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Abstract—In this paper, we investigate the adversarial robust-
ness of hypothesis testing rules. In the considered model, after a
sample is generated, it will be modified by an adversary before
being observed by the decision maker. The decision maker needs
to decide the underlying hypothesis that generates the sample
from the adversarially-modified data. We formulate this problem
as a minimax hypothesis testing problem, in which the goal of
the adversary is to design attack strategy to maximize the error
probability while the decision maker aims to design decision
rules so as to minimize the error probability. We consider both
hypothesis-aware case, in which the attacker knows the true
underlying hypothesis, and hypothesis-unaware case, in which
the attacker does not know the true underlying hypothesis. We
solve this minimax problem and characterize the corresponding
optimal strategies for both cases.

Index Terms—minimax problem, hypothesis testing, adversar-
ial robustness

I. INTRODUCTION

Motivated by growing applications of various signal pro-
cessing and statistical inference algorithms in safety and
security-related applications [2] [3], there is an increasing
interest in the study of adversary robustness of statistical
inference algorithms [4]–[11]. The purpose of these studies
is to understand the robustness of these algorithms in the
adversarial setup, so as to properly design systems that are safe
and secure even under adversarial attacks. The investigation
of adversary robustness of statistical algorithms is related to
but different from the large volume of work on classic robust
statistics [12]–[17]. The classic robust statistical inference
mainly focuses on distributional robustness, in which the
true distributions of data lie in the neighborhood of nominal
distributions [15], [18], [19]. On the other hand, the attack in
the adversary robustness model is more powerful. In particular,
in the adversarial robustness models, an adversary is typically
assumed to have access to the data sample and can make
data-dependent changes. The decision maker then has to make
statistical inference based on the adversarially-modified data
[20]. For example, in the adversarial example phenomena
investigated in the context of deep neural networks [5]–[9],
[21]–[27], the attacker observes the original image and then
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carefully designs perturbations on the image. Even though
these perturbations are hardly perceptible to human eyes, the
decision of a deep neural network can be easily manipulated.

The goal of this paper is to understand adversarial robust-
ness of hypothesis testing rules. In the considered model, after
data samples are generated by the underlying hypothesis, an
adversary can observe the samples and then modify them to
other values. The decision maker only observes the modified
data but still needs to determine which underlying hypothesis
is true. We formulate this as a minimax hypothesis testing
problem, in which the adversary aims at designing attack
strategies to modify the data so as to maximize the error
probability while the goal of the decision maker is to design
decision rules to minimize the error probability.

We first focus on the hypothesis-aware scenario, in which
the adversary knows which hypothesis is used to generate the
data sample. The study of this powerful adversarial model can
provide performance bounds for other attack models. Under
this setting, we show that the formulated minimax problem
has a saddle-point solution, which reveals the structures of
the optimal attack and defense strategies. In particular, the
optimal defense strategy is to perform the Bayesian test on
the corresponding probability mass functions (PMFs) after the
attack. As a result, we can write the cost function in terms of
the attack strategy only, and characterizing the optimal attack
strategy is equivalent to solving a maximization problem that
is non-convex over the attack strategy. In this paper, we solve
this problem for a special case where the optimal Bayesian
decision regions corresponding to the PMFs before attack
consist of two consecutive regions. Under this assumption,
we first derive an upper-bound on the prediction error, which
only depends on the PMFs before attack. Afterwards, we
design a specific attack scheme and show that the designed
attack scheme achieves the upper-bound. This implies that the
specific attack scheme is optimal. However, we also note that
the attack strategy that achieves the maximum error probability
is not unique.

We then study a more practical and challenging hypothesis-
unaware scenario, where the attacker does not know the prior
information about the underlying hypothesis. Despite the ad-
ditional challenge, we show that the method developed for the
hypothesis-aware case can be properly modified and extended
to this scenario. In particular, following a similar saddle-point
analysis, we reveal the structure of the optimal attack and
defense strategy and convert the problem into a complicated
non-convex optimization problem over the attack strategy. We
then derive an upper-bound on the error probability and design



a specific attack strategy to achieve the upper-bound.
Our work is related to several recent interesting papers [28]–

[30]. Similar to our setup, in these papers, the decision maker
has to make a decision using samples that might have been
compromised by an attacker. Same as our paper, these papers
also consider the setup with discrete random variables. On the
other hand, in these papers, the decision maker is assumed to
rely only on first order statistics, and uses error exponents as
the performance metrics. Using tools from information theory
and game theory, these papers characterize the asymptotic
equilibrium of the games between the attacker and detector,
as the number of samples increases. Different from these
papers, we focus on the non-asymptotic case. In particular,
we use the exact error probability as the performance metric
and characterize the corresponding optimal attack and defense
strategies.

The derived algorithms could potentially be useful for the
quickest detection setup [31]–[45]. In particular, consider a
system where an attacker appears at an unknown time, and
we are interested in detecting the presence of attacks with
minimum delay (under certain delay metric). The presence of
the attacker is reflected on the change of the distribution of
the data, and hence the quickest detection framework can be
employed. Most of the existing works on quickest detection
assume that post-change distribution is known. In the setup
with an attacker, this assumption may not be practical. The
algorithms developed in this paper could be used to identify
which distribution is most beneficial to the attacker and hence
could be the most likely post-change distribution used by the
attacker.

Compared with the conference paper [1], this journal paper
provides several new contributions. Firstly, [1] focuses only
on the hypothesis-aware scenario. In this journal paper, we
also investigate the hypothesis-unaware scenario. Since the
information about the underlying hypothesis is hidden from
the adversary in this case, the design of the optimal adversary
is more difficult. Secondly, we improve the design of optimal
attack strategy so that it is more general and can be applied
to both hypothesis-aware and hypothesis-unaware adversaries.
Finally, we add more comprehensive numerical examples to
illustrate the analytical results obtained in this paper.

The remainder of this paper is organized as follows. In
Section II, we present our problem formulation. In Section
III, we depict the optimal solution for the hypothesis-aware
setting. In Section IV, we focus on the hypothesis-unaware
case. In Section V, we provide numerical examples to illustrate
the analytical results. In Section VI, we offer concluding
remarks. The main notations used in the paper are listed in
Table I.

II. PROBLEM FORMULATION

Suppose there is a discrete random variable X defined on a
finite set X = {x1, x1, ..., xn}. Consider the binary hypothesis
testing problem:

H0 : X ∼ p0,

H1 : X ∼ p1,

Notation Description
p0,p1 Original PMF under H0 and H1

A,B Attack matrix under H0 and H1

q0, q1 PMF after attack under H0 and H1

t Decision rule
It,i,Kt,i Moved mass between regions under Ht
Fj(A,B) Upper-bound for prediction error at step j

TABLE I
MAIN NOTATIONS

in which p0 is a 1 × n PMF vector with p0,j = Pr(X =
xj |H0). p1 is defined in a similar manner. Here, p0 and p1 are
assumed to be known to both the adversary and the decision
maker.

In this paper, we focus on adversary hypothesis testing
problem. In the considered model, after a sample is generated,
an adversary can modify it to another value. The decision
maker then observes the corrupted data. We consider two
different adversary models with different capabilities.

A. Hypothesis-aware adversary

We first consider a powerful hypothesis-aware adversary,
who knows the true underlying hypothesis with which the
sample is generated. The study of this worst-case scenario
will provide performance limits of other adversary models. In
the considered model, the attacker can conduct randomized
attacks. In particular, after observing sample X = xi, the
adversary can change it to an attacked sample X ′ = xj
with a certain probability, where X ′ is also a random variable
defined on X . Since the adversary knows the true underlying
hypothesis, different attack rules can be applied depending on
whether the true hypothesis is H0 or H1. We denote the attack
strategy of the attacker as (A,B), in which the components of
A are Ai,j = Pr(X ′ = xj |X = xi,H0) and the components
of B are Bi,j = Pr(X ′ = xj |X = xi,H1).

