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ABSTRACT

In this paper, we study the adversarial robustness of linear re-
gression problems. Specifically, we investigate the robustness
of the regression coefficients against adversarial data samples.
In the considered model, there exists an adversary who is able
to add one carefully designed adversarial data sample into the
dataset. By leveraging this poisoned data sample, the adver-
sary tries to boost or depress the magnitude of one targeted
regression coefficient under the energy constraint of the ad-
versarial data sample. We characterize the exact expression
of the optimal adversarial data sample in terms of the targeted
regression coefficient, the original dataset and the energy bud-
get. Our experiments with synthetic and real datasets show
the efficiency and optimality of our proposed adversarial strat-

egy.
Index Terms— Adversarial robustness, linear regression,
poisoning attack, non-convex optimization

1. INTRODUCTION

Linear regression is one of the fundamental machine learning
algorithms being used in a wide range of applications [1]. In
linear regression, one makes a simple assumption that there is
a linear relationship between the response and the explanatory
variables. Thus, in linear regression, our goal is to find out the
linear regression coefficients given the data samples, which
is usually accomplished by ordinary least squares (OLS) or
ridge regression approaches. The regression coefficients will
be used subsequently to perform prediction or forecasting
given the explanatory variables. The regression coefficients
also give us a way to explain the relationship between the
response variable and the explanatory variables, which is
very important in biologic science [2], financial analysis [3],
and environmental science [4]. Generally speaking, a large
magnitude of the regression coefficient indicates a significant
relationship between its corresponding explanatory variable
and the response variable. Furthermore, a small regres-
sion coefficient implies a redundant or irrelevant explanatory
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variable. This is especially true when certain coefficients
regularized regression methods, such as ridge regression and
Lasso [5], are used.

Machine learning is being widely used in security and
safety sensitive applications, for example, medical image
analysis [6] and autonomous driving [7]. Since these applica-
tions play a vital role in our lives, the robustness of machine
learning algorithms in adversarial environments has received
significant research interests [8, 9, 10]. An adversary may
exist in these applications and be able to observe the whole
data sets. After seeing all the data samples, the adversary can
corrupt our learning model and mislead the learning result by
modifying our training data or adding some adversarial data
samples into the original data sets. It is important to under-
stand the robustness of machine learning algorithms in these
adversary environments before they can be safely employed
in critical applications.

In this paper, we consider the adversarial robustness of the
linear regression problem. In the considered model, there ex-
ists a powerful adversary who can observe the whole dataset.
After that, the adversary will carefully design one special ad-
versarial data sample and add it to the original data sam-
ples in order to manipulate one specific regression coefficient.
In particular, we investigate how to design the optimal ad-
versarial data sample to minimize or maximize the absolute
value of a regression coefficient under a certain energy con-
straint. By minimizing the absolute value of a regression co-
efficient, the adversary intends to make a crucial variable ap-
pear to be unimportant. Similarly, by maximizing the am-
plitude, the adversarial can make an irrelevant variable ap-
pear to be important. By doing these, the adversary can ma-
nipulate our interpretation of the model and can impact the
performance of the downstream applications that rely on the
generated model. We show that the problem of finding the
optimal adversarial example can be transformed into an op-
timization problem with the objective being the ratio of two
quadratic functions and with a quadratic constraint. To solve
this non-convex problem, we convert it to a quadratically con-
strained quadratic programming (QCQP) problem. Although
our objective is still non-convex, we identify the optimal so-
lution from its Karush-Kuhn-Tucker (KKT) necessary condi-



tions and are able to give the closed-form expressions for the
optimal adversarial data sample in terms of the targeted re-
gression coefficient, the original data samples and the energy
budget. Compared with the related work [11] that formulated
this problem as a bi-level optimization problem, our method
provides the global optimality, while the bi-level method is
NP hard and thus no global optimality is guaranteed.

