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Abstract—In this communication, we propose using modern machine
learning (ML) techniques including least absolute shrinkage and selec-
tion operator (lasso), artificial neural networks (ANNs), and k-nearest
neighbor (kNN) methods for antenna design optimization. The automated
techniques are shown to provide an efficient, flexible, and reliable
framework to identify optimal design parameters for a reference dual-
band double T-shaped monopole antenna to achieve favorite performance
in terms of its two bands, i.e., between 2.4 and 3.0 and 5.15 and 5.6 GHz.
In this communication, we also present a thorough study and comparative
analysis of the results predicted by these ML techniques, with the results
obtained from high-frequency structure simulator (HFSS) to verify the
accuracy of these techniques.

Index Terms— Antenna optimization, least absolute shrinkage and
selection operator (lasso) shrinkage, linear regression, machine learning
(ML), optimization.

1. INTRODUCTION

The upcoming era of Internet of Things (IoT) has enabled an
immense growth in the demand of application-specific antennas,
which are needed for almost all electronic devices. Hence, the require-
ment of a smart and efficient way of antenna designing has become
inevitable. Current antenna design heavily relies on the designer’s
empirical experiences and EM simulations. Traditional methods are
inherently inefficient and computationally intensive, making them
impractical when there are a large number of antenna design parame-
ters to be optimized such as for 3-D printed antennas [1]. To address
challenges for designing complex 3-D structures, machine learning
(ML) techniques may be highly beneficial. ML has been widely used
as an indispensable data analysis and decision-making tool in a broad
range of applications, ranging from hand-written digit recognition [2]
to human genomics [3]. Researchers have also explored optimization
of antenna structures by applying heuristic optimization techniques
like genetic algorithms and particle swarm optimization [4]-[6], but
these algorithms search for the optimal solution by analyzing the
output on individual data points and generating new and possibly
better search directions until a global maxima or minima is identified.
On the other hand, ML refers to all techniques and optimization
algorithms of analyzing the data and finding the hidden mathematical
relation in data such that we can relate the input behavior to the
output behavior and make future predictions or decisions using this
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Fig. 1. Layout and design parameters of the referenced dual-band double-T
monopole antenna (source: [13]).

relationship. The main advantage of using ML techniques is once
we have the relational model, we can predict the output for any
data point rather than aiming for global optimal and minima points
only. This property is very beneficial when we want to use the same
data set for multiple different goals. As described in [7], there is
some early work on applying ML techniques for antenna analysis and
synthesis [8]-[11]. In [8]. the performance of support vector machines
(SVMs) is investigated for designing of a rectangular patch antenna
and a rectangular patch array, while in [9], methodology to use
SVMs for linear and nonlinear beamforming and parameter design
for arrays and electromagnetic applications is mentioned. Another
ML technique, artificial neural network (ANN) has also been applied
in this field [10], [11]. In [12], clustering method is used to find the
optimum position for shorting posts in microstrip patch array design
so as to achieve acceptable bandwidth, scan angle, and polarization.
As observed from here, some studies for using ML techniques for
antenna design optimization have been conducted but a detailed
analysis and systematic comparison of various ML techniques for
antennas have not been reported. The main contribution of this
communication is to fill the gap by presenting new classes of
ML-based methods for automated antenna design optimization, eval-
uating their performance in terms of prediction accuracy and robust-
ness and making comparisons with EM simulations. Our discovery
suggests that ML is a promising choice to provide automated, com-
putational feasible, and practically effective approaches for antenna
design. The ultimate goal of this communication is to further extend
the proposed ideas to more complex design of antennas and develop
scalable and efficient algorithms to tackle computational challenges,
by handling a large number of design parameters.

In this communication, we propose using ML techniques for
antenna design optimization, and particularly consider ANNs, least
absolute shrinkage and selection operator (lasso), and k-nearest neigh-
bor (kNN). The feasibility of these new approaches for antenna design
is demonstrated by their applications to optimize a reference double
T-shaped monopole antenna [13] as shown in Fig. 1. The initial work
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related to this was reported in [14] where only the lasso technique
was employed and targeted optimization function was weighted sum
of fractional bandwidths of two bands of the reference antenna. In this
communication, we use finer optimization function and explore more
ML techniques to optimize the performance of the reference antenna.
This helps in achieving better results as compared to [13] and [14].
Section II describes the main ideas of the suggested ML techniques
as well as their computational algorithms and implementation. Their
performance is evaluated in Section III and further compared with
that of traditional EM simulation methods. Section IV contains the
conclusion and the discussion of future work in this area.