Motivated by adversarial example phenomena studied in
deep neural networks, we assume that the change introduced
by the adversary has limited amplitude. In particular, as
mentioned in Section I, an adversarial example is data that
has been modified by the attacker to fool the classifier.
However, to avoid human eye detection, the amplitude of
these modifications should be limited so that they are not
perceptible to human eyes [5]–[9], [21]–[27]. Formally, we
assume Ai,j = Bi,j = 0 when |i− j| > δ, in which δ denotes
the largest change allowed. We will use A,B to denote the
whole sets of all amplitude-constrained attackers underH0,H1

correspondingly. For any given attack rule (A,B) ∈ A × B,
the PMF of X ′ can be written as q0 = p0A under H0 and
q1 = p1B under H1, with qk,j = Pr(X ′ = xj |Hk), with
k = 0, 1.

Let T = [0, 1]n be the set of all decision rules. Denote
t = [t1, · · · , tn] ∈ T as a randomized decision rule such that
if X = xi, the detector selects H1 with probability ti, where
0 ≤ ti ≤ 1. For decision rule t, the probability of false alarm
and miss detection are

PF (p0,A, t) = p0AtT , PM (p1,B, t) = p1B(1− t)T . (1)



Assuming that the prior probability of two hypotheses are
equal, i.e., Pr(H0) = Pr(H1), the error probability PE can be
written as

PE(p0,p1,A,B, t) =
1

2
[PF (p0,A, t) +PM (p1,B, t)]. (2)

In the following, to simplify the notation, we will drop
p0,p1 from the expression of PE and will simply write it
as PE(A,B, t).

The goal of the attacker is to choose the attack rule (A,B)
to maximize the error probability (2), while the goal of the
defender is to choose the decision rule t to minimize the
error probability (2). In this paper, we seek to characterize
the optimal (A∗,B∗) and t∗ by solving the minimax problem

min
t∈T

max
(A,B)∈A×B

PE(A,B, t). (3)

B. Hypothesis-unaware adversary

We also consider a more practical scenario, in which the
attacker does not know the true underlying hypothesis when it
sees a sample. In this hypothesis-unaware adversary case, there
is only one attack matrix A, with Ai,j = Pr(X ′ = xj |X = xi)
being the probability that the attacker will change xi to xj .

Correspondingly, for a decision rule t, the probability of
false alarm and miss detection are

PF (p0,A, t) = p0AtT , PM (p1,A, t) = p1A(1− t)T . (4)

And the error probability PE can be written as

PE(p0,p1,A, t) =
1

2
[PF (p0,A, t) + PM (p1,A, t)]. (5)

Similarly, we will drop p0,p1 from the expression of PE and
will simply write it as PE(A, t).

Moreover, we seek to characterize the optimal A∗ and t∗

by solving the minimax problem

min
t∈T

max
A∈A

PE(A, t). (6)

In the problem formulations (3) and (6) discussed above,
the distributions under H0 and H1, i.e. p0 and p1, are
known to the attacker and decision maker. These problem
formulations can be generalized to the scenario where there
are uncertainties about the distributions. Suppose the actual
distribution pt, t = 0, 1 under Ht belongs to the neighborhood
of a nominal distribution. The neighborhood, denoted by Pt
can be defined by KL-divergence [19], α-divergence [15], etc.
The optimal (A∗,B∗) and t∗ for the hypothesis-aware case
can be found by solving the complex optimization problem

min
t∈T

max
(A,B)∈A×B

min
(p0,p1)∈P0×P1

PE(A,B, t,p0,p1).

Similarly, the optimal A∗ and t∗ for the hypothesis-unaware
case can be found by solving the optimization problem

min
t∈T

max
A∈A

min
(p0,p1)∈P0×P1

PE(A, t,p0,p1).

These problem formulations are much more complex than (3)
and (6), and are left as future work.

III. OPTIMAL HYPOTHESIS-AWARE ADVERSARY

In this section, we focus on the hypothesis-aware case and
characterize the optimal solution to the complicated minimax
optimization problem (3). To achieve this, we will first conduct
a saddle-point analysis to reveal the structure of the optimal
solution. Based on this, we will derive an upper-bound on the
error probability. We will then develop an attack strategy to
achieve this bound.

A. Saddle-point Analysis

In this subsection, we characterize the structure of the
optimal decision rules by analyzing the saddle-point of the
minimax problem (3).

Note that, given t, PE(A,B, t) is continuous and linear,
and therefore is both convex and concave in (A,B). Similarly,
given (A,B), PE(A,B, t) is continuous and linear, and
therefore is both convex and concave in t. Furthermore, sets
A × B and T are both compact and convex. Therefore,
using Von Neumann minimax theorem [46] (which allows
the swapping of the min and max operators under certain
conditions), we have

min
t∈T

max
(A,B)∈A×B

PE(A,B, t)

= max
(A,B)∈A×B

min
t∈T

PE(A,B, t).
(7)

This implies that the solution (A∗,B∗, t∗) to this minimax
problem satisfies the saddle-point property

PE(A∗,B∗, t) ≥ PE(A∗,B∗, t∗) ≥ PE(A,B, t∗). (8)

From these two inequalities, we can characterize the struc-
ture of the optimal attack and decision strategies.

The first inequality in (8) indicates that the best decision rule
must be the Bayesian test with respect to the best adversary
(A∗,B∗). It is well known that, for a given arbitrary adversary
attack rule (A,B), the optimal detection rule, denoted as
t∗(A,B), is simply a threshold rule

t∗i (A,B) =


0 q0,i > q1,i,

arbitrary q0,i = q1,i,

1 q0,i < q1,i,

(9)

where q0 = p0A, q1 = p1B. For the optimal adversary
(A∗,B∗), the optimal decision rule is t∗ = t∗(A∗,B∗).

With the optimal form of t∗ in terms of (A,B) character-
ized in (9), we can then use the second inequality in (8) to
characterize the optimal (A∗,B∗) by solving

max
A,B

1

2
[p0A(t∗(A,B))T + p1B(1− (t∗(A,B))T )],(10)

s.t. Ai,j ≥ 0, Bi,j ≥ 0, i, j = 1, .., n, (11)
n∑
j=1

Ai,j = 1,
n∑
j=1

Bi,j = 1, i = 1, .., n, (12)

1|i−j|>δAi,j = 1|i−j|>δBi,j = 0, i, j = 1, .., n, (13)

in which 1{·} is the indicator function. Here, constraints (11)
and (12) guarantee that each row of A and B is a conditional



PMF, while constraint (13) makes sure that the changes
introduced by the attacker has a limited amplitude.

Once we solve (10) and obtain (A∗,B∗), the optimal
t∗(A∗,B∗) can be obtained by using (9). Due to the decision
rule in (9), the objective function in (10) is a complicated
function of (A,B). In the following, we will characterize
the optimal solution to this challenging optimization problem
under the following assumptions on p0 and p1. Let R0 =
{i|p0,i ≥ p1,i} and R1 = {i|p0,i < p1,i}, i.e., R0 is the set
of index where p0,i is larger while R1 is the set of index
where p1,i is larger. We will assume that R0 (and hence R1)
is a consecutive region in [1, n]. Without loss of generality,
we write R0 = {i|1 ≤ i ≤ m} and R1 = {i|m+ 1 ≤ i ≤ n}.

We now compare this assumption with the assumptions used
in the study of classic robust hypothesis testing [19], in which
the nominal PMF is assumed to satisfy certain monotonicity
and symmetry properties. Specifically, in [19], monotonicity
means that p1,i

p0,i
is a monotonically increasing function of i

and symmetry means p1,n−i+1 = p0,i, 1 ≤ i ≤ n. It is
easy to check that the monotonicity assumption implies the
assumption made in this paper. Moreover, our assumption does
not require the symmetry condition. Hence, our assumption is
significantly weaker than the assumptions in [19].

B. Upper-bound for PE

In this section, we develop an upper-bound on the objective
function (10) that holds for any attack strategy.

