
Action-Manipulation Attacks Against Stochastic
Bandits: Attacks and Defense

Guanlin Liu and Lifeng Lai, Senior Member, IEEE

Abstract—Due to the broad range of applications of stochastic
multi-armed bandit model, understanding the effects of ad-
versarial attacks and designing bandit algorithms robust to
attacks are essential for the safe applications of this model. In
this paper, we introduce a new class of attacks named action-
manipulation attacks. In this class of attacks, an adversary can
change the action signal selected by the user. We show that
without knowledge of mean rewards of arms, our proposed attack
can manipulate Upper Confidence Bound (UCB) algorithm, a
widely used bandit algorithm, into pulling a target arm very
frequently by spending only logarithmic cost. To defend against
this class of attacks, we introduce a novel algorithm that is robust
to action-manipulation attacks when an upper bound for the
total attack cost is given. We prove that our algorithm has a
pseudo-regret upper bounded by O(max{log T,A}) with a high
probability, where T is the total number of rounds and A is the
upper bound of the total attack cost.

Index Terms—Stochastic bandits, action-manipulation attack,
UCB.

I. INTRODUCTION

In order to develop trustworthy machine learning systems,
understanding adversarial attacks on learning systems and
correspondingly building robust defense mechanisms have
attracted significant recent research interests [2]–[9]. In this
paper, we focus on multiple armed bandits (MABs), a simple
but very powerful framework of online learning that makes
decisions over time under uncertainty. MABs problems have
been widely investigated in machine learning and signal
processing [10]–[16], and has many applicants in a variety
of scenarios such as displaying advertisements [17], articles
recommendation [18], cognitive radios [19], [20] and search
engines [21], to name a few. In the modern industry-scale
applications of MABs models, action decisions, reward signal
collection, and policy iterations are normally implemented
in a distributed network. When data packets containing the
reward signals and action decisions etc are transmitted through
the network, an attacker can intercept and modify these data
packets to implement adversarial attacks.

Of particular relevance to our work is a line of inter-
esting recent work on online reward-manipulation attacks
on stochastic MABs [22]–[24]. In the reward-manipulation

G. Liu and L. Lai are with Department of Electrical and Com-
puter Engineering, University of California, Davis, CA, 95616. Email:
{glnliu,lflai}@ucdavis.edu. The work of G. Liu and L. Lai was supported
by National Science Foundation under Grants CCF-1717943, ECCS-1711468,
CNS-1824553 and CCF-1908258. This paper has been presented in part in the
2020 IEEE International Conference on Acoustics, Speech and Signal Process-
ing [1]. Copyright (c) 2017 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

attacks, there is an adversary who can change the reward
signal from the environment, and hence the reward signal
received by the user is not the true reward signal from the
environment. In particular, [22] proposes an interesting attack
strategy that can force a user, who runs either ε-Greedy or
Upper Confidence Bound (UCB) algorithm, to select a target
arm while only spending effort that grows in logarithmic order.
[23] proposes an optimization based framework for offline
reward-manipulation attacks. Furthermore, it studies a form
of online attack strategy that is effective in attacking any
bandit algorithm that has a regret scaling in logarithm order,
without knowing what particular algorithm the user is using.
[25] considers an attack model where an adversary attacks with
a certain probability at each round but its attack value can be
arbitrary and unbounded. The paper proposes algorithms that
are robust to these types of attacks. [24] considers how to
defend against reward-manipulation attacks, a complementary
problem to [22], [23]. In particular, [24] introduces a bandit
algorithm that is robust to reward-manipulation attacks under
certain attack cost, by using a multi-layer approach. [26]
introduces another model of adversary setting where each arm
is able to manipulate its own reward and seeks to maximize its
own expected number of pull count. Under this setting, [26]
analyzes the robustness of Thompson Sampling, UCB, and
ε-greedy under attacks, and proves that all three algorithms
achieve a regret upper bound that increases over rounds in a
logarithmic order or increases with attack cost in a linear order.
This line of reward-manipulation attack has also recently been
investigated for contextual bandits in [27], which develops
an attack algorithm that can force the bandit algorithm to
pull a target arm for a target contextual vector by slightly
manipulating rewards in the data.

In this paper, we introduce a new class of attacks on MABs
named action-manipulation attack. In the action-manipulation
attack, an attacker, sitting between the environment and the
user, can change the action selected by the user to another ac-
tion. The user will then receive a reward from the environment
corresponding to the action chosen by the attacker. Compared
with the reward-manipulation attacks discussed above, the
action-manipulation attack is more difficult to carry out. In
particular, as the action-manipulation attack only changes
the action, it can impact but does not have direct control
of the reward signal, because the reward signal will be a
random variable drawn from a distribution depending on the
action chosen by the attacker. This is in contrast to reward-
manipulation attacks where an attacker has direct control and
can change the reward signal to any value.

In order to demonstrate the significant security threat of
action-manipulation attacks to stochastic bandits, we propose
an action-manipulation attack strategy against the widely used
UCB algorithm. We choose to attack the UCB algorithm as
it is widely used in practice and has been extensively studied
in the literature. The proposed attack strategy aims to force
the user to frequently pull a target arm chosen by the attacker.
We assume that the attacker does not know the true mean
reward of each arm. The assumption that the attacker does not
know the mean rewards of arms is necessary for the design
of attack strategies, as otherwise the attacker can perform the
attack trivially. To see this, with the knowledge of the mean
rewards, the attacker knows which arm has the worst mean
reward and can perform the following oracle attack: when the
user pulls a non-target arm, the attacker changes the arm to the
worst arm. This oracle attack makes all non-target arms have
expected rewards less than that of the target arm, if the target
arm selected by the attacker is not the worst arm. In addition,
under this attack, all sublinear-regret bandit algorithms will
pull the target arm O(T) times. However, the oracle attack is
not practical. The goal of our work is to develop an attack
strategy that has similar performance of the oracle attack
strategy without requiring the knowledge of the true mean
rewards. When the user pulls a non-target arm, the attacker
could decide to attack by changing the action to the possible
worst arm. As the attacker does not know the true value of
arms, our attack scheme relies on lower confidence bounds
(LCB) of the value of each arm in making attack decisions.
Correspondingly, we name our attack scheme as LCB attack
strategy. Our analysis shows that, if the target arm selected
by the attacker is not the worst arm, the LCB attack strategy
can successfully manipulate the user to select the target arm
almost all the time with an only logarithmic cost. In particular,
LCB attack strategy can force the user to pull the target arm
T −O(log(T)) times over T rounds, with the total attack cost
being only O(log(T)). On the other hand, we also show that,
if the target arm is the worst arm and the attacker can only
incur logarithmic costs, no attack algorithm can force the user
to pull the worst arm more than T−O(Tα) times. In addition,
we study an oracle attack to illustrate the challenges arise for
the case where the target arm is the worst arm.

Motivated by the analysis of the action-manipulation attacks
and the significant security threat to MABs, we then design
a bandit algorithm which can defend against the action-
manipulation attacks and still is able to achieve a small regret.
The main idea of the proposed algorithm is to bound the
maximum amount of offset, in terms of user’s estimate of
the mean rewards, that can be introduced by the action-
manipulation attacks. We then use this estimate of maximum
offset to properly modify the UCB algorithm and build spe-
cially designed high-probability upper bounds of the mean
rewards so as to decide which arm to pull. We name our
bandit algorithm as maximum offset upper confidence bound
(MOUCB). In particular, our algorithm first pulls every arm a
certain of times and then pulls the arm whose modified upper
confidence bound is the largest. Furthermore, we prove that

MOUCB bandit algorithm has a pseudo-regret upper bounded
by O(max{log T,A}), where T is the total number of rounds
and A is an upper bound for the total attack cost. In particular,
if A scales as log(T), MOUCB archives a logarithm pseudo-
regret which is same as the regret of UCB algorithm.

Compared with our conference paper [1], this journal paper
provides several new contributions: 1) In [1], only attacks are
considered. In this journal paper, we also consider how to
defend against attacks. In particular, we design a new bandit
algorithm MOUCB that is robust to action-manipulation at-
tacks and analyze its regret; 2) We provide detailed discussions
of the reason why LCB strategy fails when the target arm is
the worst; 3) We introduce a class of oracle attacks on UCB
algorithm when the target arm is the worst and analyze the
bound of target arm pull count and attack cost; 4) We conduct
more comprehensive numerical simulations to illustrate the
results obtained in our study.