II. METHODOLOGIES

To demonstrate the proposed idea, we use a reference double
T-shaped monopole antenna [13] (as shown in Fig. 1) as the example.
The performance of this antenna mainly depends on five design
parameters [21, /22, w1, w2, and w. In the design process, we allow
these five parameters to vary while keeping the other three parameters
L,hy, and hy at their fixed values, as mentioned in [13]. These
five geometric parameters act as the explanatory variables or input
variables for ML models. The data are collected in batches and
the corresponding R-squared values of the fitted model trained
by the accumulated data are monitored. As the sample size gets
bigger, the R-squared value first substantially improves but then
gradually levels off. In our numerical experiment, 450 samples give
reasonably high and stable R-squared values (larger than 0.85 for
each case). Hence, N is chosen as 450 sample points and data are
collected by varying these five geometric parameters at different
values using random sampling. Theoretically, increasing the training
samples improves the prediction accuracy, as a larger number of
sample points contain more information about the underlying data
generation scheme and, therefore, lead to better estimation results.
The same pattern is observed here when data are accumulated in
batches. Therefore, we choose sufficient number of training samples
in batches, till the R-squared value becomes stable. The sample
points are simulated using ANSYS high-frequency structure simulator
(HFSS) [15] and antenna reflection coefficients in the format of
.slp files are extracted from the simulations. Using each .slp file,
performance of this antenna for each sample point is assessed by
extracting figure of merit (FOM), which is defined to obtain the
maximal bandwidth in the two desired bands of the antenna. In this
communication, FOM is defined as the sum of absolute values of
reflection coefficient (S11) in dB for frequency points in the range
of 2.4-3.0 and 5.15-5.6 GHz. Basically, we add the absolute value
of §11 at each of the frequency point falling in the band of interest
in order to calculate the FOM for a given design and the same is
represented mathematically as follows:

f=3.0 f=5.6
FOM = Z |S11()| + Z [S11(D] (M
f=2.4 f=5.15

where f represents the frequency and Sp;(f) is the reflection coef-
ficient value at that frequency. While collecting the sample points,
these parameters take values within the following range of sam-
ple space, y defined as: Ip1 € [6.3,7.3], I22 €[6.3,7.3], w1 €
[1,3.5], w2 e [1,3.5], w € [1,3.5], with each parameter taking
a step size of 0.5 (all units are in millimeters). In the antenna
design process, these five design parameters are input variables
and FOM is the output or response variable. The training data
are represented by {(X;, ¥;),i = 1,2,... N}, where the input is
X = (lesfzz,wl,wg,w)T € y or its transformation. The output
Y is the value of FOM. The goal is to learn a behavioral model
based on the training set to best describe the relationship between
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the expected FOM (F"Ei'ﬁ) and the design parameters. We represent
this behavioral model by

FOM = h(la1, 12, w1, w, w) + € @)

where € is the error term and the function h is a flexible mapping,
which can be linear or nonlinear, continuous or discontinuous func-
tion that is based on the main effects or including two-way interaction
effects of the input parameters. ML methods are then used to search
for the best h € H, a class of candidate models, to describe the
relationship between X and Y and make future predictions. To search
for optimal design parameters based on the obtained ML model,
a very fine grid over the entire space y with a step size 0.1 mm
(instead of 0.5 mm in the training set) is generated, consisting of a
total of 2126696 design points. The FOM values at all the design
points are then computed and the design parameter values that give
the maximal FOM value are identified. The performance of this
analysis is verified by comparing the predicted FOM at a set of test
points with its actual value obtained from the HFSS simulation. In
Sections II-A-II-C, the three ML techniques (namely lasso, ANN,
and kNN) that have been used in this communication to obtain the
behavioral model h are explained.

