VII.3, the right-hand side of the above becomes

dx ( U E]Pf;gil (), U Eup (2))

ze(x+a,B)NXP ze(r+a,B)NXP

< dx( U Epgp (2), U

ze(z+ap,B)NXP ze(z+a,B)NXP

+dx( U Epgp1 (2), U By (7))

ze(z+ap,B)NXP ze(x+a,B)NXP

E,r(2))

Emfgl ()

where the second term is b, in Lemma V.6. As for the first term,
it follows from (16) in Lemma VII.4 that

dx ( U Em:;;{l (@), U

ze(z+ap,B)NXP ze(x+ap,B)NXP

< dx» (E]P,ﬁp—ll , E]P,ﬁp—l).
'le7 o0

Epgp1 (7))

We focus on the right-hand side of the aforementioned inequality
and proceed to show that

dx» (E]P’ﬁﬁ;il , E]P’f;i'fl) < dxp-1 (Evﬁ;il , Evi—l). (22)

For each x € XP, if z € XP~1, it follows from the definition
of P that E]P’ﬁf;;{l (x) = Eﬁﬁ;fl (z)and Ep o1 (z) = Egpr (2).
By the definition of 7, Eﬁﬁ;fl (x) = Evﬁ;fl (z) and Ep-1(2) =
E p-1(z). Therefore

dxp-1 (E]P’ﬁﬁ;il R
If zeX?P\ XP-1 it follows the definition of P that
EJP’@EL;{1 (z) = Uz'exg(z) E@ﬁ - (') and Emg’gl(x) =
Usrext () Ege-r (27). Foreacha' € XP(z),ifz’ € XP\ XP~1,
= Fyp1(2') and Eyp (2') = Eypr(2)).

Otherwise, i.e., ' € XP?, it follows from the definition of © that
Eﬁﬁ;il () = EU{;;I (z') and E@g);l (') = Evg)o—l (z). By the

Epgr i) =dxr1(Epi ,Ep1).  (23)

we have E_, 1 (')
P
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third properties of Lemma V.2, Ey,1(2') C E »1 (2') and
L
Eyp-1(z') C E p-1(2'). Then, we have
pr\prl (E]P)f);g;il 5 E]P"f)gfl)
=dooori (U Epr @), U Ep@))

z'eX P (z)nXP

—dxs 1 (Eyp1 ,Ep).
np_1 o0

' eX P (x)nXr

Then, (22) is a result of (23) and the aforementioned inequality.
Therefore, inequality (13) is obtained for this case.

Case 2: The fixed point is reached, i.e., v%p = v?,. The left-
hand side of (13) is zero and it is trivially true.

In summary, the lemma is proven. 0

D. Proof of Theorem IV.1

We set out to finish the proof of Theorem IV.1. For each grid
XP, we distinguish the following two cases.

Case 1: p = Dy for some k > 0. We look back to Djth
grid and apply Lemma V.8 for Dy, — Dy, times

dxr (Evlg ,Ep ) < ’ypdxp—l (Evg—l , Evp—l) + bp
np o0 Np-1 o0

< 'Ypfypfldxl’*2 (Evg*’; ) EUQ*Q) + 'Ypbpfl + bp

Di+1 Dy
H Yg)dx i (E Dk Z ( H Vr)bq

q=Dj+1 N q=Dp+1 r=qg+1
where b, is defined in Lemma V.6. By Assumption IV.1,

D D )
Hq "Blkﬂ vq = exp(— . "Blﬁl Ngkq) < 7. Since Djyq —
Dy, < D and Y <1

Dyi1

7Ev£k) +

dek+1 (E D1, B Dk+1) < ydxp, (E D,C Evgk)
Vnp
Dy+D
+ > by
q=Dj+1
By Lemma _V.6, by -0 as ¢— +oo; hence
limy s o0 Yoty 1 bg = 0. Therefore, by Lemma VILS,

hmkﬁ_._oc dXD,c (E Dk E Dk) =0.

Case2:p # Dy foranyk > 0.Then, 3k > 0s.t. D +1 <
p < Djy41. We apply Lemma V.8 for p — Dy, times

dXP(EufpryE H Yq dXD,C (E Dk E Dk)

qg=Dy+1
P Di41
+ Z H Ye)bg < dxco, (B, o ,E,p.)+ DBp,
q=Dy r=q+1
where Bp = Supgspt1 bg- It follows  from  Lemma
V.6 that lim, . . B, =0. Hence, by Lemma VILS,

E,)=0.

Combining the aforementioned two cases, we may rewrite the
result as limy, 4 o dxr (Eyp ,Ev ) = 0. Pick 2 € X. By (16)
in Lemma VIL4, the f0110w1ng holds:

dH( U Ev%p (5:)7 U Evﬁ(i‘))

ze(x+npB)NXP ze(x+n,B)NXP

limpﬁ_i_oo pr (E’ng y

< dxr (Ev% ,Evg).

Take the limit p — 00 on both sides, then the aforementioned
relationship yields

Jdn( U
Fe(x4h,B)NXP
Since this holds for all z € X

Jmodx( U By (@),
Fe(z4h,B)NXP

By, U Be@=o

Fe(z+hyB)NXP

U EBx@)=o.

#e(z+h,B)NXP
By Theorem V.1, pgi}rnoo Uie(w_i_hpg)ﬁxp E,» (Z) exists for any

x €X and equals to E,-(z). Hence, it holds that Vz €
X, Lim Uzc(pin,gynxe Evz (2) = Ev(2). Then, the theo-

p—> 00
rem is proven.

VIIL.

In this article, a numerical algorithm is proposed to find the
Pareto optimal solution of a class of multirobot motion planning
problems. The consistent approximation of the algorithm is
guaranteed using set-valued analysis. A set of experiments on
an indoor multirobot platform and computer simulations are
conducted to assess the anytime property. There are a couple of
interesting problems to solve in the future. First, the proposed
algorithm is centralized. It is of interest to study distributed im-
plementation. Second, it is interesting to find more efficient ways
to construct set-valued dynamics and perform value iteration.

CONCLUSION
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