We first present a lemma that simplifies PE(A,B, t∗) into
two equivalent forms, both of which will be used in the sequel.

Lemma 1: PE(A,B, t∗) can be written as

PE(A,B, t∗) =
1

2
− 1

4

n∑
i=1

|q0,i − q1,i| (14)

=
1

2

n∑
i=1

min{q0,i, q1,i}. (15)

Proof: Please see Appendix A.
From (14), we can see that the most powerful attacker is the
one that minimizes the `1 distance between q0 and q1, which
inspires us to optimize the error probability by components.

To proceed further, we denote the mass moved into [1, i]
as It,i for t = 0 (i.e., under hypothesis H0) and t = 1 (i.e.,
under hypothesis H1) respectively. Similarly, define the mass
moved out from [1, i] as Kt,i. For example, for region [1,m],
we have

I1,m =
m+δ∑
j=m+1

p1,j

 m∑
i=j−δ

Bj,i

 ,

K0,m =
m∑

j=m+1−δ

p0,j

(
j+δ∑

i=m+1

Aj,i

)
,

as shown in Fig. 1.

R0 R1

K0,m

I1,m

Fig. 1. Mass moved between two regions

Define

F0 = F0(A,B) =
n∑
i=1

q0,i,

Fj(A,B) =

j∑
i=1

min{q0,i, q1,i}+
n∑

i=j+1

q0,i.

Then we can see that

Fj+1(A,B) = Fj(A,B) + min{q1,j+1 − q0,j+1, 0},

and thus

2PE(A,B) = Fn(A,B) ≤ ... ≤ Fm(A,B) ≤ ... ≤ F0.

We are now ready to derive an upper-bound on the error
probability PE that holds for any attack strategy (A,B).

Theorem 1: For ∀(A,B) ∈ A× B,

Fm(A,B)≤min

{
1, min

1+δ≤j≤m
{Gj(p0,p1)}

}
,(16)

2PE = Fn(A,B)≤min

{
1, min

1+δ≤j≤n
{Gj(p0,p1)}

}
,(17)

in which

Gj(p0,p1) = 1−
j−δ∑
i=1

p0,i +

min{n,j+δ}∑
i=1

p1,i. (18)

Furthermore, for j∗ = arg min1+δ≤j≤n {Gj(p0,p1)} , if
Gj∗(p0,p1) ≤ 1, the equality in (17) holds when there exists
(A,B) ∈ A× B such that:

(i) q1,i ≤ q0,i, 1 ≤ i ≤ j∗;
(ii)

K0,j∗ − I0,j∗ =

j∗∑
i=j∗−δ+1

p0,i, (19)

I1,j∗ −K1,j∗ =

min{n,j∗+δ}∑
i=j∗+1

p1,i; (20)

(iii) Fk(A,B) = Fj∗(A,B), j∗ < k ≤ n.
If Gj∗(p0,p1) > 1, the equality is achieved when

Fi(A,B) = 1, 1 ≤ i ≤ n. (21)

Proof: Please see Appendix B.
We note that the bound in Theorem 1 depends only on
(p0,p1), the original PMFs before attack.



C. Optimal Adversary Design

In this section, we design the attack matrix (A,B) to
achieve the upper-bound in (17). As the designed attack matrix
achieves the upper-bound, it is an optimal solution to (10).

The construction process is motivated by the form in (14),
which shows that the component-wise absolute difference
(`1 distance) between q0 and q1 needs to be minimized.
To minimize the `1 distance, we find the optimal (A,B)
column by column. In particular, at the first step, we de-
termine A:,1,B:,1 (based on some criteria to be detailed
in the sequel). Once A:,1,B:,1 are determined, qt,1 and F1

are also determined. We denote these values as q̂t,1 and
F̂1 respectively. We also have the constrained attack set
A1 × B1 = {(A,B)|q̂0,1 and q̂1,1 are obtained}. After step
j − 1, the first j − 1 columns have been determined, and the
constrained set is Aj−1 × Bj−1. Then at step j, among all
valid attack matrices in Aj−1×Bj−1, we determine A:,j , B:,j

(based on a process to be detailed in the sequel) and obtain
q̂t,j , F̂j . The constrained set is further refined to be Aj×Bj =
{(A,B)|q̂0,j and q̂1,j are obtained} ⊂ Aj−1 × Bj−1. The
process ends at step n.

In the following, we describe our design of (A,B) to
achieve the upper-bound. We will first focus on 1 ≤ j ≤ m,
i.e., j ∈ R0, to obtain the equality in (16). Then focus on
m+ 1 ≤ j ≤ n, i.e., j ∈ R1, to achieve the equality in (17).
Column design for j ∈ R0:

In R0, we design the columns of (A,B) to satisfy

1) q̂1,1 =
∑1+δ
i=1 p1,i;

2) q̂1,j = p1,j+δ, 2 ≤ j ≤ m;
3) q̂0,j = q̂1,j , 1 ≤ j ≤ δ;
4) q̂0,j = max{p0,j−δAj−δ,j , q̂1,j}, δ + 1 ≤ j ≤ m,

which will then be shown to achieve the optimal value of
Fm(A,B) in (16). These conditions are also listed in Table
II.

j = 1 2 ≤ j ≤ δ δ + 1 ≤ j ≤ m
H0 : q̂0,j

∑1+δ
i=1 p1,i p1,j+δ max{p0,j−δAj−δ,j , p1,j+δ}

H1 : q̂1,j
∑1+δ
i=1 p1,i p1,j+δ p1,j+δ

TABLE II
PMF DESIGN IN R0

First, we specify how to design each element of (Â, B̂) so
that q̂0,js and q̂1,js are set to be these values.

For the first step, by 1), 3), we have q̂0,1 = q̂1,1 =∑1+δ
i=1 p1,i, and thus F̂1 = F0 = 1. Moreover, we can achieve

this by setting the first column of (Â, B̂) as

Â1,1 = min

{
1,
q̂0,1
p0,1

}
,

Âi,1 = min

1,
max

{
0, q̂0,1 −

∑i−1
k=1 p0,k

}
p0,i

 , 2 ≤ i ≤ n,

B̂i,1 = 1, 1 ≤ i ≤ 1 + δ,Bi,1 = 0, 2 + δ ≤ i ≤ n.

We continue to next columns. For columns 2 ≤ j ≤ δ, from
2) and 3), we have q̂0,j = q̂1,j = p1,j+δ , then F̂j = F̂j−1. We
can achieve this by setting the j-th columns of (Â, B̂) as

∀1 ≤ i ≤ n, Âi,j = min

{
1−

j−1∑
k=1

Âi,k, (22)

max
{
q̂0,j −

∑i−1
k=1 p0,k

(
1−

∑j−1
t=1 Âk,t

)
, 0
}

p0,i

 ,

B̂j+δ,j = 1, B̂i,j = 0, ∀i 6= j + δ. (23)

For columns δ+1 ≤ j ≤ m, Â:,j and B̂:,j are also designed
by (22) and (23).

In Appendix C, we show that, with this design of Â:,j and
B̂:,j , the requirements in 1), 2), 3), 4) are satisfied.

Remark 1: The column design for A in (22) indicates that

∀1 ≤ i ≤ n, Âi,j = min
{
A

(1)
i,j ,max

{
A

(2)
i,j , A

(3)
i,j

}}
,

in which

A
(1)
i,j = 1−

j−1∑
k=1

Âi,k = max
A∈Aj−1

Ai,j ,

A
(2)
i,j =

q̂0,j −
∑i−1
k=1 p0,k

(
1−

∑j−1
t=1 Âk,t

)
p0,i

,

A
(3)
i,j = 0 = min

A∈Aj−1

Ai,j .

For a given component j, looking at i which starts from 1
and goes to n, we notice that the value of Âi,j will goes from
A

(1)
i,j , to A(2)

i,j and then A(3)
i,j .

