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A CLASS OF FUNCTIONAL INEQUALITIES AND
THEIR APPLICATIONS TO FOURTH-ORDER NONLINEAR
PARABOLIC EQUATIONS*

JIAN-GUO LIUT AND XIANGSHENG XU*

Abstract. We study a class of fourth-order nonlinear parabolic equations which include the thin-
film equation and the quantum drift-diffusion model as special cases. We investigate these equations
by first developing functional inequalities of the type

/u277°‘7BAu°‘Aquxzc/ |Au|2de,
Q Q

which seem to be of interest in their own right.
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1. Introduction
Let T>0 and § be a domain in RY with boundary 92. We consider the existence
of a solution to the problem

Opu+div[u"V(u® T Au®)] =0 in Qr, (1.1)
Vu-v=u"V(u* 'Au®)-v=0 on %7, (1.2)
u(z,0)=ug(x)>0 on Q, (1.3)

where Qpr =Qx (0,T], X7 =002 x (0,T], v is the unit outward normal to 092. Numbers
n,a € (0,00) and the functions g=g(w,t), up(x) are given data whose precise assump-
tions will be made later.

Fourth-order nonlinear parabolic equations arise in a variety of physical settings
[6, 9, 17, 24]. Two well-known examples are the thin film equation and the quantum
drift-diffusion model, both of which are special cases of (1.1). In a typical thin film
equation, we have that a=1,n>0, while parameter values of nzl,a:% give us the
quantum drift-diffusion equation without the drift term. See, e.g., [13, 30] for the
inclusion of this term. Note that the drift term is a lower order term, and dropping it
simply implies that we have assumed that it can be dominated by the principal term in
the equation. Nonetheless, extensive research work has been done on these two types
of problems. We refer the reader to [13, 20, 25, 28] and the references therein.

The objective of our work is to present a unified mathematical approach to these
two very different physical problems. This is done via functional inequalities of the type

I(u)z/u%*a*BAuO‘Auﬂdch/ (Au)dx  for all ue Wy, (1.4)
Q Q

where
W, ={u>0:u" € W*3(Q),Vu"-v=0 on 00N}. (1.5)
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1912 FOURTH-ORDER NONLINEAR PARABOLIC EQUATIONS

Obviously, the validity of the above inequality depends on Q,«,3 and . We will focus
on the case where 2 is bounded and convex. Then a result of [16] asserts that

/(Au”’)QdazZ/ |V2u"|2dx (1.6)
Q Q

for all uw e W,, where V24 denotes the Hessian of u”. Thus a slightly weaker version is
the inequality

I(u)z/uZV*”‘*ﬂAuo‘Auﬁdzzc/ (Vzu“’)de for all ue W,. (1.7)
Q Q

Several known inequalities are special cases of this. If le,a:'y:%7 then (1.7) is
established for box domains with sides parallel to the coordinate planes in [4] (also see

[21]). It turns out [13, 25] that (1.7) is still valid if f=1,y=a€ (M 3), and €

—1)2
INZH1 02
is a bounded convex domain. The inequalities in [13, 25] are formulated in a measure-
theoretic setting. See [29] for a more direct approach.

The significance of functional inequalities of the type (1.4) lies in the fact that the
integrand on the left-hand side of (1.4) can change signs. In essence, they are the
nonlinear version of the Garding inequality. To illustrate how they arise naturally in
the study of fourth-order nonlinear partial differential equations, we proceed to make
some formal analysis of (1.1)-(1.3). That is, we assume that u is a positive, smooth
solution of (1.1). Use u®, where 3> 0, as a test function in (1.1) to derive

1 d B
— Pl e+ —— I Au* AuPdr =0. 1.
ﬁ—l—ldt/gu x+n+ﬁ/§2u u® Ay x=0 (1.8)
By (1.4), we have
2a+n =1 2
/uo‘flAuQAu"Jrﬁdxzc/ (Au e ) dz. (1.9)
Q Q

For the moment, we ignore the restrictions under which the above inequality holds. We
will address this issue in Section 2. Integrate (1.8) to obtain

B+1 2atnt8-1\ 2
max [ v’ (z,t)dx+ (Au 2 ) dzds<ec. (1.10)
0<t<T Q Qr

Our study of (1.4) is inspired by the integration by parts rule proved by Gianazza
et al. [13] and by Jingel and Mattes [21]. We also refer the reader to [22] for the
development of an algebraic technique for dealing with such formulas. The framework
we have developed here is also algebraic in nature, but it seems to be more direct and
easier to use. This can best be illustrated by the application of our method to the
standard thin film

Oyu~+div(u"VAu)=0. (1.11)

In this case, the second integral in (1.8) becomes

/ AuAu"TBdz.
Q
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This immediately puts us in a position to apply Lemma 2.5 in Section 2, from whence
follows that for each S € (% —n,2—mn) there is a positive number ¢ such that

n 2
/AuAu""‘ﬁdec/ (Au +§+1) dx.
Q Q

Of course, this result is well-known, see, e.g., [22] and the references therein. Also
notice how easy it is for us to prove Lemma 2.5 in our framework. More importantly,
our method has led to the discovery of Corollary 2.2 in Section 2. It is this corollary
that enables us to solve a problem left open in [25].

We can easily foresee other potential applications for the functional inequalities
developed in this paper. An immediate example is the study of epitaxial growth of thin
films (see [1, 11]) and the references therein). A family of continuum models has been
established, one of which has the form

Oru+u?A*uP=0 in Q7. (1.12)

Using ©” as a test function yields

1
m%/guﬂﬂdaﬁ—k QAugAuﬁHdm:O, (1.13)

and Lemma 2.5 in Section 2 becomes applicable. Of course, the resulting inequality is
far from enough to obtain an existence assertion for (1.12). However, the idea behind the
derivation of the inequality can lead to the discovery of additional estimates. Since our
inequalities do not depend on the space dimension N, their applications will inevitably
lead to the relaxation of the restrictions on N in previous studies such as [11].
THEOREM 1.1.  Let Q be a bounded conver domain in RY. Assume:

(H1) a€[1,3),ne(1,14+2), where

1 if N<4,
o={ = if N >4, (1.14)
any number in (0,1) if N=4;

(HQ) Ug € LOO(Q) with infgug > 0.
Then there is a weak solution to (1.1)-(1.3) in the following sense:
(C1) uwe L**T7(Qr) with u>0 on Qr, u® e L*(0,T;W?2(Q));
(C2) Vu*-v=0 a.e. on X;
(C3) For each £ € C®(Qr) with £(z,T)=0 and V&-v=0 on Y7 there holds

—/ u@tgdxdt—/uo(x)f(m,O)d:v
Qr

Q

2 N a
+/ (C:lu’“fz—qu?Au“V§+ua+"_1AuaA€)dxdt:o' (1.15)
Qr

We would like to make some remarkjg about Theorem 1.1. We can conclude from
Lemma 2.2 below that Vu? € (L*(Q7))" . Thus each integral in (1.15) makes sense.
Assumption (H1) is largely due to the restrictions for (1.4) to hold.

THEOREM 1.2.  Let Q be a bounded convex domain in RN and (H2) hold. Assume:
(H3) a=1,n€(1,1+2), where o is given as in (1.14).
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Then there is a weak solution to (1.1)-(1.3) in the sense of (C3).

In comparison with previous results on the thin-film equation (see, e.g., [5, 7, 17,
18]), this theorem has removed all the restrictions on space dimensions. Thus this is
truly a multi-dimensional result. The trade-off is that our assumption on n in the
theorem is weaker than those in [7, 18]. It is worth noting that most of the existing
results on non-linear fourth-order parabolic equations involve restrictions on the space
dimensions with the one-dimensional problems attracting the most attention. See ,e.g.,
([2, 3, 6, 8, 27]), where various properties of solutions are investigated. More recent
results of this nature on the thin-film equation can be found in [10, 12, 15].

Our approach to the question of existence is to construct a sequence of smooth,
positive approximate solutions such that the calculations similar to (1.8)-(1.10) can be
employed. A well-known difficulty in the study of fourth-order equations is that the
maximum principle is no longer true. In fact, the heat kernel for the heat biharmonic
equation changes signs. Thus arguments based upon the maximum principle for second-
order equations do not work here. We must rely on the nonlinear structure of our
equation to obtain non-negative solutions. It turns out that the term u®~!= ull_a
in (1.1) plays a key role in the existence of non-negative solutions. The case where
n=1,a<1 has already been considered in [25, 30|, while the case where a>1 is left
open there. One contribution of this paper is that we have completely solved this
open problem (Theorem 1.1). Even though we have not been able to find a physical
application for this case, it is still very interesting from the point of view of mathematical
analysis because this is the case where the gradient flow theory fails [25]. The key to
our success seems to be that we have found a right way to approximate the term u!'~®
with the exponent being negative.

