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Abstract

The Stokes-Brinkman equations model fluid flow in highly heterogeneous porous media. In this paper, we consider the
numerical solution of the Stokes-Brinkman equations with stochastic permeabilities, where the permeabilities in subdomains
are assumed to be independent and uniformly distributed within a known interval. We employ a truncated anchored ANOVA
decomposition alongside stochastic collocation to estimate the moments of the velocity and pressure solutions. Through
an adaptive procedure selecting only the most important ANOVA directions, we reduce the number of collocation points
needed for accurate estimation of the statistical moments. However, for even modest stochastic dimensions, the number of
collocation points remains too large to perform high-fidelity solves at each point. We use reduced basis methods to alleviate
the computational burden by approximating the expensive high-fidelity solves with inexpensive approximate solutions on
a low-dimensional space. We furthermore develop and analyze rigorous a posteriori error estimates for the reduced basis
approximation. We apply these methods to 2D problems considering both isotropic and anisotropic permeabilities.
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1 Introduction geometry. Second, the geologic formations consist of many

varying materials, with different geologic properties. Third,

The simulation of flow in porous media has numerous
applications, to include reservoir simulation, nuclear waste
disposal, and carbon dioxide sequestration. Such simulation
is challenging for a variety of reasons. First, the domains
tend to be fairly irregular, which complicates the model
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there are often fractures and vugs within the domain that
alter the effective permeabilities. The standard approach
to modeling these types of problems is to couple Darcy’s
law and the Stokes equations and enforce the Beavers-
Joseph-Saffman conditions along the interface [1-3]. The
free-flow regions (fractures, vugs) are modeled using Stokes
flow, whereas the porous region is modeled using Darcy’s
law [4, 5]. However, the two types of domains are not well-
separated in reservoirs, and it may be difficult to determine
the appropriate conditions to enforce along the interface.
We model flow in porous media using the Stokes-Brinkman
equations [6—10], which combine the Stokes equations
and Darcy’s law into a single system of equations. The
Stokes-Brinkman equations reduce to Stokes or Darcy flow
depending upon the coefficients and were suggested as a
replacement for the coupled Stokes-Darcy equations in [10].
By careful selection of coefficients, the equations allow
modeling of free-flow and porous domains together, thereby
resolving issues along the interface.

In this paper, we consider the case where the exact
permeabilities are unknown but are instead specified by
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a known probability distribution. The first step in many
methods to solve such stochastic PDEs is to parametrize
the distribution by a finite number of parameters. In
some instances, such as the case studied in this paper,
such a parametrization arises naturally from a partition-
ing of the domain into a finite number of subdomains. In
other instances, a truncated Karhuen-Loeve expansion [11,
12] may be used to obtain such a finite parametrization.
Once the stochastic space has been parametrized, statistical
moments may be approximated through stochastic collo-
cation [13] in which deterministic solves are performed at
carefully selected points.

The straightforward stochastic collocation method suf-
fers from the curse of dimensionality—complexity grows
exponentially with the number of parameters. To reduce
the computational complexity of collocation methods, one
may utilize Smolyak sparse grid [14] or an ANOVA decom-
position [15-17]. We consider the latter in this paper. By
using a truncated ANOVA decomposition, we may resolve
the curse of dimensionality by decomposing the intractable
high-dimensional problem into a set of tractable problems
of low stochastic dimension which we solve by stochastic
collocation. We obtain further improvements by adaptively
selecting the ANOVA terms [18, 19].

Whereas a truncated ANOVA decomposition or Smolyak
sparse grid significantly reduces the number of collocation
points, the number of remaining collocation points might
still be computationally prohibitive if the cost of solving
at a single collocation point is high. Such is the case with
the discrete Stokes-Brinkman systems, which are highly
ill-conditioned due to the heterogeneity in permeabilities.
Reduced basis methods [20-23] alleviate this computational
burden by approximating the manifold of solutions by a
low-dimensional linear space. An expensive offline step
is first performed to generate the reduced basis. However,
after the reduced basis is built, all subsequent solves at
collocation points are replaced by cheap low-dimensional
computations on the reduced basis.

Reduced basis methods in conjunction with ANOVA for
parametric partial differential equations were first studied
in [24] where a three step RB-ANOVA-RB method was
suggested for solving high-dimensional problems. The first
two steps (RB-ANOVA) are similar to the idea presented
in this paper in which a reduced basis is built and then
used to compute the ANOVA expansion. However, in our
work, the construction of the reduced basis and the ANOVA
expansion occur simultaneously rather than as separate
steps. Furthermore, in [24], only a first-level ANOVA expan-
sion is considered for the purpose of identifying parameters
which have low sensitivity and can be given fixed val-
ues, thereby reducing the overall parametric dimension for
the reduced basis solve in the final (RB) step. Instead, we
adaptively select the ANOVA terms to allow higher-level
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terms at minimal cost. Key to the success of our method
is the use of anchored ANOVA [18, 19, 25-27] which
allows us to replace the high-dimensional integrals of the
ANOVA expansion with cheaper low-dimensional integrals.
In this way, our work is more closely aligned with the work
in [28, 29] where reduced basis methods are used in con-
junction with anchored ANOVA and adaptive selection of
ANOVA terms to solve high-dimensional stochastic partial
differential equations.

In this paper, we apply these methods to the stochas-
tic Stokes-Brinkman problem. As a saddle-point problem,
the Stokes-Brinkman equations introduce additional com-
plexity to the reduced basis methods because the reduced
basis systems must be inf-sup stable. To guarantee inf-sup
stability, we follow the approach of [30], which considers
the simpler Stokes case. We also devise rigorous a poste-
riori error estimates based upon the Brezzi stability theory,
following the approach of [31]. These a posteriori error
estimates enable us to be confident in the accuracy of the
reduced basis approximations and are useful in building the
reduced basis.

This paper is organized as follows. In Section 2, we
introduce the Stokes-Brinkman equations, present their
discretization using mixed finite elements, and describe
the parametrization of the stochastic permeabilities. In
Section 3, we discuss the ANOVA decomposition and the
adaptive selection of terms. An overview of reduced basis
methods is presented in Section 4, and the rigorous a
posteriori error estimates upon which these methods rely
are presented in Section 5. Finally, in Section 6, we present
numerical experiments demonstrating the effectiveness of
these techniques for stochastic Stokes-Brinkman problems,
considering problems with both isotropic and anisotropic
permeabilities.

2 The Stokes-Brinkman problem
and its discretization

2.1 The Stokes-Brinkman equations

Let D C Rd, d = 2,3, be a connected, open domain
with Lipschitz boundary dD. The Stokes-Brinkman equa-
tions [6-10] model the flow of a viscous fluid in heteroge-
neous porous material as

—vVAu+vK lu+Vp = f (1)
Vou=0, @)

where v > 0 is the constant viscosity of the fluid, v* > 0
is an effective viscosity, K is a symmetric positive definite
permeability tensor, u is the velocity, p is the pressure,
and f denotes external forces. In this paper, we restrict
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attention to the case where K is a diagonal matrix. We
further require that v* and K~! are bounded above on D.
Equation 1 is derived from the conservation of momentum,
and Eq. 2 is derived from the conservation of mass. They
are accompanied by the following Dirichlet and Neumann
boundary conditions

u=up ondDp

ou

Vi— — pn = uy

ondDy,
on N

where dDp and 0Dy denote the Dirichlet and Neumann
boundaries, respectively, n is the unit outward normal,
and % is the directional derivative of the velocity in the
normal direction.

The Stokes-Brinkman equations may be understood as
limiting cases of the Stokes equations and Darcy’s law [4,
5]. Indeed, if K > 0 and v* = v, Eq. 1 approximates
the Stokes equation —vAu 4+ Vp = f, and, as v* — 0,
it approximates Darcy’s law u = —%(Vp — f). Thus,
the Stokes-Brinkman equations provide a single system of
equations to solve in highly heterogeneous porous media.
In general, the choice of v* will depend upon the porosity
of the material. However, for small permeabilities, the
diffusive term v* Au introduces only a small perturbation
to Darcy’s law [9]. In the absence of precise information
about the value of v* in regions of small permeability, it
is common to choose v* = v, which is the convention we
adopt in this paper. For more details on the choice of v*,
see [9, pp. 26-29].

