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Abstract
Many important problems in astrophysics, space physics, and geophysics involve flows of (possibly ionized) gases in
the vicinity of a spherical object, such as a star or planet. The geometry of such a system naturally favors numerical
schemes based on a spherical mesh. Despite its orthogonality property, the polar (latitude-longitude) mesh is ill
suited for computation because of the singularity on the polar axis, leading to a highly non-uniform distribution of
zone sizes. The consequences are (a) loss of accuracy due to large variations in zone aspect ratios, and (b) poor
computational efficiency from a severe limitations on the time stepping. Geodesic meshes, based on a central
projection using a Platonic solid as a template, solve the anisotropy problem, but increase the complexity of the
resulting computer code. We describe a new finite volume implementation of Euler and MHD systems of equations
on a triangular geodesic mesh (TGM) that is accurate up to fourth order in space and time and conserves the
divergence of magnetic field to machine precision. The paper discusses in detail the generation of a TGM, the
domain decomposition techniques, three-dimensional conservative reconstruction, and time stepping.
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1 Introduction
Objects in the universe tend to assume a spherical shape
owing to the central nature of the gravitational force. Com-
mon examples include globular star clusters, stars and
stellar-like objects, planets, and the larger planetary satel-
lites. Modeling such objects’ interior, surface, or atmo-
spheric processes is most conveniently done in a spher-
ical coordinate system because it is perfectly adapted to
the shape of the object. A three-dimensional spherical co-
ordinate system has radial distance from the center of the
sphere as one of its coordinates. In a spherical polar coor-
dinate system the two remaining coordinates are the po-
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lar angle, or co-latitude, and the azimuthal angle. Imple-
menting a computational mesh based on the polar spher-
ical system incurs only a modest increase in algorithmic
complexity comparedwithCartesianmeshes because both
meshes are logically orthogonal. Unfortunately, this sim-
plicity comes at a price: spherical polar meshes have a sin-
gularity on the polar axis where the planes of constant az-
imuth converge to a single line. As a result the sizes of the
computational zones become progressively smaller toward
the poles. A polar mesh therefore provides a very non-
uniform coverage of the surface of the sphere, which is a
highly undesirable property. Because the time step used in
a simulation is proportional to the smallest dimension of
the zone, a simulation based on a polar mesh is quite inef-
ficient.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s40668-020-00033-7
http://crossmark.crossref.org/dialog/?doi=10.1186/s40668-020-00033-7&domain=pdf
mailto:vaf0001@uah.edu


Florinski et al. Computational Astrophysics and Cosmology             (2020) 7:1 Page 2 of 24

Polar singularities can be avoided by using a composite
mesh, consisting of multiple partially overlapping patches
of structured mesh, where each patch is singularity free
(Phillips 1959; Browning et al. 1989; Kageyama and Sato
2004; Feng et al. 2010; Usmanov et al. 2012). In this ap-
proach the different meshes must be synchronized in their
regions of overlap, which involves interpolation and could
result in a loss of accuracy or conservation. Another ap-
proach, first introduced in the work of Sadourny et al.
(1968), uses a mesh that covers the surface of the sphere
without gaps or overlaps, known as a tesselation. Each
“tile” in the tesselatation is a spherical polygon such as a tri-
angle, a quadrilateral, a pentagon, or a hexagon. The lines
connecting adjacent vertices on the sphere are usually (but
not always) great circle arcs, which are geodesic lines on
the sphere (hence the name, “geodesic mesh”). A well cho-
sen tesselation method can provide a nearly uniform cov-
erage of the surface of the sphere which greatly improves
computational efficiency.
A geodesic mesh is constructed from a regular polyhe-

dron (Platonic solid) inscribed inside a sphere used as a
template. The most common method of generating such
a mesh is to project the edges of the polyhedron to the
sphere and recursively subdivide each spherical polygon
into smaller polygonal faces until the desired level of dis-
cretization is achieved. A cube can be used to generate a
cube-sphere mesh whose faces are quadrilaterals (Ronchi
et al. 1996; Koldoba et al. 2002; Choblet et al. 2007; Put-
man and Lin 2007; Ivan et al. 2015; Ullrich and Taylor
2015). Such a mesh is topologically Cartesian within each
of the six faces of the cube, requiring special treatment
only in the vicinity of the eight corners. It is also possible
to construct a mesh out of triangles using an octahedron
(Feng et al. 2007), dodecahedron (Nakamizo et al. 2009), or
an icosahedron (Giraldo 1997; Pudykiewicz 2006; Bernard
et al. 2009) as the base solid. A variation of this approach
uses a hexagon based dual tesselation, obtained by replac-
ing the vertices of the triangular mesh with face circum-
centers and vice versa (Heikes and Randall 1995a; Du et al.
2003; Feng et al. 2007; Miura 2007; Florinski et al. 2013).
Non geodesic tesselations also exist; one prominent ex-

ample being the HEALPix mesh used for numerical anal-
ysis of astrophysical data on the sphere (Gorski et al.
2005). For three-dimensional problems the tesselation is
extruded radially, producing a three-dimensional spheri-
cal geodesic mesh. A 3D mesh based on a geodesic tes-
selation has a very useful property that some of its faces
(the so-called r-faces, see below) are flat, which greatly
simplifies the numerical scheme. By contrast, all faces of
non-geodesicmeshes are curved, making suchmeshes less
convenient for use with 3D problems.
In this paper we describe a powerful new framework for

finite volume simulations on a triangular geodesic mesh
(TGM) with second, third, and fourth orders of accuracy.

At this time the software is developed to solveMHD prob-
lems with up to fourth order of accuracy in space and
time, while conserving the divergence of themagnetic field
down to machine precision. Several of the underlying nu-
merical algorithms have been previously published and we
refer the interested reader to these papers. However, im-
plementation of these algorithms on a geodesic mesh re-
quires a novel perspective. This is because a geodesicmesh
possesses properties of both structured and unstructured
meshes. A number of innovative techniques need to be
brought together in order to efficiently carry out CFD type
simulations on TGMs. The goal of this paper is to describe
in detail the techniques that enable efficient implementa-
tion of MHD algorithms on spherical geodesic meshes.

2 Mesh construction
The choice of spherical polygons used to tile the sphere
consists of triangles, quadrilaterals, and hexagons (with a
small mix of pentagons), but not all combinations result in
a high quality mesh. It is desirable to have a mesh that is
both highly uniform (or isotropic) and nestable. The first
property demands that the faces should be approximately
of the same shape and size, while the second ensures strict
parent-child relationship between the recursive subdivi-
sions, which is a critical property for domain decomposi-
tion (and hence efficient parallelization) as well as adaptive
refinement. A regular polyhedron is perfectly uniform: the
edges are all of equal length, the faces have the same area,
and the vertex angles are the same (see the upper left panel
in Fig. 1). However, the very first subdivision breaks this
perfect symmetry because the four daughter faces are of a
slightly different shape and size. For example, in a triangu-
larmesh shown in the lower left panel of Fig. 1 the daughter
face in the middle of the parent face is slightly different in
size from the three daughter faces at the corners. Conse-
quently, higher divisionmeshes are somewhat less uniform
that those at lower division. This departure from unifor-
mity is greatest near the vertices of the base polyhedron.
In addition, the uniform connectivity of the mesh is vio-
lated near these singular points. As an example, consider
a mesh constructed from a base hexahedron with quadri-
lateral faces (i.e., the cube sphere). While commonly each
vertex is shared by four faces, only three meet at the eight
singular points. As a result the quadrilaterals adjacent to
these vertices are diamond shaped, rather than square.
The mesh described in this paper is constructed from

an icosahedron and has triangular shaped faces. The up-
per right panel in Fig. 1 shows that there are twelve singu-
lar points in this mesh, where five triangles meet instead
of the usual six, but the anisotropy so introduced is not as
prominent because the defects are distributed over a larger
number of sites. This is the reason that an icosahedron
produces a superior mesh compared to a tetrahedron or
an octahedron. A dodecahedron can in principle be used,
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Figure 1 Recursive icosahedral mesh generation. Shown are the inscribed icosahedron (top left) and the division 0 (top right), 1(bottom left), and
2(bottom right) triangular tesselations. The edges of the tesselation are repeatedly bisected until a desired level of refinement is reached

but it lacks a division 0 triangular tesselation, consisting in-
stead of pentagons, and is less convenient for practical use.
A hexagonal mesh like that used by Florinski et al. (2013)
has good uniformity, but is not nestable.
Construction of a TGM begins with inscribing an icosa-

hedron inside a sphere (in the rest of this paper we will al-
ways assume that the sphere has a unit radius, unless stated
otherwise) and centrally projecting its edges to the surface
of the sphere, see the top row of Fig. 1. This projection gen-
erates a division 0 tesselation that includes 12 vertices, 20
triangular faces, called t-faces and 30 edges, called t-edges
(these names are chosen to distinguish them from the faces
and edges oriented in the radial direction produced by the
radial extrusion of the mesh that bear the prefix “r”). For
the sake of efficiency, all calculations on the sphere are per-
formed in Cartesian coordinates using vector operations
on the vertices. The input to themesh generator consists of
the coordinates of the icosahedron’s vertices, vertex-vertex
(VV) neighbor information, and face-vertex (FV) connec-
tivity information.
At each division, the complete mesh connectivity infor-

mation is computed and stored. For vertices, this includes
the list (VV) of six neighbor vertices (five at division 0),
six(five) t-edges meeting at the vertex (VE) and six(five) t-
faces sharing the vertex (VF). For edges, connectivity in-

Table 1 Connectivity table construction methods

Step Table Prerequisite Method of construction

1 VV parent division Based on numbering scheme
2 EV VV Insert edge per VV entry with no duplicates
3 FV parent division Based on numbering scheme
4 VE EV Inverse of EV
5 VF FV Inverse of FV
6 EF EV, VF Match two faces sharing this edge’s vertices
7 FE EF Inverse of EF
8 FF EF, FE Find the other face sharing each edge

formation includes the two vertices at the ends (EV) and
the two t-faces sharing this t-edge (EF). Finally, for faces
we compute the list of three vertices at the corners (FV),
the list of three edges (FE) and the list of three face neigh-
bors (FF), for the total of eight connectivity tables. Table 1
shows the order of connectivity table generation and the
methods used for construction. Note that at division zero
the VV and FV information is already available and steps
1 and 3 are therefore omitted. To facilitate search opera-
tions FV, FE, FF, and VF lists are ordered in the counter-
clockwise direction, while the remaining tables are not or-
dered. None of the steps of the mesh generation process
require a full search, and the algorithm is linear in the num-
ber of elements.
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To produce a division 1 tesselation shown in Fig. 1
(bottom-left) new vertices are inserted at the midpoints of
division 0 edges. These vertices are then connected with
new edges (great circle arcs) that divide each spherical tri-
angle into four smaller triangles. The process is repeated
until the desired level of refinement is achieved. It can be
easily verified that the number of vertices, edges, and faces
in the tesselation at division d are