Second, we show that F̂m achieves the equality in (16) by
checking the values of F̂j one by one from j = δ+1 to j = m.
We have three cases that will occur in order as j increases.
Case 1: q̂0,j = q̂1,j , then F̂j = F̂j−1.
Case 2: j is the first component such that q̂0,j > q̂1,j , or
equivalently, j is the smallest component satisfying

j∑
i=1

q̂0,i >

j∑
i=1

q̂1,i =

j+δ∑
i=1

p1,i.

This means that we have F̂j−1 = F̂j−2 = ... = 1. As for q̂0,j ,
if q̂0,j 6= q̂1,j , then q̂0,j = p0,j−δÂj−δ,j > 0 and thus

j∑
i=1

q̂0,i
(a)
=

j−δ∑
i=1

p0,i >

j∑
i=1

q̂1,i =

j+δ∑
i=1

p1,i. (24)

To derive (a), as discussed above, we have Âj−δ,j > 0, which
indicates Âj−δ,j−1 6= A

(1)
j−δ,j−1. Then K0,j =

∑j
i=j−δ+1 p0,i

and (a) is true. Therefore,

F̂j = 1 + q̂1,j − q̂0,j = 1 +

j∑
i=1

(q̂1,j − q̂0,j)

= 1 +

j+δ∑
i=1

p1,i −
j−δ∑
i=1

p0,i = Gj(p0,p1). (25)



Case 3: Suppose k is the largest component with

F̂k = Gk(p0,p1) = 1 +
k+δ∑
i=1

p1,i −
k−δ∑
i=1

p0,i. (26)

Similar to Case 2, we have

j∑
i=k+1

q̂0,i =

j−δ∑
i=k−δ+1

p0,i >

j∑
i=k+1

q̂1,i =

j+δ∑
i=k+δ+1

p1,i. (27)

Therefore,

F̂i = F̂k, k + 1 ≤ i ≤ j − 1,

F̂j = F̂k +

j∑
i=k+1

(q̂1,i − q̂0,i)

(b)
= F̂k +

j+δ∑
i=k+δ+1

p1,i −
j−δ∑

i=k−δ+1

p0,i

(c)
= 1 +

j+δ∑
i=1

p1,i −
j−δ∑
i=1

p0,i = Gj(p0,p1), (28)

where (b) is from (27) and (c) is true due to (26).
Taking all three cases into consideration, we have

F̂j = min
{
F̂j−1, Gj(p0,p1)

}
, (29)

and thus F̂m = min {1,min1≤j≤mGj(p0,p1)} , which
achieves the equality in (16).
Column design for j ∈ R1:

In R1, we design the columns of (A,B) to satisfy

1) q̂0,j = max

{
min

A∈Aj−1

q0,j ,

min

{
max

B∈Bj−1

q1,j , max
A∈Aj−1

q0,j

}}
, (30)

2) q̂1,j = max

{
min

B∈Bj−1

q1,j ,

min

{
q̂0,j , max

B∈Bj−1

q1,j

}}
, (31)

where

min
A∈Aj−1

q0,j = p0,j−δAj−δ,j ,

max
A∈Aj−1

q0,j = K0,j−1 − I0,j−1 +

j+δ∑
i=j

p0,i,

max
B∈Bj−1

q1,j =

j+δ∑
i=j

p1,i − I1,j−1 +K1,j−1,

min
B∈Bj−1

q1,j = p1,j−δBj−δ,j .

First, we describe the construction of (Â, B̂). Note that, the
first m columns of (Â, B̂) have already been selected in R0.

For columns from m+ 1 to n, Â is constructed by (22) and
B̂ is constructed by

B̂i,j = min

{
1−

j−1∑
k=1

B̂i,k,
q̂1,j −

∑i−1
k=1 p1,kB̂k,j
p1,i

}
. (32)

In Appendix C, we show that such (Â, B̂) design satisfies the
conditions on q̂0, q̂1 in 1), 2).

Second, we verify that F̂n achieves the equality in (17) if
the conditions on q̂0, q̂1 in 1), 2) are satisfied. The main idea
is to derive the value of F̂j based on the value of F̂j−1 by
calculating q̂0,j − q̂1,j . According to the previously designed
columns, the relationship between q̂0,j and q̂1,j has three
different cases.
Case 1: q̂0,j ≤ q̂1,j , then F̂j = F̂j−1. Moreover, we have
q̂0,j 6= p0,j−δAj−δ,j in this case.
Case 2: Assume that j is the smallest component in R1 with
q̂0,j > q̂1,j . Specifically, by 1), 2), for this component, we
have

q̂0,j = min
A∈Aj−1

q0,j

= p0,j−δAj−δ,j = K0,j−1 − I0,j−1 −
j−1∑

i=j−δ+1

p0,i,

q̂1,j = max
B∈Bj−1

q1,j =

min{j+δ,n}∑
i=j

p1,i − I1,j−1 +K1,j−1.

Then

q̂0,j − q̂1,j = p0,j−δAj−δ,j − max
B∈Bj−1

q1,j

= (K0,j−1 − I0,j−1 −
j−1∑

i=j−δ+1

p0,i)

−

min{j+δ,n}∑
i=j

p1,i − I1,j−1 +K1,j−1


(a)
= F̂j−1 − 1 +

j−1∑
i=1

(p0,i − p1,i)−
j−1∑

i=j−δ+1

p0,i

−
min{j+δ,n}∑

i=j

p1,i

= F̂j−1 −Gj(p0,p1),

in which (a) comes from the following fact,

Fj(A,B) = 1 +

j∑
i=1

min{(q1,i − q0,i), 0}

(b)

≤ 1 +

j∑
i=1

(q1,i − q0,i) = 1 +

j∑
i=1

q1,i −
j∑
i=1

q0,j

= 1−
j∑
i=1

(p0,i − p1,i) +K0,j −K1,j + I1,j − I0,j ,

where the equality in (b) is attained when q1,i ≤ q0,i, 1 ≤ i ≤
j. Recall that for i ∈ R0, we have q̂0,i ≥ q̂1,i. Then based on



the assumption, we have q̂1,i ≤ q̂0,i, 1 ≤ i ≤ j and hence (a)
is true.

Recall that j∗ = arg min1≤j≤n {Gj(p0,p1)} and we prove
that j∗ ∈ R1 by contradiction. Suppose j∗ ∈ R0. Then note
that F̂m = Gj∗(p0,p1) ≤ Gj(p0,p1), ∀j ∈ R1 and thus

q̂0,j − q̂1,j = F̂j−1 −Gj(p0,p1)

≤ F̂m −Gj(p0,p1) ≤ 0,

which contradicts with the assumption that q̂0,j > q̂1,j . Hence,
j∗ ∈ R1 and we have F̂j = Gj(p0,p1).
Case 3: For k > j such that q̂0,j = p0,j−δAj−δ,j > q̂1,j ,
by the similar idea of proving (28) in R0, we will also have
F̂j = Gj(p0,p1).

Taking all three cases into consideration, in R1, (29) also
holds, which indicates that the equality in Theorem 1 is
obtained for the designed adversary.

IV. OPTIMAL HYPOTHESIS-UNAWARE ADVERSARY

In Section III, we have considered a powerful hypothesis-
aware adversary who knows the true underlying hypothesis
before attack. In this section, we consider a more practical
scenario with a hypothesis-unaware adversary who does not
know the true underlying hypothesis that generates the ob-
served data. In this section, we will investigate the optimal
solution to the minimax problem characterized in (6).

Under the hypothesis-unaware setting, as the adversary has
less information, the attack is more difficult to carry out.
However, the approach in Section III can be modified and
applied here.

First, the saddle point analysis in Section III-A can be easily
extended to the hypothesis-unaware case to simplify (6). In
particular, following a similar saddle-point analysis, for any
given attack matrix A, we have that the optimal form of the
decision rule is

t∗i (A) =


0 q0,i > q1,i,

arbitrary q0,i = q1,i,

1 q0,i < q1,i,

(33)

where q0 = p0A, q1 = p1A. The optimal attack matrix A∗

is the solution to

max
A

1

2
[p0A(t∗(A)T + p1A(1− t∗(A)].