The remainder of the paper is organized as follows. In Sec-
tion II, we describe the model. In Section III, we describe the
LCB attack strategy and analyze its accumulative attack cost.
In Section IV, we propose MOUCB and analyze its regret.
In Section V, we provide numerical examples to validate the
theoretic analysis. Finally, we offer several concluding remarks
in Section VI. The proofs are collected in Appendix.

II. MODEL

In this section, we introduce our model. We consider the
standard multi-armed stochastic bandit problems setting. The
environment consists of K arms, with each arm corresponds to
a fixed but unknown reward distribution. The bandit algorithm,
which is also called “user” in this paper, proceeds in discrete
time t = 1, 2, . . . , T , in which T is the total number of
rounds. At each round t, the user pulls an arm (or action)
It ∈ {1, . . . ,K} and receives a random reward rt drawn from
the reward distribution of arm It. Denote τi(t) := {s : s ≤
t, Is = i} as the set of rounds up to t where the user chooses
arm i, Ni(t) := |τi(t)| as the number of rounds that arm i
was pulled by the user up to time t and

µ̂i(t) := Ni(t)
−1

∑
s∈τi(t)

rs (1)

as the empirical mean reward of arm i. The pseudo-regret
R̄(T) is defined as

R̄(T) = T max
maxi∈[K]

µi − E

[
T∑
t=1

rt

]
. (2)

The goal of the user is to minimize R̄(T).
In this paper, we introduce a novel adversary setting, in

which the attacker sits between the user and the environment.
The attacker can monitor the actions of the user and the reward
signals from the environment. Furthermore, the attacker can
introduce action-manipulation attacks on stochastic bandits. In
particular, at each round t, after the user chooses an arm It,
the attacker can manipulate the user’s action by changing It to
another I0

t ∈ {1, . . . ,K}. If the attacker decides not to attack,

2

I0
t = It. Then the environment generates a random reward rt

from the reward distribution of post-attack arm I0
t . The user

and the attacker receive reward rt from the environment.

Fig. 1. Action-manipulation attack model

Without loss of generality and for notation convenience, we
assume arm K is the “attack target” arm or the target arm.
The attacker’s goal is to manipulate the user into pulling the
target arm very frequently but by making attacks as rarely as
possible. Define the set of rounds when the attacker decides
to attack as C := {t : t ≤ T, I0

t 6= It}. The cumulative attack
cost is the total number of rounds where the attacker decides
to attack, i.e., |C|.

In this paper, we assume that the reward distribution of arm
i follows σ2-sub-Gaussian distributions with mean µi. Denote
the true reward vector as µ = [µ1, · · · , µK]. Neither the user
nor the attacker knows µ, but σ2 is known to both the user
and the attacker. We note that the assumption that the attacker
does not know µ is only necessary for Section III, in which
we design attack strategies. We do not use this assumption
in Section IV where we design defense strategies. Define the
difference of mean value of arm i and j as ∆i,j = µi − µj .
Furthermore, we refer to the best arm as iO = arg maxi µi
and the worst arm as iW = arg mini µi.

In Section III, the assumption that the attacker does not
know µ is important. If the attacker knows these values, the
attacker can adopt a trivial oracle attack scheme: whenever the
user pulls a non-target arm It, the attacker changes It to the
worst arm iW . Assuming that the target arm is not the worst,
it is easy to show that, if the user uses a bandit algorithm
that has a regret upper bounded of O(log(T)) when there
is no attack, the oracle attack scheme can force the user to
pull the target arm T −O(log(T)) times, using a cumulative
cost |C| = O(log(T)). However, the oracle attack scheme is
not practical when the true reward vector is unknown. In this
paper, we will first design an effective attack scheme, which
does not assume the knowledge of true reward vector and
nearly matches the performance of the oracle attack scheme,
to attack the UCB algorithm. We will then design a new bandit
algorithm that is robust against the action-manipulation attack.

The action-manipulation attack considered here is different
from reward-manipulation attacks introduced by interesting
recent work [22], [23], where the attacker can change the

reward signal from the environment. In the setting considered
in [22], [23], the attacker can change the reward signal rt from
the environment to an arbitrary value chosen by the attacker.
Correspondingly, the cumulative attack cost in [22], [23] is
defined to be the sum of the absolute value of the changes on
the reward. Compared with the reward-manipulation attacks
discussed above, the action-manipulation attack is more dif-
ficult to carry out. In particular, as the action-manipulation
attack only changes the action, it can impact but does not
have direct control of the reward signal, which will be a
random variable drawn from a distribution depending on the
action chosen by the attacker. This is in contrast to reward-
manipulation attacks where an attacker can change the reward
to any value.

III. ATTACK ON UCB AND COST ANALYSIS

In this section, we use UCB algorithm as an example to
illustrate the effects of action-manipulation attack. We will
introduce LCB attack strategy on the UCB bandit algorithm
and analyze the cost.

A. Attack strategy

UCB algorithm [28] is one of the most popular bandit
algorithm. In UCB algorithm, the user initially pulls each of
the K arms once in the first K rounds. After that, the user
chooses arms according to

It = arg max
i

{
µ̂i(t− 1) + 3σ

√
log t

Ni(t− 1)

}
. (3)

Under the action-manipulation attack, as the user does not
know that rt is generated from arm I0

t instead of It, the
empirical mean µ̂i(t) computed using (1) is not a proper
estimate of the true mean reward of arm i anymore. On the
other hand, the attack is able to obtain a good estimate of µi
by

µ̂0
i (t) := N0

i (t)−1
∑

s∈τ0
i (t)

rs, (4)

where τ0
i (t) := {s : s ≤ t, I0

s = i} is the set of rounds up to
t when the attacker changes an arm to arm i, and N0

i (t) =
|τ0
i (t)| is the number of pulls of post-attack arm i up to round

t. This information gap provides a chance for attack. In this
section, we assume that the target arm is not the worst arm,
i.e., µK > µiW . We will discuss the case where the target arm
is the worst arm in Section III-C.

The proposed attack strategy works as follows. In the first
K rounds, the attacker does not attack. After that, at round t,
if the user chooses a non-target arm It, the attacker changes it
to arm I0

t that has the smallest lower confidence bound (LCB):

I0
t = arg min

i

{
µ̂0
i (t− 1)− CB

(
N0
i (t− 1), δ

)}
, (5)

where

CB(N, δ) =

√
2σ2

N
log

π2KN2

3δ
. (6)

3

Here δ ∈ (0, 1) is a parameter that is related to the probability
statements in the analytical results presented in Section III-B.
We call our scheme as LCB attack strategy. Note that the
form of (6) is slightly different from typical form used in
UCB algorithms. We choose to use this form for the simplicity
of proofs. If at round t the user chooses the target arm, the
attacker does not attack. Thus the cumulative attack cost of
our LCB attack scheme is equal to the total of times when
the non-target arms are selected by the user. The algorithm is
summarized in Algorithm 1.

Algorithm 1: LCB attack strategy on UCB algorithm
Input:

The user’s bandit algorithm namely UCB algorithm,
target arm K

1: for t = 1, 2, . . . do
2: The user chooses arm It to pull according to UCB

algorithm (3).
3: if It = K then
4: The attacker does not attack, and I0

t = It.
5: else
6: The attacker attacks and changes arm It to I0

t

chosen according to (5).
7: end if
8: The environment generates reward rt from arm I0

t .
9: The attacker and the user receive rt.

10: end for

Here, we highlight the main idea why LCB attack strategy
works. As discussed in Section II, if the attacker knows which
arm is the worst, the attacker can simply change the action
to the worst arm when the user pulls the non-target arm. The
main idea of the attack scheme is to estimate the mean of each
arm, and change the non-target arm to the arm whose lower
confidence bound is the smallest. Effectively, this will almost
always change the non-target arm to the worst arm. More
formally, for i 6= K, we will show that this attack strategy
will ensure that µ̂i computed using (1) by the user converges
to µiW . On the other hand, as the attacker does not attack
when the user selects K, µ̂K computed by the user will still
converge to the true mean µK with NK increasing. Because
the assumption that the target arm is not the worst, which
implies that µK > µiW , µ̂i could be smaller than µ̂K . Then
the user will rarely pull the non-target arms as µ̂i is smaller
than µ̂K . Hence, the attack cost would also be small. The
rigorous analysis of the cost will be provided in Section III-B.

B. Cost analysis

To analyze the cost of the proposed scheme, we need to
track µ̂0

i (t), the estimate obtained by the attacker using (4),
and µ̂i(t), the estimate obtained by the user using (1).

