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ABSTRACT

In this paper, we investigate the adversarial robustness of fea-
ture selection based on the ¢; regularized linear regression
method, named LASSO. In the considered problem, there is
an adversary who can observe the whole data set. After seeing
the data, the adversary will carefully modify the response val-
ues and the feature matrix in order to manipulate the selected
features. We formulate this problem as a bi-level optimization
problem and cast the ¢; regularized linear regression prob-
lem as a linear inequality constrained quadratic programming
problem to mitigate the issue caused by non-differentiability
of the /1 norm. We then use the projected gradient descent to
design the modification strategy. Numerical examples based
on synthetic data and real data both indicate that the feature
selection is very vulnerable to this kind of attacks.

Index Terms— Linear regression, sparse learning, LASSO,

adversarial machine learning, bi-level optimization.

1. INTRODUCTION

Feature selection plays an important role in machine learn-
ing. It selects the most important features while pruning re-
dundant and irrelevant features. By doing so, it dramatically
reduces the dimension of the inputs; thus reduces the com-
plexity of machine learning algorithms, speeds up the train-
ing and inference process, and improves the generality of the
learning machine. Among a variety of the feature selection
methods, LASSO [1] is one of the most widely used methods.
It imposes ¢ norm constraints on the regression coefficients
and performs feature selection and regression simultaneously.
Due to its simplicity and efficiency, it has a broad range of
applications in biomedical information processing [2], com-
pressed sensing [3], image processing [4], etc. In this paper,
we assume the feature selection method is LASSO.

Machine learning is increasingly used in security and
safety critical areas [5, 6, 7] that play a vital role in our daily
lives. Hence, it is urgent and necessary to study the security
of the machine learning algorithms. Even though there are
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existing works on the robustness of feature selection against
outliers and small dense noise [8, 9], the behavior of feature
selection algorithms in the presence of adversaries is unclear.
The goal of this paper is to fill this void and investigate the
adversarial robustness of feature selection methods.

In the considered model, we assume that there exists an
adversary who can observe the whole data set and carefully
modify the response values and the feature matrix. The goal
of the adversary is to make the system select the features
which are not chosen originally or make the system discard
important features; in the meantime, it tries to keep the change
of other features as small as possible to minimize the pos-
sibility of being detected by the system. We formulate this
problem as a bi-level optimization problem. To address the
computational complexity of this complicated optimization
problem, we resort to the projected gradient descent method.
However, the non-differentiability of the ¢; norm hinders us
from computing the gradients of the objective function. To
circumvent this, we reformulate the LASSO problem as a lin-
ear inequality constrained quadratic programming problem.
Using the implicit function theorem [10], we obtain the gradi-
ents from the Karush—Kuhn-Tucker (KKT) conditions of the
reformulated LASSO problem. Compared with [11], which
requires the objective function of the feature selection method
being differentiable, our method can be used in any ¢; regu-
larized feature selection methods. Our numerical examples
on the synthetic data and real data both indicate that small
changes of the response values or the feature matrix will lead
to a huge difference of the selected set of features. Hence,
feature selection is very vulnerable to adversarial attacks.

The remainder of the paper is organized as follows. In
Section 2, we describe the precise problem formulation. In
Section 3, we introduce our method to solve this problem. In
Section 4, we provide numerical experiments with both syn-
thetic data and real data to illustrate the results obtained in
this paper. Finally, we offer concluding remarks in Section 5.

2. PROBLEM FORMULATION

Given the data set {(yg, x4)}",, where n is the number of
data samples, v is the response value of data sample 7, xj €



R™ denotes the feature vector of data sample ¢, and each ele-
ment of x}, is called a feature of the data sample. Through the
data samples, we attempt to learn a sparse representation of
the response values from the features. The LASSO algorithm
learns a sparse regression coefficient, 3, by

Bo :arg;ninllyo — X003 + ABlle, (1

where the response vector yo = [y8, ¥2,...,y7] T, the fea-
ture matrix Xo = [xg, x2,...,x5]", || - |l¢, denotes the £;
norm, and A is the trade-off parameter to determine the rela-
tive goodness of fitting and sparsity of 3, [1]. The location
of the non-zero elements of the sparse regression coefficients
indicates the corresponding selected features.