A. Lasso

The lasso technique is a sparse regression and predictor selection
algorithm that estimates a linear model subject to some conditions.
Basically, it searches the value of regression coefficients that can
minimize the residual sum of squares subject to the condition that
the absolute values of the regression coefficients are less than a
constant [16]. Denote the training data by (my.n;), k=1,2,..., N,
where my = {my1,...,m kp}T are p-dimensional predictor variables
and nj are associated responses. The linear estimation model predicts
the response for a given input my, as i} = a + Z,p Bpmyp- In a
simple linear regression problem, the values of (@, ) are obtained
by applying the least squares method, i.e., minimizing the difference
between the actual response value nj and the estimated value (7})
as defined in the following:

N

@, f) = argmin { >°

ng—a— Y Bpmip . 3)
k=1 j

The standard regression analysis includes all the predictor variables
in the model fitting, irrespective of the magnitudes of their effects
on the output. If some predictor variables are not informative for
prediction, these variables are regarded as unimportant and should be
removed from the final model, in order to improve both prediction
accuracy and model interpretability. This can be done by lasso, which
calculates the estimate (@ ,?) by minimizing the sum of residual
squares subject to the constraint » |fp| =t.Here, t > 0is a tuning
parameter, which controls the amount of shrinkage that is applied to
the estimates.

In our analysis, we fit the linear model by using the function Im()
in R [17], which is a public-domain statistical computing and graphics
software. To increase model flexibility and capture any nonlinear
relationship between the predictors and the response, we have also
considered and compared various forms of nonlinear transformation
of the raw design parameters, including log, exponential, quadratic,
cubic, etc., and finally decided that a quadratic transformation is the
most appropriate. To implement the lasso procedure, we used the
function /asso() in R. For this lasso model, the five design parameters
and their quadratic transformations are used as the predictor variables
and the FOM is used as the response variable. The optimal value of
the tuning parameter t is determined by the fivefold cross validation
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Fig. 2. ANN Architecture based on MLP.

method [18]. The final fitted model predicted by the lasso is as
follows:

mlﬂsso
= 9.96/2; + 16.4312, + 2.04w?} + 0.79w3
- 6.48!.02 —36.49171190 + 0931w + 2.1215 w9
+ 778121 w + 2.59122w1 + 0.57l22w72 + 6.44]772w
+0.06wqwy — 3.46wiw — 0.78wrw + 92.3515;
+5.37ly — 2892wy — 7.42wy — 31.13w — 91.96.  (4)

B. ANN Analysis

ANN is a computational model that is inspired by the function of
biological neural networks. ANN consists of a group of artificial neu-
rons, which process information over interconnection. There are many
different ANN structures used in the literature. Multilayer perceptrons
(MLPs) [19]-[21] which are successfully and commonly employed
in engineering problems are preferred in this communication because
of their ability to learn and model complex relationships. The MLP
can be trained by many algorithms such as Levenberg—Marquardt
(LM), back-propagation, and delta-bar-delta. In this communication,
we train the MLPs using the LM algorithm [22], which has the
abilities of fast learning and good convergence. For our problem
setup, which has only five parameters in the input space and needs
a regression model, the LM algorithm is one of the most efficient
training algorithms for small- and medium-sized patterns. The MLP
consists of three layers: an input layer, an output layer, and a hidden
layer, as shown in Fig. 2. Neurons in the input layer distributes the
input signal u; to the neurons in the hidden layer. Each neuron j in
the hidden layer adds up its input signals u; after multiplying weights
to each term depending on the respective connections w;; from the
input layer and computes its output v; as a function g of the sum
and a bias value, b; added to it, that is

vj =g Zw,‘jﬂi +bj (5)

1

where g(-) can be a simple threshold function, a sigmoid, hyperbolic
tangent, a radial basis function, a purelin function, etc. The output
of neurons in the output layer is computed similarly. The simplest
algorithm that can be used is a first-order error back-propagation
(EBP) algorithm [23] which is one of the primitive training algorithms
for neural networks. However, the EBP algorithm suffers because of
its low training efficiency. This can be improved by using dynamic
learning rates or by using the second order algorithms, such as New-
ton algorithm and LM algorithm [24] which will help in increasing
the training speed of the EBP algorithm. The LM algorithm is a blend
of vanilla gradient descent and Gauss—Newton iterations, which gives
it better convergence speed over vanilla gradient descent algorithms.
LM is also able to provide a solution for nonlinear least squares
minimization. Since it combines the EBP algorithm and Newton
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algorithm, LM algorithm is considered to be most efficient algorithm
for small- and median-sized patterns.