Nv(d) = 2 + 10× 22d, Ne(d) = 30× 22d,

Nf (d) = 20× 22d.
(1)

It should be pointed out that the mesh construction al-
gorithm described above is not restricted to icosahedral
meshes, but can in principle start with any one of the five
Platonic solids. Only steps 1 and 3 in Table 1 need to be
adjusted. This property permits writing highly modular
geodesic mesh generation algorithms for the sphere.
The nonuniformity of the mesh can be assessed by com-

puting the ratios between the largest and the smallestmea-
surement of edge lengths, vertex angles, and face areas.
A high quality mesh would have these ratios as close to
unity as possible. Table 2 documents the properties of tri-
angular icosahedral tesselations at divisions zero through
eight. Note that the ratios quickly converge to their asymp-
totic values. The largest face is only 30% larger than the
smallest face, so the disparity in zone sizes will not no-
ticeably affect the time step. Figure 2 compares the geo-
metric properties of the icosahedral TGM and the hex-
ahedral quadrilateral geodesic mesh (QGM), also known
as the gnomonic cube sphere. Shown are the edge, angle,
and area largest-to-smallest ratios that should be a close to
unity as possible. One can see that the icosahedral mesh
has superior uniformity of every property compared with
the QGM.
The simple mesh does have a few deficiencies, mainly

related to the fact that the centroids of the faces are dis-
tinct from the circumcenters, as pointed out by Heikes
and Randall (1995b). Several numerical optimization algo-
rithms have been proposed to improve the mesh, includ-
ing the spring dynamics model (Tomita et al. 2001) and

the centroidal generation algorithm (Du et al. 1999). Nu-
merical optimization methods usually improve a certain
mesh property at the expense of another. For example, an
algorithm could trade face area uniformity for vertex an-
gle disparity. Another problem with numerically modified
meshes is that the optimization process is specific to each
division and the resulting meshes lose their nestable prop-
erty, i.e., become unsuitable for mesh refinement (Putman
and Lin 2007). Because we anticipate such development in
the future, and because we have not observed any adverse
effects from using the simple recursive mesh, it is our pre-
ferred method of construction.
The triangular tesselation is extruded radially over a

number of concentric spherical layers called shells, to pro-
duce the three-dimensional TGM. The software stores the
reciprocal connectivity tables for every element on the
sphere (vertex, edge, or face) at all divisions, up to themax-
imum allowed. In addition, there are tree structures de-
scribing the parent-child relationships between the faces.
For the purpose of domain decomposition, a face subdi-
vided into higher division faces is called a sector and a layer

Figure 2 Uniformity measures of the icosahedral mesh (triangles)
and the hexahedral mesh (squares) for division 0–8 (former) and 0–9
(latter). Blue lines show edge ratios, red angle ratios, and green area
ratios. The icosahedral TGM is measurably more uniform than the
gnomonic cube sphere

Table 2 Triangular geodesic mesh properties at divisions 0–8

Div Vertices Edges Faces Avg. edge Avg. angle Average area Edge ratio Angle ratio Area ratio

0 12 30 20 63.4◦ 72.0◦ 6.28× 10–1 1.00 1.00 1.00
1 42 120 80 33.9◦ 63.0◦ 1.57× 10–1 1.14 1.24 1.20
2 162 480 320 17.2◦ 60.8◦ 3.93× 10–2 1.18 1.31 1.28
3 642 1920 1280 8.64◦ 60.2◦ 9.82× 10–3 1.19 1.33 1.29
4 2562 7680 5120 4.33◦ 60.0◦ 2.45× 10–3 1.19 1.33 1.30
5 10,242 30,720 20,480 2.16◦ 60.0◦ 6.14× 10–4 1.19 1.33 1.30
6 40,962 122,880 81,920 1.08◦ 60.0◦ 1.53× 10–4 1.19 1.33 1.30
7 163,842 491,520 327,680 0.54◦ 60.0◦ 3.84× 10–5 1.19 1.33 1.30
8 655,362 1,966,080 1,310,720 0.27◦ 60.0◦ 1.16× 10–5 1.19 1.33 1.30
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of consecutive shells is called a slab. An intersection be-
tween a sector and a slab is called a block, which is the com-
putational unit on thismesh. Each computational zone has
the shape of a truncated triangular pyramid also known as
a frustum.
Locating an arbitrary vector (i.e., finding the zone con-

taining the vector) on the TGM follows a simple proce-
dure valid for any nested polyhedral tesselation. Once the
shell number has been determined (via a mapping func-
tion or bisection search), the vector is normalized to unity.
The nearest division 0 vertex is found by computing the
largest scalar product with all 12 vertices at that division.
Next, the algorithm tests which of the five surrounding t-
faces the vector belongs to, and then recursively tests the
four daughter faces at each division. A test for the t-face
interior consists of computing the triple products of the
vector with two consecutive vertices (1–2, 2–3, and 3–1).
If all three triple products are positive, the point belongs
to the interior of the t-face with counter-clockwise vertex
ordering.
Partitioning the mesh into sectors and slabs enables effi-

cient domain decomposition and offers many opportuni-
ties for parallelization. The software framework uses MPI
and MPI-derived libraries and achieves essentially linear
weak scaling (Balsara et al. 2019). We will next concen-
trate on a single triangular block and describe its partition-

ing into computational zones, generating stencils, and per-
forming reconstruction of zone based mesh variables with
a desired order of accuracy.

3 Grid blocks
The tree numbering system for the faces, edges, and ver-
tices is too slow to be used for zone access within a sector,
for which we introduce a flat, two-dimensional “triangular
addressing scheme”, or TAS. The face numbering pattern
is illustrated in Fig. 3 which shows one block of a mesh
whose sector division ds is three less than its face division
(�d = d –ds = 3). In this example the sector has two layers
of ghost zones around its interior. The numbering starts
from the base vertex identified by the tesselation; the sec-
tor is always drawn in an orientation where the principal
vertex is in the SW corner. The first coordinate index runs
from W to E and the second index runs from SE to NW.
The alternating color shading in Fig. 3 is used to distin-
guish faces with opposite orientations; many of the vector
operations are performed with the opposite signs for the
shaded (yellow) and unshaded (white) faces.
The number of vertices, t-edges, and t-faces in a sector

with Ng layers of ghost zones are

Nv =
(L + 1)(L + 2)

2
, Ne =

3L(L + 1)
2

,

Nf = L2,
(2)

Figure 3 A single sector of the mesh. In this example the face division is equal to the sector division plus three. The black arrows show the directions
of the first and second TAS coordinates. Two layers of ghost faces are visible. The three trapezoidal and nine small triangular pieces marked with
different border colors are the areas subject to boundary exchange with neighboring blocks
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where

L = 2�d + 3Ng (3)

is the length of the side of the sector. Note that the num-
ber of t-edges is three times the number of unshaded faces;
it is often convenient to access the edges using a loop on
unshaded faces only. The numbering scheme used for the
t-edges and vertices is similar to that used for the faces. The
edges are numbered in a specific order: first all NE edges,
then all NW edges, and finally all S edges (relative to the
respective unshaded t-face).
Figure 3 draws with different colors the boundaries of

the blocks of ghost zones used to exchange information
with the neighboring sectors. The boundary exchange pro-
cess is discussed in some detail in Sect. 8. Here we only
mention that the grey bordered triangular regions may be
absent if the block contains one or more penta-corners,
which are the vertices of the original icosahedron. These
vertices have only five neighbor elements rather than six,
and care must be taken to adjust stencil generation proce-
dure and boundary exchanges between blocks near these
special points. For example, if the principal vertex of the
block shown in Fig. 3 is a penta-corner, t-faces 6, 7, 8, and
13 are absent, and the mesh must be closed along the cut
line that appears in place of the missing faces.
Grid blocks also maintain a set of local connectivity ta-

bles similar to those listed in Table 2. These tables have
a very regular pattern and are much simpler to construct
than the tesselation tables; all neighbors are ordered in
counter-clockwise direction. The t-edge orientation is de-
fined with respect to its unshaded neighbor face, which
fixes the directions of the normal and tangent vectors on
the mesh.
Each grid block needs to know the coordinates of every

vertex in the local grid. Because the tesselation numbers
its t-faces and vertices differently from the grid blocks, a
routine is provided to assemble a list of vertices that lie in
a requested sector with ghost cells in the TAS format. The
convention is that the base vertex is the first vertex in the
FV set of the sector. The mapping routine walks the sec-
tor, including the ghost t-faces, from W to E and from SE
toNW, storing the coordinates of the vertices encountered
along the path. Three step operators are defined, all rela-
tive to the base vertex of the t-face, shown in Fig. 4. A type 1
step moves from the initial t-face (ti) to the final face (tf )
in the S direction and the new base vertex (vf ) is to the E
of the old base vertex (vi) on the common edge. A type 2
step moves diagonally to the NE, and the new base vertex
is opposite to the initial base vertex. Finally, a type 3 step
moves to the NW, but the new base vertex belongs to the
common edge. In Fig. 4, the vertex moves are shown with
orange arrows and the face moves with red arrows. These

Figure 4 Step operators on the mesh. The three unshaded to shaded
step operators shown are used to walk the sector with its ghost
t-faces. The step is from the vertex-face pair vi , ti to vf , tf . The shaded
to unshaded steps are obtained by switching the origin and
destination vertex-face pairs

three operations apply to unshaded to shaded t-facemove-
ment. The shaded to unshaded step operators are algorith-
mically identical to those, and correspond to switching the
initial and the final t-faces and vertices, and reversing the
arrow directions.
The sector walk routine works as follows. From the base

vertex of the sector, the code first walks to the NW until
it encounters the left side of the block (t-face 25 in Fig. 3).
Then the code walks to the SW until it reaches the corner
of the grid block (face number 1 in the grid block’s num-
bering scheme). From there, the code makes a step to the
right followed by i steps diagonally (SE-NW), where i is
the index of the horizontal step. That way every cell in the
block is visited once. Note that the alternating pattern of
shaded and unshaded t-faces is broken across the cut line,
and special versions of the step operators are needed to
move between the faces of the same shading.