The optimal transport theory has been successfully employed to treat many dif-
ferent types of parabolic equations as gradient flows of various “entropy functionals”
for various “transportation metrics”, the canonical example being the regular scalar
heat equation viewed by Jordan, Kinderlehrer and Otto [19] as the gradient flow of
the Boltzmann entropy for the quadratic Monge-Kantorovich MK2 (frequently named
Wasserstein metric). We have seen a very large body of work done on this subject in
the last 20 years (in the study of the heat equation in a very general framework, porous-
medium equations, thin-film flow equations, chemotaxis models, etc.. See [13, 25, 23]
and the references therein as examples). However, in the generality considered in The-
orems 1.1 and 1.2, the transport theory is no longer applicable [25]. We discretize the
time derivative in (1.1) and transform it into a system of two second-order elliptic equa-
tions. Our approximation scheme seems to be standard. However, the genius is in the
details, and we have to overcome numerous technical difficulties for it to work here. On
the one hand, we need to introduce new terms in our approximate problems in order to
ensure high regularity and positivity of our approximate solutions. On the other hand,
we have to make sure that these new terms do not destroy the essential a prior estimates
that hold for positive, smooth solutions of the original equations. Striking a suitable
balance between the two constitutes the core of our development.

This paper is organized as follows. In Section 2 we develop a class of functional
inequalities. Section 3 is devoted to the fabrication of our approximation schemes.
Here the key is how to handle the term u®~!. Then we proceed to obtain discretized
versions of the a priori estimates that hold for positive, smooth solutions of the original
equations, which eventually leads to the establishment of Theorems 1.1 and 1.2 in the
two subsequent sections.
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2. Functional inequalities

In this section we study the functional inequality (1.4). We will focus on the case
where €2 is a bounded convex domain in RY. Our method is algebraic in nature. In this
regard, it is similar to [22].

The key to our development is the following lemma, which is a substantial improve-
ment over Lemma 2.1 in [30].

LEMMA 2.1.  Let Q be a bounded domain in RN with Lipschitz boundary 0. Assume
that

a#0. (2.1)

Then we have

2026572, 82y > P 2,924
/Qu |V=u”|*dx 2—|—N /|V |“dx

2 165%( 3
+<2+6N>a2/9(A "ot ﬁ(2+1‘ifa B/'W'd”” 22)

for all ueW,,.

Proof. 1If §=0, then the lemma is trivially true. Thus assume that 5#0. Note
that

(AuP)? < N|VZ2P 2. (2.3)
Thus if a =4, then (2.2) is still true. From here on, we let

B# .

We can also assume that u € W, is bounded away from 0 below. If this is not the case,
we can always replace u by

1
(u¥4¢)=

and then let € —+07. The same is understood in the subsequent calculations in this
section. We compute, for 4,j=1,---, N, that

B
o

P =0 (u®) :éuﬁ*aaiua, (2.4)
«a
afjuﬁ = 76(6;04) uP2p, u“Oju” + ﬁuﬁ aafjua. (2.5)
o
First, we let i=7 in the above equation and then sum up over ¢ to derive

Auﬁziﬁ(ﬁ_a) uB*QO‘\VuO‘F—i-éuB*O‘AuO‘. (2.6)
o? o

Square both sides of this equation and multiply through the resulting equation by
g—iu%‘_w to arrive at

o o 5 U AU 4 B—a S| o
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Square both sides of (2.5), multiply through the resulting equation by u?*= 2P and
then sum up 7,7 to obtain

2
1
2 2a 2B|v2 ,8|2 |V2 a|2+25 v V2 v +<ﬂ a) 2 ‘vua|4.
B a «
(2.8)
Note that Vu® =2u?%Vu?. Keeping this in mind, we can rewrite (2.8) and (2.7) as
2Vu? -V2uoVu = o w22 V2P P — L|V2ua|2
4(B—a)p? 4(f—a)
4(8— a
— 7(60[ )\Vu5|4, (2.9)
o as o
Vu? PAu® = ————u?* 2| Auf Au®|?
N R A
2 - [e3
_2B=a) gusp, (2.10)
a

Note that
w2 Vu)t = w2 Vu® P Vu® - Vu©
=div (u ¥ Vu*PVu*u®) — div (u ¥ Vu®?Vu®) u®
=div (u ¥ Vu**Vuu®)
—u” | Vu PAu® = 2u” V3 Vu® - Vu® 4+ 20 2% | Vu [t (2.11)
Integrating this equation over 2, we obtain, with the aid of the fact that Vu®-v=0 on
09, that
4/ |Vu%|4dx:2/Vu%~(V2uaVu%)dx+/ |Vu? |2 Audz. (2.12)
Q Q Q

Integrate (2.9) and (2.10) over 2, add the two resulting equations, then make use of
(2.12), thereby derive

o’ 2026 |v72 a’
— [ WP 2dx+7/ w28 AuP P da
Ty I Pl g [ el
e o 2(a—30) o
=—— [ |[VZu® 2d$+7/ Au® 2dx—7/ Vu?|tdr. (2.13
4(6_()‘)/Q| | 8(8—a) Q| | a Q| e 219)

Multiplying through this equation by 4([3;7?)[32, we can conclude the lemma from the
inequality (2.3). The proof is complete. |

Notice that the only inequality we have used in the proof of the above lemma is
(2.3). Thus (2.2) is just as sharp an inequality as (2.3). Obviously, the lemma has been
obtained by sharpening the proof of Lemma 2.1 in [30].

LEMMA 2.2.  Assume that Q is bounded and convex. Then we have
o 9
/\Vu5\4dm§—/(Auo‘)2d:U (2.14)
Q 16 Jo

for all ue Wy,
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Proof.  This lemma is taken from [30]. The proof is rather simple. Thus we repeat

it here.

Remember that in this case (1.6) holds. Taking note of this, we calculate from

(2.12) that

4/ |vu3|4dx§2</ |V2ua|2d:c> </ |vu2‘4d:c>
Q Q Q
+(/ vué“%:) (/ |Auo‘|2d:c)
Q Q

§3</ |Au“2d:1c> (/ |Vu(21|4dx)
) )

from whence the lemma follows.

Now we are ready to study the functional
I(u) :/ u? P Au AuPda.
Q

At this point, we only assume

af>0, ~#0.

Recall from (2.6) that

Au® = a(ai;wua_}ﬂva\z + guo‘_'YAu"Y7
Y

AuP 6(5;’” u’8727|V1ﬂ|2 + éuﬂvazﬂ.
Y Y

Plugging these two into (2.16) yields

2

e uw) = u\2dx 16(a=7)(B—") w? 4de
aﬁz()_/Q(A L /Q|v d

+4(o¢—|—6—27)

/ |Vu? 2PAu) dz.
v Q

Let us first consider the special case where N =1. In this case, we have
/ VugvzuA’Vu%dx:/ |Vu? >Au’da.
Q Q
Thus by (2.12), we obtain
2092 4 1.4
[Vuz “AuYdz=< | |[Vu?|*dz.
Q 3Ja
Use this in (2.20) to derive

2 16(y% -2 3 o
Lt = [ (qupars BEZHOEINEED) g3 g,

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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If 2 —2(a+B)y+3aB >0, we are done. If v2 —2(a+B)y+3ap <0, i.e.,

a+B—vVa2+pB2—-af<y<a+f++a?+52—af, (2.22)
then we apply (2.14) to (2.21) to get

472 —6(a+p) ’y—|-9ozﬁ

T I(u)> =

af

For the coefficient of the integral in the preceding inequality to be positive, we must
impose the conditions

(2.23)

v > ga or v< gﬁ in the case where a> g, or (2.24)
v > gﬁ or v< ga in the case where a < 3. (2.25)

In summary, we have

LEMMA 2.3. If N=1 and a> 3, then (1.4) holds whenever
. [3
’y>m1n{a,oc—|—ﬁ+\/o¢2+ﬂ2—a ,} or (2.26)
<max{ B,a+B—+/a2+ 32— } (2.27)

Now we deal with the more general case N > 1. It turns out that the sign of the term
2v—a—( plays a significant role.

LEMMA 2.4. Let Q be a bounded convez domain in RN and v a number satisfying
2y—a—p>0. (2.28)

Without loss of any generality, we assume

B<a. (2.29)

If either
Jatd>rza, or (2.30)
'y<min{oz,§5}, (2.31)

then there is a positive number ¢ such that (1.4) holds.