The analysis of µ̂0
i (t) is relatively simple, as the attacker

knows which arm is truly pulled and hence µ̂0
i (t) is the true

estimate of the mean of arm i. Define event

E1 := {∀i, ∀t > K : |µ̂0
i (t)− µi| < CB(N0

i (t), δ)}. (7)

Roughly speaking, event E1 is the event that the empirical
mean computed by the attacker using (4) is close to the true
mean. The following lemma, proved in [22], shows that the
attacker can accurately estimate the average reward to each
arm.

Lemma 1. (Lemma 1 in [22]) For δ ∈ (0, 1), P(E1) > 1− δ.

The analysis of µ̂i(t) computed by the user is more com-
plicated. When the user pulls arm i, because of the action-
manipulation attacks, the random rewards may be drawn
from different reward distributions. Define τi,j(t) := {s :
s ≤ t, Is = i and I0

s = j} as the set of rounds up to
t when the user chooses arm i and the attacker changes
it to arm j. Lemma 2 shows a high-probability confidence
bounds of µ̂i,j(t) := Ni,j(t)

−1
∑
s∈τi,j(t) rs, the empirical

mean rewards of a part of arm i whose post-attack arm is
j, where Ni,j(t) := |τi,j(t)|. Define event

E2 :=

{
∀i, ∀j, ∀t > K : |µ̂i,j(t)− µj | < CB

(
Ni,j(t),

δ

K

)}
.

(8)

Lemma 2. For δ ∈ (0, 1), P(E2) > 1− δ.

Proof. Please refer to Appendix A.

Although rs in (1), used to calculate µ̂i(t), may be drawn
from different reward distributions, we can build a high-
probability bound of µ̂i(t) with the help of Lemma 2.

Lemma 3. Under event E2, for all arm i and all t > K, we
have ∣∣∣∣∣∣µ̂i(t)− 1

Ni(t)

∑
s∈τi(t)

µI0s

∣∣∣∣∣∣ < CB
(
Ni(t)

K
,
δ

K

)
, (9)

Proof. Please refer to Appendix B.

Under events E1 and E2, we can build a connection between
µ̂i(t) and µiW . In the proposed LCB attack strategy, the
attacker explores and exploits the worst arm by a lower
confidence bound method. Thus, when the user pulls a non-
target arm, the attacker changes it to the worst arm at most of
rounds, which means that for all i 6= K, µ̂i(t) will converge
to µiW as Ni(t) increases. Lemma 4 shows the relationship
between µ̂i(t) and µiW .

Lemma 4. Under events E1 and E2, using LCB attack strat-
egy 1, we have

µ̂i(t) ≤ µiW +
1

Ni(t)

∑
j 6=iW

8σ2

∆j,iW

log
π2Kt2

3δ

+

√
2σ2K

Ni(t)
log

π2(Ni(t))2

3δ
, ∀i, t.

(10)

Proof. Please refer to Appendix C.

Lemma 4 shows an upper bound of the empirical mean
reward of pre-attack arm i, for all arm i 6= K. Our main
result is the following upper bound on the attack cost |C|.

4

Theorem 1. With probability at least 1 − 2δ, when T ≥(
π2K
3δ

) 2
5

, using LCB attack strategy specified in Algorithm 1,
the attacker can manipulate the user into pulling the target
arm in at least T − |C| rounds, with an attack cost

|C| ≤ K − 1

4∆2
K,iW

(
3σ
√

log T +

√
2σ2K log

π2T 2

3δ

+

(3σ
√

log T +

√
2σ2K log

π2T 2

3δ

)2

+4∆K,iW

∑
j 6=iW

8σ2

∆j,iW

log
π2KT 2

3δ

 1
2


2

.

(11)

Proof. Please refer to Appendix D.

The expression of the cost bound in Theorem 1 is compli-
cated. The following corollary provides a simpler bound that
is more explicit and interpretable.

Corollary 1. Under the same assumptions in Theorem 1, the
total attack cost |C| of Algorithm 1 is upper bounded by

O

Kσ2 log T

∆2
K,iW

K +
∑
j 6=iW

∆K,iW

∆j,iW

+

√
K
∑
j 6=iW

∆K,iW

∆j,iW

 ,

(12)

and the total number of target arm pulls is T − |C|.

From Corollary 1, we can see that the attack cost scales
as log T . Two important constants σ

∆K,iW
and

∑
j 6=iW

∆K,iW

∆j,iW

have impact on the prelog factor. In Section V, we provide
some numerical examples to illustrate the effects of these two
constants on the attack cost.

In the above analysis, the attacker has only one target arm
and aims to force the user to pull it. We can extend our
algorithm to the scenario where there is a set of target arms and
the attacker aims to manipulate the user into pulling any one
of them very frequently. For this case, we need an assumption
that the worst arm is not in the target set. When the user pulls
a target arm, the adversary does not attack. When the user
pulls a non-target arm, the LCB attack strategy can change it
to the worst arm at most of rounds. In this way, the estimate
of any non-target arm could be smaller than the estimate of
any target arm. As the result, the user will rarely pull the non-
target arms and pull arms in the target set very frequently. The
attack cost also scales as log(T).

C. Attacks fail when the target arm is the worst arm

One weakness of our LCB attack strategy is that the attack
target arm is necessarily a non-worst arm. In the LCB attack
strategy, the attacker can not force the user to pull the worst
arm very frequently by spending only logarithmic cost. The
main reason is that, when the target arm is the worst, the
average reward of each arm is larger or equal to that of the
target arm. As the result, our attack scheme is not able to

ensure that the target arm has a higher expected reward than
the user’s estimate of the rewards of other arms. In fact, the
following theorem shows that all action-manipulation attack
can not manipulate the UCB algorithm into pulling the worst
arm more than T −O(log(T)) by spending only logarithmic
cost.

Theorem 2. Let δ < 1
2 . Suppose the attack cost is limited

by O(log(T)), there is no attack that can force the UCB
algorithm to pick the worst arm more than T −O(Tα) times
with probability at least 1− δ, in which α ≤ 1.

Proof. Please refer to Appendix E.

This theorem shows a contrast between the case where the
target arm is not the worst arm and the case where the target
arm is the worst arm. If the target arm is not the worst arm,
our scheme is able to force the user to pick the target arm
T −O(log(T)) times with only logarithmic cost. On the other
hand, if the target arm is the worst, Theorem 2 shows that
there is no attack strategy that can force the user to pick the
worst arm more than T − O(Tα) times while incurring only
logarithmic cost.

In the proof of Theorem 2, we do not use the assumption on
whether the attacker knows the true underlying mean vector or
not. Hence this theorem is also valid even when the attacker
knows the true underlying mean vector and can carry out an
oracle attack. To further illustrate the challenges arise for the
case where the target arm is the worst arm, we now study the
oracle attack for this case. Even though the attacker knows the
true underlying mean vector, it is difficult for him to carry out
the attack. The main reason is that, since the target arm is the
worst arm, in order to make this arm appears to be better to
the user, the attacker now needs to attack even when the user
pulls the target arm, i.e., to change it to the best arm. Hence
the attack has two parts: 1) when the user pulls a non-target
arm, the attacker changes the arm to the worst arm; 2) when
the user pulls the target arm, the attacker changes the arm to
the best arm sometimes. We set the number of rounds that
the attacker change the target arm to the best arm as CK . So
the attack cost has two parts: the number of rounds where the
user pulls a non-target arm and CK . The following proposition
analyze the cost of this oracle attack.

Proposition 1. With probability at least 1 − δ, when T >(
π2K2

12δ

)4

, given the number of rounds that the attacker change
the target arm to the best arm as CK , the oracle attack can
manipulate the user into pulling the target arm that is the
worst arm in at most

T −min

 1
4 (K − 1)σ2T 2 log T

K(
KCK∆iO,K + 6σ

√
KT log T

K

)2 ,
T (K − 1)

K


(13)

5

rounds, with an attack cost |C| at least

CK + min

 1
4 (K − 1)σ2T 2 log T

K(
KCK∆iO,K + 6σ

√
KT log T

K

)2 ,
T (K − 1)

K

 .

(14)

Proof. Please refer to Appendix F.

Compared with the performance of LCB attacks for the
cases when the target arm is the worst arm, the oracle attack
for the case when the target arm is the worst arm requires
significantly more attack cost to achieve the similar perfor-
mance. According to Proposition 1, in order to manipulate the
user into pulling the target arm in T − O(log T) rounds, the
CK should scale as T . The attack is extremely ineffective, as
now the attack cost scales with T . Furthermore, from (14), to
minimize the cost, we need to set

CK =
1

K∆iO,K

((
1

2
K(K − 1)∆iO,Kσ

2T 2 log
T

K

) 1
3

−6σ

√
KT log

T

K

)
(15)

which scales as Ω
(
T

2
3 (log T)

2
3

)
. Hence, for the case where

the target arm is the worst arm, the minimal attack cost of the
oracle attack is large. There is no effective attacks when the
target arm is the worst arm.