4 Representing spherical geometry
In principle, it is possible to perform all calculations on
a TGM by directly using spherical geometry. We found,
however, that using isoparametric mapping from a refer-
ence zone, which in this case is a right triangular (equi-
lateral) prism, offers significant advantages. In particular,
integration on spherical triangles is difficult, requiring a
large number of quadrature points at higher orders (Beck-
mann et al. 2012). Integration on the reference element is
straightforward by comparison.
The physical zone and its reference image are shown in

Fig. 5. The left panel shows the physical zone that has the
shape of a truncated triangular pyramid, also called a frus-
tum.The spherical top and bottomcaps are the t-faces, and
the annular sides are the r-faces. The frustum therefore has
three r-faces and two t-faces. The edges of the t-faces are
called t-edges, and the edges connecting the bottom and
top t-faces are called r-edges. There are six t-edges, three
r-edges, and six vertices per zone. The vertices belonging
to a t-face are numbered counter-clockwise in its connec-
tivity tables, 1 through 3, and the t-edges of each t-face are
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Figure 5 A computational zone (left) and the reference element
(right). The reference shape is a right equilateral triangular prism
which is mapped into the frustum in physical space

also numbered counter-clockwise, 1 through 3. By conven-
tion, a vertex has the same index as the opposite t-edge.
A point in reference space is addressed with a coordinate

triplet (ξ , η, ζ ). The bottom and the top faces of the prism
lie in the planes ζ = 0 and ζ = 1, respectively. The area of
the t-face in reference coordinates is

√
3/4, the area of the

r-face is one, and the volume of the prism is
√
3/4. It is

convenient to work with barycentric coordinates in the ξη

plane (Λ1, Λ2, Λ3), defined in Chap. 8 of Zienkiewicz et al.
(2013) as

ξ = Λ1ξ1 +Λ2ξ2 +Λ3ξ3,

η = Λ1η1 +Λ2η2 +Λ3η3, (4)

1 = Λ1 +Λ2 +Λ3,

where ξi and ηi, i = 1, 2, 3, are the ξ and η components
of the vertices of the triangle in the reference space. The
barycentric coordinates are equal to the partial areas of the
sub-triangles formed by the point (ξ ,η) and the three ver-
tices of the reference triangle (please note that this is not
true for the areas of the respective curved triangles). For
the equilateral reference triangle the inverse of (4) is

Λ1 = 1 – ξ –
η√
3
,

Λ2 = ξ –
η√
3
, (5)

Λ3 =
2η√
3
.

We next introduce a set of two-dimensional linearly in-
dependent Lagrange basis functions associated with the
nodal points on the curved triangular faces that fix the
mapping from reference space to the physical space. It is
convenient to compute the nodal point coordinates on the
unit sphere; the physical coordinates are obtained simply

by rescaling to the desired radial distance. We denote vec-
tors that lie on the unit sphere with the superscript “u”. All
coordinates are factored as

x(ξ ,η, ζ ) = r(ζ )xu(ξ ,η), (6)

where

r(ζ ) = rb + ζ (rt – rb) = rb
[
1 + ζ (ρ – 1)

]
, (7)

where rb and rt are the radial distances of the nodal points
on the bottomand the top t-face, respectively, and ρ is their
ratio. As discussed below, this factoring enables a more
efficient implementation of the reconstruction algorithm
on the TGM compared with fully unstructured tetrahe-
dral meshes. To perform integration we also require a set
of curvilinear unnormalized basis vectors

hξ =
∂x
∂ξ

= r
∂xu

∂ξ
, hη =

∂x
∂η

= r
∂xu

∂η
,

hζ =
∂x
∂ζ

= (rt – rb)xu.
(8)

GivenN nodal points on a triangle, there areN Lagrange
basis functions ψi(ξ ,η) that satisfy

ψi(ξj,ηj) = δij, (9)

where (ξj,ηj) are the coordinates of nodal point j on the
unit sphere. A position vector xu can be represented as an
expansion over the basis functions

xu(ξ ,η) =
N∑

i=1

vui ψi(ξ ,η). (10)

The coefficients in this expansion are the physical coordi-
nates of the nodal points vui . Figure 6 shows the locations
of the nodes on the reference triangle. These elements use
N = 3, 6, and 10 for linear, quadratic, and cubic basis func-
tions, respectively. The explicit formulas for the basis func-
tions on the equilateral triangle are given in Appendix A.
Note that the maps from two adjacent t-faces are continu-
ous at the shared t-edge by virtue of the use of barycentric
coordinates for their construction.
An expansion similar to (10) is used for the t-edges.

Points from the surface element lying on that edge are used
(see Fig. 6) and the corresponding basis functions are sim-
ply restriction of the facial bases functions for one of the
barycentric coordinate equal to zero. It is convenient to
introduce an auxilliary variable δ that measures distance
along the edge in the counter-clocksise direction. Its rela-
tion to barycentric coordinates is shown in Table 3. The
basis functions φi(δ) for the edges can be also found in Ap-
pendix A.
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Figure 6 Node locations on t-faces and t-edges for linear (left), quadratic (middle), and cubic (right) mapping. The first order surface element
contains three nodes coincident with the vertices. The second order surface element includes all nodes from the first order elements plus the edge
midpoints for the total of 6 nodes. The third order surface element includes all nodes from the first order elements plus the points at the thirds of
each edge and the centroid, 10 nodes in total. The nodes of line elements representing t-edges are shown below each surface element

Table 3 The choice of the auxilliary variable δ

t-edge/r-face Λ1 Λ2 Λ3

1 0 1 – δ δ

2 δ 0 1 – δ

3 1 – δ δ 0

It is instructive to evaluate the disparity between the
mapped surface given by Eq. (10) and the ideal surface, i.e.,
the unit sphere. Below we compute the error in the radial
coordinate, 1 – ru for a mapped equilateral spherical tri-
angle with a circumcircle radius of 5◦. Figure 7 shows the
error distribution for element orders one, two, and three.
Obviously, the first order element with its planar faces is
unable to reproduce the spherical shape resulting in a large
error near the center. Switching to the second order ele-
ment improves the accuracy by three orders of magnitude,
while going to third order yields another factor of ∼ 20. It
is evident that both second or third order elements repro-
duce spherical geometry with remarkable accuracy.
It is worth mentioning that Ivan et al. (2013) have pre-

viously developed an isoparametric cube sphere model
based on a cubic reference element. However, their trilin-
ear mapping anchored at the four corners of the quadrilat-
eral t-face is not capable of truly reproducing a spherical
surface because it has only one extra degree of freedom
compared with the linear map. For example, when all four
vertices lie in the same plane, the trilinearmap yields a sur-
face that is flat instead of curved.

5 Evaluation of integrals on a geodesic mesh
A finite volume scheme requires evaluating multi-dimen-
sional integrals in the initial setup phase and during time
updates of the conserved variables. This requires, at a
minimum, volume and surface integrals. The use of con-
strained transport scheme to advance the magnetic field
requires, in addition, evaluation of integrals along the

edges (see Sect. 7 below). We will therefore define the fol-
lowing integral operations: volume integration over a zone,
surface integration on t-faces and r-faces, and line integra-
tion on t-edges and r-edges. For a three-dimensional vec-
tor variable V these are defined as

∫∫∫

zone
V(x)dV

=
∫∫∫

V(ξ ,η, ζ )(hξ × hη) · hζ dξ dηdζ , (11)
∫∫

t-face
V(x) · dS =

∫∫

�

V(ξ ,η) · (hξ × hη)dξ dη, (12)
∫∫

r-face
V(x) · dS

=
∫ 1

0

∫ 1

0
V(δ, ζ ) · (hδ × hζ )dδ dζ , (13)

∫

t-edge
V(x) · dl =

∫ 1

0
V(δ) · hδ dδ, (14)

∫

r-edge
V(x) · dl =

∫ 1

0
V(ζ ) · hζ dζ , (15)

where the symbol ‘�’ designates integration over a trian-
gle. We will now describe our strategy for evaluating the
integrals using quadrature rules. Consider a single zone in
the mesh addressed with a t-face index f whose top and
bottom vertices lie at r and ρr, respectively. Further, sup-
pose e is the index of one of the t-edges of the zone, and v
is one of the vertices.

5.1 Integration on r-edges
R-edges are addressed by the vertex index with specified
r and ρ . Because r-faces are always straight, the integrals
can be evaluated directly using Gauss–Legendre quadra-
ture points. Define such set of points on the reference in-
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Figure 7 Linear (left), quadratic (center), and cubic (right) mapping accuracy. Shown is the distance between the mapped surface and the perfect
sphere computed for an equilateral triangle with a circumcircle radius of 5◦

terval ζ = [0, 1] as Q1r . Each quadrature point q has posi-
tion ζq and weight wq. Then it is evident that

∫

r-edge
V(x) · dl ≈ r(ρ – 1)

∑

q∈Q1r

wqV
(
rζ ′

qx
u
q
) · xuv , (16)

where xuv is the position of the vertex v on the unit sphere
and

ζ ′
q = 1 + (ρ – 1)ζq (17)

is the elevated radial position. The code uses 1 quadrature
point for integrating polynomials of degrees zero and one,
2 points for degrees two and three, 3 points for fourth and
fifth degree polynomials, etc.

5.2 Integration on t-edges
T-edges are addressed by the edge indexwith fixed r. These
edges are curved (except when using linear basis func-
tions) and the quadrature weights are therefore multiplied
by the Jacobian equal to the length of the tangent vector hδ .
Again, designate the set of Gauss–Legendre points on the
reference interval δ = [0, 1] as Q1t (which may or may not
be the same as Q1r). Using the definition (8) we can write

∫

t-edge
V(x) · dl ≈ r

∑

q∈Q1r

wqV
(
rxuq

) · ∂xue (δq)
∂δ

, (18)

where δq are the locations of the quadrature points on the
reference interval and

xuq = xue (δq). (19)

Here the subscript ‘e’ refers to the fact that the map spe-
cific for edge e is used to evaluate the coordinate and its
derivative. We use the same number of points for t-edge
integration as for r-edge integration. In practice, the val-
ues of the point coordinates and tangent vectors on the
unit sphere are precomputed for each t-edge at the start
of a simulation for fast retrieval.