2.2 Finite element discretization

We seek a weak solution to Egs. 1 and 2. Let LZ(D) denote
the space of square-integrable functions on D,

LY(D) = {gq: /cf < oo},
D

and H'(D) denote the subspace of L*(D) with weak
derivatives in L2(D),

HY(D) ={q € L*(D): 5—" eL*D),i=1,...,d}.

1

The space H'(D)¢ denotes the space of vector-valued
functions whose d components are each in H (D). We
define the following spaces for the velocity

HL(D) = (ue HY(D)?: u=upondDp)
Hy (D) = {ue H'(D)*: u=00n3Dp}.
We choose a fixed w € H é(D) and note that any v €

H }E(D) may be written uniquely as # + w for some u €
Hy (D).
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‘We define the bilinear forms
as(u,v) = / V*Vu: Vv, u,v,e H(D)? 3)
D
ap(u,v) = / w- (K1), u,veH (DY 4)
D

a(u,v) = as(u,v) +apu,v), wu,ve  H (D) (5

b(v,q) = —/qu-v, ve H (D), q € L*(D) (6)

where Vu: Vv = Y% Vu; - Vu;. The bilinear forms
as(-,-) and ap(-,-) denote the Stokes and Darcy parts,
respectively, of the bilinear form a (-, -). We define the linear
functionals

Zl(v)E/ f-v—a(w, v)+/ Uy - v, UGHEO(D),(7)
D DN

() =—bw,q), qeL*D). 8)

The weak formulation of Eqs. 1-2 is then to find u €
H}EO(D) and p € L%(D) such that

a(u,v) +b(v, p) = L1(v), Vv € Hy (D) )
b(u,q) = &(q), Vq € L*(D). (10)

The full velocity solution with proper Dirichlet boundary
conditions is then u + w.
In the following, we denote the space H éO(D) by V and

the space L2(D) by Q. Furthermore, due to the presence of
zero Dirichlet boundary conditions, we define the V inner
product as (u, v)y = [, Vu: V.

The existence and uniqueness of solutions to Egs. 9 and
10 is a consequence of the Brezzi stability conditions [32,
33]. We state these conditions in Theorem 1, paraphrasing
Corollary 4.2.1 of [32] for the case of a symmetric a(-, -).
This theorem additionally provides stability estimates which
we will use to derive our a posteriori error estimates in
Section 5.

Theorem 1 Let V and Q be Hilbert Spaces. Let a: V X
V. — R be a continuous symmetric bilinear form that
satisfies the coercivity condition: there exists an oo > 0
such that a(u,u) > ollu|ly for all u € V. Furthermore,
let bV x QO — R be a continuous bilinear form that
satisfies the inf-sup condition: there exists f > 0 such that
bwa) g an
a€Qvev ligllglivily
Then, for any £1 € V* and £y € QF, the saddle-point
system (9)—(10) has a unique solution (u, p) € V x Q which
satisfies the stability bounds

lllf l +2\/7||€ Il (12)
o 1lv 5V o 2ll o+

2 |y 14
z 21 |lys ol ox 13
8 all 1llv +,32” 2llo (13)
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where a and B are the above coercivity and inf-sup con-
stants and y > 0 is the continuity constant satisfy-
ing a(u,v) < yllullyllvlly forallu,v e V.

Coercivity and continuity of Eq. 3 and continuity of Eq. 6
are immediately seen to be satisfied as these are the
forms used in the Stokes equations. The fact that K~!
is symmetric positive definite implies that a(u,u) =
as(u,u) + ap(u,u) > as(u,u) and coercivity of Eq. 5
immediately follows. Continuity of Eq. 5 follows as the
bilinear forms ag(-, -) and ap(-, -) are both bounded due to
boundedness of the viscosities and inverse permeabilities.
The inf-sup condition is more delicate, but the spaces V
and Q above were chosen to satisfy this property [34,
Chapter 3].

Remark 1 In the case where no Neumann boundary condi-
tions are specified, the inf-sup condition (11) fails as b(q,
v) = 0 for all v € V where ¢ is constant. In this case, we
may define Q to be the quotient space L2(D)/R in which
two functions g1, g2 € L?*(D) are identified if they differ
by a constant function. By equipping this space with the
norm |lgllg = llg — 1/|D|fDq||Lz(D), the inf-sup condi-
tion is satisfied. This demonstrates that the pressure solution
in this case is unique up to a constant. In this paper, we
will always specify Neumann conditions on a portion of the
boundary.

We solve (9) and (10) using the mixed finite element
method [32]. Given conforming finite element spaces Vj, C
V and Q) C Q, we seek (up, pn) € Vi x Qy, such that

Yv, € Vy,
Yan € On-

a(up, vp) + b(vy, pp) = L1(vp),
b(up, gn) = L2(qn),

By selecting finite element bases for V;, and Qj, we
obtain the discrete saddle-point problem

BINEH a

where A and B are discrete analogs of Egs. 5 and 6, respec-
tively, u and p are the vectors of degrees of freedom for
the velocity and pressure, respectively, and f and g are
the discretizations of the functionals (7) and (8), respec-
tively.

The coercivity and continuity properties are immediately
inherited by the finite element discretization. However, care
must be taken to ensure that inf-sup stability is maintained.
In this paper, we obtain inf-sup stability by using the O, —
P_ approximation in which the domain is discretized into
shape-regular quadrilaterals on which the velocity space is
piecewise continuous biquadratic and the pressure space is
piecewise discontinuous linear [34, Chapter 3].
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Throughout this paper, we will use the notation My
to denote the mass matrix for a finite-dimensional Hilbert
space H.

2.3 The stochastic Stokes-Brinkman problem

Let (£2,%,7) be a complete probability space with
sample space £2, o-algebra X, and probability measure .
We assume stochasticity in the permeability tensor K(w)
for o € $£2. For simplicity, we focus only on stochastic
permeability, although stochastic viscosity, forcing term, or
boundary conditions may be treated in a similar manner.

We assume that @ may be well-approximated by a finite
number of random variables £ = (&1, ..., &y)T with &, €
I, =lan, bylandé € I' = ]_[%:1 I,;. This may arise, for
example, from a truncated Karhuen-Lo¢ve expansion [11,
12] or from a partitioning of the domain into subdomains.
When applying the reduced basis methods discussed in
Section 4, it will be convenient if the parametrization admits
an affine decomposition for the bilinear form (5) and the
linear functional (7) such that

a(u,v;§) =Y 01 E)a;(u, v)
i=1
nf
G E) =Y 8] &) fw).
i=1
na

where {a;};2, are parameter-independent bilinear forms,

{ fi}lrz | are parameter-independent linear functionals, and
{0{‘};’2  and {0l.f }:.lf | are functions mapping the parameter &

to the coefficients of the affine decomposition. We note that
the bilinear form (6) and the linear functional (8) are inde-
pendent of the permeability and are, therefore, parameter-
independent.

Assuming such an affine decomposition, the saddle-point

problem (14) is now parametrized as

AE BT Tu®) ] _[f&)
[ B OHP@J‘[g] (1
The matrix A (&) exhibits an affine decomposition
na
AE) =) 01 ©A, (16)
i=1

where {Ai}l'.’é | are discretizations of the parameter-
independent bilinear forms {ai};’i |- Similarly, f(¢) exhibits
an affine decomposition

ng
£&) =Y 6/ ©f. an
i=1
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where {fi}:.z | are discretizations of the parameter-
independent linear functionals { fl-}:.'i {- The affine decom-
positions (16) and (17) greatly simplify the use of reduced
basis methods, as is discussed in Section 4.

3 Adaptive ANOVA and stochastic
collocation

In this section, we introduce the ANOVA decomposition
[15-17] which is a useful tool for analyzing a multivari-
ate function. In particular, we utilize a truncated ANOVA
decomposition to approximate the computationally expen-
sive high-dimensional stochastic problem with a set of
cheaper low-dimensionsal problems. In addition, we adap-
tively select the most effective ANOVA terms, following the
ideas presented in [18, 19].