IV. ROBUST ALGORITHM AND REGRET ANALYSIS

The results in Section III expose a significant security threat
of the action-manipulation attacks on MABs. Under only
O(log(T)) times of attacks carried out using the proposed
LCB strategy, the UCB algorithm will almost always pull the
target arm selected by the attacker. Although there are some
defense algorithms [24] and universal best arm identification
schemes [29] for stochastic or adversarial bandit, they do not
apply to the action-manipulation attack setting. This motivates
us to design a new bandit algorithm that is robust against
action-manipulation attacks. In this section, we propose such
a robust bandit algorithm and analyze its regret.

A. Robust Bandit algorithm

In this section, we assume that a valid upper bound A for
the cumulative attack cost |C| is known for the user, although
the user does not have to know the exact cumulative attack
cost |C|. A does not need to be constant, it can scale with
T . In other words, for a given A, our proposed algorithm
is robust to all action-manipulation attacks with a cumulative
attack cost |C| < A. This assumption is reasonable, as if the
cost is unbounded, it will not be possible to design a robust
scheme.

We first introduce some notation. Denote N(t − 1) :=
(N1(t − 1), . . . , NK(t − 1)) as the vector counting how
many times each action has been taken by the user, and

µ̂(t − 1) = (µ̂1(t − 1), . . . , µ̂K(t − 1)) as the vector of the
sample means computed by the user. The proposed algorithm
is a modified UCB method by taking the maximum possible
mean estimate offset due to attack into consideration. We name
our scheme as maximum offset UCB (MOUCB).

The proposed MOUCB works as follows. In the first 2AK
rounds, MOUCB algorithm pulls each arm 2A times. After
that, at round t, the user chooses an arm It by a modified
UCB method:

It = arg max
a
{µ̂a(t− 1) + β(Na(t− 1))

+γ(µ̂(t− 1),N(t− 1))} ,
(16)

where

γ(µ̂(t− 1),N(t− 1)) =
2A

Na(t− 1)

max
i,j
{µ̂i(t− 1)− µ̂j(t− 1) + β(Ni(t− 1)) + β(Nj(t− 1))} ,

and

β(N) = CB
(
N

K
,
δ

K

)
=

√
2σ2K

N
log

π2N2

3δ
. (17)

The algorithm is summarized in Algorithm 2.

Algorithm 2: Proposed MOUCB bandit algorithm
Input:

A valid upper bound A for the cumulative attack cost.
1: for t = 1, 2, . . . do
2: if t ≤ 2AK then
3: The user pulls the arm whose pull count is the

smallest, i.e. It = arg miniNi(t− 1).
4: else
5: The user chooses arm It to pull according (16).
6: end if
7: if The attacker decides to attack then
8: The attacker attacks and changes It to I0

t .
9: else

10: The attacker does not attack and I0
t = It.

11: end if
12: The environment generates reward rt from arm I0

t .
13: The attacker and the user receive rt.
14: end for

Compared with the original UCB algorithm in (3), the main
difference is the additional term γ(µ̂(t−1),N(t−1)) in (16).
We now highlight the main idea why our bandit algorithm
works and the role of this additional term. In particular, in
the standard multi-armed stochastic bandit problem, µ̂i(t) is
a proper estimation of µi, the true mean reward of arm i.
However, under the action-manipulation attacks, as the user
does not know which arm is used to generate rt, µ̂i(t) is not
a proper estimate of the true mean reward anymore. However,
we can try to find a good bound of the true mean reward. If
we know ∆iO,iW , the reward difference between the optimal
arm and the worst arm, we can describe the maximum offset

6

of the mean rewards caused by the attack. In particular, we
have

µi −
A

Ni(t)
∆iO,iW ≤

1

Ni(t)

∑
s∈τi(t)

µI0s ≤ µi +
A

Ni(t)
∆iO,iW ,

(18)
which implies

µi ≤
A

Ni(t)
∆iO,iW +

1

Ni(t)

∑
s∈τi(t)

µI0s . (19)

In (19), the first term in the right hand side is the maximum
offset that an attacker can introduce regardless of the attack
strategy. The second term in the right hand side is related to
the mean estimated by the user. In particular, under event E2,
as shown in Lemma 3, we have

1

Ni(t)

∑
s∈τi(t)

µI0s < µ̂i(t) + β(Ni(t)). (20)

Hence, regardless the attack strategy, we have a upper
confidence bound on µi:

µi ≤ µ̂i(t) +
A

Ni(t)
∆iO,iW + β(Ni(t)). (21)

In our case, however, ∆iO,iW is also unknown. In our algo-
rithm, we obtain a high-probability bound on ∆iO,iW :

∆iO,iW ≤ 2 max
i,j
{µ̂i − µ̂j + β (Ni(t)) + β (Nj(t))} , (22)

which will proved in Lemma 5 below. Now, the second term
of (21) becomes γ(µ̂(t− 1),N(t− 1)) if we replace ∆iO,iW

with the bound (22), and we obtain our final algorithm.
The design of robust algorithms under the adversarial setup

can be alternatively viewed as a MABs problem with limited
number of mean changes. When the user pulls a single arm,
the rewards he receives are drawn from different reward
distributions with different means. The means are varying
with time because of the manipulation of the attacker. The
means change between only K fixed values. In our setting,
if the attacker does not decide to attack, the arm chosen by
the user does not change and the mean does not change. In
this sense, the attack cost is the number of rounds when the
mean is different from the initial value. In most rounds, each
arm corresponds to a fixed but unknown reward distribution.
However, in at most A rounds, the mean of each arm is varying
between K − 1 fixed values.

B. Regret analysis

Lemma 5 shows a bound of ∆iO,iW , the maximum reward
difference between any two arms, under event E2.

Lemma 5. For δ ≤ 1
3 , t > 2AK and under event E2, MOUCB

algorithm have

∆iO,iW ≤ 2 max
i,j
{µ̂i − µ̂j + β (Ni(t)) + β (Nj(t))}

≤ 2∆iO,iW + 8

√
σ2K

A
log

4π2A2

3δ
.

(23)

Proof. Please refer to Appendix G.

Using Lemma 5, we now bound the regret of Algorithm 2.

Theorem 3. Let A be an upper bound on the total attack
cost |C|. For δ ≤ 1

3 and T ≥ 2AK, MOUCB algorithm has
pseudo-regret R̄(T)

R̄(T) ≤
∑
a6=iO

max

{
8σ2K

∆iO,a
log

π2T 2

3δ
, A (∆iO,a

+2∆iO,iW + 8

√
σ2K

A
log

4π2A2

3δ

)}
,

(24)

with probability at least 1− δ.

Proof. Please refer to Appendix H.

Theorem 3 reveals that our bandit algorithm is robust to the
action-manipulation attacks. If the total attack cost is bounded
by O(log T), the pseudo-regret of MOUCB bandit algorithm
is still bounded by O(log T). This is in contrast with UCB,
for which we have shown that the pseudo-regret is O(T) with
attack cost O(log T) in Section III. If the total attack cost is up
to Ω(log T), the pseudo-regret of MOUCB bandit algorithm is
bounded by O(A), which is linear in A. Note that in the design
of defense strategy, we do not assume what the attack strategy
is. MOUCB can defend against both LCB attacks and oracle
attacks. In fact, MOUCB is robust to all action-manipulation
attacks, as long as the total attack cost is smaller than A. In a
sense, A can be viewed as a parameter chosen by the user to
strike a balance between performance and robustness against
attacks: the larger the value A is, the larger class of attacks the
user can defend against, but with the cost of a larger regret.

V. NUMERICAL RESULTS

In this section, we provide numerical examples to illustrate
the analytical results obtained. In our simulation, the bandit
has 10 arms. The rewards distribution of arm i is N (µi, σ).
The attacker’s target arm is K. We let δ = 0.05. We then run
the experiment for 20 trials and in each trial we run T = 107

rounds.

A. LCB attack strategy

We first illustrate the impact of the proposed LCB attack
strategy on UCB algorithm.

In Figure 2, we fix σ = 0.1 and ∆K,iW = 0.1 and compare
the number of rounds at which the target arm is pulled with
and without attack. In this experiment, the mean rewards of
all arms are 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.1, and 0.2
respectively. Arm K is not the worst arm, but its average
reward is lower than most arms. The results are averaged over
20 trials. The attacker successfully manipulates the user into
pulling the target arm very frequently.