Figure 8 Quadrature points on t-faces (left) and r-faces (right) of the
prism. Three and four points are used to integrate a quadratic function
exactly on t-faces and r-faces, respectively, four and six for cubic, six
and nine for quartic, seven and twelve for quintic, and twelve and
sixteen for sextic functions. The four point rule is not used on t-faces;
instead the six point rule is used for third degree polynomials

5.3 Integration on r-faces
R-faces are addressed by the edge index with specified r
and ρ and approximate annular regions (trapezoids for el-
ements of order 1). The position is specified via the (δ, ζ )
pair of coordinates. We now introduce quadrature points
on the reference square (δ, ζ ) = [0, 1]× [0, 1] as Q2r . These
points are conveniently computed as tensor products of
the Gauss–Legendre quadrature points. The quadrature
rule for r-faces can be written as

∫

r-face
V(x) · dS ≈ r2(ρ – 1)

∑

q∈Q2r

wqζ
′
qV

(
rζ ′

qx
u
q
)

·
(

∂xue (δq)
∂δ

× xuq

)
(20)

with xuq given by Eq. (19).
The right panel of Fig. 8 shows the locations of the points

on the reference square. On a rectangle, three points are
sufficient for exactly integrating a quadratic polynomial,
four for cubic, and six for quartic. However, it is our inten-
tion tomaintain exact polynomial integration rules for first
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order elements, where the r-face is a trapezoid. Its Jacobian
is linear in the ζ coordinate, and the order of accuracy is
reduced by one. For this reason we use four, six, and nine
point rules to integrate polynomials of degrees two, three,
and four, respectively.

5.4 Integration on t-faces
T-faces are addressed by the face index with fixed r. They
approximate spherical triangles (flat triangles for linear
coordinate transformation). The position is specified via
the (ξ ,η) pair of coordinates, and the set of quadrature
points defined on a unit equilateral triangle is designated
as Q2t . Here we use the symmetric quadrature rules given
inDunavant (1985) with quadrature point locations shown
in the left panel of Fig. 8. The integration algorithm for t-
faces is

∫

t-face
V(x) · dS

≈ r2
∑

q∈Q2t

wqV
(
rxuq

)

·
(

∂xuf (ξq,ηq)
∂ξ

× ∂xuf (ξq,ηq)
∂η

)
, (21)

where

xuq = xuf (ξq,ηq). (22)

Three, four, and six points are sufficient to integrate a
quadratic, cubic, and quartic polynomial exactly on a flat
triangle. The four-point rule should be avoided because it
has a negative weight, and we use the six point rule at third
order. These points and the normal vectors are also pre-
computed for each t-face.

5.5 Integration on frustums
A frustum can be addressed by the face index with speci-
fied r and ρ . Defining a position requires all three reference
coordinates (ξ ,η, ζ ). We arrange the quadrature points in
p “planes”, where each plane corresponds to a triangular
quadrature rule with a set of points Q2t described in the
previous subsection. The planes themselves are located at
ζp corresponding to the Gauss–Legendre points on [0, 1]
that we designate as P1 with the plane weights given by wp.
Then a volume integral can be evaluated as

∫

zone
V(x)dV

≈ r3(ρ – 1)
∑

p∈P1
wpζ

′
p
2 ∑

q∈Q2t

wqV
(
rζ ′

px
u
q
)(∂xuf (ξq,ηq)

∂ξ

× ∂xuf (ξq,ηq)
∂η

)
· xuq , (23)

where xuq is given by Eq. (22).Weuse twoquadrature planes
for polynomials of degrees 0 and 1, three for polynomials
of degrees 2 and 3 and four for degrees 4 and 5.
In curved spaces the total degree of the reconstruction

polynomial increases significantly upon transformation to
the reference coordinates. For example, a third degree
polynomial in x on a quadratic surface element gives an in-
tegrand or degree 32 +2 = 8 in α and β , where the Jacobian
adds two extra powers. The same polynomial on a cubic el-
ement gives an integrand of degree 33 +4 = 13. However, it
is quite unnecessary to match the order of the quadrature
algorithm to the resulting total degree of the polynomial in
the reference space because the truncation error decreases
at the rate imposed by the quadrature scheme alone. The
magnitude of error depends on the details of the coordi-
nate mapping, but the order of convergence does not.

6 Conservative reconstruction on a geodesic mesh
The TGM framework presented here is intended to be
used primarily with finite volume schemes for systems of
PDEs. These methods usually operate on conserved (ex-
trinsic) physical variables associated with each zone in the
mesh. Conserved variables are advanced in time using the
fluxes evaluated at the zone boundaries. The fluxesmay be
generated by means of a Riemann solver that computes,
often approximately, the self-similar wave pattern devel-
oped from an interaction of two or more constant states.
The Riemann solver may be invoked for a set of points in
each face, and the total flux is evaluated as the average over
these points. The invocation of multiple Riemann solvers
at suitably placed quadrature points within each face of the
mesh contributes to the high order accuracy of the scheme.
The constant states fed to the Riemann solver are ob-

tained via high-order spatial reconstruction of the con-
served variables, which amounts to finding a functional
form of the variable within each zone consistent with a
given piecewise distribution at the beginning of the time
step. Reconstruction is performed on a set of stencils as-
sociated with each zone (the principal zone of that stencil)
that include zones in a certain proximity to the principal.
We use conservative polynomial reconstruction (known in
one-dimensional or directionally split applications as re-
construction via primitive functions) from multiple sten-
cils for each computational zone.

6.1 Stencil construction
We now discuss the reconstruction strategy focusing on
the TGMspecific issues. At the start of a simulation a set of
stencils is built for each computational zone. The number
of zones in a stencil cannot be smaller than the number
of degrees of freedom in the polynomial reconstruction,
given by

D(M) =
(M + 1)(M + 2)(M + 3)

6
, (24)
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Figure 9 Stencil shapes in the plane. The top, middle, and bottom rows show the central, forward-biased, and backward-biased stencils,
respectively. The principal zone is shown in red. Green, blue, and purple colors represent first, second, and third von Neumann neighbors of the
principal zone, respectively

where M is the degree of the reconstruction polynomial.
It has been argued that using the number of zones in the
stencil equal toD(M) does not always produce satisfactory
results (Ollivier-Gooch andVanAltena 2002). For this rea-
son we use over-determined stencils that are larger than
theminimal size.With such stencils the conservative prop-
erty of the reconstruction is enforced in the least squares
sense.
The zones in the TGM are arranged in a regular pattern

(see Fig. 3) allowing us to design universal stencils valid on
any mesh. The zones in a stencil are arranged in “planes”
that correspond to different radial shells. Each plane con-
sists of a two-dimensional t-face stencil. The principal
plane contains the largest 2D stencil and the other planes
contain progressively smaller stencils. Figure 9 shows the
choice of 2D stencils available in the code. In addition to
the symmetric central stencil that is used in regions where
the solution is smooth (top row of Fig. 9), twelve direc-
tional stencils are defined to be used in situations where
the central stencil produces a large variation due to a sharp
gradient or discontinuity in the solution (Käser and Iske
2005). Directional stencils can point in the in- or outward
radial direction and along six directions in a plane (three
forward-biased and three backward-biased, see Käser and
Iske (2005) for the explanation of these terms). We use
three, five, and seven planes per central stencil and two,
three, and four planes per directional stencil for M = 1, 2,
and 3, respectively. The code can use all thirteen stencils,
but can also be runwithout backward stencils which nearly
halves the execution time of the reconstruction step.
Contrary to the fully unstructured meshes, stencils on

the TGM can be generated using pre-defined patterns and
in principle need not rely on mesh connectivity informa-
tion. The exception to this rule are the penta-corners,
where some of the neighbors may be missing. Figure 10
shows some examples of stencils in the principal plane that
could be used for third order polynomial reconstruction.
The central stencil, shown in the top panel, clearly contains
a penta-corner. Themiddle row shows the forward and the

Figure 10 Stencils of one selected face at division four near a
penta-corner. Shown are the central stencil (top), the forward stencils
(middle row) and the backward stencils (bottom row). The principal
face is drawn with thick lines. Because of the penta-corner to the right
of the principal face, some of the stencils have a different shape

bottom row the backward stencils. Notice how the first of
the backward stencils has a different shape than the other
two. If a stencil is found to be defective (i.e., contains fewer
zones than required), the software will repeatedly upgrade
to the next largest stencil until the order condition is ful-
filled.
Consider a conservative mesh variable U defined via its

averages over each zone i, Ūi. A reconstruction of this vari-
able in zone i usingMth degree polynomials can bewritten
as

Ui(x) =
D(M)–1∑

|α|=0
Uα

i
(
xα –

〈
xα

〉
i

)
, (25)



Florinski et al. Computational Astrophysics and Cosmology             (2020) 7:1 Page 12 of 24

where multi-index notation is used with α = (α1,α2,α3),
|α| = α1 + α2 + α3, and xα = xα1

1 xα2
2 xα3

3 . The term 〈xα〉i de-
notes the moment of zone i, divided by the volume of the
zone, and Uα

i is the coefficient (or mode) in the recon-
struction. To enforce the conservation property 〈U(x)〉i =
U(0,0,0)

i = Ūi one must formally set 〈x(0,0,0)〉i = 0 in (25).
The remaining moments are computed using high order
quadratures given by Eq. (23). Themoments are computed
in Cartesian coordinates. Thesemoments are transformed
into the center of mass frame of the zone using the parallel
axis theorem (for details, see Balsara et al. 2019) and scaled
by the characteristic length determined by the dimensions
of the zone.
An optimal choice of stencils should achieve a balance

between accuracy and performance. To find this balance
we have performed a statistical study of error in the re-
construction with cubic polynomials (i.e., at fourth order
of accuracy) using only the central stencil, as a function of
the number of zones in the stencil. The results, presented
in Appendix B, demonstrated that where as the L∞ error
can become unacceptably large for theminimal stencil, the
deficiency is cured by increasing the stencil size by as little
as 15%. Past this point, both the L1 and the maximum er-
rors have a weak increasing trend previously noted in Ivan
et al. (2015). Based on these results, we introduced an ad-
justable parameter in the code to set theminimumnumber
of zones in the stencil to be slightly larger than D(M).