LM algorithm is implemented for training the neural net-
work for this communication, using the neural network toolbox
of MATLAB [25]. In our analysis, the data collected from .s1p file are
divided into three parts: 70% of data are used for training and 15%
each used for testing and validation, respectively. The input layer
consists of five design parameters, the hidden layer of five hidden
nodes, and the output layer of a single node for FOM.

C. kNN

The kNN [26] is an instance-based algorithm for supervised
learning, which defines the similarity between sample points and
makes predictions for new data points based on their similarity to the
data that are already present in the training set. The similarity measure
is typically expressed by a distance measure such as the Euclidean
distance, cosine similarity, or the Manhattan distance. For any given
new data point, the kNN algorithm first calculates its distance to
all stored data points, which are used to determine its kNNs. Next,
the outputs of these neighbors are gathered to produce a weighted
average, which will then be assigned to the new data point. The
weight of each neighbor is inversely proportional to its distance to
the target data point. In simple words, the nearer neighbors contribute
more to the average than the more distant one.

To implement kNN in this analysis, we first use tenfold cross
validation to choose an appropriate value of k. It is observed that
k = 5 gives the minimum cross validation error and therefore, five
nearest neighbors are chosen for each data point for prediction.
We use the function knn.reg() in the FNN package of R [27] in
order to obtain the kNN model for the reference antenna.

Hence, by using above-mentioned three ML techniques, we obtain
three separate behavioral models to relate design parameters to FOM
of the reference antenna. Next, these models are used to estimate
performance of the antenna at various design points in terms FOM
and also the accuracy of the estimations is tested by comparing the
results with HFSS. More details regarding this have been mentioned
in Section III.

ITI. RESULTS AND DISCUSSION

Using the behavioral models obtained from the ANN model, lasso
model, and kNN model, we identify the optimal design parameters
which produce the highest FOM value. For this purpose, we pre-
dict the FOM values for all possible combinations of values of
the five design parameters and locate the maximum FOM point.
In particular, the five antenna design parameters are varied in the
following range: [h; € [6.3,7.3] , g €[6.3,7.3], w; € [1,3.5],
wy € [1,3.5], w € [1,3.5], with each parameter having a step size
of 0.1 (all units are in millimeters).

The results predicted by different ML techniques are compared
with those obtained from the HFSS simulation tool and summarized
in Table 1. The first column of the top three rows in this table shows
the design parameters’ value that is obtained by each ML technique to
give maximum FOM. The next three columns list the corresponding
maximum FOM value predicted by each ML technique and the last
column is the FOM obtained from HFSS if the design parameters
mentioned in the first column are substituted in HFSS design. For
comparison, the design parameters’ value of the reference antenna as
mentioned in [13] is also stated in the first column of the fourth row of
Table I and in the next columns of the fourth row, the corresponding
FOM value predicted by each technique and HFSS is shown. The fifth
row in this table mentions the total computation time corresponding to
each of the ML technique, i.e., the time it took to train the ML model
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TABLE I

PREDICTED FOM, DESIGN PARAMETER VALUES,
AND COMPUTATION TIME COMPARISON

FOM
. predicted by
;):f:i':etm > lasso ANN kNN HFSS

predicted by |
lasso:l91=7.3, 139=6.3,
wy=1, we=3.5, w=3.5

298.56 297.68 286.75 298.06

ANN:£21=7.3, 522=6‘3,

wr=1, we=3.5, w=3.5 298.56 297.68 286.75 298.06

kNN:321=?.3, £22=6.3,
w1=1.2, we=3.3, w=3.1 286.35 280.47 288.67 280.53
Mentioned in [13]:

l51=7.3, l39=17.3, w=1,

we=3.5, w=3.5 288.17 288.68 273.69 289.67
Computation time:
(Seconds) 789 1074 387

and then search the corresponding best set of design parameters from
that model.

In Sections III-A-III-C, the results of Table I for each ML
techniques are discussed in more detail.