Proof.  Under (2.28)-(2.30), the coefficient of the second integral in (2.20) is non-
negative, while the coefficient of the third integral is negative. Thus we can deduce from
(2.20) and (2.14) that

7 A(a+pB—27) W F PA di
aﬁ()/(mﬂ) T+ S /Q|v ?Aud

1

Z/Q(AuV)Qdﬂc+4(a+f_27)(/Q|Vug|4dx>é </Q(Au7)2dx>2
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~\2 " 3(&4—5—27) u’y? T
z/Q(Au)d+77 /Q(A)d

_ 3(a+pB3) -5y W2
B /Q(A )dz. (2.32)

The coefficient of the last integral in the above inequality is positive by (2.30). This
completes the proof of the first part of the lemma.

If 7 <a, then the coefficient of the second integral in (2.20) is negative. Then it
follows from (2.20) and (2.14) that

;BI(U)E/Q(AuV)de—F9(0_1)2(/3_7) /Q(AuV)de
3(a+p—27) V2l
pme /Q (Au)d
4P —6(atB)y+9aB a2
- = /Q (Au?)de. (2.33)

Note that 47% —6(a+ )y +9aB=4(y— 3B)(y— 2a). Thus it is positive if (2.31) holds.
The proof is complete. O

Next we analyze the case where y= O‘—gﬁ In this direction, we have the following
result.

LEMMA 2.5.  Let Q be a bounded conver domain in RY. Then for each a€ (g,Zﬁ)
there is a positive number c=c(«, 3) such that

ais 2
/ AuaAquxzc/ (Au%ﬁ) dx (2.34)
Q Q
for all ue WQTH;.
Proof. Let v= o‘—;rﬂ in (2.20) to obtain

(a+p)?
4a3

_ atB 2 _16(04—5)2 uaTW "
I(u)_/Q(Au )2da ot he /le |*d (2.35)

In view of (2.14), we have

<°‘47;§)21(u)> <1—m> /Q (AuF)2dz. (2.36)

If ae (g,Zﬁ), then the coefficient on the right-hand side of the preceding inequality is

positive. The proof is complete. 0
For the case where

2y —a—p<0, (2.37)

we deduce from (2.12) that
2 2
lf(u):/(mn)?azﬂw/ IVu? [de
o ) ¥ 0

) ) .
—w/ Vuz V2 Vuzdz. (2.38)
v Q
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Hence the key is how to handle the term fQ VuzV2u'Vuzde. To this end, we infer
from (2.9) that

3
x 2 Y 2v—2 2.2 Y 2. 42
Vu? -VZuVuzr=—" 2720|212 - — L V2
8(n—7n* | | 8(n—") | |

2(n —
—M|VU%|47 (2.39)
Y
where 7 is a number to be determined later. Substituting this into (2.38) , we arrive at

'7 7\ 2 a+pB—2y 2. 4|2
aﬁl( u) = /Q(Au ) d:v—kin_ry /Q|V u’|*dx
+16[(O‘+527)(727)+0‘5V2]/|vu34dx
Q

-2 2
+(Oéz:yﬂ 77)772)7 /u27_2"|v2u’7|2dx. (2.40)
- Q

This puts us in position to apply (2.2). To do this, we need to suppose
—n>0 (2.41)

to ensure the coeflicient of the last integral in (2.40) is positive. In our context, the
inequality (2.2) has the form

_ 2n? /

2y—2n 2. M2 2,72

u Vaul*de > —— Veu|“dx
/Q | | (2 N)'72 | ‘

2

n 12 1677(7777377/ 14 4
+(2+N)72/§2(Au )dx+ 2T ) [Vuz |*dz. (2.42)

Use this in (2.40) to derive

gﬂm
at+B+Ny—(2+N)y N2 a+ﬁ 29N 2,724
e e A e T AN
L[N == (N+1)y)(a+B-2y ) (2+N)(aﬂ—7)] Vud [Ade. (2.43)
Q

(24+N)~y?

We choose 1 so that the coefficient of the last integral in the above equation is 0. This
leads to

_ (N+Dy(a+B—27)— (2+N)(aB—7?)
(N =1)(a+5—-27)
The number 1 chosen above must satisfy (2.41). Plug the value of n into (2.43) and

take a note of (1.6) and the fact that the coefficient of the second integral in (2.43) is
negative to arrive at

(2+N)y? (1-=N)(a+8)+3Ny—(2+N)p "2
of I(u)> pom /Q(Au ) dx.

(2.44)
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Thus our last hypothesis is that the coefficient of the above integral is positive, i.e.,
(1-N)(a+8)+3Ny—(24+N)n>0. (2.45)
To summarize our results, we have

LEMMA 2.6. Let Q be a bounded convex domain in RN. Assume that (2.17) and
(2.37) hold. If n given by (2.44) satisfies (2.41), and (2.45), then there is a positive
number c=c(a,B,7,N) such that (1.4) holds.

COROLLARY 2.1. Let Q be a bounded convex domain in RY. Then for each a€
2
((2%521 ,3) there is a positive number ¢=c(a, N) such that
/uO‘*lAuAuo‘dQJZc/(Aua)zdx (2.46)
Q Q

for all ue Wy,

Proof. This corollary is largely contained in [30]. A different version can be found
in [25]. It is also an easy consequence of our preceding development. To see this, note
that in this case we have

=1, y=«a, and2v—a—-fF=a—1. (2.47)
If =1, then (2.46) is trivially true. If a>1, we apply Lemma 2.4. The conditions
(2.28), (2.29), and (2.30) are equivalent to
3
1 —.
<a< 5

If o< 1, we substitute (2.47) into (2.44) to obtain
a
N-1
Obviously, (2.17) is true. Since <0, we see that (2.41) is also satisfied. Plugging (2.47)
and (2.48) into (2.45), we arrive at

n= (2.48)

(2N2+1)a> (N —1)2 (2.49)
Thus (2.45) holds under our assumptions on a. We conclude (2.46) from Lemma 2.6. O

COROLLARY 2.2. Let Q be a bounded convex domain in RY. Then there is an
e€lo, %) such that to each a € (%,2) there corresponds a positive number c=c(e, o) with
the property

/ uEilAuo‘AudeC/ (Au"")2da (2.50)
Q Q
for all ue WQTH.
Proof. 1In this case, we have
p=1, vza;E. (2.51)

Thus o+ —2y=1—¢. Hence we need to show that there exists an € €[0,2) such that

>, (2.52)
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3N(a+e)
2

where 7 is defined by (2.44). Plugging (2.51) into (2.44), we derive

—(N=1)(a+1)+ —(24N)n>0, (2.53)

- —Ne?+2(N+1+a)e+ (N+2)a? —2(N +3)a

2.54
4N-1)(1—¢) (2:54)
Using this value of n in (2.53), after some elementary calculations we arrive at
—4(N—=1)2+4(N+1)(N+2)a— (N +2)%a?
>N (5N —8)e® + 2N (N +2)a—4N (2N —5)]e = h(e). (2.55)

The right-hand side is a quadratic function in &, which achieves its minimum value at

(N +2)a+2(2N —5)

e= “N_8 . (2.56)
But this number is not always non-negative. It becomes negative only when o > 2(?\[1\;5)
Thus we take
0 if o> 2CN-3),
e= +
_(N+25))§,t2;21v_5) otherwise.

Obviously, we have ¢ € [0,45%). Next we will show that ¢ selected above satisfies (2.52)-
(2.53). If e =0, then

n= [(N+23£N3(1];7+3)]a <0 (2.57)

for o < 2. Thus (2.52) is trivially true. Set €=0 in (2.55) to obtain
—4(N=1)2+4(N+1)(N+2)a— (N+2)%a*>0. (2.58)
Solutions to this inequality form the interval

(2(N+1) — 4N 2(N+1)+4\/JV>

N+2 ’ N+2

which contains the interval (1,2) if N <4. That is to say, if the space dimension does
not exceed 4, we can simply take e =0. We will have to do a little bit more work if we
want (2.50) to hold for all the space dimensions. To this end, we substitute (2.56) into
(2.55) to deduce

—(N —2)a?+ (3N —4)a+2—N>0.

Solutions to this inequality are the interval

<3N—4—«/N(5N—8) 3N—4+,/N(5N—8)>

2(N—2) ’ 2(N—2)

which contains the interval (3,2) if N >2. To see (2.52), we substitute (2.51) and (2.54)
into (2.52) to obtain

(N—-2)e?+(2Na+4)e+ (N +2)a? —4(N+1)a<0.
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Remember that € lies in the interval (0, 4’?") and the function on the left-hand side of
the above inequality is an increasing function of € over the interval. Thus it is sufficient
for us to prove

(4-a)®
25

It is easy to see that H(«) is a convex quadratic function of «. An elementary calculation
shows that

H(a)=(N—2) —|—(2Noz—|—4)4_?a+(N+2)a2 AN+ 1)a<0.