3.1 ANOVA decomposition

Let ¢(x; &) denote a parametrized function for x € D
and & € I'. In our application, ¢ may be either the velocity u
or pressure p. Let .# denote the index set {1,..., M}.
We will refer to a subset T C ¢ as a direction.
ANOVA decomposes the function ¢ into contributions from
individual directions 7. More formally, the decomposition
has the form

G &)=Y pr(xiér), (18)

T<T

where &7 is a restriction of £ to the coefficients in 7 and

¢ (x; 1) =f P E)der — Y ps(iks).  (19)
Iy ScT

with T’ C .# denoting the complement of 7 in .# and I's =
[Lnes Im for S € 7. We define the order of a direction T
to be its cardinality |T|. Thus, the ANOVA decomposition
attempts to decompose ¢ into the contributions of each
individual direction by removing the contributions from
lower-order subdirections. The ANOVA decomposition of ¢
is built by first computing the order-zero term

du(x) = /F & (x: £)dE,

then successively computing higher-order terms by first
marginalizing out the unused variables with |’ r, @ §)
d&7 and then removing the computed effects of previous
subdirections with ) ¢ 7 ¢s(x; &s). While the cost of
the full ANOVA decomposition is prohibitive in high-
dimensional spaces, it may be used to obtain a useful
approximation by truncating the expansion by keeping only
the low-order terms. Thus, a high-dimensional multivariate
function may be approximated through the sum of low-
dimensional functions.

The ANOVA decomposition defined by Egs. 18 and
19 involves the computation of high-dimensional integrals
which require expensive Monte Carlo computations. An
alternative is anchored ANOVA [18, 19, 25-27] in which
an anchor point ¢ € I is carefully chosen and the measure
in Eq. 19 is replaced by the Dirac measure §(¢§ — c¢). The
order-zero term may then be computed by evaluating ¢ at
the anchor point c:

Pp(x) = p(x;0).

Given the order-zero term, we may compute the first-
order terms and then the second-order terms as

Oy (x; &y = o(x; ¢, &, {i}) — dy(x)
O,y ) = d(xs e, & (i, 7Y — oy (e &)
=y (x; &y — P (x).

The notation ¢(x;c,&,T) is to be understood as
evaluating ¢ at the parameter £ which takes on the values

Third and higher-order terms may be computed in a
similar fashion.

It was shown in [18] that the mean of £ often serves as a
good choice of anchor point, and we shall use this choice.

3.2 Stochastic collocation

We may utilize the ANOVA decomposition to compute
moments of ¢. The mean of ¢ may simply be obtained by
summing the means of the individual terms:

Elp(x; )] = Y Elgr(x; &)]. (20)

TCcY

A property of the standard ANOVA decomposition is
the orthogonality of its terms. Due to this, higher-order
moments such as the variance of ¢ may also be obtained
by summing the moments of the individual terms. However,
the orthogonality property only holds if the same measure
is used in both the computation of the ANOVA terms
and in the statistical moments. This fails in the case of
anchored ANOVA. We remark that, for a good choice of
an anchor point, the orthogonality may be approximately
preserved. For general choices of anchor points, a method
involving the covariances of individual terms is needed for
good accuracy [35]. That is, we compute the variance by
summing the covariances of all pairs of directions:

El(@(x; §) — )]
= > El@r(x; &) — ur)(@s(x; &) — ps)]

T,85Ccy

where o denotes the mean (20) and w7 denotes the mean
of (f)T.

@ Springer
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To estimate the moments of individual ANOVA terms,
we use stochastic collocation. In stochastic collocation, we
interpolate the stochastic solution by a set of Lagrange
polynomials at collocation points

&)~ Y el ED)Lew ()

tbeE

where @ C I is the set of collocation points and {Lg(k)} are
the Lagrange polynomials. The coefficients ¢ (x; &®)) are
obtained by function evaluations at specific realizations & %)
of &. Thus, stochastic collocation methods reduce solution
of the stochastic problem to a set of deterministic solves at
specific sample points.

We select collocation points for each direction T as
follows. For each index i € T, a set ®; of p; points and
associated weights are selected as nodes according to a
quadrature rule on I7;. Then the full set of quadrature points
is obtained by using a tensor product @7 = ), ©;. For
a quadrature point E;'\ = ®i€T§i € Or, the corresponding
weight is the product w(”;‘\) = [lier wi@) where wi@)
denotes the weight of 5 in the quadrature rule for index i.
The collocation means for direction 7 and for the full
function may then be computed as

Eslpr(x:€r)] = Y ¢r(x: EHw(E)

Ecor

Eecl¢(x: §)] = Y Elgr(x; &n)l. 21

TC.Y

For a direction S, let ¢s(x;&s) = s(x;Es) —
Esc[¢ps(x; Es)]. To compute the covariance of S and T, we
need quadrature points for SUT, although we need not form
these quadrature points explicitly. We partition S U T into
three disjoint sets: SNT, S\7T,and T\ S. Forggmf € Osnr,
define

ZS\T(ESHT) = Z

E5eOy
§slsnr=¢snT

ws (Es) s (x; Es).

We may then compute the collocation covariances and
variances as

1

Ee[ps(x: E)br (xi )= Y —=Zs\rE)Zn\s &)
S wE)
§€0snr
Eel(@(x: €)= )’1= Y Eclgs(x; £5)¢r (x:ér)].
S, Tcy

(22)

For truncated ANOVA, we replace (21) and (22) with
sums over the used directions.

If a truncated ANOVA decomposition is used to com-
pute (21) and (22), immediate savings over the full tensor
product collocation are apparent. Assuming each index
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has polynomial order p, the full tensor product colloca-
tion requires function evaluations at p™ collocation points,
which quickly becomes prohibitive even for moderate M.
However, if an ANOVA decomposition truncated at level £
is used, then the total number of collocation points is
reduced to Y¢_, (") p', which is substantially less than p™.

3.3 Adaptive ANOVA

Instead of simply truncating (18) at a specified level,
we could attempt to adaptively select which directions
contribute the most significantly. Such an adaptive scheme
was developed in [18, 19]. For each direction 7', we can
score its contribution to the mean using

IEsclur]lly + ”]Esc[pT]”Q

[ Z|S|<|T| Egclusillv + |l Z|S|<|T| Esc[pS]”Q.
(23)

n™(T) =

The form of this indicator was used in [29] when apply-
ing adaptive ANOVA techniques to the Stokes equations due
to the mixed formulation of the model problem. An alterna-
tive indicator which uses the variance rather than the mean
may be used instead. In this paper, we use the mean.

We consider a direction T active if it is included in the
ANOVA decomposition. We consider any active direction T
whose indicator (23) exceeds a given tolerance A to be
effective. Let Y1 denote the set of active directions at level /,
and let _¢#; C _¢#; denote the set of effective directions at
level [:

=T e gi: A1) > ). (24)

Then we choose the next-level active directions _#j11 as
those level [ + 1 directions T satisfying S € _¢; for every
level [ subdirection S of T':

i ={T:|T|=l+1and S € # VS CT,|S|=1}. (25)

Thus, we build level /41 active directions by considering
only those directions which can be built from effective
level [ directions. This heuristic is based upon the idea that,
if a direction T is important, then its subdirections at the
previous level will likely also be important.

4 Reduced basis methods

Whereas the anchored ANOVA method reduces the number
of collocation points needed to accurately estimate the
moments, solving (15) at each collocation point may still
be prohibitive. In the context of reduced basis methods,
we refer to solving (15) as a high-fidelity solve. Reduced
basis methods [20-23] may be used in conjunction with
ANOVA [28, 29] to reduce the number of high-fidelity
solves. Suppose that the solutions at the collocation points
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may be well-approximated by a low-dimensional space.
Significant computational savings may then be obtained
by reducing the full computation to this low-dimensional
space. We seek spaces V., C V, and Q, C Qp of
dimensions much smaller than those of V;, and Qj but
for which the solution (u,(£), pr(§)) € V. x Q, to the
variational problem

a(up(§), vr; §)+b(vy, pr(§)) = li(vr; §), Vv eV, (26)
b(ur(§),q,) =4L20qr), Vgr€ Oy (27)

accurately approximates the solution (u;, (), pr(§)) € V) x
O}, to the high-fidelity problem.