2. PROBLEM FORMULATION

Suppose we have n data samples, {(y;,x;)}7,, where y;
is the response variable, x; € R™ is the feature vector, and
each component of x; represents an explanatory variable. In
this paper, we consider an adversarial setup in which the ad-
versary first observes the the whole dataset (y, X), in which
Yy = [y1, Y2, -+ ,yn] | and X := [xq, X2, -+ ,%,] ", and
then carefully designs an adversarial data sample, (yq, Xo),
and inserts it into the existing data samples. After insert-
ing this adversarial data sample, we have the poisoned
dataset (y,X), where ¥ := [y0, Y1, Y2, - ,Un] » X =
[x0, X1,X2," " ,Xp]| "

From the dataset, we intend to learn a linear regression
model. From the poisoned dataset, the learned model is ob-
tained by solving

argmin ||y — X2]3. ¢))
ﬁeRn;

Let f? be the optimal solution of problem (1).

The goal of the attacker is to design the adversarial data
sample (yo,Xo) to decrease (or increase) the importance of
a certain explanatory variable. If the goal is to decrease the
importance of explanatory variable 7, the objective function
can be written as

min |5y, (2)

X0,Y0

where Bi is the ¢th component of B Similarly, if the goal of
the attacker is to increase the importance of an explanatory
variable, the objective function can be written as

max |f3;]- (3
X0,Y0
To make the problem nontrivial, we need to impose cer-
tain constraint on (yo,Xo). In this paper, we impose energy
constraint on the adversarial data sample and we use the {5
norm to measure the energy of the adversarial data sample.
As the result, the optimization problem with respect to objec-
tive (2) can be written as

min |Bi )
I[xg > wolll2<n

st. B= argmin Iy — X85,

where 7 is the energy budget. Similarly, we have the objective

max | BZ| 5)

lixg > wolll2<n

st. B= argmin Iy — XAl13.

with respect to problem (3). Problem (4) and problem (5) are
complicated bi-level optimization problems. In this paper, we
will fully characterize their optimal solutions. These optimal
solutions will enable us to understand the impact of the ad-
versarial data sample on the linear regression problem.

3. OPTIMAL SOLUTIONS

To solve problem (4) or problem (5), we first solve the fol-
lowing two optimization problems

min Bi (6)
llxq  wolll2<n
st. B =minlly - XB]3. (7
and
max Bz (8)
Ilxq , wolll2<n
st. B =minlly - XB]3. ©)

It is easy to check that the solutions to problems (4) and (5)
can bp obtained frqm the solutions to (6) and (8). In particular,

let (5] )min and (537 )max be optimal values of problems (6)
and (8) respectively. Then, if Bz > 0, we can check that
max{0, (3] )min} and max{|(B; Jmin|, |(5;)max|} are the so-
lutions to problems (4) and (5) respectively. Similar argu-
ments can be made if B, < 0. Compared with (4) and (5),
the objective functions in (6) and (8) also provide additional
benefits. For example, we can use these formulations to study
how to change a positive regression coefficient to a negative
one.

In the following, we will focus on solving the minimiza-
tion problem (6). The solution to the maximization prob-
lem (8) can be obtained using similar approach. To solve
this bi-level optimization problem, we can first solve the op-
timization problem in the constraint (7). Problem (7) is just
an ordinary least squares problem, which has a simple closed-
form solution: 3 = (XTX) "X Ty. Plugin X = [xo, X "]T
and ¥ = [yo,y "]", and we have

B = (XX +x0xq ) [x0, X ] [yo, ¥ ']"
According to the Sherman-Morrison formula [12], we have
(XTX + xoxg)f1

XTX) Ixoxg (XTX)!

_ XTX -1 (
( ) 1+X(—)F(XTX)71X0




The inverse of XX + x¢x] always exists because 1 +
xJ (XTX)71x¢ # 0. Plug this inverse in the expression of

3, we get
AXOXOA

3= Axg — — 07077 (xT
B = By + yoAxo 1+XOTAX0( Y + YoXo)
B+ Axo(yo ;xgﬂ0)7
1+x9Axg
where
A=(XTX)1, (10)
By =(X"X)"'X"y. (1)