In Figure 3, in order to study how σ
∆K,iW

affects the attack
cost, we fix ∆K,iW = 0.1 and set σ as 0.1, 0.3 and 0.5
respectively. The mean rewards of all arms are the same as
above. From the figure, we can see that as σ

∆K,iW
increases, the

attack cost increases. In addition, as predicted in our analysis,

7

0 2 4 6 8 10
T 106

0

2

4

6

8

10

Ta
rg

et
 A

rm
 P

ul
l C

ou
nt

106

Fig. 2. Number of rounds the target arm was pulled

0 2 4 6 8 10
T 106

0

1

2

3

co
st

104

Fig. 3. Attack cost vs σ
∆K,iW

the attack cost increases with T , the total number of rounds,
in a logarithmic order.

0 2 4 6 8 10
T 106

0

500

1000

1500

co
st

Fig. 4. Attack cost vs
∑
j 6=iW

∆K,iW
∆j,iW

Figure 4 illustrates how
∑
j 6=iW

∆K,iW

∆j,iW
affects the attack

cost. In this experiment, we fix σ
∆K,iW

= 1 and set ∆K,iW

as 0.2, 0.6 and 0.9 respectively. The mean rewards of all
arms are the same as above. The figure illustrates that, as∑
j 6=iW

∆K,iW

∆j,iW
increases, the attack cost also increases. This

is consistent with our analysis in Corollary 1.

B. MOUCB bandit algorithm

We now illustrate the effectiveness of MOUCB bandit
algorithm.

In this experiment, we use the similar setting as in the
simulation of the LCB attack scheme. The mean rewards of all
arms are set to be 1.0, 0.8, 0.9, 0.5, 0.2, 0.3, 0.1, 0.4, 0.7, and
0.6 respectively. The total attack cost |C| is limited by 2000.
A given valid upper bound for total attack cost is A = 3000.
The results are averaged over 20 trials.

0 2 4 6 8 10
T 106

0

2

4

6

8

10

O
pt

im
al

 A
rm

 P
ul

l C
ou

nt

106

Fig. 5. Comparison of number of rounds the optimal arm was pulled

In Figure 5, we simulate MOUCB algorithm with two
different attacks, and compare the numbers of rounds when
the optimal arm is pulled under these attacks. The first attack
is the LCB attack discussed in Section III. The second attack
is the oracle attack, in which the attacker knows the true
mean reward of arms and implements the oracle attacks that
change any non-target arm to a worst arm (see the discussion
in Section II). For comparison purposes, we also add the curve
for MOUCB under no attack, and the curve for UCB under
no attack. The results show that, even under the oracle attack,
the proposed MOUCB bandit algorithm achieves almost the
same performance as the UCB without attack.

0 2 4 6 8 10
T 106

0

2

4

6

8

10

O
pt

im
al

 A
rm

 P
ul

l C
ou

nt

106

Fig. 6. Number of rounds the optimal arm was pulled using UCB algorithm

8

To further compare the performance of UCB and MOUCB,
in Figure 6, we illustrate the performance of UCB algorithm
for the three scenarios discussed above: under LCB attack,
under oracle attack and under no attack. The results show that
both LCB and oracle attacks can successfully manipulates the
UCB algorithm into pulling a non-optimal arm very frequently,
as the curves for the LCB attack and oracle attack are far away
from the curve for no attack. This is in sharp contrast with the
situation for MOUCB algorithm shown in Figure 5, where the
all curves are almost identical.

0 2 4 6 8 10
T 106

0

2

4

6

P
se

ud
o-

R
eg

re
t

10-3

Fig. 7. Pseudo-regret of MOUCB algorithm

0 2 4 6 8 10
T 106

-0.1

0

0.1

0.2

0.3

0.4

P
se

ud
o-

R
eg

re
t

Fig. 8. Pseudo-regret of UCB algorithm

Figure 7 and Figure 8 illustrate the pseudo-regret of
MOUCB bandit algorithm and UCB bandit algorithm respec-
tively. In Figure 7, as predicted in our analysis, MOUCB
algorithm archives logarithmic pseudo-regrets under both LCB
attacks and the oracle attacks. Furthermore, the curves under
both attacks are very close to that of the case without attacks.
However, as shown in Figure 8, the pseudo-regret of UCB
grows linearly under both attacks, while grows logarithmically
under no attack. The figures again show that UCB is vulnerable
to action-manipulation attacks while the proposed MOUCB is
robust to the attacks (even for oracle attacks).

VI. CONCLUSION

In this paper, we have introduced a new class of attacks
on stochastic bandits: action-manipulation attacks. We have
analyzed the attack against the UCB algorithm and proved that
the proposed LCB attack scheme can force the user to almost
always pull a non-worst arm with only logarithm effort. To
defend against this type of attacks, we have further designed
a new bandit algorithm MOUCB that is robust to action-
manipulation attacks. We have analyzed the regret of MOUCB
under any attack with bounded cost, and have showed that
the proposed algorithm is robust to the action-manipulation
attacks.

In terms of future work, it is of interest to investigate
robustness of bandit algorithms that are designed under the
Bayesian setup. The additional randomness brought by the
Bayesian framework may render the algorithms more resistant
to attacks.

APPENDIX A
PROOF OF LEMMA 2

The proof is similar with the proof of Lemma 1 that was
proved in [22]. Let {Xj}∞j=1 be a sequence of i.i.d σ2-
sub-Gaussian random variables with mean µ. Let µ̂0(t) =

1
N(t)

∑N(t)
j=1 Xj . By Hoeffding’s inequality.

P(|µ̂0(t)− µ| ≥ η) ≤ 2 exp

(
−N(t)η2

2σ2

)
. (25)

In order to ensure that E2 holds for all arm i, all arm j and all
pull counts N = Ni,j(t), we set δi,j,N := 6δ

π2K2N2 . We have

P

(
∃i, ∃j, ∃N : |µ̂i,j(t)− µj | ≥

√
2σ2

N
log

π2K2N2

3δ

)

≤
K∑
i=1

K∑
j=1

∞∑
N=1

δi,j,N = δ.

(26)

APPENDIX B
PROOF OF LEMMA 3

According to event E2, we have

∣∣∣∣∣∣µ̂i(t)− 1

Ni(t)

∑
s∈τi(t)

µI0s

∣∣∣∣∣∣
=

∣∣∣∣∣∣
K∑
j=1

Ni,j(t)

Ni(t)
(µ̂i,j(t)− µj)

∣∣∣∣∣∣
≤

K∑
j=1

Ni,j(t)

Ni(t)
|µ̂i,j(t)− µj |

<
1

Ni(t)

K∑
j=1

√
2σ2Ni,j(t) log

π2K2(Ni,j(t))2

3δ
.

(27)

9

Define a function f(N) =

√
2σ2N log

π2K2N2

3δ
:

(0,+∞)→ R, and we have

f ′′(N) =
∂2

∂N2

√
2σ2N log

π2K2N2

3δ

=−

(
2σ2 log π2K2N2

3δ

)2

+ 16σ4

4
(
2σ2N log π2K2N2

3δ

) 3
2

<0,

(28)

when N ≥ 1.
Hence f is strictly concave when N ≥ 1, and according to

the property of the concave function,

K∑
j=1

f(Ni,j(t)) < Kf

 1

K

K∑
j=1

Ni,j(t)

 = Kf

(
Ni(t)

K

)
.

(29)

Thus, ∣∣∣∣∣∣µ̂i(t)− 1

Ni(t)

∑
s∈τi(t)

µI0s

∣∣∣∣∣∣
<

1

Ni(t)
K

√√√√
2σ2

Ni(t)

K
log

π2K2
(
Ni(t)
K

)2

3δ

=

√
2σ2K

Ni(t)
log

π2(Ni(t))2

3δ
.

(30)

APPENDIX C
PROOF OF LEMMA 4

The LCB attack scheme uses lower confidence bound to
exploit the worst arm, so we need to prove that the attacker’s
pull counts of all non-worst arms should be limited at round
t.

Consider the case that in round t + 1, the user chooses a
non-target arm It+1 = i 6= K and the attacker changes it to a
non-worst arm I0

t+1 = j 6= iW . On one hand, under event E1,
we have

µ̂0
iW (t)− µiW < CB(N0

iW (t), δ),

and µ̂0
j (t)− µj > −CB(N0

j (t), δ).
(31)

On the other hand, according to the attack scheme, it must
be the case that

µ̂0
iW (t)− CB(N0

iW (t), δ) > µ̂0
j (t)− CB(N0

j (t), δ), (32)

which is equivalent to

CB(N0
j (t), δ) > µ̂0

j (t)− (µ̂0
iW (t)− CB(N0

iW (t), δ)). (33)

Combining (33) with (31), we have

CB(N0
j (t), δ) > µj − CB(N0

j (t), δ)− µiW

and CB(N0
j (t), δ) >

∆j,iW

2
.