Let V, denote a matrix whose columns form a V-
orthogonal basis for the space V,, and, similarly, let Q,
denote a matrix whose columns form a Q-orthogonal basis
for the space Q,. Then Egs. 26 and 27 is equivalent to
solving the following saddle-point problem as in (15)

[VZ A@)V, VI BTQr} [ur@)] _ [V,T f@)} 28)
QBV, 0 p@ | | Qg |

The approximate solutions in V;, and Q) may then be
obtained as V,u,(§) and Q,p, (§).

Care must be taken to ensure that the reduced basis
problem (26) and (27) is inf-sup stable. Whereas the
coercivity and continuity of a on the reduced basis space
follow directly from the coercivity and continuity of a on
the high-fidelity space, the inf-sup condition (11) is not
immediately satisfied. The condition may be satisfied by
properly enriching the velocity space V, relative to the
pressure space. Let 7: Q@ — V denote the supremizer
operator such that, for a given g € Q, T g satisfies

(Tq,v)y = b(v,q) YvelV. 29)

Then the inf-sup condition is satisfied if, for each ¢ €
Q,, Tq € V, [30]. Let {u!,...,u’} be a set of s high-
fidelity velocity solutions from which we seek to build the
reduced basis and { p} , ..., Py} be the corresponding set of s
high-fidelity pressure solutions. We then obtain an inf-sup
stable approximation by defining

V, = span [u},...,uﬁ, Tp,l,...,Tpﬁ}

0, = span[prl,...,pf].

Note that, with this procedure, the dimension of V, is
always twice that of Q,.

The efficiency of the reduced basis method stems from
the dimension of Eq. 28 being significantly smaller than
the dimension of Eq. 15. The accuracy relies upon the
construction of rigorous a posteriori error estimates which
bound the errors of the reduced basis solutions in the V
and Q norms. These will be the subject of Section 5. For
now, we simply assume such error estimates are available.

We desire the entire computation on the reduced space to
be independent of the size of the high-fidelity spaces. For
solving (28), this means that the assembly of the saddle-
point system must be done independently of the size of
the high-fidelity problem. For this, we exploit the affine
decomposition (16) and (17) to obtain the reduced basis
affine decompositions

VIAEV, =) 01 EVIAY,
i=1

I’lf
vitE) = > 0/ @Vt

i=1

Thus, after constructing the reduced basis, we compute
and store the parameter-independent quantities VI'A;V,,
VIt;, QIBV,, and Q] g.

4.1 Constructing the reduced basis

We form the reduced basis using a variation of the standard
greedy algorithm [23, Chapter 7] which is summarized in
Algorithm 1. In the standard greedy algorithm, the reduced
basis is formed in a potentially expensive offline step. A
finite training sample set & C I is selected from the
space of parameters such that = is a good representation
of the parameter space. To fit within our full reduced
basis ANOVA algorithm (Algorithm 2), we allow the case
where the greedy training algorithm can extend an existing
reduced basis. If no reduced basis currently exists, a sample
point £ € & is selected at which a high-fidelity solve is
performed to initialize the reduced basis. For each iteration
of training, reduced basis solves are performed over all
points in & and the a posteriori error estimates are computed
for each reduced basis solution. If all error estimates are
below a prescribed tolerance ¢RB, then training stops and
the current reduced basis is output. Otherwise, the parameter
which attains the largest error estimate is selected and
a high-fidelity solve is performed at this parameter. The
high-fidelity solution is then added to the reduced basis.
This process repeats until all error estimates are below the
desired tolerance. To ensure inf-sup stability, in addition
to adding the high-fidelity velocity solution to the velocity
reduced basis, we must also add the application of the
supremizer (29) to the corresponding pressure solution.
A Gram-Schmidt orthonormalization procedure should be
used to ensure that the reduced basis matrices remain
orthonormal with respect to the appropriate inner product.
Our variation of the standard greedy algorithm follows
that of [36] for reduced basis collocation in which the
formation of the collocation points and the generation of
the reduced basis are not separated. That is, as we are
building the collocation points at each ANOVA level, we
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Algorithm 1 Greedy algorithm for generating a reduced

basis using a training set Z and a tolerance sRB.

1: if V, and Q, are uninitialized then
2: choose E e r

3 compute high-fidelity solution (15) (u(g), p(?))
4 compute supremizer (29) v(E) = M;,'BTp(®)
5: V, < [u®) | v(©)]

6: Qr < [P(E )]

7: end if
8: loop
9 for £ € & do

10: compute RB solution (28) (u,(£), p,(£))

11: compute a posteriori error estimate (34) A, (§)
12: end for

13: let A = maxges Ar(§)

14: if A < ¢RB then

15: return reduced basis and offline
quantities
16: else
17: let = argmaxgcz Ar(§)
18: compute high-fidelity
solutions (15) (u), p(€))
19: compute suprenlizer 29) V(E) = M;lBTp(/E\)
2. V< [V, [u@® | v®)]
2 Q < [Q Ip®)]
22: end if
23: end loop

use those collocation points as our training set =. In [36],
the authors proposed a single sweep through these points by
augmenting the reduced basis whenever a single parameter’s
error estimate exceeds the tolerance. In this paper, however,
we use the standard approach of computing error estimates
over all training points and augmenting the reduced basis
with a high-fidelity solve at the point with the largest error
estimate. We remark that this approach is easily parallelized
as the reduced basis solves and error estimate computations
are embarrassingly parallel. The approach in [36], however,
is better suited for serial computation. The full reduced basis
ANOVA algorithm is summarized in Algorithm 2.

5 A posteriori error estimates

Essential for the successful application of reduced basis
methods is the computation of rigorous a posteriori error
estimates. We follow the approach of [31] for saddle-
point problems, which develops residual-based error esti-
mates based upon the Brezzi stability theory. Let u,(§) €
V. and p.(§) € Q, denote the reduced basis velocity
and pressure solutions, respectively, for parameter &, and
let up(€) € Vj, and pp(§) € Qj denote the high-fidelity
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Algorithm 2 Reduced Basis Adaptive ANOVA with initial

level £, maximum level L, reduced basis tolerance eXB, and

ANOVA tolerance .

1: compute anchor point ¢ as mean of distribution
2: solve u(c), p(c) of high-fidelity problem (15) at anchor

point ¢

compute supremizer (29) v(c) = M;lBTp(c)

0 Ve < [u(e) | v(o)]

0 Qr < [p(0)]

: initialize set of active directions ¢ as all directions of

order up to £

7: initialize &y < {c}

8: for/ ={¢to L do
generate all collocation points & for the active
directions _#;

10: form reduced basis training set & <« = \ &)

11: update reduced basis matrices V, and Q, using
training set = and tolerance RB (see Algorithm 1)

12: g «— U E)y

13: perform reduced basis solves on &g and compute
ANOVA indicators (23)

14: if | < L then

15: compute effective directions j; 24)

16: compute next-level active directions _#;11 (25)
17: if |_Zi41]1 =0 then

18: return reduced basis and ANOVA solutions
19: end if

20: end if

21: end for

22: return reduced basis and ANOVA solutions

velocity and pressure solutions, respectively. We are inter-
ested in bounding the velocity and pressure errors

e (&) = up€) —ur(§) € Vi
el (§) = pn(€) — pr(§) € Op.