1
H(i) <0, H(2)<0
Thus H () <0 for each a € (1,2). The proof is complete. |

From our proof we see that this lemma can hold for more general «.
Similarly, we can investigate the functional

J(u) :/ u? " AlnuAu®dz.
Q
A simple calculation shows
1 1
Alnu:—;u_27|Vu'y|2+;u_'VAu'y. (2.59)

Plug this and (2.18) into J(u) to obtain
2 4(a—2 16(a —
7wy = / (Au)2d 4 HO=2) / Vud P Aurds— 290 =) / Vu? [ide. (2.60)
o Q v Q v Q
It is interesting to note that the arguments of Lemmas 2.4 and 2.5 do not work here. If
a—2y>0, (2.61)
we can still mimic the proof of Lemma 2.6 to obtain the following lemma.

LEMMA 2.7. Let Q be a bounded convexr domain in RY and (2.61) be satisfied. Set

(2+N)(y—a)y+(a—27)a

= . 2.62
TN e (262
If n satisfies the inequalities
n—y<0 and (2.63)
2+N)(n—=7)+(N=1)(a=27) <0, (2.64)

then there is a positive number c=c(«a,vy,N) such that

J(u)zc/ﬂ(AuA’fdx. (2.65)

Finally, we remark that it is possible to extend the inequality (1.4) to other types
of domains Q. For example, if the boundary of Q is C?, 3=1, and a=vy= %, a result
of [29] asserts that

[alLarze, ([ [0rviass [ Hvvate) o [ (20
Q Vu Q QU @
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for u€ W,. Here the complication is largely due to the fact that (1.6) is no longer true
in this case. In its place, we have

/(AU)2d$+/ |Vu|2dazzc/ |V2u|*d. (2.67)
Q Q Q

It is also interesting to pursue the case where the Neumann boundary condition is
replaced with the Dirichlet boundary condition.

3. The approximate problem

In this section we will show how to construct a sequence of positive, smooth approx-
imate solutions. Then we proceed to derive a priori estimates for the sequence that hold
under more general conditions than these in Theorems 1.1 and 1.2. Our approximation
scheme is based upon the following lemma.

LEMMA 3.1.  Let Q be a bounded domain in RN with Lipschitz boundary 0. Assume
that a>1, e€0,1), n€R, and

p>max{];r, 2}. (3.1)

Then for each 1>7>0 and each f &€ L>(Q) there is a solution (p,F) with p>0 in the
space (VVLQ(Q)ﬂLo"(Q))2 to the problem

_div[(p+7)"VE 4P ==L i q (3.2)
T
plfe
7Apa+Tpp:7WF+T in Q, (3.3)
Vp*v=VF-v=0 on Q. (3.4)

Furthermore, we have that p,F € C%P(Q) for some 3€(0,1) and p>co in ) for some
co >0, where B,cy depend on the given data.

Of course, the Equations (3.2)-(3.4) are satisfied in the sense of distributions. The
last term 7 in (3.3) has been added to ensure that p cannot be identically 0. As we shall
see, it is also the main reason why p has a positive lower bound. This idea was first
employed in [28]. The real tricky part, though, is that we have used the term pfi%;
to approximate p'~®. That is, a term with a negative exponent is being approximated
by a term with two positive exponents. It serves two purposes: one is that we avoid
having to seek solutions in a function space whose functions must have positive lower
bounds; the other is that it ensures that solutions to (3.3) are non-negative. If our
solution is non-negative then the term 7 in (3.3) guarantees that it is bounded away
from zero below. If we further assume that f is Holder continuous on €2, then the
classical Schauder theory [14] indicates that the pair (p, F) is a classical solution. This,
together with the fact that p is bounded away from 0 below, enables us to achieve higher
regularity, thereby justifying all our calculations in the derivation of a priori estimates

for the sequence of approximate solutions to be constructed later.

Proof.  We just need to modify the proof of Lemma 3.1 in [30]. We still apply
the Leray-Schauder fixed-point theorem (see Theorem 11.3 in [14]). For this purpose,
we define an operator B from L () into L>°(§2) as follows. Given that p€ L>(Q), we
consider the problem
p—f

T

—div[(pt+7)"VF]+7F = in Q, (3.5)
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VF-v=0 on 9. (3.6)

Equation (3.5) is uniformly elliptic, and thus by (3.1) we can appeal to the results
n ([14], Chap. 8) and thereby conclude that this linear boundary value problem has a
unique solution F in the space W1:2(2) N L>(€2). For each q>2, the function |F|972F €
Wh2(Q) and V (|[F|972F) = (¢—1)|F|? 2V F. Upon using it as a test function in (3.5),

we arrive at
1
1Ellg < =5 llp—£ll,- (3.7)

Now we use the function F' so-obtained to form the problem

B Py, (pt)—= .
AY+7lh|= = 7(p+)a—5+TF+T in Q, (3.8)
Vi-v=0 on 9N (3.9)

Obviously, this problem has a unique solution 1 in the space W12(Q)NL>(). We
define

B(p)=0(¢)), where 0(s)=|s|>Ls.

It is easy to see that B:L>(Q)— L>*(Q) is well-defined. By Theorem 8.22 in [14]
and a boundary flattening argument [31] , we can conclude that there exists a number
B€(0,1), depending only on the given data, such that F,) € C%A (). Tt is not difficult
to show that the Holder continuity of v implies that B is continuous and maps bounded
sets into precompact ones.

Next, we show that

lolloc <c (3.10)

for all 0 €]0,1] and p such that o B(p) = p. Here and in the remaining proof, ¢ is a generic
positive number which depends only on the given data. Without loss of generality,
assume o >0. Then the equation o B(p)=p is equivalent to the problem

p*f:—div[(p++r)”VF]+rF in Q, (3.11)
-
g—l ( +)175
SN G B 7 Y0 | 7 0 P AR I S o 12
Ey+rlo(2) (=i P 9 (1)
Vo). y=VF.v=0 on 8. (3.13)
(o

Remember that € <1, and thus (67(£)) (p*)'~°=0 on . Upon using (#7'(£)) as
a test function in (3.12), we deduce that p>0 in Q. Subsequently, we have

g1 Py_P_
(U) o%
We can rewrite (3.12) as
LN S S " (3.14)
_ P =_ T . .
o P Upp PEE+T
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Integrate this equation to obtain

g
T/ ppdm:—op/Fpida:—I—ﬂm
Q preEt

< (1Fl oy + ) Il e

Scnpn,% el e (3.15)

The last step is due to the fact that 7 <p. A simple application of the interpolation
inequality

1 1

ab<na?+c(n)b?, —-+-=1

p q

gives
lpllp <e.

In the sequel, we will not acknowledge this interpolation inequality again when it is
being used.

Obviously, 4= ;EH <1p!'==. Applying the proof of Theorem 8.15 in ([14], p.189),

we can derive from (3.11) and (3.14) that

p—r
T

[Flloo <

<ec, (3.16)
P

Ip%lloe < cllp®ll2+cllp Il <c. (3.17)

Note that the constant ¢ here depends on 7, but not the upper bound of the elliptic
coefficient (p+7)™ in (3.11). This completes the proof of existence.
Next, we show

1
-eL*(Q) foreach s>1. (3.18)
p

To this end, we use ﬁ,

—1 2 1—
PVl / PP / p'°F / 1
— S 7d.’)3+7’ dl':— d.’L‘+T 7d$
/Q (o)1 o (P 0)" 2oy T Jo oy

Drop the first term and take a note of the fact that

1—¢ 1 5
14 F ‘ 1/ |F| / l—e—s
de| < = dr < +4 dz
/Q<pa—s+f><p+5>s 7 Jo (0 0)° (o+9)

where 6 >0, as a test function in (3.3) to obtain

to derive

1
T 7‘da7§7/ p+o pfsdx+c/ p+0) =% dx.
/Q(P‘HS)‘S Q( ) Q( )

Recall the interpretation inequality

) 1 s—(1—¢) ’ 1 s
6) " %dx= — dr < — — | d
C/Q(er ) ’ C/Q <p+5> x_2/n(p+5> e
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and thereby obtain

/(p—ié) dx < /(p—&-(s)pfsdx—kc.

If s <p, then we take § — 0 in the above inequality to obtain

/—dm<c/p” Sdx+ec.

It is not difficult to see that these inequalities actually hold for each s>1, and thus
(3.18) follows.

Now we let v=
value problem

s 675 >0. Then we can easily show that v satisfies the boundary

2 2 pl—s 2 .
—Av+=|Vu|’=| ——F—-74+7p" |v°'=G in Q,
v prTE+T

Vv-rv=0 on 00
in the sense of distributions. We can conclude from [14, 30] again that

]l <cllvll2+ellGll, <c.