This can be further rewritten as

max
A

1

2
[1 + (p0 − p1)At∗(A)T ], (34)

subject to Ai,j ≥ 0, i, j = 1, .., n,
n∑
j=1

Ai,j = 1,

1|i−j|>δAi,j = 0, i, j = 1, .., n.

In the following, we will generalize the approach in Sec-
tion III to characterize the optimal solution to (34).

A. Upper-bound for PE
Let Fm−δ(A) =

∑m−δ
i=1 q1,i +

∑n
i=m−δ+1 q0,i and

f(j,A) =
m−δ∑
i=1

q1,i +

j∑
i=m−δ+1

min{q0,i, q1,i}+
n∑

i=j+1

q0,i.

Define

Fj(A) =


Fm−δ(A) 1 ≤ j ≤ m− δ,
f(j,A) m− δ + 1 ≤ j ≤ m+ δ,

f(m+ δ,A) m+ δ + 1 ≤ j ≤ n.

Then from the definition, we have

Fj+1(A,B) = Fj(A,B) + min{q1,j+1 − q0,j+1, 0},

and thus

2PE(A,B)
(a)
= Fn(A,B) = ... = Fm+δ(A,B) ≤ ...

≤ Fm(A,B) ≤ ... ≤ Fm−δ = Fm−δ−1 = ... = F0,

where (a) is due to the fact that

m−δ∑
i=1

q1,i +
m+δ∑

i=m−δ+1

min{q0,i, q1,i}+
n∑

i=m+δ+1

q0,i

=

n∑
i=1

min{q0,i, q1,i}.

Similar to Theorem 1, we have the following bound.
Theorem 2: For ∀A ∈ A,

Fm(A) ≤ min
m−δ≤j≤m

{Ej(p0,p1)} , (35)

2PE(A) = Fm+δ(A) ≤ min
m−δ≤j≤m+δ

{Ej(p0,p1)}

:= Ej∗(p0,p1), (36)

in which

Em−δ(p0,p1) = 1−
m−2δ∑
i=1

(p0,i − p1,i),

Ej(p0,p1) = 1−
j−δ∑
i=1

(p0,i − p1,i) +

min{n,j+δ}∑
i=m+1

(p1,i − p0,i),

j∗ = arg min
m−δ≤j≤m+δ

{Ej(p0,p1)} . (37)

If Ej∗(p0,p1) ≤ Em−δ(p0,p1), the equality in (36) holds
when there exists A ∈ A such that:

(i) K0,m−δ −K1,m−δ =
∑m−δ
i=m−2δ+1(p0,i − p1,i);

(ii) q1,i ≤ q0,i,m− δ + 1 ≤ i ≤ j∗;
(iii) K0,j∗ −K1,j∗ =

∑min{j∗,m}
i=j∗−δ+1 (p0,i − p1,i),

I1,j∗ − I0,j∗ =
∑min{n,j∗+δ}
i=max{m+1,j∗+1}(p1,i − p0,i);

(iv) Fk(A) = Fj∗(A), j∗ < k ≤ m+ δ.
If Ej∗(p0,p1) > Em−δ(p0,p1), the equality is achieved when

Fi(A) = Em−δ(p0,p1),m− δ ≤ i ≤ m+ δ.

Proof: Please see Appendix D.



j[1,j-1]

bt,j ct,jat,j

ft,j et,j dt,j

Fig. 2. Moved mass between different regions at component j

B. Attack strategy design

In this section, we design an attack matrix Â to achieve
the upper-bound in (36). As the designed matrix achieves the
upper-bound, it is an optimal solution to (34). Similar to the
design of hypothesis-aware attack matrix, we construct the
optimal A column by column.

Before proceeding further, we need to define quantities
related to mass moving between different regions. In particular,
for t = 0, 1, define
• at,j : [1, j − 1]→ j,
• bt,j : [1, j − 1]→ [j + 1, n],
• ct,j : j → [j + 1, n],
• dt,j : [j + 1, n]→ j,
• et,j : [j + 1, n]→ [1, j − 1],
• ft,j : j → [1, j − 1].

These quantities are illustrated in Fig. 2.
Moreover, we will use â, b̂, ĉ, d̂, ê, f̂ to denote the value of

a, b, c, d, e, f determined by Â while using F̂j to denote the
value of Fj achieved by Â.

Column design for j ∈ R0:
In R0, for t = 0, 1, we design columns of attack matrix Â

to achieve
1) q̂t,j = pt,j , 1 ≤ j ≤ m− 2δ;
2) q̂t,j = 0,m− 2δ + 1 ≤ j ≤ m− δ;
3) q̂t,j = pt,j−δ + d̂t,j ,m − δ + 1 ≤ j ≤ m, where d̂t,j is

selected to satisfy

d̂1,j − d̂0,j = min{p0,j−δ − p1,j−δ, F̂m−δ − F̂j−1

+

min{n,j+δ}∑
i=m+1

(p1,i − p0,i) +

j−δ−1∑
i=m−2δ+1

(p1,i − p0,i)}.

To summarize, these conditions listed in Table III.

Ht : q̂t,j
1 ≤ j ≤ m− 2δ pt,j

m− 2δ + 1 ≤ j ≤ m− δ 0

m− δ + 1 ≤ j ≤ m pt,j−δ + d̂t,j
TABLE III

PMF DESIGN IN R0 FOR THE HYPOTHESIS-UNAWARE ADVERSARY

Here, again, we will first describe how to design Â so that
1), 2) and 3) are satisfied. We will then show that, once these

conditions are satisfied, the equality in (35) is achieved. Hence,
the designed Â is optimal.

In particular, we set columns 1 to m of Â to be
a) 1 ≤ j ≤ m− 2δ, Âj,j = 1, Âi,j = 0, i 6= j;
b) m− δ + 1 ≤ j ≤ m, Âj−δ,j = 1,

Âi,j = min

{
1,max

{
d̂1,j−d̂0,j−

∑i−1
k=m+1(p1,k−p0,k)

p1,i−p0,i , 0

}}
,

m+ 1 ≤ i ≤ n.
Following the same proof in Appendix C, we can show that
using design specified in a), b), the equalities in 1), 2), 3) are
satisfied for 1 ≤ j ≤ m. Details of the proofs are omitted for
brevity.

We now verify that we can achieve the equality in the upper-
bound (35) once conditions 1), 2) and 3) are satisfied.

F̂m−δ =
m−δ∑
i=1

(p1,i − p0,i) + I1,m−δ − I0,m−δ −K1,m−δ

+K0,m−δ + 1

= 1−
m−2δ∑
i=1

(p0,i − p1,i) := Em−δ(p0,p1).

For ∀m− δ ≤ j ≤ m,

F̂j = F̂j−1 + min{0, q̂1,j − q̂0,i}
= min{F̂j−1, F̂j−1 + q̂1,j − q̂0,i}
= min{F̂j−1, F̂j−1 + p1,j−δ − p0,j−δ + d̂1,j − d̂0,i}

= min
{
F̂j−1,

1−
j−δ∑
i=1

(p0,i − p1,i) +

min{n,j+δ}∑
i=m+1

(p1,i − p0,i)


:= min

{
F̂j−1, Ej(p0,p1)

}
,

and thus

F̂m = min
m−δ≤j≤m

{Ej(p0,p1)} , (38)

which reaches the equality in (35).
Column design for j ∈ R1:
In R1, the first m columns of Â have been determined in

R0 and for j ∈ R1, we further design A:,m+1:n to achieve

q̂1,j − q̂0,j = max{ min
A∈Aj−1

(q1,j − q0,j),

min{0, max
A∈Aj−1

(q1,j − q0,j)}}.

We will design A:,m+1:n in two cases. For the first case,
we always have j∗ ∈ R0 and A:,m+1:n can be designed in a
simple way. For the second case, similar procedure in Section
III-C Case 2 can be applied. In the following part, we will
provide the assumptions of two cases and analyze the first
scenario in detail while skip the details for the second scenario.