(34)

Using the fact that N0
j (t) ≤ t and Ni,j(t) ≤ N0

j (t), we have

∆j,iW

2
<CB(N0

j (t), δ)

=

√
2σ2

N0
j (t)

log
π2K(N0

j (t))2

3δ

≤

√
2σ2

N0
j (t)

log
π2Kt2

3δ

≤

√
2σ2

Ni,j(t)
log

π2Kt2

3δ
,

(35)

which is equivalent to

Ni,j(t) <
8σ2

∆2
j,iW

log
π2Kt2

3δ
. (36)

Hence, under event E2, we have

µ̂i(t) <
1

Ni(t)

∑
s∈τi(t)

µI0s +

√
2σ2K

Ni(t)
log

π2(Ni(t))2

3δ

=
1

Ni(t)

∑
j

∑
s∈τi,j(t)

µI0s +

√
2σ2K

Ni(t)
log

π2(Ni(t))2

3δ

=
1

Ni(t)

∑
j

Ni,j(t)µj +

√
2σ2K

Ni(t)
log

π2(Ni(t))2

3δ

=
∑
j

Ni,j(t)

Ni(t)
(∆j,iW + µiW) +

√
2σ2K

Ni(t)
log

π2(Ni(t))2

3δ

<µiW +

√
2σ2K

Ni(t)
log

π2(Ni(t))2

3δ

+
1

Ni(t)

∑
j 6=iW

8σ2

∆j,iW

log
π2Kt2

3δ
.

(37)

The lemma is proved.

APPENDIX D
PROOF OF THEOREM 1

By inferring from Lemma 1, we have that with probability
1− δ

K , ∀t > K : |µ̂0
K(t)− µK | < CB(N0

K(t), δ).
Because the LCB attack scheme does not attack the target

arm, we can also conclude that with probability 1− δ
K , ∀t >

K : |µ̂K(t)− µK | < CB(NK(t), δ).
The user relies on the UCB algorithm to choose arms. If at

round t, the user chooses an arm It = i 6= K, which is not
the target arm, we have

µ̂i(t− 1) + 3σ

√
log t

Ni(t− 1)
> µ̂K(t− 1) + 3σ

√
log t

NK(t− 1)
,

(38)

10

which is equivalent to

3σ

√
log t

Ni(t− 1)
> −µ̂i(t− 1) + µ̂K(t− 1) + 3σ

√
log t

NK(t− 1)
.

(39)

We need to connect the estimate of arms to the true means.
Under event E1, we have

µ̂K(t) > µK − CB(NK(t), δ). (40)

Under event E1 ∩ E2, according to Lemma 4, we have

µ̂i(t) ≤ µiW +

√
2σ2K

Ni(t)
log

π2(Ni(t))2

3δ

+
1

Ni(t)

∑
j 6=iW

8σ2

∆j,iW

log
π2Kt2

3δ
.

(41)

Combing the inequalities above,

3σ

√
log t

Ni(t− 1)
> −µiW −

√
2σ2K

Ni(t− 1)
log

π2(Ni(t− 1))2

3δ

− 1

Ni(t− 1)

∑
j 6=iW

8σ2

∆j,iW

log
π2K(t− 1)2

3δ
+

µK − CB(NK(t− 1), δ) + 3σ

√
log t

NK(t− 1)
.

(42)

The sum of the last two terms in the RHS of (42) is equal
or larger than zero. We show it by further bounding the last

term as follows: when t ≥
(
π2K
3δ

) 2
5

,

3σ

√
log t

NK(t− 1)
≥

√
4σ2

log t

NK(t− 1)
+ 5σ2

log(π
2K
3δ)

2
5

NK(t− 1)

≥

√
2σ2

log π2Kt2

3δ

NK(t− 1)

≥

√
2σ2

log π2K(NK(t−1))2

3δ

NK(t− 1)

= CB(NK(t− 1), δ).
(43)

Now the inequality only depends on Ni(t − 1) and some

constants:

3σ

√
log t

Ni(t− 1)
>∆K,iW −

√
2σ2K

Ni(t− 1)
log

π2(Ni(t− 1))2

3δ

− 1

Ni(t− 1)

∑
j 6=iW

8σ2

∆j,iW

log
π2K(t− 1)2

3δ

>∆K,iW −

√
2σ2K

Ni(t− 1)
log

π2t2

3δ

− 1

Ni(t− 1)

∑
j 6=iW

8σ2

∆j,iW

log
π2Kt2

3δ
.

(44)

The last inequality is based on the fact that Ni(t− 1) < t.
By solving the inequality above, we have:

Ni(t− 1) <
1

4∆2
K,iW

(
3σ
√

log t+

√
2σ2K log

π2t2

3δ

+

(3σ
√

log t+

√
2σ2K log

π2t2

3δ

)2

+4∆K,iW

∑
j 6=iW

8σ2

∆j,iW

log
π2Kt2

3δ

 1
2


2

.

(45)

Since event E1∩E2 occurs with probability at least 1−2δ, we
have that (45) holds with probability at least 1−2δ. Theorem 1
follows immediately from the definition of the attack cost and
(45).

APPENDIX E
PROOF OF THEOREM 2

Because the target arm is the worst arm, the mean rewards
of all arms are larger than or equal to that of the target arm.
Thus, for any attack scheme, we have

1

Ni(t)

∑
s∈τi(t)

µI0s ≥ µK . (46)

If the user pulls arm K at round t, according to UCB
algorithm, we have for the optimal arm iO 6= K,

µ̂iO (t− 1) + 3σ

√
log t

NiO (t− 1)
< µ̂K(t− 1) + 3σ

√
log t

NK(t− 1)
.

(47)

Under event E2, we have Lemma 3 and (30) holds for all
arm i, which implies

µ̂iO (t− 1) >
1

NiO (t− 1)

∑
s∈τiO (t−1)

µI0s−√
2σ2K

NiO (t− 1)
log

π2(NiO (t− 1))2

3δ
,

(48)

11

and

µ̂K(t− 1) <
1

NK(t− 1)

∑
s∈τK(t−1)

µI0s +

√
2σ2K

NK(t− 1)
log

π2(NK(t− 1))2

3δ
.

(49)

Noted that for δ > 1
2 , when δ is fixed, CB

(
N
K ,

δ
K

)
=√

2σ2N
K log π2N2

3δ : (0,+∞) → R is monotonically decreas-
ing in N ≥ 1.

We aim to prove that the total number of non-target arms
pull scales as T . We divide the problem into three different
cases.

Firstly, if Ni(t− 1) ≥ 1
16NK(t− 1), Theorem 2 holds.

Secondly, if NiO (t− 1) < 1
16NK(t− 1) and NiO (t− 1) <√

3δ
π t

9
64K hold for the optimal arm iO, we have

3σ

√
log t

NK(t− 1)
<

3

4
σ

√
log t

NiO (t− 1)
, (50)

and √
2σ2K

NK(t− 1)
log

π2(NK(t− 1))2

3δ

<

√
2σ2K

NiO (t− 1)
log

π2(NiO (t− 1))2

3δ

<
3

4
σ

√
log t

NiO (t− 1)
.

(51)

Combining the inequalities above, we find

1

NK(t− 1)

∑
s∈τK(t−1)

µI0s − µK >
3

4
σ

√
log t

NiO (t− 1)

>
3

4
σ

√
π log t√
3δt

9
64K

>
3

4
σ

√
π log t√

3δt
.

(52)

The RHS of (52) is monotonically decreasing in t ≥ 3, so
3
4σ
√

π log t√
3δt

> 3
4σ
√

π log T√
3δT

.
Since the attack cost is limited by O(log T),

1

NK(t− 1)

∑
s∈τK(t−1)

µI0s − µK =
O(log T)

NK(t− 1)
, (53)

so

NK(t− 1) = O
(√

T log T
)
, (54)

in which Theorem 2 holds.
Thirdly, if NiO (t − 1) < 1

16NK(t − 1) and NiO (t − 1) ≥√
3δ
π t

9
64K hold for the optimal arm iO, we have

3σ

√
log t

NK(t− 1)
< 3σ

√
log t

NiO (t− 1)
, (55)

and (47) is equivalent to

µ̂iO (t− 1) < µ̂K(t− 1). (56)

Setting the number of attacks on the optimal arm as CiO
and the number of attacks on the target arm as CK , we have

1

NiO (t− 1)

∑
s∈τiO (t−1)

µI0s ≥ µiO −
CiO

NiO (t− 1)
∆iO,K ,

(57)

and
1

NK(t− 1)

∑
s∈τK(t−1)

µI0s ≤ µK +
CK

NK(t− 1)
∆iO,K , (58)

Thus, the inequality (56) becomes

µiO −
CiO

NiO (t− 1)
∆iO,K − CB

(
NiO(t− 1)

K
,
δ

K

)
<µK +

CK
NK(t− 1)

∆iO,K + CB
(
NK(t− 1)

K
,
δ

K

)
.