We note that these errors are the solution to the Stokes-
Brinkman problem
a(ef(€), v &) +b(v, el (§) = ri(v;€), YveV, (30)

b(ef(§).q) = r(q: &), Yqe Qn (3)

where ri(-; &) € Vi* and ry(-; ) € Qp* are the reduced
basis residuals defined by
ri(v; §) = £1(v; §) —au,(§),v;§) —b(v, p,(§))  (32)
ra2(q; §) = €a(q) — b, (§), q). (33)

We are interested in tight upper bounds A¥(§) and AP (&)
which satisfy
ey E)llv < AL
lef (E)llg < A7 ().
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We may then form an a posteriori error estimate over the
whole solution as

A,&) = \JAE? + AT @) (34)

Applying the stability bounds (12) and (13) from
Theorem 1 to Eqgs. 30 and 31, we obtain the following upper
bounds for the errors:

le*©llv < g5 lln G Olve + 2/ LB Ir(: )llgr (39

lef &llo < 5/ 5 IrC O)llve + L3l ©)ligr. (36)
where «(£) is the coercivity constant

a(,v; §)

Vi lully

a(§) =

’

y (£) is the continuity constant

yE)= sup UL
wvev, llullvivily
and S is the inf-sup constant
b(v. q)
B = sup o ——
quh vevy lgllolivily”

Note that the inf-sup constant 8 is defined independently
of the parameter &. Thus, we only need to solve a
single eigenvalue problem to determine its value over
all parameters. The coercivity «(§) and continuity y (&)
constants are parameter-dependent so that computing their
exact values would require solving separate eigenvalue
problems for each parameter. To reduce the computational
cost, we instead compute tight bounds in an efficient manner
that is independent of the dimension of Vj,. Details of this
procedure are described in Section 5.2.

Using a lower bound ol B (&) < (&) for the coercivity
constant and an upper bound yYB(&) > y (&), for the
continuity constant, we may define our error estimates as

e — yUB(£) 5
‘&) = LB(E)nm( L6y +ﬁ i 26 Ol G

2 [yUB(§) yB©)
(g)_ﬂ\/j@)||r1(-;§)||w+ 52 lr2(:; &)1l o+ (38)

Since these are upper bounds for the stability esti-
mates (35) and (36), we observe that these are true upper
bounds for the reduced basis errors.

5.1 Efficient computation of the dual norm

Computing the error estimates (37) and (38) requires
computation of the dual norms of the residuals. Dual
norm computations are best performed through use of the
Riesz representation. Let Ry : H — H* denote the Riesz
isomorphism from a Hilbert space H to its dual defined

by (Ryu,v)y = (u,v)y for all u,v € H. Here, (-, )y
denotes the duality pairing and (-, -)y denotes the inner
product. Then, by the Riesz representation theorem, for
any f € H*, we have | f|lg+ = ||R;,1f||H. For finite-
dimensional spaces, it is apparent that the operator Ry
is represented by the mass matrix for the H-norm. Thus,
if f denotes the vector of coefficients for f € H?,
then || £ 2. = fTM'f.

In order for the error estimates to be computed efficiently
during the online phase, we desire the cost to be independent
of the dimension of the finite element spaces Vj, and Q.
To this effect, we utilize the affine decompositions (16) and
(17). The dual norm of the residual (32) is then computed as

l’lf I‘lf )
o3 = > > 6/ ©0] &)y

i=1 j=1

nf na

NGRS

i=1 j=I

nf
-2 (Z 6/ (&)E,-) pr

i=1

nA na
ZZ E)07 E)Fij | u,

o

+p/ Hp,, (39)
where
C;; = M,
D;; =t/ M,'A;V,
E; = {/M,'B7Q,
Fij = VIATM'A;V,
G: = VIAM;'BTQ,
H = Q'BM;'B’Q,,
and the dual norm of the residual (33) is computed as

Ir2(56)l15- = R —2Su, +u/ Tu,

where
= gTMQ g
S = g'M,'BY,

T = V/B'M,'BV,.

The terms Cija Dijy E;, F,’j, G, ,H,R,S,T are all
parameter-independent and can be computed and stored
during the offline phase. Thus, the dual norms for the resid-
uals may be computed efficiently during the online phase in
a cost that is independent of the dimensions of V}, and Qy,.
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Remark 2 For moderately large reduced bases, the offline
quantities may consume a significant amount of memory.
In particular, there are n%‘ matrices of the form F;;. If
the size of the velocity reduced basis is N, then each of
these matrices will contain N2 entries, for a storage require-
ment of niN2 double-precision floating-point numbers.
Nonetheless, the computation is still independent of the size
of the high-fidelity problem. This, however, should be con-
sidered when evaluating the efficiency of the reduced basis
method.

5.2 Efficient computation of stability bounds using
SCM

As previously remarked, we seek efficiently computable
bounds on the coercivity and continuity constants with
cost that is independent of the high-fidelity problem. A
popular method for obtaining such bounds is the Successive
Constraint Method (SCM), first proposed in [37] and
subsequently refined in [38]. We recall here the method as
presented in [38].

For simplicity, we focus on the coercivity constant, since
the method may easily be extended to the continuity case.
Recall that the coercivity constant is the largest «(§) > 0
such that a(u, u; &) > «a(€)||lu|ly for all u € V. Using the
affine decomposition of a, we may write

a; (u u)

a(f) = inf Za/‘@) (40)

Defining the set

’yl’lA)T e R™:
WweVsy =W
lluellv

we may express (40) as the minimization problem

Y ={y=01...

1Al

= inf Y 02E)y;.
a(®) ylgg,/; AE)y

We may obtain a lower bound for « (&) by replacing %
with a set % g(£) such that % C %g(£). By
choosing %1 5 (£) to be a convex polyhedron, we obtain the
following linear programming problem

olB () = min

0/ &)yi.
YEMB(E) 4 Z ©i

To define %1 g (&), we first note that the box % defined as

B ={yeR:
a;(u,u aij\u,u) .
i )fyifsup il ),l=1,.--,nA}
uev lully uev llully

clearly satisfies % C . Forming % involves the solution
of 2n4 eigenvalue problems. Suppose we are given two
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sets of parameters—='r for which exact coercivity constants
have been computed and Zp for which lower bounds have
been computed. Then a finer %1 g(§) may be obtained as
follows. First, choose Mg, Mp > 0 and locate the Mg
points {S}E, ey 5245} in Zg that are closest to & and the M p
points {E},, e 511.}/1”} in Ep that are closest to £. We then
include the following Mg + Mp inequality constraints in
addition to those defined by the box 4:

nA

Y 0rehyi za@h.j=1.....Mp

i=1

ny
D 0MEDy = o BE)), j=1,..., Mp
i=1

It is clear that the set #1g (&) is a superset of &. We
thus reduce the problem of computing «™B(£) to solving
a linear program in n4 variables with 2n4 + Mg + Mp
linear inequality constraints, which is independent of the
dimension of V},, as desired.

What remains is to demonstrate how Zg is selected
and the lower bounds for the points in Zp are obtained.
These may be built through an offline training procedure.
This procedure will make use of the following upper
bound for «(£). Given any &’ for which «(£’) has been
computed, we may use the corresponding eigenvector u’
and compute y' = (yi, ...,ynA)T € % where y; =
a; W', u")/||u'||y. Collecting all such y’ into a set Z{jg, we
obtain an upper bound as

1A

UB : A
a()_mlnEOi()-.
: yeMB i 2

Since #p is small and finite, we may compute this upper
bound efficiently by simply enumerating over all elements
of #yp. Furthermore, since clearly #yg C %/, we have a
true upper bound. Given upper and lower bounds for the
coercivity constant, we define the indicator

)
aUB(8)
which measures the relative gap between the upper and
lower bounds.

Having determined an indicator for the quality of the
SCM approximation, we may now describe the offline
training algorithm. We begin with a training set = which
should be representative of the parameter set. Choose &’ €
Z, initialize & = {£§'} and Ep = E \ {£¢'}, and
set a"B(&) = 0 for all & € Z. Then loop as follows.
Solve for the exact coercivity constant for &' and compute
lower bounds using SCM and indicators for all £ € Zp.
If the largest indicator is below a desired tolerance eSCM,
terminate. Otherwise, select a new point §' € Ep with
the largest indicator, compute and store a(¢’), move &’
from Ep to Ef, and update the lower bounds for points

M) =1- (41)



Comput Geosci (2021) 25:1191-1213

1201

in Zp using SCM. Repeat until termination. This procedure
is summarized in Algorithm 3.

Algorithm 3 Greedy training algorithm for SCM given
training set &.