Case 1:

min
m−δ≤j≤m−1

{
m∑

i=j−δ+1

(p0,i−p1,i)−
m+δ∑

i=j+δ+1

(p1,i−p0,i)} ≤ 0.



By applying (38), this condition is equivalent to

F̂m ≤ 1 +
m+δ∑
i=1

(p1,i − p0,1),

and thus ∀j ∈ [m+ 1,m+ δ],

Ej(p0,p1) = 1−
j−δ∑
i=1

(p0,i − p1,i) +

j+δ∑
i=m+1

(p1,i − p0,i)

≥ 1−
m∑
i=1

(p0,i − p1,i) +
m+δ∑
i=m+1

(p1,i − p0,1) ≥ F̂m.

Therefore, we will be able to find an Â ∈ Am, such that
F̂m+δ = F̂m.

The desired A:,m+1:n is designed by
1) ∀m− δ + 1 ≤ j ≤ m, Âj,m+1 = 1;
2) ∀m+ 1 ≤ j ≤ m+ δ, Âj,m+1 = 1−

∑m
i=1 Âj,i;

3) ∀m+ δ + 1 ≤ j ≤ n, Âj,j = 1.
Then we have

q̂1,m+1 − q̂0,m+1 =

m+δ+1∑
k=m−δ+1

(p1,k − p0,k)Âk,m+1

= K1,m −K0,m +
m+δ+1∑
k=m+1

(p1,k − p0,k)(1−
m∑
i=1

Âk,i)

= K1,m −K0,m +
m+δ+1∑
k=m+1

(p1,k − p0,k)− I1,m +K0,m

(a)
= 1 +

m+δ∑
i=1

(p1,i − p0,1)− F̂m ≥ 0,

where (a) is because ∀m− δ + 1 ≤ j ≤ m+ δ, ∀A ∈ A,

Fj(A) = Fm−δ(A) +

j∑
i=m−δ+1

min{(q1,i − q0,i), 0}

(b)

≤ Fm−δ(A) +

j∑
i=m−δ+1

(q1,i − q0,i)

=

j∑
i=1

q1,i +
n∑

i=j+1

q0,i

= 1 +

j∑
i=1

(q1,i − q0,i)

= 1−
j∑
i=1

(p0,i − p1,i)

+K0,j −K1,j + I1,j − I0,j ,

and the equality in (b) holds when q1,i−q0,i ≤ 0,m−δ+1 ≤
i ≤ j. For here, j = m and we have q1,i− q0,i ≤ 0 in R0 and
(a) is true.

Furthermore, we have q̂1,j = q̂0,j = 0,m+ 2 ≤ j ≤ m+ δ.
Therefore, for the designed Â, we have

F̂m+δ(Â) = F̂m+1(Â)

= F̂m(Â) + min{q̂1,m+1 − q̂0,m+1, 0} = F̂m(Â),

and thus the equality in Theorem 2 is achieved.
Case 2:

min
m−δ≤j≤m−1

{
m∑

i=j−δ+1

(p0,i−p1,i)−
m+δ∑

i=j+δ+1

(p1,i−p0,i)} > 0.

Under this condition, by the same idea in III-C Case 2,
we will have F̂j = min{F̂j−1, Ej(p0,p1)}. Therefore, the
equality in Theorem 2 is attained.

V. NUMERICAL RESULTS

In this section, we provide numerical examples to illustrate
results obtained in this paper.

In the first example, we give two specific PMFs with a few
components and perform hypothesis-aware and hypothesis-
unaware attacks to show how the adversary works. In this
example, the PMF before attack is provided in (39) and Fig. 3.
It is easy to calculate that for this PMF, if there is no adversary,
the error probability corresponding to the optimal Bayesian
detection rule is PE = 11

32 . Assume that the attack amplitude
is δ = 1. Following the design process in Section III-C and
IV-B, the optimal hypothesis-aware attack strategy Âa, B̂a and
the optimal hypothesis-unaware attack strategy Âu are

Âa =


1 0 0 0 0 0
0 3

7
4
7 0 0 0

0 0 1
3

2
3 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0

 ,

B̂a =


1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 ,

Âu =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 .

Thus, the PMFs after attack can be calculated and are
provided in (40) and Fig. 4 for the hypothesis-aware model
and the PMFs of hypothesis-unaware model are provided in
(41) and Fig. 5. It is easy to check that, for the constructed ad-
versary, the error probabilities are PE(Âa, B̂a, t

∗(Âa, B̂a)) =
1
2 and PE(Âu, t

∗(Âu)) = 7
16 correspondingly. Since the

error probability is 1/2 (the largest possible value) for the
hypothesis-aware attack, the designed attack matrix is clearly
optimal. For the hypothesis-unaware attack, the error probabil-
ity under Âu is less than 1

2 . This already achieves the maximal
value of PE(Au, t

∗(Au)) by Theorem 2, 2PE(Au, t
∗(Au)) ≤

E4(p0,p1) = 7
8 . Therefore, for this particular example,
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Fig. 4. PMFs p0Âa and p1B̂a for the hypothesis-aware case
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Fig. 5. PMFs p0Âu and p1Âu for the hypothesis-unaware case

the hypothesis-unaware attacker is not as powerful as the
hypothesis-aware attacker.

p0 8/32 7/32 6/32 3/32 4/32 4/32
p1 4/32 4/32 3/32 6/32 7/32 8/32

(39)

p0Âa 8/32 3/32 6/32 7/32 8/32 0

p1B̂a 8/32 3/32 6/32 7/32 8/32 0
(40)

p0Âu 8/32 0 10/32 10/32 0 4/32

p1Âu 4/32 0 10/32 10/32 0 8/32
(41)

In the second example, we explore how δ affects the
prediction error for a randomly selected p0 and p1 under
two attack models. In our simulation, we generate 2n random
numbers in [0, 1] by uniform distribution, divide them into
two sequences and normalize each sequence to make it a
PMF while maintaining two consecutive regions to meet the
assumption made in Section III-A. After p0 and p1 are
generated, they are fixed throughout the experiment. We then
apply the proposed attack schemes to find one of the optimal
attackers and calculate its prediction error under the Bayesian
test. The results are shown in Fig. 6, where both the upper-
bounds for the error probability and the error probability under
constructed optimal attackers are presented. There are only
two lines in Fig. 6 since the upper-bounds are achieved by the
designed adversary and they overlap each other, which verifies
the correctness of the construction process. From Fig. 6, we
can see that, for each adversary, the attacker becomes more
powerful as δ increases. In particular, for the hypothesis-aware
case, when δ is large enough, the prediction error will reach
1
2 , the largest possible value.

In the third example, we investigate the impact of the alpha-
bet size n on the prediction error. The PMFs before the attack
are generated in the same manner as the second example. From
Fig. 7, we have that, for a fixed attack amplitude δ = 50, the
prediction error decreases as the alphabet size n increases.
The reason is that, as n increases, the relative attack strength
δ/n decreases, and hence the impact of the attack on the error
probability also decreases. However, if the ratio between δ
and n is fixed (for example, δ/n = 0.03, 0.06, 0.1 as shown
in Fig. 8 and δ/n = 0.1, 0.15, 0.2 as shown in Fig. 9), there
is no significant change in the prediction error as the alphabet
size increases. In particular, from the hypothesis-aware result
given in Fig. 8, we see that the prediction error reaches 0.5
when δ = 0.1n for n varies from 400 to 1000, indicating that
even a relatively small perturbation could have a big impact on
the prediction accuracy. On the other hand, for the hypothesis-
unaware model, from Fig. 9, we see that it is harder for the
prediction error to reach 1

2 , indicating that the strength of
attack has been highly restricted if the hypothesis information
is hidden from the adversary.