The last step is due to (3.18). This completes the proof of Lemma 3.1. O

If o < 1, then our approximate problem can be made a little simpler. For the purpose
of comparison, we state the corresponding result in the following:

LEMMA 3.2. Let Q be a bounded domain in RN with Lipschitz boundary 0. Assume
that « € (0,1), n€R, and

N
10>max{57 2}. (3.19)

Then for each 1>7>0 and each f € L>(Q) there is a solution (p,F) with p>0 in the
space (Wl’Q(Q)ﬁLOO(Q))2 to the problem

—dlv[(p—i—T)"VFH—TF—p / in Q, (3.20)
T

—ApX+TpP=—Fp %471 in Q, (3.21)

Vp*v=VF.v=0 on 0Q. (3.22)

Furthermore, we have that p,F € C%8(Q) for some B€(0,1) and p>co in Q for some
co >0, where B,co depend on the given data.

The proof is similar to that of the previous lemma.
We are ready to construct our approximate solutions. Let T'> 0 be given. We divide
the time interval [0,7] into j equal subintervals, j € {1,2,---}. Set

T=—.
J
We discretize and regularize the system (1.1)-(1.3) as follows. For k=1,---,j, solve
recursively the systems

Pk = Pr—1 _

- le[(pk+’T) VFk]+7'Fk in Q, (323)
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(pr)' ¢
(pr)o—s+7

Vpy -v=VF,-v=0 on 09,
po(z) =up(z).

—Apy+Tph=— Fy+7 in Q,

Define the functions

)pk(:v)—pkq(x)
T
ﬂj(x,t):pk(x), r €S, tG(tk_l,tk],
Fj(x,t):Fk(x), T e, tE(l‘,k_l,tk],

ﬂ,j($,t) = (t—tk,1

We can rewrite the system (3.23)-(3.26) as

%:7div (@ +7)"VF,] +7F; in Qr,
— \l—¢
—a —p _ (U‘J) nl .
,Auj +Tuj—*7(ﬂj)a_6+TFj+T in Qp,

Vﬂ?-V:VFJwV:O on X,

w;(x,0)=uo(xz) on Q.

+pop-1(x), T€Q, te(tp1,tr]

(3.27)

(3.28)

(3.29)
(3.30)

LEMMA 3.3.  Let e€[0,3) be given as in Corollary 2.2. Assume that a€[1,3),ne

0,2—¢), and p>max{X,2}. Then there is a 7o € (0,1) such that
2
ate
/ (Aﬂ?‘)gdxds—i—T/ |Au; |2dads
Q4 Q

+T/ u?*”‘*2|Vﬂj|2dxds+72/ a2 v, P deds
Qy Q4
+T/ 6?72|Vﬂj|2dxds+T2/ H§72|Vﬂj\2dxds

o Q

t

+ max /G(Ej(ac,t))dxgc
Q

0<t<T
for all € (0,79), where
S ifn>1,
G(s)=¢ s> ifn<l,

slns—s if n=1.

Here and in what follows ¢ denotes a positive constant independent of j.

(3.31)

(3.32)

By the proof of Corollary 2.2, we can take e =0 if N <4. Thus in this case n € (0,2).

Proof. For r€[0,00) we define

B r 1 B %n[(T-FT)l_"—(l—FT)l_"] if n#1,
e EER M R e

We use K(pg) as a test function in (3.23) to obtain

1
/FkApkdx—T/FkK(pk)dm—i—f/(pk—pk,l)K(pk)dsc:O.
Q Q T Jo

(3.33)

(3.34)
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We proceed to estimate each integral in the above equation. For this purpose, we solve
(3.24) for Fy, to yield

Fo=pp  Apf+rpy N App 7ol = o T e (3.35)
This can be done because pj, is bounded away from 0 below. Observe
1 Pk
= / (pr — pr—1) K (pr)dz > = / K(r)drdz. (3.36)

Pk—1

This is due to the fact that K(r) is an increasing function on [0,00). Substituting (3.35)
into the first integral in (3.34) gives

[ Fetmde= [ Appp dpdaer [ Mgt g
Q Q

a7 [ AT Pde (ke = 1)72 [ TP

~a=1r [ g2 dn == 1)7 [ 59 (3.37)

By Corollaries 2.1 and 2.2, we have
[t antanze [ (amd, (3.39)
L amanze [ 25 (3.39)

If a>1, then the coefficient of the sixth integral in (3.37) is negative. To address this
issue, we compute the integral as follows:

a— 5-1
/ka 2|Vpk|2dx=/|p;3 Vi dx
=5 [ IVof P

/ Vpf ['da+e(6)

*16 /|Apk|2dx+c(5) (3.40)

where § is a positive number. Using (3.38)-(3.40) in (3.37) and choosing ¢ suitably
small, we obtain

/FkApkdzZC/ (Apg)zdIJrCT/(Ap:;E)QdI
Q Q

+(p+a71)7/ P21 ol 2da + (p+e— 1)1 /prg“ﬂvpkﬁdx

+(1—€)7‘2/ p5 2|V pi|Pdx —c. (3.41)
Q
Plugging (3.35) into the second integral in (3.34) yields

— [ BeR(pdo == [ (7 +ri DK (o) Mg
Q
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_|_7_2/ (pz+a—1 +TP£+E_1 _pg—l —Tpi_l)K(pk)dI
Q

=hp+1ak. (3.42)
A simple integration by parts enables us to represent Iy j in the form

ha=ar [ ((@=Dp ™~ (1= nK (oo™ Vo s
Q
p?7€+T a+e—2 2
+ar | A—m— Vi | dx. 3.43
| v (3.43)

We first consider the case where

a>1. (3.44)
Set
1—e\™F
by = (a—1> Ta—=. (3.45)
Then we can choose 7 € (0,1) so that
br, <1. (3.46)
From here on, we assume that
T < To. (3.47)
Recall from the definition of K(r) that
K(r)(r=1)>0 on [0,00). (3.48)

We can easily deduce that the integrand of the first integral in (3.43) is non-positive
only on the set

On this set, we have

1—n

1 1 1 1 ifj ifn>1,
—K(pk)z/ dSS/ —d<q —Inp, if n=1,
or (8+’7’)n or gn L Pk

Our assumptions on a,n,e imply that
pio‘fnff <1 on A, and (3.49)
Tp,;(a_s) <c on Ay (3.50)

Keeping these in mind, we calculate, for n > 1, that

Ly>or / (= 1)pe= — (1)) K (o) p+== |V py 2z
Ay
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>ala=r [ K(pr)pi °|Vprlde
Ay

Z—CT/ e AR

Ag

> —C/ pia72fn76|vpk|2dx
Ay

Ay

> [ [V fda—c(o)
> _5/9(Apg)2dx—c(5), (3.51)

where § > 0. The above inequality still holds if n <1. Thus if § is sufficiently small, this
term can be incorporated into the second integral in (3.41).
If =1, then we can express I; ;, in the form

preloy S+ oo 2
=71 —(1—-¢e)7K +— \Y% dx. 3.52
1,k /Q[ (1—e)7K(px) i | P Vol (3.52)
Set

Bk:{xGka(x)Zl}

On the set By, we have

L ifn>1,

K(pr) << Inpg ifn=1,

ﬁpf” ifn<1.

Furthermore, there holds

1

P " <l on By

For n <1, we estimate
haz=(-7 [ Kl Vo Pds
Q
> —072/ P8 "V pr Pda
By
> —CTQ/Qpi_1|Vpk|2dm. (3.53)

In view of the coefficient of the fourth integral in (3.41), we just need to impose a further
condition

¢t < p, (3.54)

where c is the same as the one in the last line of (3.53). Then the fourth term in (3.41)
can absorb the term on the right-hand side of (3.53). The case where n>1 can be
handled in a similar manner.
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We can express I, in the form

Ip=1> /K pr)ps (P8 +7) (o — 1)da. (3.55)

The integrand in the above integral is always non-negative.
Summarizing our preceding estimates, we obtain

[ @epydsir [ @of o
Q

Q

+T/ﬂ€+a_zlvpkl2dx+72/ V|V k| d
Q
a—2 2 2 [ e-2 2 1 o
+7 [ py | Vpil|tde 41 | pi 7| Vpr] dw—i—T K(r)drdz<c (3.56)
Q Q Q

Prk—1

for 7€(0,79). Multiplying through this inequality by 7 and summing up over k, we
obtain

=\ 2 52
/Qt(Auj) dxds—i—T/ (Au; )2dxds

Q4

—1—7/ E§+a72|Vﬂj|2dxds+T2/ E§+572|Vﬂj|2dxds
Q Q

t

—|—7'/ ﬁ?_2|Vﬁj\2dazds+72/ 52|V, ? d:cds+/ K(r)drde<c (3.57)
Q¢ Q

for 7€(0,79). By the definition of K(r), we have

/ dr—/K dr+/K

@+ (4n)! ", ~
e e B & Fnzl o (35)
| @i+r)n(@j+7) - (1+In(1+7))u; —cif n=1.