As 3, is independent of (o, X ), problem (6) is equivalent to

T e
min a XO(ZUO X0 /60) (12)
X0,Y0 1+ XOTAXO
st [Ixg, wolll2 < m, (13)

where a is the ith column of A. The optimization prob-
lem (12) is the ratio of two quadratic functions with a
quadratic constraint. To further simplify this optimiza-
tion problem, we can write our objective and constraints
in a more compact form by performing variable change:
u = [x4,%o]'. Using this compact representation, the
optimization problem (12) can be written as

. %uTHu (14)
N T[0T
s.t. uTuSnQ7
in which
T T
H= aBy —Bea’ a) (15)

a 0

(14) is a non-convex optimization problem. To solve this
problem, we employ the technique introduced in [13]. We
first do variable change u = 2 by introducing variable z and
scalar s. Inserting this into problem (14), adding constraint
1 to the denominator of the objective and moving it to the
constraint, we have a new optimization problem

1
min 5zTHz (16)
st. s2+z [A0]z=1, (17)
z'z < s%nP. (18)

To validate the equivalence between problem (14) and (16),
we only need to check if the optimal value of problem (14) is
less than the optimal value of problem (16) when s = 0 [13].
Firstly, since H is not positive semi-definite (which will be
shown later), the optimal value of problem (14) is less than

zero. Secondly, when s = 0, the optimal value of prob-
lem (16) is zero, which is apparently larger than the optimal
value of problem (14). Therefore, the two problems are equiv-
alent.

To solve problem (16), we substitute s2 in equation (17)
for that in equation (18) and then we have

min
z

st. z' (I+n°[ 49z <7’ (20)

1
5zTHz (19)

Note that H is not positive semi-definite, hence problem (19)
is not a standard convex QCQP problem. However, it is
proved that strong duality holds for this problem [14]. So,
to solve this problem, we can start by investigating its KKT
necessary conditions. The Lagrangian of problem (19) is

1
L(z,\) = 5zTHz + Az T +7* 49Dz —7n?),

where ) is the dual variable. According to the KKT condi-
tions, we have

(H+ D)z =0, (2D
%ZTDZ < 1727 22)
A (;ZTDZ — 772) =0, (23)
A >0, (24)
where
D:2(1+712[ 13 8}). (25)

By inspecting the complementary slackness condition (23),
we consider two cases based on the value of A.
Case 1: A\ = 0. In this case, we must have Hz = 0. As a
result, the objective value of (19) is zero, which contradicts
with the fact the optimal value should be negative. Hence,
this case is not possible.
Case 2: A\ > 0. In this case, equality in (22) must hold. Ac-
cording to the stationary condition (21), if the matrix H+ AD
is full rank, we must have z = 0, for which equality in (22)
cannot hold. Hence, H + AD is not full-rank and we have
det(H + AD) = 0. As D is positive definite, we also have

det(D™Y2HD~'/2 4 \I) = 0. (26)

Since A > 0, this equality tells us that —\ belongs to one of
the negative eigenvalues of D~'/2HD~'/2. In the follow-
ing, we will show that D~/2HD~!/2 has one and only one
negative eigenvalue.

By definition, D is a block diagonal matrix. Hence,
its inverse is also block diagonal. Let us define D~1/2 =



diag{G, g}, where G = 1//2(I+7n?A)" /2 and g = 1/v/2.
Thus, we have

D Y2HD /2 = [ —ch’ —ThCT gc

)

gc 0

where ¢ = Ga and h = GJ,,. Define ¢ as the eigenvalue of
D~/?HD~'/2, and compute its eigenvalues by computing
the characteristic polynomial:

det (51 - D—1/2HD—1/2)
=¢m-t ({2 +2¢c™h+c"hh'c—g%clc— cTchTh) .