(59)

Because NiO (t−1) < 1
16NK(t−1) < NK(t−1), we have

CB
(
NiO(t−1)

K , δK

)
> CB

(
NK(t−1)

K , δK

)
.

From (59), we have

CK
NK(t− 1)

∆iO,K

>∆iO,K −
CiO

NiO (t− 1)
∆iO,K − 2CB

(
NiO (t− 1)

K
,
δ

K

)
>∆iO,K −

CiO
NiO (t− 1)

∆iO,K

− 2

√
2σ2K

NiO (t− 1)
log

π2(NiO (t− 1))2

3δ
.

(60)

Here, based on NiO (t − 1) ≥
√

3δ
π t

9
64K and the fact t ≥

NK(t− 1),

CK
NK(t− 1)

∆iO,K

>∆iO,K −
CiO√
3δ
π t

9
64K

∆iO,K

− 2

√√√√ 2σ2K
√

3δ
π t

9
64K

log
π2(
√

3δ
π t

9
64K)2

3δ

>∆iO,K −
CiO√

3δ
π (NK(t− 1))

9
64K

∆iO,K

− 2

√√√√ 2σ2K
√

3δ
π (NK(t− 1))

9
64K

log
π2(
√

3δ
π t

9
64K)2

3δ
.

(61)

Since the attack cost is limited by O(log T),

NK(t− 1) = O((log T)
64K
9), (62)

and Theorem 2 holds.

12

In summary, all cases show that the user pulls the non-target
arm more than O(Tα) times, in which α ≤ 1. Since event E2
holds with probability at least 1 − δ, the conclusion in the
theorem holds with probability at least 1− δ.

APPENDIX F
PROOF OF PROPOSITION 1

The oracle attack needs to occasionally change the action
to the best arm when the user pulls the target arm. Similar to
Lemma 3, under event E2, for arm K and all t > K, we have

∣∣∣∣∣∣µ̂K(t)− 1

NK(t)

∑
s∈τK(t)

µI0s

∣∣∣∣∣∣ < CB
(
NK(t)

2
,
δ

K

)
, (63)

because when the user pulls the target arm, the rewards the
user observes are only drawn from two distributions.

Given the number of rounds that the attacker changes the
action to the best arm as CK , we have

1

NK(t)

∑
s∈τK(t)

µI0s ≤ µK +
CK
NK(t)

∆iO,K , (64)

in which the equality holds when NK(t) ≥ CK .
The user relies on the UCB algorithm to choose arms. We

denote the last round when the user chooses the target arm
before round T as t. At round t, the user chooses the target
arm It = K. For any non-target arm i, we have

µ̂i(t− 1) + 3σ

√
log t

Ni(t− 1)
≤ µ̂K(t− 1) + 3σ

√
log t

NK(t− 1)
.

(65)

We focus on the last term of the RHS of (65). When t ≥(
π2K2

12δ

)4

, we have

3σ

√
log t

NK(t)
≥

√
4σ2

NK(t)
log

π2K2t2

12δ
≥ CB

(
NK(t)

2
,
δ

K

)
.

(66)

Thus, the RHS of (65) can be further bounded as:

µ̂K(t− 1) + 3σ

√
log t

NK(t− 1)

≤µK +
CK

NK(t− 1)
∆iO,K + 6σ

√
log t

NK(t− 1)
.

(67)

Similar to (66), when t ≥ π2K2

3δ ,

5

2
σ

√
log t

Ni(t)
>

√
2σ2

Ni(t)
log

π2Kt2

3δ
≥ CB

(
Ni(t),

δ

K

)
.

(68)

The oracle attack changes every non-target arm to the worst
arm. Using Lemma 1, we have that with probability 1 −
δ(K−1)
K , ∀t > K and i 6= K : |µ̂i(t)− µK | < CB(Ni(t), δ).
Then, by combing (67) and (68), (65) is equivalent to:

µK +
1

2
σ

√
log t

Ni(t− 1)

<µK +
CK

NK(t− 1)
∆iO,K + 6σ

√
log t

NK(t− 1)
.

(69)

If the attacker does not attack the target arm, all arms are
changed to the worst arm. Thus, at round t, the expectation of
the target arm pull counts would be t

K . Here, we divide the
problem into two cases: NK(t−1) ≥ T

K and NK(t−1) < T
K .

If NK(t− 1) ≥ T
K , from (69), we have

1

2
σ

√
log t

Ni(t− 1)

<
KCK
T

∆iO,K + 6σ

√
K log t

T
,

(70)

which is equivalent to

Ni(t− 1) >
σ2T 2 log t

4
(
KCK∆iO,K + 6σ

√
KT log t

)2 . (71)

Since equation (71) is monotonically increasing in t ≥ 1
and the fact that t > T

K ,

Ni(t− 1) >
σ2T 2 log T

K

4
(
KCK∆iO,K + 6σ

√
KT log T

K

)2 . (72)

If NK(t−1) < T
K , the attack cost |C| > T (K−1)

K +CK and∑
i6=K Ni(t− 1) > T (K−1)

K .
Combining the two cases, the proof is completed.

APPENDIX G
PROOF OF LEMMA 5

Note that for δ ≤ 1
3 , β(N) =

√
2σ2K
N log π2N2

3δ is mono-
tonically decreasing in N , as

∂

∂N
β2(N) =

2σ2K

N2

(
2− log

π2N2

3δ

)
≤2σ2K

N2

(
2− log

π2

3δ

)
< 0.

(73)

We first prove the first inequality in Lemma 5. Consider the
optimal arm iO and the worst arm iW . Define Ci := |{t : t ≤
T, I0

t 6= It = i}|. In the action-manipulation setting, when
t > 2AK, MOUCB algorithm has

1

NiO (t)

∑
s∈τiO (t)

µI0s ≥
NiO (t)− CiO

NiO (t)
µiO +

CiO
NiO (t)

µiW

= µiO −∆iO,iW

CiO
NiO (t)

≥ µiO −∆iO,iW

CiO
2A

,

(74)

13

and
1

NiW (t)

∑
s∈τiW (t)

µI0s ≤
NiW (t)− CiW

NiW (t)
µiW +

CiW
NiW (t)

µiO

= µiW + ∆iO,iW

CiW
NiW (t)

≤ µiW + ∆iO,iW

CiW
2A

.

(75)

Combining (74) and (75), we have

1

NiO (t)

∑
s∈τiO (t)

µI0s −
1

NiW (t)

∑
s∈τiW (t)

µI0s

≥µiO − µiW −∆iO,iW

CiW
2A
−∆iO,iW

CiO
2A

≥µiO − µiW −∆iO,iW

A

2A

=
∆iO,iW

2
.

(76)

From (30), we could find
1

NiO (t)

∑
s∈τiO (t)

µI0s −
1

NiW (t)

∑
s∈τiW (t)

µI0s

≤µ̂iO (t) + β(NiO (t))− (µ̂iW (t)− β(NiW (t)))

≤max
i,j
{µ̂i(t) + β(Ni(t))− (µ̂j(t)− β (Nj(t)))} .

(77)

We now prove the second inequality in Lemma 5:

max
i,j
{µ̂i(t) + β(Ni(t))− (µ̂j(t)− β(Nj(t)))}

≤max
i,j

 1

Ni(t)

∑
s∈τi(t)

µI0s + 2β(Ni(t))

−

 1

Nj(t)

∑
s∈τj(t)

µI0s − 2β(Nj(t))


≤∆iO,iW + max

i,j
{2β(Ni(t)) + 2β(Nj(t))} .