6.2 Utilizing radial similarity
A spherical mesh commonly has shell thickness varying
with radial distance to satisfy the needs of the particu-
lar computational problem. Let us introduce a dimension-
less variable χ ∈ [0, 1] and a mapping r(χ ) that satisfies
r(0) = rmin, r(1) = rmax, where rmin and rmax are the inner
and the outer boundaries of the entire simulation domain,
not including the ghost shells. One example of such amap-
ping is a power law

r(χ ) = rmin

{
1 +

[(
rmax

rmin

)1/b

– 1
]
χ

}b

, (26)

where b is some positive real number. The interior of the
simulation domain is partitioned into L shells of equal
width �χ = L–1 that map physical shells of variable widths
�r(r). Suppose the zone i is indexed by shell s and face f . In
physical coordinates the zones corresponding to the same
f but different s have different aspect ratios. For example,
for the mapping (26) the zones closer to the origin will be
more radially elongated than those at larger distances (for
b > 1).
One particular function of χ preserves the zone aspect

ratio, such that �r/r = const. This is the exponential map-
ping,

r′(χ ) = rmin

(
rmax

rmin

)χ

, (27)

(e.g., Koldoba et al. 2002), that also satisfies r′(0) = rmin,
r′(1) = rmax. One can then introduce exponential coordi-
nates given by

x′
1 = r′xu1 , x′

2 = r′xu2 , x′
3 = r′xu3 , (28)

where, as before, the coordinates with the superscript ‘u’
are measured on the unit sphere.
A conserved mesh variable U(x) is defined via

∫

(i)
U(x)r2 dr dΩ = ŪiVi. (29)

Integration over the solid angle Ω corresponds to integra-
tion on the unit sphere. Equation (29) can be rewritten in
exponential coordinates as

∫

(i)
U(x)

r2

r′3
dr
dχ

r′2 dr′ dΩ

=
Ωf (r3s+1 – r3s )

3
ln

(
rmax

rmin

)
Ūi, (30)

where Ωf is the area of face f on the unit sphere. We next
introduce a three-dimensional polynomial reconstruction
of the quantityW =Ur2/r′3(dr/dχ ) in the zone i

Wi(x̃s) =
D(M)–1∑

|α|=0
Wα

i
(
x̃α
s –

〈
x̃α

〉
f

)
, (31)

where x̃s = x′/r′s is the position vector expressed in the ex-
ponential normalized coordinates (ENC). Here they are
normalized to the exponential distance to the bottom of
the zone. The moments of any zone with a face index f are

〈· · · 〉f = 3
Ωf [(1 +�r̃)3 – 1)]

×
∫ 1+�r̃

1
r̃2 dr̃

∫

(f )
(· · · )dΩ , (32)

where

�r̃ =
r′s+1 – r′s

r′s
, (33)

which is the same for all shells s. In the ENC the moments
are independent of the shell, so the index s is dropped for
them. It is evident that

W(0,0,0)
i =

r3s+1 – r3s
r′3s [(1 +�r̃)3 – 1)]

ln

(
rmax

rmin

)
Ūi. (34)

To obtain the remaining modes a geometry matrix is com-
puted for each three-dimensional stencil. Suppose Si de-
notes the set of zones comprising the stencil, and that the
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zone j that belongs to this stencil, j ∈ Si, j �= i is indexed by
shell σ and face φ. Using the fact that

x̃α
s =

(
r′σ
r′s

)|α|
x̃α

σ , (35)

averaging (31) over a given zone in the stencil, which uses
the ENC specific for its own shell σ , rather than the prin-
cipal shell s, yields

D(M)–1∑

|α|=0
Wα

i
[
(1 +�r̃)|α|(σ–s)〈x̃α

〉
φ
–

〈
x̃α

〉
f

]

=W(0,0,0)
j –W(0,0,0)

i . (36)

This is a linear system for Wα
i . The geometry matrix on

the LHS has the number of rows equal to the number of
zones in the stencil, without counting the principal zone,
and its column count is D(M) – 1. The geometry matrix’s
coefficients only depend on the relative shell displacement
in the stencil, σ – s, and are identical for any zone with
the same face index because the corresponding stencils all
have the same structure.
The advantage of the described scheme is that the

amount of storage is significantly reduced (by the factor
equal to the number of shells in the block) compared with
the method that treats each zone as unique. Only a single
copy of eachmoment and the geometry matrix are needed
per t-face. This also permits us to precompute the LU de-
composition or inverse of each geometry matrix and store
it to perform reconstruction with a different RHS in (36)
at each time step. The physical variable is then recovered
via

Ui(x) =Wi(x̃s)
r′3

r2

(
dr
dχ

)–1

. (37)

6.3 Limiting the reconstruction
The code performs reconstruction on all thirteen (or
seven) stencils and stores the resulting modes for each
stencil. The solutions from multiple stencils are com-
bined in a nonlinear fashion into a single reconstruction
polynomial using the weighted essentially non-oscillatory
(WENO)method (Harten andOsher 1987; Shu andOsher
1988; Liu et al. 1994; Jiang and Shu 1995; Friedrich 1998;
Balsara and Shu 2000; Dumbser andKäser 2007). The non-
linear hybridization helps to stabilize the WENO scheme
when local discontinuities develop in the flow.
Suppose there are S stencils associated with face i, with

the central stencil bearing the index 1, and the directional
stencils numbered 2 through S = 7, 13. The central stencil
is themost accurate and therefore carries the largest linear
weight, γ1 =∈ [0.85, 0.95], where as the remaining stencils
have γs = (1 – γ1)/(S – 1). Suppose we need to perform a

reconstruction of a scalar variable U(x). The WENO pro-
cedure computes a weighted average of the reconstruction
polynomials derived on each of the stencils with prefer-
ence given to stencils achieving a smoother reconstruction
(roughly speaking, having smaller absolute values of the
modes Uα

is where |α| > 0 and s = 1, . . . ,S). The scheme is
biased by the smoothness indicators that can be estimated
simply as

βis =
∑

α

(
Uα

is
)2. (38)

We have implemented plain second and third order
WENO schemes and an adaptive order WENO-AO(4,3)
scheme within the TGM framework. The plain WENO
procedure computes the nonlinear weights as

wis =
γs

(βis + ε)2
, (39)

where ε ∼ 10–12 is used to avoid possible division by zero.
The weights are then normalized so that they add up to
unity. The normalized weights are obtained as

w̄is =
wis

∑S
s=1wis

. (40)

The coefficients of the hybrid reconstruction polynomial
are computed as

Uα
i,WENO =

S∑

s=1

w̄isUα
is . (41)

At fourth order of accuracy we have used an adaptive
order method to avoid the excessive computational cost
of performing high order reconstruction on all thirteen
stencils. The WENO-AO method has been described in
great detail in Balsara et al. (2016), while its implemen-
tation on unstructured meshes was presented in Balsara
et al. (2019, 2020). Here we only discuss some specifics
of its implementation on the geodesic mesh. The WENO-
AO(4,3)method uses, in addition to the set of stencils used
to perform third-order reconstruction, a large central sten-
cil that we assign the index of 0 to avoid relabeling of the
third-order stencils. This large stencil is used to perform
reconstruction of polynomial degree 3 and carries the lin-
ear weight γ0 =∈ [0.85, 0.95]. For example, the third order
central stencil may be the stencil shown in the fourth or
fifth column of Fig. 9, while the fourth-order stencil will
be from column seven or eight of that figure. The linear
weights γ ′

s of the adaptive order scheme are given by

γ ′
0 = γ0, γ ′

1 = (1 – γ0)γ1,

γ ′
s =

(1 – γ0)(1 – γ1)
S – 1

, s = 2, . . . ,S
(42)
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(note that the number of stencils used in this case is S +
1). The smoothness indicators and nonlinear weights are
obtained according to (38) and (39), respectively using γ ′

s
in place of γs, where s = 0, . . . ,S. The normalized nonlinear
weights are given by

w̄is =
wis

∑S
s=0wis

. (43)

The coefficients of the hybrid reconstruction polynomial
in the adaptive case are computed as

Uα
i,WENO-AO =

w̄i0

γ ′
0

(

Uα
i0 –

S∑

s=1

γ ′
s U

α
is

)

+
S∑

s=1

w̄isUα
is . (44)

Expression (44) reduces to Uα
i0 in the limit that the solu-

tion is smooth on all stencils and therefore w̄is → γ ′
s . This

choice yields the most accurate reconstruction because it
is based entirely on the large central stencil.
The reconstruction procedure is carried out in each zone

lying in the interior of the block and in two more layers
of ghost zones. The latter is needed by the slope flattening
procedure that scales down the reconstruction coefficients
within the zones lying near strong density enhancements.
The stencils shown in Fig. 9 extend a distance equal to the
degree of the reconstruction polynomial beyond the prin-
cipal zone. As a result we use three layers of ghost zones
at second order of accuracy, four at third order and five at
fourth order.

7 Constrained reconstruction of themagnetic field
For MHD problems, it is essential to keep the magnetic
field divergence free. The most successful technique to
maintain ∇ · B = 0 is the constrained transport method
(Evans andHawley 1988; DeVore 1991; Ryu et al. 1998; Bal-
sara and Spicer 1999) that is based on the Yee type stag-
gered mesh. In this approach the magnetic field is a face
based variable, unlike the zone averaged mass, momen-
tum, and total energy conserved variables. More specif-
ically, the variable is a normally projected, face averaged
value of the magnetic field that will be called B̄, possibly
with a subscript of the face where it is defined. This mag-
netic field is initialized using the vector potential

B = ∇ ×A, (45)

and is updated in time via Faraday’s law,

∂B
∂t

= –∇ × E, (46)

where E is the electric field and SI units are used. Inte-
grating equations (45) and (46) requires edge based vec-
tor potential and electric field, respectively, in applying the
Stokes theorem.