In the fourth example, we illustrate the characteristic of
PMFs before and after attack. First, we generate the PMFs by
truncating a Poisson distribution with parameter λt, t = 0, 1,
since the normal Poisson distribution is defined on an infinite
set. To normalize the distribution, we then move the mass on
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the tails to the finite alphabet equally and name the distribution
as truncated Poisson distribution. Thus, the PMFs can be
written as pt,i = p0

t,i + d, t = 0, 1, 1 ≤ i ≤ n, where

p0
t,i =

(λite
−λt )
i! and d =

1−
∑n
i=1 p0

t,i

n . By setting n = 110 and
λ0 = 35, λ1 = 75 for H0,H1 respectively, the PMFs before
attack are shown in Fig. 10. Under this setup, the PMFs after
attack are shown in Fig. 10 and Fig. 11 for the hypothesis-
aware and hypothesis-unaware attackers respectively. In these
figures, we set δ = 24. The results show that, for both
hypothesis-aware and hypothesis-unaware adversary, the PMFs
after attack can be made the same under two hypotheses. As
the result, for both adversary models, PE = 1

2 after the attack.
Fig. 12 illustrates the PMFs before and after attack for the

hypothesis-unaware case when δ = 20. From this figure, we
can see that, q0 and q1, the PMFs after attack for different
hypotheses, are not the same under the optimal hypothesis-
unaware adversary. On the other hand, for the hypothesis-
aware attacker, the error probability is equal to 1/2.

Fig. 13 illustrates how PE increases as the attack amplitude
δ increases. From this figure, we can see that, for both attack
models, PE increases with δ. Furthermore, the prediction error
in the hypothesis-aware case is always larger than hypothesis-
unaware case and reaches 1/2 earlier than the hypothesis-
unaware case. This is consistent with the simulation result in
the previous random distribution scenario.

VI. CONCLUSION

In this paper, we have investigated the adversarial robustness
of hypothesis testing rules. We have formulated this as a
minimax hypothesis testing problem. We have characterized
the optimal attack and the corresponding optimal decision
rules for both hypothesis-aware and hypothesis-unaware ad-
versary models. We have also provided numerical examples
to illustrate the analytical results obtained in this paper.

Building on the problem formulation and analysis in this
paper, there are several interesting future research directions.
Firstly, as discussed in Section I, it is important to extend the
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analysis to the scenario where the true underlying distribu-
tions are unknown to both the attacker and decision-maker.
Secondly, the application to steganography and steganalysis
[47], in which steganography aims to hide secret messages
in the cover media while steganalysis tries to detect hidden
secret information embedded in the cover media, is another
interesting research direction. Thirdly, our work can be applied
to the decentralized detection setup [48]–[50], with a fusion
center and distributed nodes, some of which might be com-
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Fig. 13. Prediction error v.s. δ for truncated Poisson distribution

promised. The compromised nodes may send fake messages
to the fusion center, and the goal of the fusion center is to
make correct decisions in spite of the presence of misbehaving
nodes. Finally, other than the amplitude constraint considered
in this paper, it is important to investigate other types of
constraints on the adversary.

APPENDIX A
PROOF OF LEMMA 1

We first prove (14):

PE(A,B, t∗) =
1

2
[PF (p0,A, t

∗) + PM (p1,B, t
∗)]

=
1

2

[
n∑
i=1

q0,it
∗
i +

n∑
i=1

q1,i(1− t∗i )

]
(a)
=

1

2
+

1

2

∑
i:q0,i<q1,i

(q0,i − q1,i)

=
1

2
− 1

2

∑
i:q0,i<q1,i

|q0,i − q1,i| (42)

(b)
=

1

2
− 1

4

n∑
i=1

|q0,i − q1,i| .

Here, (a) is true to due to the form of t∗ specified in (9). We
now show (b) is true:

0 =
n∑
i=1

(q0,i − q1,i)

=
∑

i:q0,i≥q1,i

(q0,i − q1,i) +
∑

i:q0,i<q1,i

(q0,i − q1,i)

=
∑

i:q0,i≥q1,i

|q0,i − q1,i| −
∑

i:q0,i<q1,i

|q0,i − q1,i| ,

which implies∑
i:q0,i≥q1,i

|q0,i − q1,i| =
∑

i:q0,i<q1,i

|q0,i − q1,i|

=
1

2

n∑
i=1

|q0,i − q1,i| .



We now prove (15). Using step (a) of (42), we have

PE(A,B, t∗) =
1

2
− 1

2

∑
i:q0,i<q1,i

(q1,i − q0,i)

=
1

2

 ∑
i:q0,i≥q1,i

q1,i +
∑

i:q0,i<q1,i

q1,i −
∑

i:q0,i<q1,i

(q1,i − q0,i)


=

1

2

 ∑
i:q0,i>q1,i

q1,i +
∑

i:q0,i=q1,i

q1,i +
∑

i:q0,i<q1,i

q0,i


=

1

2

n∑
i=1

min{q0,i, q1,i}.

APPENDIX B
PROOF OF THEOREM 1

For ∀(A,B) ∈ A× B, we have

Fj(A,B) = 1 +

j∑
i=1

min{(q1,i − q0,i), 0}

(a)

≤ 1 +

j∑
i=1

(q1,i − q0,i)

= 1 +

j∑
i=1

q1,i −
j∑
i=1

q0,j

−

(
j∑
i=1

p0,i −K0,j + I0,j

)

= 1−
j∑
i=1

(p0,i − p1,i) +K0,j −K1,j + I1,j − I0,j ,

(b)

≤ 1−
j∑
i=1

(p0,i − p1,i) +

j∑
i=max{1,j−δ+1}

p0,i

+

min{j+δ,n}∑
i=j+1

p1,i

= 1−
j−δ∑
i=1

p0,i +

j+δ∑
i=1

p1,i = Gj(p0,p1), (43)

Here, the equality in (a) holds when q1,i − q0,i ≤ 0, 1 ≤
i ≤ j, inequality (b) comes from the natural restrictions
on I,K, in which the equality holds when K0,j − I0,j =∑j
i=max{1,j−δ+1} p0,i, and I1,j −K1,j =

∑min{j+δ,n}
i=j+1 p1,i.

Note that 2PE(A,B) = Fn(A,B) ≤ ... ≤ Fm(A,B) ≤
... ≤ F0 = 1. As (43) holds for ∀A,B ∈ Ω, we have
Fn(A,B) ≤ Gj(p0,p1), ∀1 ≤ j ≤ n. Therefore,

Fm(A,B) ≤ min
1≤j≤m

{1, Gj(p0,p1)},

Fn(A,B) ≤ min
1≤j≤n

{1, Gj(p0,p1)}.

Let j∗ = arg min1≤j≤n {Gj(p0,p1)}. If Gj∗(p0,p1) ≤ 1,
we have Fn(A,B) ≤ Gj∗(p0,p1) and the equality is achieved
when

• Fj∗(A,B) = Gj∗(p0,p1), which is equivalent to

q1,i − q0,i ≤ 0, 1 ≤ i ≤ j∗,

K0,j∗ − I0,j∗ =

j∗∑
i=max{1,j∗−δ+1}

p0,i,

I1,j∗ −K1,j∗ =

min{j∗+δ,n}∑
i=j∗+1

p1,i.

• Fk(A,B) = Fj∗(A,B), j∗ < k ≤ n.
If Gj∗(p0,p1) > 1, we have Fn(A,B) ≤ 1 and the equality
is achieved if
• Fi(A,B) = 1, 1 ≤ i ≤ n.

APPENDIX C
PROOF OF THE DESIGNED ATTACK MATRICES ACHIEVING

q̂0, q̂1

We will calculate the PMF q̂0, q̂1 achieved by the attack
matrices (Â, B̂) designed according to (22) and (23) for
columns 2, · · · ,m, and according to (22) and (32) for columns
m + 1, · · · , n. We will show that these satisfy the desired
conditions specified in Section III-C.