A. Lasso Results

The lasso model is trained with 20 parameters in the input space,
consists of five original design parameters and their square, as well
as their cross product terms. Fivefold cross validation [16] is used to
determine the optimal value of the tuning parameter. Though lasso is
known to be able to produce sparse solutions, for this case none of the
coefficients becomes zero [as observed from (4)], which implies that
all the predictors have nontrivial effects on the output performance.
For the model predicted by lasso as represented in (4), the sensitivity
analysis is performed by perturbing few coefficients and the results
are mentioned in Table II. It can be observed from Table II that
maximum value of FOM and the design parameter values for which
this maximum occurs for the perturbed model remain almost the
same to the values predicted from the actual model. This proves the
robustness of the lasso model against slight random perturbations.
The maximum FOM predicted by the lasso model is mentioned in
first row of Table I, which can be achieved by choosing the design
parameter values as: [y = 7.3 mm, lpp = 6.3 mm, w; = 1 mm,
wy = 3.5 mm, and w = 3.5 mm. The trained lasso model also
predicts the FOM value at this design location equal to 298.56.
To verify the results, an HFSS simulation for these values of design
parameters is done. The corresponding value of FOM obtained from
HFSS is 298.06.

B. ANN Results

The results obtained from neural networks are more precise than
lasso. For neural network analysis, 70% of data were used for training
and 15% each is used for testing and validation, respectively. The
input layer consists of five nodes, each representing one design
parameter, a hidden layer with five hidden nodes, and the output
layer of one single node, representing the FOM. As observed from
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TABLE II

SENSITIVITY ANALYSIS OF PREDICTED LASS0 MODEL: PREDICTED
FOM AND DESIGN PARAMETER VALUES WHEN
COEFFICIENTS OF (4) ARE PERTURBED

Coeffi— Initial Pert— Maximum FOM value
cient of ‘l;;] urbed For initial For perturbed
variable] "¢ Value model model
FOM=298.56 at FOM=290.03 at
151=7.3,120=6.3, 131=7.3,l92=6.3
2 21 a2 , a2 )
ln 9.96  9.80 un=1, wy=3.5, un=1, wy=3.5,
w=3.5 w=3.5
FOM=298.56 at FOM=299.12 at
101=7.3,139=6.3, 191=7.3,l22=6.3
] 21 5622 3 21 5622 3
W 204260 1 we=35,  wi=l, wp=35,
w=3.5 w=3.5
FOM=298.56 at FOM=304.44 at
w? 648 -6.00 101=7.3,129=6.3, 191=7.3,l92=6.3,

w1=1,w2=3.5,
w=3.5

'w1=1, w2=3.5,
w=3.5

the second row of Table I, the maximum FOM is expected to occur
at [py = 7.3 mm, [y = 6.3 mm, w; = 1 mm, w2 = 3.5 mm,
and w = 3.5 mm by the ANN model and the corresponding FOM
value is predicted to be equal to 297.68. The FOM value for these
design parameters is also checked through the HFSS simulation; the
resulting value is 298.06. It can be observed from here that the results
obtained from lasso and neural network are very close to each other.

C. kNN Results

As mentioned earlier, for the kNN analysis here, we use k = 5
and Euclidean distance-based weighted average to estimate FOM for
any design parameter set using its training data. As shown in the
third row of Table I, the maximum FOM predicted by kNN is equal
to 288.67, which is given by the design parameters [p; = 7.3 mm,
lpp = 63 mm, w; = 1.2 mm, w2 = 3.3 mm, and w = 3.1 mm;
for this particular set of values, HFSS gives FOM = 280.53. This
implies a percentage error of 2.90%.

Fig. 3(a)~(e) shows the plots to compare performance of the ML
techniques. The values of FOM predicted by ML techniques and
obtained from HFSS are plotted with respect to each of the five
design parameters. For each plot, only one design parameter is varied
along the horizontal axis, while the other four design parameters
are kept as constant mentioned on the top of each graph. For the
HFSS results, each design parameter is varied with a step size
of 0.5 mm because simulation for each design parameter set is quite
time-consuming. For the three ML technique-predicted FOM, each
design parameter is varied with a step size of 0.1 mm because once
the ML models relating the input and output parameters have been
established, FOM can be predicted much faster compared to doing
HFSS simulations. The vertical axis depicts the FOM values. The
red curve represents FOM from lasso prediction, black curve from
ANN prediction, pink curve from kNN prediction, and blue curve
for FOM values calculated from HFSS simulations. From Fig. 3, it
is observed that the values from lasso and neural networks are quite
close to the actual FOM value obtained from HFSS, since the red
and black curves closely trace the blue curve in all the plots. This
proves the accuracy of lasso prediction and ANN prediction. On the
other hand, the kNN prediction (pink curve in Fig. 3) is little deviated
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Fig. 3. Predicted and simulated FOM values with respect to change in (a) l21,
(b) I9, (c) wy, (d) wy, and (e) w while keeping other four constants to the
values shown on top of each plot and legend mentioned on bottom-left.