Let us focus on a single zone with index i in the mesh.
Denote by Fi the set of faces that belong to this zone. The
set can be further partitioned into three r-faces (set Ri) and
two t-faces (setTi). By convention, the normals n̂j for j ∈ Ri
are directed outward as viewed from a zone corresponding
to an unshaded t-face (and hence inward as viewed from a
shaded face, see Fig. 3), where as the normals for j ∈ Ti al-
ways point in the outward direction (direction of increas-
ing r). Further, suppose Ej is the set of edges that comprise
the boundary of face j. For j ∈ Ri, the boundary consists of
two t-edges and two r-edges; while faces j ∈ Ti have three
t-edges. The tangent vectors to the t-edges are assumed
to be directed counter-clockwise relative to the unshaded
face while the r-edge tangents point outward.
Using the above conventions, the face-based magnetic

field initialization procedure is written as

B̄jSj =
∫∫

face j
B · dS =

∑

k∈Ej

∫

edge k
A · dl =

∑

k∈Ej
Āklk , (47)

where Sj is the area of face j, lk is the length of the edge k,
and Āk is the average over the edge k of the vector potential
dotted with the tangent vector to that edge. The line inte-
gral in (47) is evaluated using formulae (16) and (18). In ad-
dition, the integral divergence free condition forD = ∇ ·B
may be written as

D̄iVi =
∑

j∈Fi

∫∫

face j
B · dS =

∑

j∈Fi
B̄jSj = 0, (48)

whereVi is the volume of zone i. In practice, the numerical
code defines variables of zone, face, and edge types and the
curl and divergence integral operations to perform “con-
versions” between the types.
Following Balsara and Dumbser (2015a) the model pre-

sented here uses a supplementary zone based vector vari-
able B′. At the start of the simulation, this variable must be
initialized in each zone i in some way consistent with the
primary field B̄ defined on Fi. One possibility is to use the
least squares fit

∫∫

face j
B′
i · dS = B̄jSj, j ∈ Fi. (49)

The integral in the above equation is evaluated using (20)
and (21), giving five equations (one per face) for the three
unknown field components. The alternative is to initialize
B′ directly as a zone variable using the expression for the
field rather than the potential. The resulting B′ is subse-
quently treated like any other zone variable. In particular, it
is subjected to the same volume reconstruction procedure
described in the previous section. This reconstruction is
not functionally divergence free, and an additional proce-
dure, described below, is applied to obtain a constrained
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reconstruction. This approach represents a low computa-
tional cost alternative to a face based reconstruction.
Suppose the preliminary, non-divergence-free recon-

struction, computed as discussed in the previous section,
is given by

B′
i(x) =

D(M)–1∑

|α|=0
B′α
i

(
xα –

〈
xα

〉
i

)
, (50)

where B′α
i are the modes. We seek a constrained polyno-

mial reconstruction for the magnetic field B̃(r) as

B̃1i(x) =
D(M+1)–1∑

|α|=0
α2,α3≤M

B̃α
1i
(
xα –

〈
xα

〉
i

)
,

B̃2i(x) =
D(M+1)–1∑

|α|=0
α1,α3≤M

B̃α
2i
(
xα –

〈
xα

〉
i

)
, (51)

B̃3i(x) =
D(M+1)–1∑

|α|=0
α1,α2≤M

B̃α
3i
(
xα –

〈
xα

〉
i

)
.

These reconstructions have D̃(M) = 2D(M) – D(M – 1)
degree of freedoms, which is larger than D(M). While
the degree of the reconstruction polynomials (51) is one
higher than of (50), not every additional high order mode
is present. The need for the extra modes will be demon-
strated shortly. We now describe the five separate con-
straints imposed on the magnetic field modes that ensure
that the magnetic field remains divergence-free not only
in the integral sense (zero total flux through all faces of a
zone), but also functionally at any locationwithin the zone.

7.1 Constraint 1
This step ensures that the polynomial reconstruction of
the magnetic field has zero divergence everywhere in the
zone. Taking the divergence of Eq. (51) and making the re-
sulting polynomial expression equal to zero yields D(M)
equations of the form

α1B̃α1
1i + α2B̃α2

2i + α3B̃α3
3i = 0. (52)

Clearly, B̃1, B̃2, and B̃3 modes with α1 = 0, α2 = 0, and α3 =
0, respectively, do not contribute to (52). Only the extra
modes that contain powers of x1 for B̃1, x2 for B̃2, and x3
for B̃3 are included. For instance, at third order of accuracy
(M = 2) the extramodes present in the first equation of (51)
are those containing x31, x21x2, x21x3, x1x22, x1x2x3, and x1x23,
where as the second equation includes x21x2, x1x22, x1x2x3,
x32, x22x3, and x2x23 terms. The remaining high order modes
do not contribute to the local divergence-free conditions.

7.2 Constraint 2
The second constraint imposed on the reconstruction (51)
is the requirement that its normal component, evaluated
from any two adjacent zones sharing the face j and aver-
aged over that face must be equal to B̄j, namely

∫∫

face j
(B̃1i dS1 + B̃2i dS2 + B̃3i dS3) = B̄j, (53)

where the integral is evaluated according to the rules (20)–
(21). This is the requirement of zero divergence in the in-
tegral sense. The order of the quadrature rule need not
be very high, but only sufficient to match the order of the
overall scheme. For example, for a third order scheme that
uses polynomials of up to third degree, we use six point
quadratures on all faces.
It should be pointed out that because of (53) one con-

straint in (52) is redundant. This is readily demonstrated
by computing the divergence of B̃ (Eq. (51)) analytically,
integrating over the volume of the zone, and setting the
integral to zero. For the sake of symmetry, we chose to dis-
card the first equation in (52), so that system’s equation
count is reduced to D(M) – 1.

7.3 Constraint 3
Balsara and Dumbser (2015a) proposed a method seeking
to match, at each face, complete polynomial reconstruc-
tions of the normal component of the magnetic field. Here
we use a weaker requirement that the reconstructions of
the normal component should approximately match at the
facial quadrature points used to perform integration on
that face. This procedure nonetheless ensures a very close
matching of the modes of the magnetic field within each
face.
The matching procedure starts by evaluating B′

i(x) from
(51) at each quadrature point of face j ∈ Fi and projecting it
onto the unit normal to the face at that point. Initially this
normal component is not continuous at the zone bound-
aries, so there are two values of the normal component,
Biq and Bkq, at each facial quadrature point q contributed
by two adjacent zones i and k, where j ∈ Fi,Fk . The com-
mon normal component at each quadrature point q, Bq, is
evaluated in two steps as

B∗
q = B̄q +minmod(Biq – B̄j,Bkq – B̄j), (54)

Bq = B∗
q –

〈
B∗〉

j + B̄j, (55)

where B∗ is the intermediate value of the common nor-
mal component of the field at the interface and the angu-
lar brackets denote its average over the face j. The normal
component of the magnetic field given by (55) is contin-
uous and its average over the face matches the respective
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value of the primary variable B̄j. Therefore, the third set of
constraints can be written as

B̃1i(xq)n̂1 + B̃2i(xq)n̂2 + B̃3i(xq)n̂3 ≈ Bq, (56)

for each quadrature point q, with j ∈ Fi. The number of
conditions in (56) is equal to the total number of quadra-
ture points on all five faces of the frustum.

7.4 Constraint 4
Next, we demand that the divergence-free reconstruction
(51) should be as close to the volume reconstruction of B′
as possible, i.e.,

B̃α
1i ≈ B′α

1i , B̃α
2i ≈ B′α

2i , B̃α
3i ≈ B′α

3i , |α| <D(M). (57)

Equation (52) is based on the observation that the initial
(unconstrained) volume reconstruction is the best possi-
ble starting point for determining the constrained modes.
With this condition the convergence order of the con-
strained reconstruction stays close to the order of conver-
gence of the unconstrained volume reconstruction.

7.5 Constraint 5
In the same spirit it is desirable that the “extra” high order
modes should be small, i.e.,

B̃α
1i ≈ 0, B̃α

2i ≈ 0, B̃α
3i ≈ 0, |α| ≥ D(M). (58)

Table 4 provides the counts of the degrees of freedom
and the number of equations contributed by formulae (52),
(53), (56), (57), and (58) for schemes of second, third,
and fourth orders of spatial convergence. Since there are
more equations than unknowns, only the local and global
divergence-free conditions (52) and (53) are strictly en-
forced; the remaining conditions can only be satisfied ap-
proximately, in the least squares sense (in principle, at third
and fourth order of accuracy the constraints (56) can also
be strictly imposed). This constitutes a constrained lin-
ear least square (CLSQ) problem. Figure 11 illustrates the
structure of the LLS and constraints matrices at fourth or-
der. From Table 3, the rank of the Karush–Kuhn–Tucker
(KKT) matrix of the CLSQ problem is 29, 62, and 114 at
second, third, and fourth order of accuracy. Note that de-
spite the sparsity of the LLS and the constraint matrices,
the KKT matrix is largely dense.

Table 4 The number of unknowns (the “Unknowns” column) vs.
the number of conditions of each type (C1 through C5) in
magnetic field reconstruction

Order D(M) D̄(M) Unknowns C1 C2 C3 C4 C5

2 4 7 21 3 5 15 12 9
3 10 16 48 9 5 24 30 18
4 20 30 90 19 5 30 60 30

Based on the results of the previous section, it may be
expected that only a single KKT matrix needs to be con-
structed and inverted per t-face. Unfortunately, the dif-
ficulty here is with the global divergence-free condition
(Constraint 1), which is, in general, incompatible with the
reconstruction (31). Coordinate factorization is still possi-
ble, but only if the mesh is directly exponentially rationed,
i.e., r = r′ and W = ln(rmax/rmin)U. This is the mesh that
was used for all MHD applications discussed below.
At the end of the magnetic field reconstruction step, the

previously obtained unconstrained modes are discarded
and replaced with the constrained version. This ensures
synchronization between the primary and supplementary
magnetic field variables used by the code.