. g <0, Ep <« &

2: choose &' € &

3: aBE) < Oforallé € &
4: loop

5: compute and store a (&)
6: Eg < BpU{E'}, Bp < Ep\ (&}
7: if &p = ¥ then
8: return SCM data
9: end if
10: for& € Ep do
11: update B (£) using SCM
12: compute indicator S™Mg) (41)
13: end for
140 0 < maxgez, M)
15: if n < €SM then
16: return SCM data
17: end if
18: & < argmaxg.g, nSM(g)
19: end loop

6 Numerical experiments

We compare the effectiveness of reduced basis ANOVA on
a set of three model problems. These model problems are
introduced in Section 6.1 and consider both isotropic and
anisotropic permeabilities. In Section 6.2, we analyze the
performance of the SCM method on the three problems and
provide details on the necessary eigenvalue computations.
Finally, in Section 6.3, we study the performance of reduced
basis ANOVA.

6.1 Model problems

We consider three model problems. All three make use of
the simple 2D square domain pictured in Fig. 1. The top and
bottom boundaries are designated as walls through which
no flow occurs. The left boundary is a parabolic inflow
boundary. The right boundary is a do-nothing out-flow
boundary. All three problems partition this domain into n xn
uniform subdomains in which permeabilities are constant.
All three problems use constant viscosity v = v* = 1073
and a zero forcing term.

For the first problem, labeled iso in the following dis-
cussion, we consider isotropic flow in which the perme-
ability tensor in each subdomain is of the form kI for a
scalar k > 0. In this case, we partition the domain into 9 x 9

(L1

—
—_—
_—
parabolic do-nothing
. E— E—
inflow outflow
e
—
—
(0,0

Fig.1 Domain in 2D used for numerical experiments

subdomains. Each subdomain is then partitioned into 12x 12
regular quadrilateral elements to form a 108 x 108 grid. The
permeability coefficient of each subdomain is uniformly
distributed in an interval [a, b] chosen as follows. First, for
each subdomain, a value c is sampled from a Beta(0.5, 0.5)
distribution and then mapped to the interval [—6, —3]. A
value r is uniformly sampled in the interval [0.05, 0.15],
and the chosen interval is [(1 — r) - 10, (1 4+ r) - 10¢].
The parameters of the beta distribution were chosen to skew
the permeabilities to slightly favor a mix of high perme-
ability regions (near 1073) and low permeability regions
(near 10~°). The mean permeabilities for each subdomain
are displayed in Fig. 2 on a log scale.

The resulting stochastic space is then of dimension N =
81. The parametrization coincides with the permeabilities
in each subdomain, i.e., & € R3! with & equal to the
permeability in subdomain i. The affine decomposition (16)

consists of ng = N + 1 = 82 parameter independent
matrices as follows:

As i=1
A = { AT s, “42)

Isotropic Permeability

1e-5 2e-5 5e-5 0.00010.0002
I 1 L LLLLL |

1.0e-06 2e-6 5e-6 1.0e-03

L1l |

Fig.2 Mean permeabilities for the iso problem on a log scale
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where Ag is the discretization of the Stokes bilinear
form (3), and A’z) is the discretization of the Darcy
bilinear form (4) with support only on subdomain k. The
mappings {GiA (& )};’i | then take the form

1 i=1
/&1 i > 1.

To apply the Dirichlet boundary conditions, we use the
finite element function which interpolates the Dirichlet
conditions on the Dirichlet boundary and has zero value
on all remaining nodes. Let wj, denote this finite element
function. Then, since we define zero forcing term and do-
nothing Neumann conditions, the discretizations of Eqs. 7
and 8 are simply

Li(vp; &) = —a(wp, vp;E) Yo, €V (44)
L2(gn) = —b(wn, qn) Van € Q. (45)

Note that, since b is parameter-independent and the
Dirichlet boundary conditions are parameter-independent,
the discretization (45) is parameter-independent. However,
due to the dependence of a on the parameter, the
discretization (44) is parameter-dependent. It admits an
affine decomposition of the form (42) and (43). We
note, however, that our choice of wj; suggests that we
need only ny = 10 parameter-independent vectors,
corresponding to the vector arising from the Stokes bilinear
form and the 9 Darcy bilinear forms on the subdomains
which border the in-flow boundary.

For the second and third problems, we consider
anisotropic flow in which the permeability tensor in
each subdomain is of the form diag(ky, k) for positive
scalars k, # ky. The second problem, labeled anisol,
considers the case where k, < ky, that is, where
vertical flow is favored. The third problem, labeled aniso2,
considers the case where kx > ky, that is, where horizontal
flow is favored. Both problems are partitioned into 6 x
6 subdomains, each subdomain partitioned into 18 x 18
elements. This partitioning is to make the size of the
problems similar to that of the isotropic problem. Here,
the total number of elements is 108 x 108, matching the
isotropic problem exactly; and the number of parameters
is 72, as there are two parameters per subdomain.

The distributions on permeabilities are chosen in a
manner similar to the isotropic problem. The main
difference is that the smaller permeability (k, in the case
of anisol, ky in the case of aniso2) has the beta random
variable mapped to [—6, —4.75], and the larger permeability
(ky in the case of anisol, k, in the case of aniso2) has
the beta random variable mapped to [—4.25, —3]. The
mean permeabilities for each subdomain and direction are
displayed in Figs. 3 and 4 on a log scale.

The anisotropic problems admit a similar affine decom-
position to the isotropic problem. However, now there are

04 (&) = { (43)

@ Springer

two Darcy parameter-independent matrices per subdomain,
each discretizations of Eq. 4 with support only from basis
functions on the given subdomain and direction. Thus, n4 =
73. Furthermore, we have ny = 7, as our choice of wy,
only admits non-zero parameter-independent vectors aris-
ing from the Stokes bilinear form and then one for each of
the 6 subdomains bordering the in-flow boundary (as the
Dirichlet in-flow conditions are zero in the y-direction).

Table 1 compares the sizes of the finite element dis-
cretizations of each problem. As can be observed, all three
problems have the same dimension for the high-fidelity
space, suggesting they should all be of similar difficulty.
Condition number estimates, computed using the condest
function in MATLAB, for the assembled matrices when
choosing the mean of each distribution as the parameter are
presented in Table 2. Here, we observe that all three prob-
lems are fairly ill-conditioned. We note that the sizes of the
high-fidelity problems were chosen to be small enough that
we could perform the high-fidelity solves efficiently using
a direct solver. The log permeabilities were also chosen to
be within the interval [—6, —3] so as to keep the condition
numbers moderate. These condition numbers have an effect
on the sharpness of the error bounds, as will be discussed
in Section 6.3. In short, larger condition numbers imply that
the error bounds may not be as sharp, leading to potentially
larger reduced bases than necessary.

Table 3 compares the sizes of the stochastic dimension
and number of parameter-independent components in the
affine decompositions. The isotropic problem is larger in
this case due to the use of more subdomains.