In this paper, we assume that there is an adversary who is
trying to manipulate the learned regression coefficients, and
thus maneuver the selected features by carefully modifying
the response values or the feature matrix. We denote the mod-
ified response value vector as y and denote the modified fea-
ture matrix as X. Further, we assume that the adversary’s
modification is constrained by the £, norm (p > 1). This
means we have ||y — yolle, < 7y, and [ X = Xolle, < 72,
where 7, is the energy budget for the modification of the re-
sponse values, and 7, is the energy budget for the modifica-
tion of the feature matrix. For a vector, || - ||, denotes the £,
norm of the vector and for a matrix, |- ||, denotes the £, norm
of the vectorization of the matrix. As the result, the manipu-
lated regression coefficients, B are learned from the modified
data set (y, X) by solving the following LASSO problem

= argg]in ly — X815 + AlBle, - @

The goal of the adversary is to suppress or promote some
of the regression coefficients while keeping the change of
the remaining coefficients to be minimum. If it wants to
suppress the ith regression coefficient, we minimize s; - Bf,
where s; > 0 is the predefined weight parameter. If it aims to
promote the ith regression coefficients, we minimize e; - Bf,
where e; < 0 is the weight parameter. To keep the ith
regression coefficients not changed so much, we minimize
pi - (Bi — B4)2, where p; > 0 is a user defined parameter to
measure how much effort we put on keeping the ith regres-
sion coefficients not changing. Moreover, we denote the set
of indices of coefficients which are suppressed, promoted,
unchanged as S, F, and U, respectively. In summary, the
objective of the adversary is:

min %(B —v) H(3 —v), 3)

where v; = (3} if i € U, otherwise v; = 0, and H = diag(h)
as h; = p; fori € U, h; = s; fori € S and h; = e; for
1€ b,

Considering the energy constraints of the adversary, we
have the bi-level optimization problem:

(B-v)'H(B-v) &)

= arg;nin ly = X813+ ABlle, )

min
yeC,,Xel,

D o=

S.t.

where C, = {y | lly — yoll¢, <7y} and
Co = {X X — Xolle, <1}

3. PROBLEM ANALYSIS

In this section, we investigate problem (4) and present our
projected gradient descent method to solve this problem.

In problem (4), in addition to the constraints C, and Cy,
the lower-level optimization problem (5) further imposes im-
plicit constraints on the feasible (y,X) through 3. Due to
the non-convexity of the feasible set, the bi-level optimiza-
tion problem is NP-hard in general. To solve this bi-level
optimization problem, we need to first solve the lower-level
optimization problem to determine the dependence between
(y,X) and B Then, we can use the gradient descent method
to solve this bi-level optimization problem. Since the lower-
level problem is convex [1], it can be presented by its KKT
conditions. The corresponding KKT conditions with respect
to the lower-level optimization problem is:

0 €2XT(XB —y) +A|8le,, (6)

where, J|| - ||¢, is the subgradient of the ¢; norm. We denote
the right hand of (6) as ¢(3,y, X). The KKT conditions de-
fine a one to one mapping from (y, X) to 3 if ¢(3,y, X) is
a continuous differentiable function and its Jacobian matrix
with respect to 3 is invertible. Thus, by the implicit function
theorem [10], we can calculate the gradient of 3 with respect
to y and X. However, ¢(83,y, X) is not differentiable at the
point with 5; = 0. Moreover, (5) does not always determine a
single valued mapping from (y, X) to 3. For example, when
A > [ XTy| s, we always have 3 = 0.