8 Time advance and boundary exchange
The complete finite volumemethod is implemented as fol-
lows. First, the zone-based variables (including B′) are re-
constructed to the quadrature points on the faces as de-
scribed in the previous two sections. Pairs of states from
each side of the interface are fed into a Riemann solver.
We employ the HLL family of nonlinear solvers (Harten
et al. 1983; Einfeldt 1988) that are very robust and usually
positivity preserving as long as the speeds of the extremal
waves are properly estimated. The popular HLLC solver
(Batten et al. 1997; Gurski 2004; Li 2005) consists of four
states separated by two fast shocks and a tangential discon-
tinuity. The HLLD solver (Miyoshi and Kusano 2005) adds
a pair of rotational discontinuities, and is therefore less dis-
sipative than HLLC, but is somewhat less robust and can
fail for certain combinations of input states. Our approach
is to start with the least diffusive solver, downgrading to
the more dissipative solver when the former fails to deliver
a positive resolved state. The fluxes are evaluated at each
quadrature point and combined together to obtain the to-
tal flux through a face. These fluxes update the conserved
variables in the zone using a TVD Runge–Kutta scheme
(Shu and Osher 1988). A version of the code is also avail-
able that uses the so-called arbitrary derivative (ADER) up-
date technique (Dumbser et al. 2008; Balsara et al. 2009).
TheADER implementation on the geodesicmesh has been
reported elsewhere (Balsara et al. 2019).
Unlike the zone variables, the magnetic fields are recon-

structed to the quadrature points lying on the edges. A sin-
gle point is sufficient at second order and two points at
third and fourth orders. The constrained magnetic field is
used here in place of the non-constrained reconstruction.
Each t-edge receives four states and each r-face five or six
states depending on whether it is a penta-corner or not.
These states are fed into a multi-state two-dimensional
Riemann solver (Balsara 2010, 2012, 2014; Balsara and
Dumbser 2015b) generating the electric field at the edges
(the remaining flux components are discarded). The 2D
Riemann solver used here is of the HLLI type (Dumb-
ser and Balsara 2016) that can include every MHD wave,
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Figure 11 Matrix structure for divergence-free reconstruction. The left panel shows the nonzero elements (marked with x’s) of the least squares
matrix and the right panel shows the same for the constraint matrix for fourth order reconstruction. The corresponding KKT matrix is 114× 114

including the Alfvén and slow magnetosonic waves. The
face-based magnetic field is updated via the same Runge–
Kutta procedure. This operation conserves the divergence
of B to the machine precision.
A correct implementation of the above schememust en-

sure that all variables are properly synchronized at the
block boundaries. Each block can have up to 38 neighbors
which at some point in the calculation must send some of
their zone, face, or edge based boundary data and received
equivalent data in return to fill in the ghost mesh element
or synchronize the common boundaries. The implemen-
tation described here does not use neighbor lists, instead
delegating all bookkeeping tasks to the message passing li-
brary.
Figure 12 demonstrates the typical mesh topology. Ten

out of 20 blocks are shown in this cutout view, shaded us-
ing different colors. This corresponds to the smallest de-
composition of the computational domain, confined be-
tween two concentric spheres with rmax/rmin = 2, and using
a single slab.
To formalize our communication strategy we define the

concept of “exchange site” that could be a face, edge, or
corner (vertex) of the block. Each exchange site maintains
a list of blocks that share the site. The list consists of two
elements for any face site, four for a t-edge, six or five for an
r-edge, and twelve or ten for a vertex site. Each site further
defines a number of exchanges that occur at the site as lists
of participant blocks. A blockmaintains a list of exchanges
it needs to perform during a time step and its own order in
that exchange. All exchanges of the same kind are started
at once on every participating block in the non-blocking
regime; we therefore rely on the message passing library’s

Figure 12 Cutout view of the mesh showing ten blocks out of 20 (the
smallest number of blocks on this mesh, consisting of a single slab
and 20 division 0 sectors). Each block is shaded using a unique color

own scheduling facilities to achieve optimal utilization of
the interconnection network.
A block maintains a set of buffers and corresponding

rules to pack a part of the block destined for exchange into
contiguousmemory of the buffer as well as the inverse (un-
pack) operation. Because neighboring blocks can have any
of the three possible orientations, packing and unpacking
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Figure 13 Neighbor arrangement around a block. The pairs of arrows
indicate the directions of the first and the second TAS coordinates,
respectively. The different rotations of the TAS are shown with
different color shading

must be done in a way that is independent of the choice of
the base vertex. Caremust also be taken to synchronize the
variables at locations that are shared among blocks, such
as face-based magnetic field values and fluxes, and edge-
based electric fields. This synchronization is needed to
eliminate possible divergence between neighboring blocks
owing to roundoff errors.
Figure 13 shows the block surrounded by twelve neigh-

bors that belong to the same slab. The large yellow trian-
gle is the interior area of the block, while the surround-
ing smaller trapezoidal or triangular areas represent the
receive buffers that correspond to the ghost zones of the
block. To extract the data received from each neighbor
from the corresponding buffer requires rotated TAS co-
ordinates that are represented in Fig. 13 by pairs of black
arrows showing the directions of the first and the second
TAS coordinates, respectively. The convention for packing
and unpacking a trapezoid is that the principal vertex is in
the lower left corner with the trapezoid resting on its wider
base. For small triangles, the principal vertex is the vertex
shared with the block’s interior. This convention automati-
cally ensures that unpacking of a buffer is done in the same
order as it was packed by the neighbor block.
Figure 14 shows the structure of the complete simulation

loop based on the Runge–Kutta time advance. The initial
setup involving pre-computing the geometry matrices is
time consuming, but the subsequent computation is sped
up dramatically as a result.

Figure 14 Sequence of steps in one iteration of the time loop

The production version of the code was written in For-
tran, and a development versionwriten inC++ is also avail-
able. The input and output is handled by the open source
SILO library (https://wci.llnl.gov/simulation/computer-
codes/silo). The library features a simple parallel I/O im-
plementation that groups the blocks (which could number
in the hundreds of thousands) into a smaller number of
SILO files. An assembly file is then generated describing
the relationship between the blocks for the visualizer. We
use the VisIt visualizer (https://wci.llnl.gov/simulation/
computer-codes/visit) for 3D rendering of the model out-
put; several of the figures in this paper were produced with
VisIt.

9 Numerical tests
Here we present two simple tests validating the accuracy
of the model. The first test in the “manufactured” solution
of Ivan et al. (2013) that describes an interaction between
a point source and a uniform flow; which is the most basic
model of an astrosphere (an interface produced by a stellar
wind expanding into a moving interstellar medium). This
steady state, current-free field-aligned flow is given by

ρ = ρ0

(
r0
r

)5/2

, (59)

u =
u0x

(r0r)1/2
+ u1

(
r
r0

)5/2

ê3, (60)

p = p0
(
r0
r

)5/2

, (61)

B =
B0r20x
r3

+
B0u1
u0

ê3. (62)

https://wci.llnl.gov/simulation/computer-codes/silo
https://wci.llnl.gov/simulation/computer-codes/silo
https://wci.llnl.gov/simulation/computer-codes/visit
https://wci.llnl.gov/simulation/computer-codes/visit


Florinski et al. Computational Astrophysics and Cosmology             (2020) 7:1 Page 19 of 24

The source terms corresponding to Eqs. (59)–(62) that ap-
pear in the conservative MHD equations are

Qρ = 0, (63)

Qu =
[
ρ0u0

(
u0
r

–
u1z
r2

)
–
5p0r0
r2

]
r3/20 x
2r5/2

+
(
7u0 +

5u1zr
r20

)
ρ0u1ê3
2(r0r)1/2

, (64)

Qe =
ρ0u20
2r

(
u0r0
r

+
7u1z
r0

)
+

ρ0u0u21(7r2 + 4z2)
r30

+
5ρ0u31zr3

2r50
, (65)

QB = 0. (66)

The analytic solution is independent of the adiabatic in-
dex γ . Following Ivan et al. (2013), the zero-subscripted
constants are all set to unity, u1/u0 = 0.017, γ = 1.4, and the
simulation is performed in the region between rmin = 2 and
rmax = 3.5. The radial shell width has an exponential de-
pendence on r. Figure 15 shows the rate of convergence for
the L1 and L∞ norms of the error in the density, total en-
ergy and one component of themagnetic field. Simulations
were performed on division 5 through division 8 meshes
with 32 through 256 radial shells and the same number of
zones per sector side.
As is demonstrated in Fig. 15, the L1 error decreases at

the nominal convergence rate of the scheme in each case.

The L∞ norm displays the nominal convergence rate at
second order, but decreases slower than the nominal rate
and third and fourth order. This is further quantified in Ta-
bles 5 through 7 that show the numerical values of the or-
der of convergence for the manufactured solution prob-
lem. The rates for density and energy (both zone based
variables) are very similar, whilemagnetic field shows a dif-
ferent behavior. The imposition of constraints described in
Sect. 7 affects the accuracy of reconstruction. It seems to

Table 5 Actual order of convergence for the manufactured
solution problem using the nominally second order scheme.
Density (ρ), total energy (e), and one component of magnetic
field (Bx ) are shown

ρ e Bx

Division 5 6 7 5 6 7 5 6 7

L1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
L∞ 2.0 2.0 1.8 2.0 2.0 2.0 1.8 1.8 1.8

Table 6 Actual order of convergence for the manufactured
solution problem using the nominally third order scheme.
Density (ρ), total energy (e), and one component of magnetic
field (Bx ) are shown

ρ e Bx

Division 5 6 7 5 6 7 5 6 7

L1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
L∞ 3.0 2.7 2.6 3.0 2.7 2.5 2.3 2.3 2.3

Figure 15 L1 (solid lines) and L∞ (dashed lines) norms of the error of density, total energy, and the x component of the magnetic field for the
manufactured solution on division 4–7 TGM. The three panels correspond to second through fourth order schemes
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be detrimental at lower order of accuracy but is surpris-
ingly beneficial at fourth order.
Figure 16 shows the velocity magnitude (left panel) and

the distribution of the error on the sphere at r = 2.75 for
a simulation on a division 6 mesh using the fourth order
scheme. The flow geometry resembles that of a potential
flow of gas around a point source, although the velocity
field is not irrotational here. The right panel shows the er-
ror distribution in one spherical layer. In common with
other geodesic meshes, the error distribution shows a dis-
tinctive imprint of themesh. The errors are the largest near
the penta-corners and at the boundaries of division 0 and
division 1 sectors. Similar phenomena have been reported
by Tomita et al. (2001), Weller et al. (2012) and Peixoto
and Barros (2013) in the context of the shallowwater equa-
tions.
It is expected that the error becomes more concentrated

near singular points with increasing refinement. For any
divisionmesh, only 60 zones have a singular point as a ver-
tex. Because the ratio of the number of large error zones to
the total number of zones decreases with increased reso-
lution, the L1 norm is not affected even if the convergence
order in high error zones is one lower than elsewhere in
the mesh; this is supported by the numbers from Table 7.