Thus, the eigenvalues of D~'/2HD~/2 are £ = 0 ((m-1)

multiplications) and ¢ = —c"h =+ ||c|[21/¢% +hTh. Since
lcll2v/g2 + hTh > |c"hl, the eigenvalues of D~1/2HD /2
satisfy

£m+1<07 gngmflz"':éé:oa §1>0~

Now, it is clear that D~'/2HD~'/2 has one and only one
negative eigenvalue and one positive eigenvalue respectively.
Thus, we have A\ = —&,,,4+1. Assume v; and v,,;; are
two eigenvectors corresponding to eigenvalues &1 and &, 41.
Through simple calculation, we have

c’h+¢ - ChT ﬂ(_cTh+&,

v, =k|[-——=——c o

h T
CTC é‘z c+ )] ’

27)

where ¢ = 1, m + 1 and scalar k; is the normalization
constant to guarantee the eigenvectors to be of unit length.
According to (21), we have

(H + \D)z = D'/? (D*W'HD*W + AI) D2z = 0;
thus the solution to problem (19) is

2" =k-D Y20, (28)

Since 3z' Dz = %, we have k = /2. Having the expres-

sion of the optimal z*, we can then compute s according to
equation (17):

§= i\/1 - (ZT:m)TAZT:nN (29)
where z7.,, is the vector that comprises the first m elements
of z*. Hence, the corresponding solution to problem (12) is

(30)

* % * ok
X0 = Z1n/8 Yo = Zopi1/S-

We now compute the optimal value of problem (16).
Since our objective function is % (z*)"Hz*, substituting z*
in (28) leads to the objective value:

7721/:—”+1D*1/2HD*1/21/m+1.

Algorithm 1 Optimal Adversarial Data Point Design

1: Input: the data set, {(y;,x;)}™ ,, energy budget 1, and
the index of feature to be attacked.

2: Steps:

3: compute A according to equation (10), compute 3, ac-
cording to (11).

4: compute H and D according to (15) and (25), respec-
tively.

s: compute the last eigenvalue, &,,41, of D™/2HD~
and its corresponding eigenvector according to (27).

6: design the adversarial data point, (yo,Xo), according to
equations (28), (29), and (30).

7: Output: return the optimal adversarial data point
(Y0, Xo) and the optimal objective value n?¢,,11 + (Bg);-

1/2

Since V7Tn+1D’1/2HD’1/2Um+1 = &11, our optimal ob-
jective value is 92&,,41.

Following similar analysis as above, we can find the opti-
mal z* for problem (8), which is z* = \/Qanl/zul. Also,
we can compute the optimal xj and gy according to equa-
tion (30) and its optimal objective value, which is n2¢;.

In summary, the optimal values for problems (6) and (8)
are n%&,, 41 + (Bo)i and n2&; + (Bo); respectively. We have
summarized the process to design the optimal adversarial data
point in Algorithm 1 with respect to objective (6) and the pro-
cess with respect to objective (8) can be obtained accordingly.
Based on our optimal values of problems (6) and (8), we can
further decide the optimal values of problems (4) and (5) as
discussed at the beginning of this section.

Moreover, if we use the ridge regression method in linear
regression, there is only a slight difference in the matrix A in
problem (12) and the whole analysis remains the same.

4. NUMERICAL EXAMPLES

In this section, we will use numerical examples to demon-
strate the results we obtained in this paper.

In the first experiment, we test our algorithms on a syn-
thetic data set. In this experiment, we first generate a 20 x 10
feature matrix X, where each element of X is i.i.d. gener-
ated according to a standard normal distribution. Then, we
generate our response values, y, according to the observation
model y = X3 + n, where each element of 3 is i.i.d. gener-
ate according to a standard normal distribution and each entry
of n is i.i.d. generated according to a Gaussian distribution
with zero mean and 0.1 variance. On this synthesized data
sample, (y, X), we perform our attacks with two algorithms.
The first algorithm is the one described in Algorithm 1. The
second algorithm is a random attack strategy. In the random
attack strategy, given the energy budget, we randomly gener-
ate an adversarial data sample, (yo,Xg), with each of its en-
tries being i.i.d. generated according to the standard normal
distribution, and normalize its energy to the given energy bud-
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Fig. 1. The value of the fourth regression coefficient after
our proposed attacks and after random attacks with different
energy budgets.
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Fig. 2. The regression coefficients before and after our pro-
posed and random attacks on our synthesized data set. The
left figure shows the regression coefficients before and after
attacking the fourth regression coefficient with objective (4)
and the right one shows the regression coefficients before and
after attacking the fourth regression coefficient with objec-
tive (5)

get. Then, we add this adversarial data point into the original
data set and compute the linear regression coefficients. We re-
peat this process 10000 times and among which we record the
data points which lead to the minimal and maximal objective
values of (4) and (5), respectively.