6.2 SCM

For the eigenvalue problems solved during the SCM training
(see Algorithm 3), we used the LOBPCG method [39] as
implemented in the BLOPEX MATLAB package [40]. The
inf-sup constant, being parameter-independent, required
only a one-time eigenvalue computation. The specific
eigenvalue problem solved was to find the smallest
eigenvalue A of

BM,'B"x = AMopx (46)

and choosing B = +/A. No preconditioner was used. The
coercivity and continuity constants are parameter-dependent
and require solving for the smallest and largest, respectively,
eigenvalues A(&) of the generalized eigenvalue problem

A(¢)x = A(E)Myx. (47)

For the coercivity constant, we solved for the smallest
eigenvalue A(¢) of Eq. 47 using an incomplete Cholesky
factorization of A(£) as a preconditioner and set «(§) =
A(€). Computing the continuity constant requires solving
for the largest eigenvalue of Eq. 47. For this, we transformed
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Anisotropic Permeability ky Anisotropic Permeability k,

5e-6 1e-5 2e-5 5e-5 0.00010.0002 1.0e-03 1.0e-06 2e-6 5e-6 1e-5 2e-5 5e-5 0.00010.0002
Ll [ A RN LLL ——
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Fig.3 Mean permeabilities for the anisol problem on a log scale

Anisotropic Permeability ky Anisotropic Permeability k,

1.0e-06 2e-6 5e-6 1e-5 2e-5 5e-5 0.00010.0002 1.0e-03 1.0e-06 2e-6 5e-6 1e-5 2e-5 5e-5 0.00010.0002 1.0e-03
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Fig.4 Mean permeabilities for the aniso2 problem on a log scale

Table 1 Comparison of sizes of
the finite element discretization Problem Subdomains Elements Total elements Velocity dof Pressure dof Total dof
for each model problem

iso 9x9 12 x 12 11664 92880 34992 127872
anisol 6x6 18 x 18 11664 92880 34992 127872
aniso2 6x6 18 x 18 11664 92880 34992 127872
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Table2 Comparison of condition number estimates for the assembled
matrices with the mean parameter

Problem Condition number
iso 2.6894 x 10*
anisol 5.0727 x 10*
aniso2 4.0431 x 103

the problem into solving for the smallest eigenvalue (&) of
the generalized eigenvalue problem

My = n(E)AE)x. (48)

The continuity constant is then chosen as y(§) =
1/ (&). All LOBPCG computations were performed with a
maximum of 1000 iterations and a tolerance of 10719,

We remark that inverting My is performed during
the computation of Eq. 39, computation of Eq. 46, and
application of the supremizer (29). For small enough
problems, we may compute and store the sparse Cholesky
factorization of My. In these cases, we may use these
factors to perform an exact solve as a preconditioner
for Eq. 48. If a preconditioned iterative method is required
for inverting My, then we may use the same preconditioner
for Eq. 48. In this paper, we used the Cholesky factors for
the preconditioner.

Each application of SCM requires solving a linear pro-
gramming problem. For this, we used the 1inprog func-
tion in MATLAB with the dual-simplex algorithm.

For the SCM training of each model problem, we gener-
ated a Halton set of size 50000. We chose Mg = Mp = 100
and the tolerance €35 = 0.1. Table 4 summarizes the num-
ber of iterations required for each model problem to attain
the prescribed tolerance. As can be observed, the training
terminates fairly quickly in all three cases, with the coer-
civity constant being slightly harder than continuity and
the isotropic case being slightly harder than the anisotropic
cases. The isotropic case being more difficult is likely due
to the larger number of parameters. Figures 5 and 6 display
the largest indicator (41) over each iteration of training. The
indicators for the iso problem are plotted with the solid blue
line with circles; the indicators for the anisol problem are
plotted with the dashed red line with squares; the indicators
for the aniso2 problem are plotted with the dotted black line
with triangles.

Table3 Comparison of parametrization sizes for each model problem

Problem Stochastic dimension na ng
iso 81 82 10
anisol 72 73 7
aniso2 72 73 7
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Table 4 Number of SCM training iterations to obtain a tolerance
of ¢S = 0.1 with a training size of 50000 points and

parameters Mg = Mp = 100

Problem Coercivity Continuity
iso 23 7

anisol 11

aniso2 12 3

6.3 Reduced basis ANOVA

To study the effectiveness of reduced basis ANOVA on the
three model problems, we compute reduced basis ANOVA
approximations using the following tensor product of reduced
basis and ANOVA tolerances. For the reduced basis toler-
ances, we consider the set {1, 0.1, 0.01}. For the ANOVA
tolerances, we consider the set {10_4, 1073, 10_6}. Thus,
we performed a total of 9 reduced basis ANOVA computa-
tions for each problem. In all problems, we used all ANOVA
directions up to level 1 and adaptively selected directions
for higher levels. In all problems, the adaptive selection of
ANOVA directions terminated at level 2. We used Gauss-
Legendre quadrature with polynomial order 5 for generating
collocation points. We compare each reduced basis ANOVA
computation with the results from a Monte Carlo simulation
performed using 10° points generated from a Halton set. We
assume that the moments computed using the Monte Carlo
are accurate enough to be used as the true moments so that
we may use it to approximate the error in the moments from
the reduced basis ANOVA computations.

SCM training coercivity

0.22 T
4 —E—iso
L — B —anisot
02 1\ A aniso2 | ]
0.18 | 4
- 0.16 - 4
=]
©
RS
o4t .
012 r il
01 4
0.08 L L L L
0 5 10 15 20 25

iteration

Fig.5 Largest indicators for coercivity during each iteration of SCM
training using a tolerance of ¢S = 0.1 with a training size of 50000
points and parameters Mg = Mp = 100
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Fig.6 Largest indicators for continuity during each iteration of SCM
training using a tolerance of 3™ = 0.1 with a training size of 50000
points and parameters Mg = Mp = 100

Table 5 summarizes the L? norms for the errors in mean
and variance for the iso problem, where the error here is
taken as the difference between the reduced basis ANOVA
approximation and the Monte Carlo simulation. These
values are normalized by the norm of the Monte Carlo
approximation so as to provide relative errors. The table
shows the errors in the velocity, pressure, and combined
mean and variances. It is clear that, as the reduced basis
tolerance is reduced, better approximations to the mean and
variance are obtained. A reduced basis tolerance of 1072
results in excellent approximations even for an ANOVA
tolerance of 10~%. However, there appear to be little gains
from reducing the ANOVA tolerance. Accuracy improves
by increasing the tolerance from 10~* to 1073; however,
increasing the tolerance from 107> to 107° yields no
improvement. Tables 6 and 7 present the same information
for the anisol and aniso2 problems, respectively. In these
cases, we observe the same trend of increased accuracy
when reducing the reduced basis tolerance and stagnating
accuracy when reducing the ANOVA tolerance.

The errors over the physical domain D are displayed in
Figs. 7 (pressure), 8 (velocity magnitude), 9 (x velocity),
and 10 (y velocity). All of these images were generated
using ParaView [41] from the computations with a reduced
basis tolerance of 0.01 and ANOVA tolerance of 107, Each
figure consists of six subfigures arranged in a 2x3 grid. The
columns correspond to the problems iso, anisol, and aniso2,
in that order. The first row depicts the mean error and the
second row depicts the variance error.

The pressure errors are depicted in Fig. 7. The errors
exhibit different behavior among the three problems. For
the iso problem, the errors appear to be evenly distributed

Table 5 L2-norm of moment errors for reduced basis ANOVA estimates of the iso problem

1076

1075

1074

1076

1079

1074

1070

1072

1074

mean

4.50 x 10~ 4.50 x 10~ 3.27 x 1074 242 x 1074 242 x 1074 3.28 x 1074 243 x 1074 243 x 1074

4.89 x 1074

ERB

2.10 x 10~ 2.14 x 1074 3.78 x 1073 3.65 x 1073 3.66 x 1073 3.88 x 1073 3.70 x 1073 3.71 x 1073

3.23 x 1074

0.1

0.82 x 1073 9.97 x 1073 6.63 x 1076 3.61 x 1076 434 x 107° 7.29 x 1076 451 x 107 5.13 x 1076

1.11 x 1074

0.01

1.97 x 1072 1.97 x 1072 241 x 1072 1.98 x 1072 1.98 x 1072 variance

241 x 1072

3.22 x 107!

3.22 x 107!

3.41 x 107!

ERB

232 x 1073

9.40 x 1072 271 x 1073 231 x 1073 231 x 1073 273 x 1073 231 x 1073

9.42 x 1072

2.03 x 10!

0.1

4.93 x 1073 7.11 x 1074 9.57 x 1073 1.01 x 1074 7.11 x 1074 9.61 x 1073 1.01 x 1074
pressure combined

5.07 x 1073

5.49 x 1073
velocity

0.01
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Iso Mean Pressure Error
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| |

Aniso1 Mean Pressure Error

Aniso2 Mean Pressure Error

0 0.0001 2.0e-04 -1.6e-05 -1e-5 0 1e-5  1.5e-05
|

-

o

Iso Variance Pressure Error

-2.2e-05 0 2e-5 4e-5 6e-5 7.2e-05 -1.6e-05 0
| !