For j = 1,

q0,1 =
1+δ∑
i=1

p0,iÂi,1

= min{p0,1, q̂0,1}

+
1+δ∑
i=2

min{p0,i,max{0, q̂0,1 −
i−1∑
k=1

p0,k}} (44)

(a)
= q̂0,1,

q0,1 =
1+δ∑
i=1

p1,iB̂i,1 =
1+δ∑
i=1

p1,i.

Here, (a) is true because 1) if p0,1 ≥ q̂0,1, then
min{p0,1, q̂0,1} = q̂0,1 and max{0, q̂0,1 −

∑i−1
k=1 p0,k} = 0,

which indicates q0,1 = q̂0,1; 2) if p0,1 < q̂0,1, then

min{p0,1, q̂0,1}+
1+δ∑
i=2

min

{
p0,i,max

{
0, q̂0,1 −

i−1∑
k=1

p0,k

}}

= p0,1 +
1+δ∑
i=2

min

{
p0,i,max

{
0, q̂0,1 −

i−1∑
k=1

p0,k

}}
= min{p0,2,max{0, q̂0,1}}

+
1+δ∑
i=3

min

{
p0,i,max

{
0, q̂0,1 −

i−1∑
k=1

p0,k

}}
= min{p0,2, q̂0,1}

+
1+δ∑
i=3

min

{
p0,i,max

{
0, q̂0,1 −

i−1∑
k=1

p0,k

}}
. (45)

Note that (44) and (45) are in the same form. Then by
continuing this process, we will have q0,1 = q̂0,1.



For 2 ≤ j ≤ m, under (Â, B̂), we have

q1,j =

j+δ∑
i=1

p1,iB̂i,j = p1,j+δ,

q0,j =

j+δ∑
i=1

p0,iÂi,j =

j+δ∑
i=1

min

{
p0,i(1−

j−1∑
k=1

Âi,k),

max

{
q̂0,j −

i−1∑
k=1

p0,k

(
1−

j−1∑
t=1

Âk,t

)
, 0

}}
(46)

(b)
= q̂0,j ,

in which (b) can be derived using the similar steps dis-
cussed in j = 1. Specifically, for i = 1, the index
term in (46) is min

{
p0,1(1−

∑j−1
k=1 Â1,k),max {q̂0,j , 0}

}
. If

p0,1(1−
∑j−1
k=1 Â1,k) ≥ q̂0,j , we have q0,j = q̂0,j directly. On

the other hand, if p0,1(1−
∑j−1
k=1 Â1,k) < q̂0,j , the index term

for i = 1 is p0,1(1−
∑j−1
k=1 Â1,k), which will cancel out with a

term in q̂0,j −
∑i−1
k=1 p0,k

(
1−

∑j−1
t=1 Âk,t

)
and we will have

q0,j = q̂0,j after a series of cancellations.
For j ∈ R1, since the formula of Âi,j stays the same,

q0,j = q̂0,j still holds. Under B̂i,j , suppose l is the smallest
component with B̂l,j > 0, then we have

q1,j =

j+δ∑
i=1

p1,iB̂i,j

=

j+δ∑
i=1

min

{
p1,i(1−

j−1∑
k=1

B̂i,k), q̂1,j −
i−1∑
k=1

p1,kB̂k,j

}

=

j+δ∑
i=l

min

{
p1,i(1−

j−1∑
k=1

B̂i,k), q̂1,j −
i−1∑
k=1

p1,kB̂k,j

}

= min

{
p1,l(1−

j−1∑
k=1

B̂l,k), q̂1,j −
l−1∑
k=1

p1,kB̂k,j

}

+

j+δ∑
i=l+1

min

{
p1,i(1−

j−1∑
k=1

B̂i,k), q̂1,j −
i−1∑
k=l

p1,kB̂k,j

}

= min

{
p1,l(1−

j−1∑
k=1

B̂l,k), q̂1,j

}
(47)

+

j+δ∑
i=l+1

min

{
p1,i(1−

j−1∑
k=1

B̂i,k), q̂1,j −
i−1∑
k=l

p1,kB̂k,j

}
(c)
= q̂1,j ,

in which (c) can be proved by considering two different
cases. First, if p1,l(1 −

∑j−1
k=1 B̂l,k) ≥ q̂1,j , in (47), we

have min
{
p1,l(1−

∑j−1
k=1 B̂l,k), q̂1,j

}
= q̂1,j = p1,lB̂l,j

and q̂1,j − p1,lB̂l,j = 0, which implies B̂l+1,j = 0 and
thus B̂i,j = 0, n ≥ i ≥ l + 1. Therefore, (c) holds.
Second, if p1,l(1 −

∑j−1
k=1 B̂l,k) ≤ q̂1,j , in (47), we have

min
{
p1,l(1−

∑j−1
k=1 B̂l,k), q̂1,j

}
= p1,l(1 −

∑j−1
k=1 B̂l,k) =

p1,lB̂l,j , which will cancel out with a term in q̂1,j −

∑i−1
k=l p1,kB̂k,j and thus after a series of cancellation, we have

q0,j = q̂0,j .

APPENDIX D
PROOF OF THEOREM 2

For j = m− δ, we have

Fm−δ(A)

=
m−δ∑
i=1

q1,i +
n∑

i=m−δ+1

q0,i

= 1−
m−δ∑
i=1

(p0,i − p1,i) +K0,m−δ −K1,m−δ

+I1,m−δ − I0,m−δ
(a)

≤ 1−
m−δ∑
i=1

(p0,i − p1,i) +
m−δ∑

i=m−2δ+1

(p0,i − p1,i) + 0

= 1−
m−2δ∑
i=1

(p0,i − p1,i)

= Em−δ(p0,p1).

For ∀m− δ + 1 ≤ j ≤ m+ δ, ∀A ∈ A, we have

Fj(A) = Fm−δ(A) +

j∑
i=m−δ+1

min{(q1,i − q0,i), 0}

(b)

≤ Fm−δ(A) +

j∑
i=m−δ+1

(q1,i − q0,i)

=

j∑
i=1

q1,i +

n∑
i=j+1

q0,i

= 1 +

j∑
i=1

(q1,i − q0,i)

= 1−
j∑
i=1

(p0,i − p1,i) +K0,j −K1,j

+I1,j − I0,j
(c)

≤ 1−
j∑
i=1

(p0,i − p1,i) +

min{j,m}∑
i=j−δ+1

(p0,i − p1,i)

+

min{n,j+δ}∑
i=max{m+1,j+1}

(p1,i − p0,i)

= 1−
j−δ∑
i=1

(p0,i − p1,i) +

min{n,j+δ}∑
i=m+1

(p1,i − p0,i)

= Ej(p0,p1),

in which the inequalities in (a), (c) follow from the ob-
servation about I,K and the equality in (b) holds when
q1,i ≤ q0,i,m− δ + 1 ≤ i ≤ j.



Since the above inequality holds for ∀A ∈ A and we have
shown that Fm+δ(A) ≤ Fm+δ−1(A) ≤ ... ≤ Fm−δ(A), then

Fm(A) ≤ min
m−δ≤j≤m

{Ej(p0,p1)},

Fm+δ(A) ≤ min
m−δ≤j≤m+δ

{Ej(p0,p1)}.

Furthermore, if j∗ > m−δ, Fm+δ(A) ≤ Ej∗(p0,p1) and the
equality is achieved when

(i)

K0,m−δ −K1,m−δ =
m−δ∑

i=m−2δ+1

(p0,i − p1,i);

(ii) q1,i ≤ q0,i,m− δ + 1 ≤ i ≤ j∗;
(iii)

K0,j∗ −K1,j∗ =

min{j∗,m}∑
i=j∗−δ+1

(p0,i − p1,i),

I1,j∗ − I0,j∗ =

min{n,j∗+δ}∑
i=max{m+1,j∗+1}

(p1,i − p0,i);

(iv) Fk(A) = Fj∗(A), j∗ < k ≤ m+ δ.
If Ej∗(p0,p1) > Em−δ(p0,p1), the equality is achieved when

Fi(A) = Em−δ(p0,p1),m− δ ≤ i ≤ m+ δ.
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