Fig. 1 depicts the value of the fourth regression coefficient
after our proposed attacks and after the random attacks with
different energy budgets. In this figure, the x-axis indicates
the energy budget and the y-axis indicates the value of the
fourth regression coefficient. ‘opt-max’, ‘opt-min’, ‘rnd-max,
‘rnd-min’ denote our proposed strategy with objective (5), our
proposed strategy with objective (4), random attacks with ob-
jective (5), random attacks with objective (4), respectively.
Fig. 2 shows the regression coefficients before and after we
attack the fourth regression coefficient with energy budget
n = 3, where ‘orig’, ‘opt’, ‘rand’ denote the original regres-
sion coefficients, the regression coefficient after our proposed
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Fig. 3. The regression coefficients under our proposed and
random attacks on the Istanbul Stock Exchange data set. The
left figure shows the regression coefficients before and after
attacking the fourth coefficient with objective (6) and the right
one shows the regression coefficients before and after attack-
ing the fifth regression coefficient with objective (4).

attack and the regression coefficients after random attacks, re-
spectively. Fig. 2 (a) shows the regression coefficient with the
objective that minimizes the fourth regression coefficient and
the right one shows the regression coefficients with the ob-
jective that maximizes the magnitude of the fourth regression
coefficient. As the two figures demonstrated, our proposed
strategy is much more efficient than the random attack strat-
egy. Since the random attach strategy can be seen as an ex-
haustive search algorithm, it further proves the optimality of
our proposed algorithm.

In the second experiment, we test our adversarial attack
strategy on a real data set. In this regression task, we use
seven international indexes to predict the returns of the Is-
tanbul Stock Exchange [15]. The data set contains 536 data
samples, which are the records of the returns of Istanbul Stock
Exchange with seven other international indexes starting from
Jun. 5, 2009 to Feb. 22, 2011.

We use OLS regression for this task and get the regres-
sion coefficients as shown in Fig. 3. In the figure, the x-axis
denotes the index of the regression coefficients and the y-axis
indicates the value of the regression coefficients. We design
our first experiment to attack the fourth regression coefficient
and try to make it small by solving problem (6). We use two
strategies to attack this coefficient with fixed energy budget
by setting 7 = 0.2. The first strategy is the one proposed in
this paper. As a comparison, we also use a random strategy.
In the random one, we randomly generate the adversarial data
sample with each entry being i.i.d. generated from a standard
normal distribution. Then, we normalize its energy to be 7.
We repeat this random attack 10000 times and select the one
with the smallest value of the fourth regression coefficient.

In the second experiment on this real data set, we intend
to make the absolute value of the fifth regression coefficient
small. We compare the proposed and random attack strate-
gies to attack the fifth coefficient with fixed energy budget
n = 0.1. Similarly, for the random attacks strategy, we run



10000 times random attacks and select the one with the small-
est absolute value of the fifth regression coefficient.

Fig. 3(a) shows the regression coefficients before and af-
ter the first experiment and Fig. 3(b) shows the regression co-
efficients before and after the second experiment. From the
figures we can see that our proposed adversarial attack strat-
egy is much more efficient than the random attack strategy.
One can also observe that by only adding one adversarial data
point, designed using the approach characterized in this pa-
per, one can dramatically change the value of a regression
coefficient and hence change the importance of that feature.

5. CONCLUSION

In this paper, we have investigated the adversarial robustness
of the linear regression problem. We have characterized the
optimal adversarial data sample under the energy constraint.
Our closed-form results provide a clear view of the relation-
ship among the adversarial data sample, the original data sam-
ples, and the energy budget. It further provides insights into
the robustness of linear regression against the adversarial data
sample. In the future, it is of interest to consider how to de-
sign more than one adversarial data samples and how to de-
fend against such attacks.
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