To circumvent this difficulty, we transform the lower level
optimization problem to the following equivalent linear in-
equality constrained quadratic programming [12]:

argmin ||Y—XﬁH§+)\Zui (7
Bu i=1
st. —u; < By <wy,i=1,2,...,m. )

Following [12], we can apply the interior-point method to
solve this problem, which means we solve the penalized prob-
lem:

argmin  t[ly — XS5+ 2D uwi+®(B,u), (9
Bu i=1



where ®(8,u) = —>_1" | log(u? — 3?) is the penalty func-
tion for the constraints of (7) and ¢ is the penalty prameter.
Solution of problem (9) converges to (2) if we follow the cen-
tral path as ¢ varies from 0 to co.

Instead of using the KKT conditions of (6), we utilize the
KKT conditions of (9), which are

[ 281/(uf - B7), ]
22X (XB —y) + : =0, (10)
[ 26m / (um, — B7) ]
[ 2u1/(uf - B7) ]
AL — : —0. (D
|2/ (ufy, — Br) ]
Let us denote this KKT conditions as ¢g(y, X, 3,u) = 0. Ac-

cording to the implicit function theorem, the derivative of 3
with respect to y can be computed as the first m rows of

99
ay’

-J! (12)

where J = [z%’ %] is the Jacobian matrix of ¢g(y, X, 3,u)

with respect to 3 and u,

dg  [-2eXT

3y~ | o } : (13)
dg  [2tXTX + D,

2 14
B D] (14)
89 . -DQ

8711 - _D1:| ) (15)

with

D, = diag(2(uf + 57)/(ui - 7).,
2(up, + B/ (U = B)?),
D, = diag( — 4u1 81/ (uf — 1), ...,
= A B/ (u, = B3)?).-
Also, according to (10), (11), and the implicit function theo-

rem, the derivative of 3 with respect to X can be calculated
as the first m rows of

dg
—J == 16
X (16)
where g—)g( € R2mx(mn) gpq
0g; ) 2t0u(XB —y)i + 2t X3, ifi<m 17
0Xu o, ifi >m
with §;; being the Kronecker delta function
1, ifi=1I
=4 " (18)
0, ifi#l

and (X3 —y) being the kth element of the vector (X3 —y).

To calculate the gradient of 3 with respect to y and X,
we first need to find the inverse of the Jacobian matrix. The
Jacobian matrix is a 2 x 2 block matrix,

y_ [2X"X+Dy Dy
- D, D, |

This block structure makes the inverse of J admit a simple
form [13]:

T _
Jo1_ [(QtX X +2D)"! j 1)

*

where D = diag(1/(u? + 81),...,1/(uZ, + BZ)). Since
the gradient of 3 with respect y and X only depends on the
first m rows of (12) and (16) respectively and the elements
from m + 1 to 2m are zero both for dg/dy and dg/9X, we
omit unused elements in (19) in later computation. With this
explicit expression of the Jacobian matrix, we have

9B _ (XTX +1/t-D)"'XT, (20)
dy
and
0B _[0B1 0B OBm 1" o
0Xpy OXw 0Xi' T 0Xw ]
with
9B

Xy

1 0g;
T -1 99
Ej (X'X+1/t D)zy X

Let us denote the objective of (4) as f(y,X). Using the
chain rule, we have the gradient of f with respect to y and X:

.
Vyf(y,X><g§f> H(ﬁfu)][3 , @

and

Uy, X) _ g \T
X0 =(B-v) H

oB
OXp |p=8"

(23)

Now, we know the gradients of our objective function (4).
With the help of this gradient information, we can use a vari-
ety of gradient based optimization methods. Since our prob-
lem is a constrained optimization problem, we resort to the
projected gradient descent method. We have summarized it
in Algorithm 1. The main concept of the projected gradient
descent algorithm is that we first take a gradient step, project
it onto our feasible set, and we take an «; step along the pro-
jected point. In this algorithm, Porj, (-) and Proj_(-) rep-
resent the projection operator which projects a point onto the
feasible set C,, and C,, respectively. C, and C, are £, balls
with radius 7,, and 7, respectively. In the following, we will
discuss the expressions of the projection onto three commonly



Algorithm 1 The Projected Gradient Descent Algorithm

1: Input: data set {(y§,x%)}" ;, trade off parameter A
in (1), energy budget 7, 1,, £, norm, and step size pa-
rameter ;.