Table 7 Actual order of convergence for the manufactured
solution problem using the nominally fourth order scheme.
Density (ρ), total energy (e), and one component of magnetic
field (Bx ) are shown

ρ e Bx

Division 5 6 7 5 6 7 5 6 7

L1 4.3 4.1 4.0 4.3 4.1 4.0 4.1 4.0 4.0
L∞ 4.0 3.1 3.0 4.1 3.1 2.9 3.1 3.3 3.6

The second test is a time-dependent blast problem from
(Florinski et al. 2013). The initial conditions are piecewise
constant within each of the two concentric shells, rmin ≤
r ≤ r1 and r1 ≤ r ≤ rmax. Both states have ρ0 = 1 and u0 = 0,
while the pressure is set to p0 = 10 (r < r1) and p0 = 0.1
(r > r1). The initial magnetic field is a superposition of a
dipole and a uniform fields,

B = B0

(
1 +

r30
2r3

)
–
3r30(B0 · x)x

2r5
. (67)

We set B0 = 10/
√
3(ê1 + ê2 + ê3), γ = 1.4, and r1 = 0.1. The

simulation was performed in the region between rmin =
r0 = 0.01 and rmax = 0.5 until the time t = 0.07with third or-
der reconstruction on a division 6meshwith 256 exponen-
tially spaced radial shells. A reflective condition was used
at the internal boundary and the fixed initial state main-
tained at the external boundary.
The magnetic field obtained for this problem is shown

in Fig. 17. The flow consists of a fast shock wave and two
dense shells of material elongated along themagnetic field.
The result is in excellent agreement with that reported in
Florinski et al. (2013).

10 Summary
This paper documents many of the original techniques
and innovations that were incorporated into our newly de-
veloped computational model for MHD equations based
on an icosahedral triangular geodesic mesh. The new
geodesic framework features numerous improvements
compared with our earlier icosahedral hexagonal model
reported in Florinski et al. (2013) that was used success-
fully to simulate the interaction between the solar wind
and the surrounding interstellar medium (Guo and Florin-
ski 2016; Guo et al. 2018). These improvements are sum-
marized below.

Figure 16 Left: velocity magnitude isosurfaces from the manufactured solution problem. The solution has a resemblance to an interaction between
a stellar wind an a uniform flow. A fourth order scheme was used on division 6 mesh with 64 radial shells. Right: density error distribution in a
spherical layer at r = 2.75



Florinski et al. Computational Astrophysics and Cosmology             (2020) 7:1 Page 21 of 24

Figure 17 Magnitude of the magnetic field from the solution to the
blast wave problem at t = 0.07. A linear color scale is used

Triangle basedmesh.Using triangles instead of hexagons
paved the way to efficient decomposition of the computa-
tional domain into sectors in addition to radial shells (shell
decomposition was the only one available in Florinski et al.
(2013)). As a result, the new code scales up to tens of thou-
sands of CPU cores with almost linear weak scaling (Bal-
sara et al. 2019). The second advantage of the TGM is that
it is amenable to adaptive mesh refinement, which is not
possible with a hexagonal mesh.
Increased order of accuracy. The new framework pro-

vides second, third, and fourth orders of accuracy for the
MHD equations. High accuracy was achieved by using
larger stencils and multiple families of stencils includ-
ing symmetric central and asymmetric directional sten-
cils. This is a major improvement over our earlier geodesic
model that was only second order capable. The only other
fourth order geodesic mesh MHD model we are aware of
was reported in Ivan et al. (2015); however it was based on
a cube-sphere rather than a TGM.
Accurate representation of spherical geometry. The new

framework uses linear, quadratic, and cubic Lagrangian
basis function to perform coordinate transformations
from a reference element (a right prism) to the physi-
cal computational zone. These maps are based on the
serendipity family of triangular finite elements with three,
six, and ten nodes, respectively. This approach allows a
very accurate representation of the spherical surface with-
out the drawback of dealing directly with spherical coordi-
nates. While the accuracy of the geometry representation
does not improve the convergence order of the scheme, it
could be potentially very important for the models of thin
shells, such as planetary atmospheres.

Divergence free MHD. The new model features the first
implementation of the constraint transport method on
a geodesic mesh. In this approach the magnetic field is
maintained divergence free because of exact cancellation
of all contributions to divergence in a zone during the
time update. In addition, themodel features pointwise and
functional divergence-free reconstruction of the magnetic
field.
Implementation flexibility. All geodesic meshes are

based on the same set of underlying principles used in
mesh generation and spatial reconstruction. We have
found that the present framework can be adapted, with
a very limited number of changes, to build a model around
any of the five regular polyhedra. We have developed an
initial implementation of the geometry framework compo-
nent for the hexahedral QGM. This will eventually permit
a direct comparison between geodesic meshes of different
types.

Appendix A: Basis functions for triangular faces
Linear elements: nodal points at vertices,

ψ1 = 1 – ξ –
1√
3
η,

ψ2 = ξ –
1√
3
η,

ψ3 =
2√
3
η, (68)

φ1 = 1 – δ,

φ2 = δ.

Quadratic elements: nodal points at vertices and edgemid-
points,

ψ1 = 1 – 3ξ –
√
3η + 2ξ 2 +

4√
3
ξη +

2
3
η2,

ψ2 = –ξ +
1√
3
η + 2ξ 2 –

4√
3
ξη +

2
3
η2,

ψ3 = –
2√
3
η +

8
3
η2,

ψ4 =
8√
3
ξη –

8
3
η2,

ψ5 =
8√
3
η –

8√
3
ξη –

8
3
η2, (69)

ψ6 = 4ξ –
4√
3
η – 4ξ 2 +

4
3
η2,

φ1 = 1 – 3δ + 2δ2,

φ2 = –δ + 2δ2,

φ3 = 4δ – 4δ2.
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Cubic elements: nodal points at vertices, edge thirds, and
geometric center,

ψ1 = 1 –
11
2

ξ –
11
2
√
3
η + 9ξ 2 + 6

√
3ξη + 3η2 –

9
2
ξ 3

–
9
√
3

2
ξ 2η –

9
2
ξη2 –

√
3
2

η3,

ψ2 = ξ –
1√
3
η –

9
2
ξ 2 + 3

√
3ξη –

3
2
η2 +

9
2
ξ 3 –

9
√
3

2
ξ 2η

+
9
2
ξη2 –

√
3
2

η3,

ψ3 =
2√
3
η – 6η2 + 4

√
3η3,

ψ4 = –3
√
3ξη + 3η2 + 9

√
3ξ 2η – 18ξη2 + 3

√
3η3,

ψ5 = –3
√
3ξη + 3η2 + 18ξη2 – 6

√
3η3,

ψ6 = –3
√
3η + 3

√
3ξη + 21η2 – 18ξη2 – 6

√
3η3,

ψ7 = 6
√
3η – 15

√
3ξη – 15η2 + 9

√
3ξ 2η + 18ξη2

+ 3
√
3η3,

ψ8 = 9ξ – 3
√
3η –

45
2

ξ 2 +
15
2

η2 +
27
2

ξ 3 +
9
√
3

2
ξ 2η

–
9
2
ξη2 –

3
√
3

2
η3,

ψ9 = –
9
2
ξ + 3

3
√
3

2
η + 18ξ 2 – 9

√
3ξη + 3η2 –

27
2

ξ 3

+
9
√
3

2
ξ 2η +

9
2
ξη2 –

3
√
3

2
η3,

ψ10 = 18
√
3ξη – 18η2 – 18

√
3ξ 2η – 6

√
3η3,

φ1 = 1 –
11
2

δ + 9δ2 –
9
2
δ3,

φ2 = δ –
9
2
δ2 +

9
2
δ3,

φ3 = 9δ –
45
2

δ2 +
27
2

δ3,

φ4 = –
9
2
δ + 18δ2 –

27
2

δ3.

(70)

Appendix B: Reconstruction accuracy vs. stencil
size

To determine whether the stencil configuration affects the
accuracy of the reconstructed solution, we conducted a
statistical test by initializing a single grid block with an
ensemble of Nw = 10 waves with isotropically distributed

wavevectors kj and random phases ϕj,

U(x) =
1
Nw

Nw∑

j=1

cos(kj · x + ϕj), (71)

where U is the scalar variable to be reconstructed. The
wavelengths λj = 2π/kj were logarithmically distributed
between λmin = 1 and λmax = 10. For this test we used
fourth order of accuracy because it offers the largest choice
of stencils. A single division 1 block with 16 shells, rmin =
1.71, rmax = 2.92, and division 5 t-faces was used. Shell
spacing was exponential as given by Eq. (27).
Figure 18 shows the average L1 error, its standard de-

viation, and the largest error over all trials, as a function
of the number of zones in the stencil that varied between
D(3) = 20 and 3D(3) = 60. Interestingly, both the average
and the maximum errors are slowly increasing with the
stencil size, although a zero trend would also be consistent
with the error bars. This trend was previously observed
by Ivan et al. (2015), who suggested that smaller stencils
provide higher accuracy because the reconstruction data
is more local to the zone. The only exception is the first
point corresponding to the stencil of the smallest possible
size. It would seem reasonable, then, to use smaller sten-
cils as long as they have a few extra zones to benefit from
the least square procedure. One has to remember, how-
ever, that this result may not hold for every problems or
mesh configuration.

Figure 18 Fourth order reconstruction error for different size stencils.
Average of L1 reconstruction error (circles) with standard deviation,
shown as error bars, and the largest error, shown with square symbols,
on a division 1 block with division 5 faces and 16 radial shells.
Averaging was done over 1000 trials, each initialized with a random
ensemble of ten waves with isotropically distributed wavevectors.
Stencil configuration is color-coded; the value of X can be deduced
by subtracting the sum of zones in all planes, save the principal plane,
from the total number of zones on the horizontal axis
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