Here the fact that the second integral in (3.58) is bounded is due to our assumptions
on ug. The rest is rather obvious. The proof is complete. 0

LEMMA 3.4. Let the assumptions of Lemma 3.3 hold. Then we have
/ ﬂ?‘fl(Aﬂ?)Qdaﬁds—FT/ ﬂjfl(Aﬂ?fdxds
Q4 Q

+’7‘/ ﬂ?“a’ﬂVpk\dederT?/ al et |\ [P dads
Qy Q

t

+72/ ﬂ?‘+5_3|Vﬂj\2d:cds+Orilta<xT/ﬂ;+(a_")+(x,t)dx§c. (3.59)
o <t<T Jo

Proof. Here we use a different test function. Let

L(r)= /1 ' (O‘Sids. (3.60)

s+T)"
Then use L(py) as a test function in (3.23) to obtain

1
—/VFk~Vpgdx—T/ FkL(pk)dx—l—;/(pk—pk,l)L(pk)dxzo. (3.61)
Q Q Q
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The first integral in the above equation is equal to
/QFkAp?dw:/Qp%_l(ﬁp?)QdHT/pi_l(Ap%)de
+(p+a71)a7/ PH2e=31g 2 da
Jr(ersf1)0472/9,0Z+6+a73\Vpk\2dx
—(a—l)aT/QpiO“B’\Vkadx—(6—1)a72/ﬂpg+573|Vpk|2dx. (3.62)

Owing to Lemma 2.4, for each o€ [1, %) there is a positive number ¢ with the property

3a—1
[ @ie e [ (85,7 e (3.63)

If > 1, then the coefficient of the sixth integral in (3.62) is negative. We will use (3.63)
to deal with the term. To do this, we estimate

a—1 Ba—5
/pia_3IVpk|2dx=/pk2 . ° |Vor|*da
Q Q
5 [ 4 o
S;/pi“ 5|Vpk|4dx+70(5)/0k !
Q

445 .
:m |Vpk ‘ dI+TC(5) ka dl’
1445 .
Sw/ |Apk ‘ d$+c(5)/§zpk tdx
cd oa— o o—
< [ i @ da+eld) [ e, (3.64)
T Ja Q

where ¢ is a positive number. Using (3.63)-(3.64) in (3.62) and choosing ¢ suitably
small, we obtain

/FkAp%d.’EZC/ p?il(Apg)Qdaz—i—m/ 05 (Apf ) dx
Q Q Q
+(p+a—1)ar / Py VP
Q
—|—(p—|—5—1)a7'2/ pz+a+a73‘vpk‘2dx
Q
—|—(1—5)a7’2/pz‘“*?’\Vpk\Qdm—c/ Pyt (3.65)
Q
Plugging (3.35) into the second integral in (3.61) yields
~r [ Beb(uyds == [ (527 40 L) Bpide
Q Q

+7 /(piw LT = =T L) da

=i x+Jok (366)
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The term J;  can be written in the form
Jip—ar / (0 =1)pf = = (1)) L(p)o ™=V P
Q

ax—E€
_|_
talr /Q %pﬁa“—ﬂvpkﬁdm (3.67)

If a>1, we can define Ay,b, as before. Note that the integrand of the first integral in
(3.67) is non-positive only on the set Ay. For x € Ay, we have

o

if a>n,

1 OéSa71 1 a—n
—L(pk):/ 7ds§/ as® " lds<{ —alnp, if a=n, (3.68)
Pk

n
(s+7) Pk S pp M if a<n.

If o <n, we have
Tzar [ (@=1p = (1=an)Lin)e ™ VnPda
Ak
>a(a-1)7 [ Lipet Vpulda
Ak
2707/ P3| d
k
Z_C/ pia_3_"_a|Vpk|2dx
Ak
5a—1 3a—1
> g T T P
Ak
sa—1
>0 [ 95 - 0)
Q
sa—1
>0 [ (An, o c(d)
Q
> -5 [ ot (@) da—cld), (3.69)
Q
where § >0. Thus J; , can be absorbed into the second integral in (3.65) if § is small.

If @ >n, a similar argument can be made.
If =1, then we can express .J; ;, in the form

1—e
pe(py “+7)] oo 2
J = —(1— L(pg)+ —"—= dx. 3.70
et [ [Fa-orto+ 28 2D e @)

Let By ={z€Q:pi(z) > 1} be given as before. On the set By, we have

nil ifn>1,
L(pr) < { Inpg ifn=1,
1 p,lc_” if n<1.

Furthermore, there holds

g < on By
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For n <1, we estimate
Tz ~(=2)7 [ Lipo ?Vpuda
Q
> —CT2/ p5 TV Pda
By
> —CTQ/Qpi_1|Vpk|2das. (3.71)

In view of the coefficient of the fourth integral in (3.65), we just need to impose a further
condition

1o < p, (3.72)

where c¢ is the same as the one in the last line of (3.71). The case where n>1 can be
handled in a similar manner.
We can express Jp ;, in the form

Tas=7 [ Lpn)o (6 +7) 6]~ ) (3.73)

The integrand in the above integral is always non-negative. If n>1 and a #n, we have

T oas¥l
L(r)= —d
0= [ G
T 1—n
:/ OéSa_ld(8+T)
1

1—n

a(l+7)t—" a 1—n . a(a—=1) /T s@~2
- . d
n—1 nflr (r+7) * n—1 J; (s+71)1 ’

{CYO[TL(T—I—T)O‘_TL-FO((LH—)I”(a_n)_a(a_l)(l—i_T)u" ifT‘>1,

>

_ (n—1)(a—n) 3.74
o T

Similarly, if n>1 and a=n, we have

InrEr 4 A4 "1 s g
Lir Z{nn + P iwr>1, (3.75)

1471
a4 oD <,
- <

nlnr—+ —

Thus we always have

Uj
// L(r)drdec/ E;+(a_")+dx—c,
Q ) Q

where u; =u;(z,t), provided that n>1. It is not difficult to see the same inequality
holds for n <1.
Collecting all the previous estimates in (3.61), we arrive at

/(Ap,:Ti)de—&—T/pi*l(Ap‘,j)de
Q Q

+T/ pZ+2a_3|Vpk|2dm+7'2/pZ+E+“_3|Vpk|2dat
Q Q
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1 Pk
+72/p‘,§+8_3|Vpk|2dx—|—f// L(r)drdz
Q TJQJpr_1
Sc/ Py tdr +ec. (3.76)
Q

Multiply through the inequality by 7, note that 0<a—1<1, and sum up over k to
obtain the desired result. The proof is complete. 0

LEMMA 3.5.  Let the assumptions of Lemma 3.3 hold. Then the sequence {u$} is
bounded in L?(0,T;W?22(Q)).

Proof. Note that

We calculate

alN
aN 2 at+N (2-a)aN a  oN
/|Vﬂj|T+N dr = () /sz(awv) |Vﬁ]? |2+~ dx
Q o Q
1__aN _aN__
_2(2—a)aN_ (a+N) a 4(at+N)
<c /ﬂ‘.‘(‘“m""” /|va?\4da:
o’ Q !

==l
gc(/ Au?|2dx) . (3.77)
Q

The last step is due to the fact that

2(2—a)aN <1
4(a+N)—aN ~—

On account of the Sobolev embedding theorem, we have

a SN
</u§‘dm> §c</ |vujc?+’7vdx) Jrc/ﬂjdx
Q Q Q

gc(/ |Au§’|2dx> e (3.78)
Q

/OT (/Qu;?‘d:r) < (3.79)

Recall the interpolation inequality

2
/\Vﬂ?‘ﬁdwﬁc/ |V2u?|2dx+c(/u§‘dx> .
Q Q Q

This, together with the fact that a €1, %), implies the desired result. d

Consequently, there holds

LEMMA 3.6. Let the assumptions of Lemma 3.3 hold. Then we have

_ ot a 2
T/ H?Ha L+((a=n) +1)Jrzvdat:dtgc.
Qr
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Proof. By the Sobolev inequality, we estimate, for a>n, that