Fig.7 Moment errors in pressure for each of the three problems

throughout the domain although with clear increases at
the corners of subdomains. However, for the anisol (resp.,
aniso2), problem, we observe vertical (resp., horizontal)
bands. Recall that the chosen permeabilities for the anisotropic
problems favor either vertical or horizontal flow. The bands
appear to reflect these favored permeabilities, as higher
errors might be expected where values are greater. As with
the iso case, interfaces and corners between subdomains
are emphasized. The heightened errors at these interfaces
are likely due to higher order effects not captured in the
ANOVA terms selected for the expansion.

The velocity errors are depicted in Figs. 8, 9, and 10.
As with the pressures errors, the errors in all cases are
heightened along subdomain interfaces, as expected due to
the exclusion of higher order ANOVA terms. Furthermore,
the favored permeabilities for the anisotropic problems
result in larger errors in the velocity directions which are
favored, again likely due to the values being larger.

Aniso1 Variance Pressure Error
1e-5 2e-5 3.1e-05 -2.7e-07 -le-7 0 1e-7 2e-7 29e-07
1

Aniso2 Variance Pressure Error

- oo

While the above analysis demonstrates that a smaller
reduced basis tolerance greatly improves the accuracy of
the moment computations, it comes with a cost of a larger
number of high-fidelity solves and a larger reduced basis.
Table 8 summarizes the number of high-fidelity solves for
each problem and each choice of tolerances. For comparison,
the number of collocation points is provided in parentheses.
For all three problems, it appears that the number of high-
fidelity solves almost doubles as the reduced basis tolerance
is reduced by a factor of 10. However, the number of high-
fidelity solves remains fairly constant even as the ANOVA
tolerance increases. This suggests that a small reduced
basis is able to fairly accurately approximate the space of
high-fidelity solves.

The decrease in the a posteriori error estimates over each
iteration of training is depicted in Fig. 11. The velocity
error estimate is depicted as the solid blue line, the pressure
error estimate as the red dotted line, and the combined

@ Springer
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Iso Mean Velocity Error Magnitude
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Aniso1 Mean Velocity Error Magnitude

Aniso2 Mean Velocity Error Magnitude

0.0001 1.6e-04 0.0e+00 5e-6 1e-5 1.2e-05
|

Iso Variance Velocity Error Magnitude
0.0e+00 2e-6 4e-6

| |
I

6.1e-06 0.0e+00 0.0005  0.001
|

Aniso1 Variance Velocity Error Magnitude
0.0015  0.002
1 |

Aniso2 Variance Velocity Error Magnitude

0.0e+00 5e-8 1e-7 1.4e-07
| |

2.9e-03
]

Fig.8 Moment errors in velocity magnitude for each of the three problems

error estimate as the orange dashed line. Each error estimate
depicted is normalized by the norm of the reduced basis
solution to produce a relative error estimate. The figure
displays, at each iteration, the largest relative error estimate
of the given type. Since the largest error estimates for each
type are not guaranteed to be taken from the same sample
at any given iteration, and each of these error estimates are
normalized by the reduced basis solution at that sample,
there is no guaranteed ordering of the values (i.e., the
combined error is not necessarily greater than the velocity
Or pressure error).

For the iso problem, all three errors appear to be roughly
equal. For the anisol problem, however, the velocity error
is the largest with the combined error being in between
velocity and pressure. Recall that the anisol problem favors
vertical flow, but the boundary conditions impose horizontal
flow. This contention between vertical and horizontal flow
perhaps explains the increased difficulty of the reduced

@ Springer

basis in approximating the velocity space. On the other
hand, the pressure error is the greatest for the aniso2
problem with the velocity and combined errors being
roughly equal. For this problem, horizontal flow is favored
so that there is no contention between the flow specified
by the boundary conditions and the permeabilities, allowing
easier approximation of velocity.

The error estimates are displayed on a log scale, sug-
gesting linear convergence. The black vertical line marks
the iteration at which training terminated after the first
ANOVA level. The increase in the error estimates at the
start of the second ANOVA level is due to an increase
in the number of collocation points used during train-
ing. In both the iso and anisol problems, the increase in
error between levels is small, suggesting that the reduced
basis formed at the end of the first level generalized
fairly well to the new collocation points. The aniso2 prob-
lem has a larger increase in error, but there was also a



Comput Geosci (2021) 25:1191-1213

1209

Iso Mean Velocity Error X
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Fig.9 Moment errors in the x velocity for each of the three problems

larger decrease in error towards the end of the level 1 train-
ing. This suggests that the level 1 reduced basis did not
generalize well to the new collocation points. In all cases,
however, the error appears to decrease during the second
level at roughly the same rate as during the first level, des-
pite the greater increase in the number of training samples.

The a posteriori error estimates only compute an upper
bound on the actual error. It would be helpful to understand
how tight these error estimates actually are. To study this,
we selected a random subset of 1000 ANOVA collocation
points from each problem using tolerances eRB = 0.01
and ¢ = 107% and computed high-fidelity solutions at
each selected point. Using the associated reduced basis
for each problem, we also computed the reduced basis
approximation. From this, we obtained exact errors for each
collocation point and computed ratios of the a posteriori
error estimate against the exact error. This ratio is called the
effectivity of the error estimator. These values are presented
in Fig. 12. Velocity ratios are shown in blue upward facing

Aniso1 Variance Velocity Error X
0.0002 3.4e-04 -1.4e-07 17 -5e-8 0 7.0e-08

Aniso2 Variance Velocity Error X

'\ — - '

triangles, pressure ratios in red downward facing triangles,
and combined ratios in orange circles. Since the error
estimates form upper bounds, we expect these ratios to be
greater than 1. However, if the bound is tight, we expect the
ratios to be close to 1. From the figure, it is apparent that
all ratios are greater than 1, suggesting our error estimates
are true upper bounds. However, the ratio is much greater
than 1, suggesting that the upper bounds are not as tight
as we would like them to be for an ideal setup. It is well
known that the tightness of the error estimate is related to
the condition number [23, Section 3.6.2]. As demonstrated
in Table 2, the Stokes-Brinkman systems are highly ill-
conditioned, resulting in loose upper bounds with the error
estimates. Thus, the effectivities of Fig. 12 are expected.
Nonetheless, despite the lack of sharpness in the upper
bounds, our experiments provide numerical evidence that
combining reduced basis methods with anchored ANOVA
yields substantial benefits to estimating the moments of
stochastic Stokes-Brinkman problems.
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Fig. 10 Moment errors in the y velocity for each of the three problems

Table 8 Comparison of number of high-fidelity solves used to form
the reduced basis and number of ANOVA collocation points (in
parentheses) for the three problems with varying tolerances

Aniso1 Variance Velocity Error Y
0.0015  0.002
|

EA
1074 105 10-°
eRB g 28 (1573)  33(27701) 33 (43541)  iso
0.1  59(4021)  61(33605) 62 (50885)
0.01  110(7285) 122(43541) 123 (52165)
eRB g 29(1537)  31(19889)  31(37825)  anisol
0.1  50(2737)  52(27665) 52 (40049)
0.01 90(3985)  95(36737) 96 (41185)
eRB g 34(2737)  37(35665)  37(41185)  aniso2
0.1  73(2737)  77(34609) 77 (41185)
0.01 91(3329) 120 (34609) 121 (41185)
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Aniso2 Variance Velocity Error Y
-1.2-:08 0 1e-8 2e-8 2.5e-08

—_— '

2.9e-03

7 Conclusion

We demonstrated that the use of the truncated ANOVA
decomposition is effective in reducing the number of col-
location points needed for accurate approximation of the
statistical moments of several Stokes-Brinkman problems
with stochastic permeability. Additionally, we showed that
reduced basis methods yield significant savings by reduc-
ing the number of high-fidelity solves required to compute
these moments. The reduced basis methods rely upon accu-
rate and efficient a posteriori error estimates. We present
such estimates based upon the Brezzi stability theory.
While these error estimates allowed us to construct small
reduced bases, they were not as sharp as desired due to the
high-fidelity systems being highly ill-conditioned. Nonethe-
less, excellent reduced basis approximations were obtained.
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