2: solve 3 via (1), set up feature set S, E, U and its corre-
sponding parameters s, e, p; use those parameters define
our objective function f(y, X) in (4).

3: Initialize set the number of iterations ¢ = 0 and y; = yo,
X; = Xp.

4: Do

5: solve B according to (9),

6: compute the gradients: Vy f(y:, X;) according to (22)
and Vx f(y, X;) according to (23),

7: update:

8 yi+1 = (1 — ou)yr + o - Proje, (vt — Vy flye, X4)),

9: update:

10: Xt+1 = (1 — Oét)Xt + oy - PI'()_]'Cﬂc (X_f - VXf(yt, Xt)),
11: sett =t+1,

12: While convergence conditions are not meet.

13: Output: y;, X;.

used £, norm balls, where p = 1, 2, oo with radius of the norm
ball being 7 and its center being the origin.

Case 1: Project onto the ¢; norm ball. It involves solving the
following convex problem

min ||z — x||2
z
st [xlle, <,

which can be efficiently solved via its dual with complexity
O(m) [14].

Case 2: Project onto the /5 norm ball. In this case, we have a
very simple closed form solution

Proj(x) = x./ max{1, ||x||2}, (24)

where ./’ denotes the element-wise division.
Case 3: Project onto the ¢/, norm ball. In this case, we also
have a very simple close-form solution:

Proj(x) = z, (25)

T

where z = [z1,...,2,,] and

—1, lf.’EZ < —1,
1f|$2| <1,

Zi = Zq,
1

)

With these expressions of the projection, we can easily obtain
the expressions of Projc () and Proj_ () by simply doing
geometric translation.

4. NUMERICAL EXAMPLES

In this section, we use several experiments to demonstrate the
results obtained in this paper.

0.5

-0.5

objective value

Ty

2 a
4]
2'r 8 o
o 2 e
% 0 P gonags 090 GONDND - Geod- agpenauiiun oo
8§ oo "
1 orig
B mod 9
O min L]
2 O max
1 10 20 30 40 50
feature index

Fig. 2. The original regression coefficients and the regression
coefficients after our attacks.

In the first numerical example, we test our algorithm on a
synthetic data set. Firstly, we generate a 30 x 50 feature matrix
Xy. Each entry of the feature matrix is i.i.d. generated from a
standard normal distribution. Then, we generate the response
values, y, through the model yo = Xyv + n, where v is the
sparse vector in which only ten randomly selected positions
are non-zero and each of the non-zero entry is i.i.d. drawn
from the standard normal distribution; n is the noise vector
where each entry is i.i.d. generated according to a normal
distribution with zero mean and 0.1 variance. Then, we set the
LASSO trade-off parameter A = 2 and use (7) to estimate the
regression coefficients 3,. We randomly select one regression
coefficient as the desired coefficient to be boosted and another
as our coefficient to be suppressed. Also, we set the suppress
parameter s; = 1 for ¢ € S, set boost parameter e; = —1 for
1 € F, and set the unchanged parameter u; = 5 for ¢ € U.
We set the stepsize parameter oy = 2/+/t in Algorithm 1.

In the first experiment, we set 1, = 0, which means that
we do not modify the feature matrix, and impose ¢, norm con-
straint on the modification of the response values. Then, we
vary the energy budget, 7, to see how energy budget influ-
ence our objective value. Fig. 1 illustrates that the objective
value decreases as the energy budget increases. This is ex-
pected because larger energy budget provides larger feasible
region, and thus lower objective value. Fig. 2 demonstrates
the recovered regression coefficients when 7, = 5 along with
the original regression coefficients. In this figure, ‘orig’ de-



Fig. 3. The blue line demonstrates the original response val-
ues and the red line is the modified response values with dif-
ferent attack constraints. From top to bottom are the modified
response values with /1, £, and ¢, norm constraints, respec-
tively.

notes the original regression coefficients, ‘mod’ represents
the regression coefficients after our attack, ‘min’ is the re-
gression coefficient we want to suppress, and ‘max’ denotes
the regression coefficient we want to promote. As the figure
demonstrated, we have successfully suppressed and promoted
the corresponding coefficients while keeping other regression
coefficients almost unchanged.