5 T p+2a—1 oN % ¥
/ a?““*l*(“*”“)ﬁdxdt<c/ </u 1 W- de) (/ uo-‘_"+1d1:> dt
ar —Jo a’ a’
<c</ |Vu | da:dt+/ uf”aldxdt>
Qr

2

~
( sup ﬂ’l ntl dw)
O<t<T

c(/ Up+2a v, ? da:dt—|—/ u§+2a_1dxdt>
S)T QT

c/ ﬂp+2a v, 2 dadt
Q

T

M (o—nt) 2
+6/ grreritem Dy o dt e
Qr

IN

IN

J

Choosing ¢ suitably small yields

2a—1 n2 -
/ ﬂer a-lt(a-nt Nd:cdt<c/ ﬂ?”o‘ |V, Pdadt +c.
QT QT

If o <n, we have

/ ﬂ?+2a_1+%dxdt§ c / a3V Pdwdt + c. (3.80)
QT QT

Multiplying through the inequality by 7 and taking a note of Lemma 3.3 give the desired
result. ]

4. Proof of Theorem 1.1
The proof is divided into several lemmas.

LEMMA 4.1. Let the assumptions of Lemma 3.3 hold. If n>1, then TF]‘ — 0 strongly
mn Ll(QT)

Proof. Recall that

—pta—1 3, 1
TF; —T’U, 1Au Jr7'2u5 1Au 2u§+a 773u§+5 +7'2u0‘ 1Jr7'3uE L (4.1)

We will show that each term on the right-hand side of the above equation tends to 0
strongly in L'(Q7) as 7—0. We begin with the last term. For this purpose, assume
7 <79, where 7 is given as in Lemma 3.3. Set

Lj=1° K(ﬂj)ﬂj_l(ﬂy_g
Qr

+7’)(ﬂ§ —1)dxdt.
By the proof of Lemma 3.3, we have

L;<e (4.2)
Let

Aj:{(x,t)eQT:ﬂj(x,t)§1}7 Bj :QT\Aj.
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Then we can rewrite (4.2) as

| K(uy)uh ™ dadt+ | K (a;)ut e dadt
BJ BJ

7T/Kuj ¢ dadt — T/ K (u;)us ' dadt
< -7 / K(u p+o‘ Ydaxdt — 7'/ K(u p+5 Ldaat
+r? / K (w2~ dedi+7° / K (i e+ c. (4.3)
B; B;

On the set Bj, we have

1
K(uj)g{ 1 i n>1, (4.4)

Inw; if n=1,

while on the set A;, there holds

1 —1-n:
- fn>1
— ) < n—luj 1 ) )
K(uj)_{—lnuj if n=1. (4.5)

We wish to show that the right-hand side of (4.3) is bounded. If n>1, we have

2
—T / K 'LLJ p+a 1d dt<771 ﬂp+a7ndwdt§072. (46)

J
n— Aj

The last step is due to the fact that p+a—n>0. The second integral on the right-hand
side of (4.3) can be handled in an entirely similar way. The third one there can be
estimated as follows:

7'2/ K(ﬂj)ﬂ?_lda:dtgcrz/ ﬂ?dxdtgmj. (4.7
Bj B;
Here we have used Lemma 3.5 and the fact that In%; <@; on the set B;. As for the last
integral, remember that ¢ —1 < 0. Hence ﬂjfl <1 on Bj. Subsequently, we have

73/ K(ﬂj)ﬂj_ldxdtgm'g/ U drdt <cr?. (4.8)
B; B

J

Now we can conclude that

- 73/ K(ﬂj)ﬂj_ldxdt <e. (4.9)
Aj
This implies
7'3/ Uj_lda:dt—)O as T—0. (4.10)
Qr

To see this, we calculate

73/ ﬂj_ldmdt:T?’/ Hj_ldxdt—l—TB/ ﬂj_ldxdt (4.11)
Qr {w;<7} {u; >}
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1
< 7'3/ |K (p) [T~ dadt 4 et (4.12)
KD Jm<ey /
¢ 2+e
< +cer* ™ =0 as7—0. (4.13)
K (7)]

Our assumption that n>1 is made just to ensure that |K(7)| — oo as 7—0.
We can derive from Lemma 3.3 that

2 2
/ Tu?1|AuJ°»‘|dacdt§( / 72u§“2dxdt) ( / (Auy)zd:cdt)
Qrp Qr Qr

<ecr (4.14)

because 2a—2 < 1. With the aid of Lemma 3.4, we obtain

1
2 2
/ T2ﬂ§_1|Aﬂ?|dl‘dt < </ Tguj_ld:cdt> <7’/ uj_l(Au?‘)dedt)
Qr Qr Qr
1
3
< c</ 7’3u§_1dzdt)
Qr

—0. (4.15)

We deduce from Lemma 3.5 that

/ 2t dadt = / Tt dadt + / 2t dadt
Qr {u; <1} {u;>1}
a— a—n)t 2
SCT2+/ P PO TR G
{w;>1}

<cr?’+er—0 asT—0. (4.16)

Similarly, we can show that 73 ‘[QT U§+E_1dxdt—>0 as € — 0. This completes the proof.
O

LEMMA 4.2.  Let the assumptions of Lemma 4.1 hold. If n <1+ %, then the sequence
{8:u;} is bounded in L*((0,T);(W?°°(Q))*), where o is given as in (1.14).

Proof. We first claim that
/ uf P dadt < c. (4.17)
Qr
This estimate is a consequence of Lemmas 3.3 and 3.5. Indeed, Lemma 3.3 says that
w;j(x,t) is bounded in L>(0,T;L"(2)), while Lemma 3.5 asserts that @ (,t) is bounded

in L2(0,T;W22(Q)). If N >4, then we have from (1.14) that o=+ <1. We estimate
from Holder’s inequality and the Sobolev embedding theorem that

4 N—-4
i+2a T N 2N N
/ oy dxdt:/ (/ ujdx) </ u; N4dx> dt
Qr 0 Q Q
~ T 02N ~
< ( max /ujdx> / (/ U N4 dx) dt
0<t<T Jq 0 Q

T
SC/O [ |22 0y dt < . (4.18)
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If N=4, then o€ (0,1) according to (1.14). Subsequently,

o T 5 1—0o
/ ﬂ‘j’“adxdtg ( max /ujdx> / </ uql_”dx> dt
Qr 0<t<T Jq 0 o’

T
§c/ ||u"‘||2 o dt<e. (4.19)
0 7 ()

The last step is due to % <2. If N<4, then =1 by (1.14). Consequently, we have

T
[ s [ [ etz
Qr 0o Ja
T
<c [ (19w B+ 13) e <c. (4.20)
0

This completes the proof of (4.17).
Recall that

(@ +7)" 'V Fy =5~ (w; + 1) Vi AT 475 (1 +1)" T Vg Aug
—TU p+a 1(u]+7')" 1Vu]772up+6 1(u]+7')” 1Vuj

+Tﬂj Y +7)" Va4 (4 1) V. (4.21)

Our objective here is to show that each term on the right-hand side of the above equation
is bounded in (L*(Q27))". To this end, we note

(ﬂj‘f‘T)n_l Sﬂ;_zfl_i_Tn—l

since n—1<1. By our assumption, 0 < —a+4n—1<2a+0. We compute

3a—1

1 1
4 3a—1 1
<c( / uja+4”1dxdt) ( / IV, * |4d:cdt>
Qr Qr

1

2
—a—1 =
(/ u; | Auj |2dxdt)
Qr

<ec. (4.22)

4 _1 3a—1 a=1
[V s st = o [ e ) A dede
Qr

There are too many terms on the right-hand side of (4.21), and so we will skip the
obvious ones. Now we look at the second term on the right-hand side of (4.21). We
have

T/Q w52 |V AT | dadt
T

4 1 é,&Jrn,l 1 ate 1 e—1
= Tag? 4 *Ti|Vau; T |t |AUg|dadt
Qr

a+te
4 ate i %
Sc(/ Tuj_a+4"_2d3:dt> (/ TV, |4dxdt) . (/ Tuj_lAuﬂdedt)
Qr Qr Qr

<cri, (4.23)
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Here we have used the fact that 0 <e —a+4n—2<2a+o0. Next we estimate

1
2 2
T / u§+“+"2|vujdxdt<< / m§+a2|vuj|2dmt) ( / m§+a2+2"dxdt)
Qr Qr Qr

<c. (4.24)

The last step is due to Lemma 3.6 because n < 1—&—%. The rest of the terms can be
estimated similarly.
We still need to consider the term
(W +7)"Fj =u " (u+7)" Au + 705 (1 +7)" AU
—ra T @y ) — 2l (w4 )"
+7us U+ T) T ()" (4.25)

It is easy to see that it is also bounded in L'(Q7). Let & be a C™ test function with
VE&-v=0 on 09). We have

(8,5’11]‘,6) :/ (ﬂj —|—T)nVFj : ngl‘-i-T/ ijdl‘
Q Q
:—/ Fj(n(w;+7)""'Va; - VE+ (u; +7)" A) da:—|—7'/ Fjédr, (4.26)
Q Q
where (-,-) is the duality pairing between W2°°(£2) and its dual space (W?2:°°(Q2))*, from

which the lemma follows. O

LEMMA 4.3. Let the assumptions of Lemma 4.2 hold. Then the sequence {u;} is
precompact in L?>*((0,T); L?*(£2)).