(78)

Recall that for δ ≤ 1
3 , β(N) =

√
2σ2K
N log π2N2

3δ is
monotonically decreasing in N . Therefore,

max
i,j
{2β(Ni(t)) + 2β(Nj(t))} ≤ 4β(2A). (79)

APPENDIX H
PROOF OF THEOREM 3

MOUCB algorithm first pulls each arm 2A times. Then for
t > 2AK and under event E2, if at round t + 1, MOUCB
algorithm choose a non-optimal arm It+1 = a 6= iO, we have

µ̂a + β(Na(t))+

2A

Na(t)
max
i,j
{µ̂i − µ̂j + β(Ni(t)) + β(Nj(t))}

≥µ̂iO + β(NiO (t))+

2A

NiO (t)
max
i,j
{µ̂i − µ̂j + β(Ni(t)) + β(Nj(t))} ,

which implies

µ̂a +
A

Na(t)

(
2∆iO,iW + 8

√
σ2K

A
log

4π2A2

3δ

)
+ β(Na(t))

≥µ̂iO +
A

NiO (t)
∆iO,iW + β(NiO (t)),

according to Lemma 5.

From equation (30), we could find

µ̂a ≤
1

Na(t)

∑
s∈τa(t)

µI0s + β(Na(t))

≤ µa + ∆iO,a
Ca
Na(t)

+ β(Na(t))

≤ µa + ∆iO,a
A

Na(t)
+ β(Na(t)),

and

µ̂iO ≥
1

NiO (t)

∑
s∈τiO (t)

µI0s − β(NiO (t))

≥ µiO −∆iO,iW

CiO
NiO (t)

− β(NiO (t))

≥ µiO −∆iO,iW

A

NiO (t)
− β(NiO (t)).

By combining the inequalities above, we have

µiO ≤µa + ∆iO,a
A

Na(t)
+ 2β(Na(t))+

A

Na(t)

(
2∆iO,iW + 8

√
σ2K

A
log

4π2A2

3δ

)
,

which is equivalent to

∆io,a ≤∆iO,a
A

Na(t)
+ 2

√
2σ2K

Na(t)
log

π2(Na(t))2

3δ
+

A

Na(t)

(
2∆iO,iW + 8

√
σ2K

A
log

4π2A2

3δ

)

≤2

√
2σ2K

Na(t)
log

π2t2

3δ
+

A

Na(t)
(∆iO,a+

2∆iO,iW + 8

√
σ2K

A
log

4π2A2

3δ

)
.

Therefore,

Na(t) ≤ max

{
8σ2K

∆2
iO,a

log
π2t2

3δ
,

A

∆io,a
(∆iO,a

+2∆iO,iW + 8

√
σ2K

A
log

4π2A2

3δ

)}
.

(80)

As event E2 holds with probability at least 1 − δ, (45) holds
with probability at least 1 − δ. Then Theorem 3 follows
immediately from the definition of the pseudo-regret in (2)
and equation (80).

14

REFERENCES

[1] G. Liu and L. Lai, “Action-manipulation attacks on stochastic bandits,”
in Proc. of ICASSP, Barcelona, Spain, May 2020.

[2] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[3] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel,
“Adversarial attacks on neural network policies,” arXiv preprint
arXiv:1702.02284, 2017.

[4] Y. Lin, Z. Hong, Y. Liao, M. Shih, M. Liu, and M. Sun, “Tactics of
adversarial attack on deep reinforcement learning agents,” arXiv preprint
arXiv:1703.06748, 2017.

[5] S. Mei and X. Zhu, “Using machine teaching to identify optimal
training-set attacks on machine learners,” in Proc. of AAAI, Austin,
TX, Jan. 2015, pp. 2871–2877.

[6] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support
vector machines,” arXiv preprint arXiv:1206.6389, 2012.

[7] H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F. Roli, “Is
feature selection secure against training data poisoning?,” in Proc. of
ICML, Francis Bach and David Blei, Eds., Lille, France, July 2015,
vol. 37 of Proceedings of Machine Learning Research, pp. 1689–1698.

[8] B. Li, Y. Wang, A. Singh, and Y. Vorobeychik, “Data poisoning attacks
on factorization-based collaborative filtering,” in Advances in NeurIPS,
D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds.,
2016, pp. 1885–1893.

[9] S. Alfeld, X. Zhu, and P. Barford, “Data poisoning attacks against
autoregressive models,” in Proc. of AAAI, Phoenix, AZ, Feb. 2016, pp.
1452–1458.

[10] H. S. Chang, J. Hu, M. C. Fu, and S. I. Marcus, “Adaptive adversarial
multi-armed bandit approach to two-person zero-sum markov games,”
IEEE TAC, vol. 55, no. 2, pp. 463–468, Feb 2010.

[11] C. Tekin and M. van der Schaar, “Distributed online learning via
cooperative contextual bandits,” IEEE TSP, vol. 63, no. 14, pp. 3700–
3714, July 2015.

[12] N. M. Vural, H. Gokcesu, K. Gokcesu, and S. S. Kozat, “Minimax
optimal algorithms for adversarial bandit problem with multiple plays,”
IEEE TSP, vol. 67, no. 16, pp. 4383–4398, Aug 2019.

[13] K. Liu, Q. Zhao, and B. Krishnamachari, “Dynamic multichannel access
with imperfect channel state detection,” IEEE TSP, vol. 58, no. 5, pp.
2795–2808, May 2010.

[14] K. Liu and Q. Zhao, “Distributed learning in multi-armed bandit with
multiple players,” IEEE TSP, vol. 58, no. 11, pp. 5667–5681, Nov 2010.

[15] S. Shahrampour, M. Noshad, and V. Tarokh, “On sequential elimination
algorithms for best-arm identification in multi-armed bandits,” IEEE
TSP, vol. 65, no. 16, pp. 4281–4292, Aug 2017.

[16] C. Tekin and M. Liu, “Online learning of rested and restless bandits,”
IEEE TIT, vol. 58, no. 8, pp. 5588–5611, Aug 2012.

[17] O. Chapelle, E. Manavoglu, and R. Rosales, “Simple and scalable
response prediction for display advertising,” ACM TIST, vol. 5, no.
4, pp. 61:1–61:34, Dec. 2014.

[18] L. Li, W. Chu, J. Langford, and R. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in Proc. of
WWW, New York, NY, Apr. 2010, pp. 661–670.

[19] L. Lai, H. El Gamal, H. Jiang, and H. Vincent Poor, “Cognitive medium
access: Exploration, exploitation and competition,” IEEE TMC, vol. 10,
no. 2, pp. 239–253, Feb. 2011.

[20] M. Bande and V. V. Veeravalli, “Adversarial multi-user bandits for
uncoordinated spectrum access,” in Proc. IEEE ICASSP, Brighton,
United Kingdom, May 2019, pp. 4514–4518.

[21] B. Kveton, C. Szepesvari, Z. Wen, and A. Ashkan, “Cascading bandits:
Learning to rank in the cascade model,” in Proc. of ICML, Francis Bach
and David Blei, Eds., Lille, France, July 2015, vol. 37 of Proceedings
of Machine Learning Research, pp. 767–776.

[22] K. Jun, L. Li, Y. Ma, and X. Zhu, “Adversarial attacks on stochastic
bandits,” in Proc. of NeurIPS, Montréal, Canada, Dec. 2018, pp. 3644–
3653.

[23] F. Liu and N. Shroff, “Data poisoning attacks on stochastic bandits,” in
Proc. of ICML, Kamalika Chaudhuri and Ruslan Salakhutdinov, Eds.,
Long Beach, CA, June 2019, vol. 97, pp. 4042–4050.

[24] T. Lykouris, V. Mirrokni, and R. Paes Leme, “Stochastic bandits robust
to adversarial corruptions,” in Proc. of ACM STOC, Los Angeles, CA,
June 2018, pp. 114–122.

[25] Z. Guan, K. Ji, D. Bucci, T. Hu, J. Palombo, M. Liston, and Y. Liang,
“Robust stochastic bandit algorithmsunder probabilistic unbounded ad-
versarial attack,” in Proc. AAAI, New York City, NY, Feb. 2020.

[26] Z. Feng, D. Parkes, and H. Xu, “The intrinsic robustness of stochastic
bandits to strategic manipulation,” arXiv preprint arXiv:1906.01528,
2019.

[27] Y. Ma, K. Jun, L. Li, and X. Zhu, “Data poisoning attacks in contextual
bandits,” arXiv preprint arXiv:1808.05760, 2018.

[28] S. Bubeck and N. Cesa-Bianchi, “Regret analysis of stochastic and
nonstochastic multi-armed bandit problems,” FTML, vol. 5, no. 1, pp.
1–122, 2012.

[29] C. Shen, “Universal best arm identification,” IEEE TSP, vol. 67, no.
17, pp. 4464–4478, Sep. 2019.

15