from the actual values obtained from HFSS and the other two ML
techniques. Still, the kNN model is able to predict dependence of
FOM on each design parameter like the other models. One possible
reason for less precision in the kNN results can be due to its simple
model structure, which is sensitive to irrelevant or redundant features
because all features contribute while making prediction [26]. Also,
the distribution of data and type of distance used also affect the
prediction values in the case of kINN. Therefore, these are factors that
may be responsible for the deviation of kNN prediction compared to
the other two techniques.

The maximum FOM predicted by both lasso and ANN occurs
for the same set of design parameter values (/21 = 7.3 mm,
lpp = 6.3 mm, w1 = 1 mm, wy = 3.5 mm, and w = 3.5 mm). These
values are substituted in the HFSS model and the simulated results are
compared with the results for design parameters set mentioned in [13]
in order to compare the bandwidth performance. Fig. 4 shows the S
plot for these two cases. It can be observed that for design parameters
predicted by lasso and ANN (red curve), larger bandwidth in the
two bands is achieved compared to that for the design parameters
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==== For design parameters mentioned in[13]
—— For design parameters predicted bv lasso and ANN

3 35 4 45
Frequency (GHz)

Fig. 4. Simulated S; versus frequency response for the design parameters
values mentioned in [13] (blue curve) and for design parameters values
predicted by lasso and ANN (red curve) in order to aftain maximum FOM.

mentioned in [13] (blue curve). Hence, in this communication by
using lasso and ANN modeling, we not only save time during
optimization but are also able to achieve better performance for the
reference antenna structure.

As compared to the optimization done using EM solvers, ML
optimization is quite fast. This is clearly evident from the fifth row
of Table I, as the computation time of each algorithm is just a
few hundreds of seconds which is significantly less than the time
taken by EM solver to simulate even one design point. If the same
optimization has to be done for these five design parameters by
using an EM solver alone, it would take a few hours. In addition,
we can change the optimization goal later after data collection by
using ML optimization, while the same is not true for a standard
optimization by an EM solver alone. Also, optimization using an
EM solver requires designer’s empirical knowledge to choose the best
solution, while ML optimization automatically chooses the optimal
design. The main advantage of the ML techniques is its superior
ability to solve large-scaled optimization problems. The successful
results for this communication prove ML techniques to be a new and
powerful tool to tackle difficult design problems such as the initial
design. These techniques can further be used to solve even more
complex problems. For example, one can allow a flexible choice of
the antenna shape, structure, and material, by formulating a large
optimization problem and then use the ML to search within a high-
dimensional input space for optimal design. To achieve this, we will
need to collect more training data.

IV. CONCLUSION

In this communication, three ML techniques namely lasso, ANN,
and kNNs are used to automatically identify the optimal values of
the design parameters for a reference antenna where it can provide
the best performance in terms of bandwidth of two bands. The
brief description about these techniques is first presented in this
communication and then how these techniques are applied to a
reference double T-shaped monopole antenna is explained. With the
help of these ML techniques, performance of the reference antenna is
analyzed for 2126696 design points within a few seconds by learning
from the training data set of 450 data points only. Compared to kNN,
both ANN and lasso give more accurate predictions in our study.
In summary, these new methods are more efficient than traditional
method of EM simulation optimization for achieving optimal antenna
design.

The results obtained from this research imply that ML tech-
niques have the power to revolutionize EM simulation technology.
Due to computational power limits of EM tools, it is challenging
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and time consuming to optimize complex antenna designs like
3-D antenna structures involving a large number of design para-
meters. This problem can be addressed by incorporating ML tech-
niques in simulation tools. The ultimate goal of this communication
is to further generalize ML methods for complex design struc-
tures such as structures manufactured by 3-D printing technology.
For example, 3-D printing enables designs with large numbers
of degree of freedom and, therefore, optimizing all parameters
through EM simulations is both tedious and computationally inten-
sive. Our preliminary results have shown that ML techniques may
be able to enable versatile and potentially automated design of
antennas which will be beneficial for a number of applications
including IoT.
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