In the second experiment, we also attack the response val-
ues. We fix the energy budget n, = 5 and test different £,
norm constraints on the modification of the response values as
p = 1,2, 00. Fig. 3 shows the original and modified response
values under different ¢, norm constraints. The z-axis de-
notes the index of each response value and the y-axis denotes
the value of the response vector. As the figure illustrated,
the /1 norm constraint provides the smallest modification on
the response values and the /., norm constraint provides the
most significant modification, which result in objective value
0.0095 with the ¢; norm constraint, objective value —0.4199
with the /5 norm constraint, and objective value —2.8813 with
the /., norm constraint. That is because with the same radius,
/1 norm ball is contained in the #5 norm ball and /5 norm ball
belongs to the ¢, norm ball.

In the third experiment, we compare the modification on
the response values and on the feature matrix with the ¢; con-
straints. First, we only attack the response values with ,, = 5,
which results in objective value 0.0095. Second, we only at-
tack the feature matrix with the same energy budget 1, = 5,
which results in objective value —0.0969. Finally, we attack
both the response values and the feature matrix with 7, = 5
and 1, = 5, which results in objective value —0.2291. These
results indicate that both the modifications of the response
values and feature matrix are effective. However, modifica-
tion of the feature matrix seems more efficient than that of the
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Fig. 4. Overview of the octane data set.

10

sk 1 e mod |

value of coefficient
[8)]

-20

1 100 200 300 400
index of feature

Fig. 5. The regression coefficients before and after our attack.

response values.

We now test our attack strategy using real datasets. In this
task, we use the spectral intensity of the gasoline to predict
its octane rating [15]. It consists of 60 samples of gasoline at
401 wavelength and their octane ratings. Fig. 4 provides an
overview of the data samples. From the figure we can see that
there are very high correlations among different wavelengths.
Hence, if we use the ordinary linear regression method, it
will have large errors. Thus, we use the LASSO method to
complete the regression task. We randomly choose 80% of
the data samples as our training data and the rest as our test
data. We do cross-validation on the training data to decide the
trade-off parameter in LASSO, and it gives A = 0.5. Using
this parameter, we compute the regression coefficients. Us-
ing this regression coefficients on the test data set, we have
r-squared value 0.979. The blue line in Fig. 5 shows the orig-
inal regression coefficient. From this figure, we can see that
there are several important features.

In the next step, we modify the response values and the
feature matrix with the energy budget , = 5 and n, = 5
to suppress the 154th and 163th regression coefficients, un-
change the 232th and 369th regression coefficients, and pro-
mote the rest of the regression coefficients. In our algorithm,
wesets; = 1fori € S,e; = —1fori € E, u; = 50 for
i € U, and stepsize parameter «v; = 1/t. The red-dashed line
in Fig. 5 shows the regression coefficients after our attacks.



As is shown, we successfully promoted two regression coef-
ficients which were zero-valued before attack. We also sup-
pressed the 154th and 163th regression coefficients and made
the 232th and 369th regression coefficients change very little.
Using this regression coefficients on the test data set, we got
the r-squared value 0.694. Hence, by changing the response
values and the feature matrix, we can easily make the system
choose the wrong features.

5. CONCLUSION

In this paper, we have investigated the adversarial robustness
of the LASSO based feature selection algorithm. We have
provided an algorithm to mitigate the non-differentiability of
the ¢; norm in the feature selection method. The numerical
examples both on the synthetic data and real data have shown
that feature selection based on LASSO is very vulnerable to
the adversarial attacks. It is of interest to study the defense
strategy against this kind of attacks in the future.
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