Proof. Set

_ Ba+4o
= 4+o0

)

where o is given as before. By our assumption on «, we obviously have ¢>2a. We
estimate that

24 (2—a)gq a
/ |Vﬂj|qudt:—/ w; * |Vu?l|idzdt
Qr ol Qr J J

o i 2(2-a)q 1=
§c(/ Vu? |4dxdt) </ ;e dxdt)
QT QT
Note that 22=

Tf;)q =2a+ 0. Therefore, we obtain from (4.17)

a
4

/ VT, |?dzdt <c. (4.27)
Qr
We can easily deduce from the definitions of u;,%; that

1
/ it P dat < / @, P dwdt+ <7 [ Juo|2da, (4.28)
Qr Qr 2 Q

1
/ |V12j|2adxdt§/ |Vﬂj|2adxdt+fr/ Vo *de. (4.29)
Qr Qr 2 Q
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Thus {a@;} is bounded in L?*((0,T);W'2%(Q)). Note that for ¢ € (t;_1,tx] we have
i (z,t) —7u;(z,t) = (tx —t)0si; (z,1).

This together with Lemma 4.2 implies that
T
/ ||Hj7ﬂj||(W2,oc(Q))*dt§CT. (430)
0

Observe that the embedding W12 (€2) < L2*(12) is compact and L?*(2) < (W*>°(Q)) *
is continuous. A result of [26] asserts that {@;} is precompact in both L?*((0,7); L?*(2))
and L*((0,7);(W?2°°(Q))*). According to (4.30), we also have that {u;} is precompact
in L1((0,7);(W?2°°(Q))*). This puts us in a position to apply the results in [26] again,
from which the lemma follows. The proof is complete. ]

We are ready to complete the proof of Theorem 1.1. We can extract a subsequence
of {j}, still denoted by {j}, such that

uj—u strongly in L2*(Qr) and a.e., (4.31)
uy —u®  weakly in L*((0,T);W?2(€)). (4.32)
Equipped with this, we calculate that
us |“dxdt =— s u; dedt — — u-u-drdt = U xdt. .
v [*ded AuSug ded Auudrd Vu®Pdedt. (433
Qr Qr Qr Qp

This implies that

uf —u®  strongly in L*((0,T); W"?(Q)). (4.34)

Without loss of generality, we may also assume

Vui —Vu® a.e. on Qr. (4.35)
Note that a>1 and Vu,; = éﬂ?“lVH?. This along with (4.31) shows
Vu; —Vu a.e. on Qp. (4.36)
Next we wish to prove
(@;+7)""'F;Vau; — %u%“l*lAuo‘Vu% weakly in L1(Qr). (4.37)

This can be derived from the proof of Lemma 4.2. To see this, first observe that
ﬂ?Jr”*QVﬂj —u*T" 2V a.e. on Q. (4.38)
According to Egoroff’s Theorem, to each d >0 there corresponds a set E5 C 2p with the
property
H?‘+”_2VEJ- —u*T"2Vy  uniformly on Q7 \ Es and |Es| <. (4.39)

Due to our assumption, we have 0 —4n+4> 0. By a calculation identical to (4.22), we

obtain
/ u?+"_2VujAu?d3:dt‘ §c< / u?a+4n_4dxdt>
Es Es

1
1
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at2n—2

2(2a+o) oc—4n+4

<c </ u3a+‘7dxdt) |E6| 1(2ato)
Es

o—4n+4

< c§i@ato) . (4.40)

Consequently, we have

limsup / E?Jr"*QVﬁjAE?dxdt—/ u“*"QVuAuadxdt‘
Jj—roo Qr Qr
og—4an 2 o o
§654(2i+t’§ + / u2+"_1AuO‘Vu2dxdt‘. (4.41)
Es &

The right-hand side goes to 0 as § —0. Therefore,
gtV AT = u T VuAu®  weakly in LY(Qr). (4.42)

We can also prove

/ T dadt — 0 as T —0. (4.43)
Qr

In this case, we use the inequality
2
ﬂ§+a72+2” <6ﬂ§ TN +c(5), 6>0.

Then apply Lemma 3.6 to yield the desired result. The remaining terms on the right-
hand side of (4.17) are very easy to handle. Thus (4.37) follows.
On account of (4.25), we have

(@ +71)"F; =~ u*" Au®  weakly in L (Qr).
We can infer from (4.30) that
@; —u strongly in L2¥(Qr). (4.44)

Assume &(x,T) =0 in (4.26), integrate it over (0,7'), then let j — 0o, and thereby obtain
the theorem. The proof is complete.

5. Proof of Theorem 1.2
The proof of Theorem 1.2 relies on the following lemma

LEMMA 5.1.  Let the assumptions of Lemma 3.3 hold. Assume

1
a=1, §<ﬂ<n. (5.1)

Then there is 7o € (0,1) such that for all 7€ (0,79) we have

—HE2 o —=52 0
/ (Au;* ) dxds—l—T/ (Au;? ) drds
Qs Q4
—I—T/ ﬂ§+ﬁ_2|Vpk|2dxds+7'2/ ﬂ§+€+ﬁ_3|Vﬂj|2dxds
Qq

Qy

+T2/ Hj’6+5_3\VUj|2dxds+72/ (7Y@ — )M (a))deds <c,  (5.2)
Q

Qy
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where

M(r)z/lr ps” ds

(s47)"

(5.3)

Proof. Let M(r) be given as above. We use M (px) as a test function in (3.23) to

obtain

1
—/VFk~Vp£dx—T/FkM(pk)dac+;/(pk—pk,l)M(pk)daczo.
Q Q Q

The first integral in the above equation is equal to
/FkApgdz:/ApkApfderT/pi_lApkApfdx
Q Q Q
+pBr / Py Vi P
Q
+(p+571)572/p§+€+5*3|vpk|2dx
Q
—(5—1)572/Qp£+673|Vpk|2dx.

By virtue of Lemma 2.5, we have

3 b1, 1
AppAppdr>c | (Ap,? )dz, pe(5,2),
Q Q 2
while Corollary 2.2 implies
c—1 3 Sty 1
ka AppAppdr>c Q(Apk )dx, B€(§,2).

Using (5.6)-(5.7) in (5.5), we obtain

B+1 2 B+e 9
/FkAp?dxzc/ (Ap,? ) dz—|—cr/(Apk2 ) dx
Q Q Q
+pﬁr/ Py 2V pi P d
Q
+(p+571),87'2/pZ+€+B*3|Vpk|2dx
Q
~e- 1) [ BT,
Q
We calculate the second integral in (5.4) to obtain

—r [ Bz ==+ [ (147 )M (p) Aprda
Q Q

477 [ (=10 m )M (i)

EKl,k —I-Kgyk.

(5.4)

(5.8)
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Notice that M (r) changes from negative to positive at 1, and thus we always have
Ky >0. (5.10)

The term K j can be written in the form
Kow==* [ (1=2)M(p)oi Vo
+87 / P +T P2V |2 di. (5.11)

Let B ={z€Q:pi(x) > 1} be given as before. On the set By, we have

p
M(Pk)ﬁniﬂ

Keeping this in mind, we estimate
Kip>—(1—¢)r /M i) P52V prPda
2—672/ |V pr|?d
By
2—072/ PrTP2 1V oy P d. (5.12)
Q

In view of the coefficient of the fourth integral in (5.8), we just need to select a number
7o in (0,1) with the property

cTo < pB, (5.13)

where ¢ is the same as the one in the last line of (5.12). Then K; j can be absorbed
into the fourth term in (5.8).
By a calculation similar to (3.74), we have

7)1 +r)f ] i r>1
M(r)y>{ Bz ’ 5.14
(r)_{ Bf%rﬂ_" if r<1. (5.14)
Thus we always have
uj
/ M(r)drdx > —c.
uo
The remaining proof is similar to that of Lemma 3.3. The proof is Complete. 0

We are ready to conclude the proof of Theorem 1.2. Since n> i 3, we can pick a
number § with the property

1
3 < B <min{l,n}.
Then we apply Lemma 5.1 to obtain

72/ (1735 (@ — 1) M (3 )deds < c. (5.15)
Qr
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This combined with the fact that

lim M(r)=- 5.16
Jim M(r)=—o0 (5.16)
implies

7F;—0 strongly in L(Qg). (5.17)

We can easily infer this from the proof of Lemma 4.1. That is, if we replace K (r) with
M(r) in the proof, all the arguments there still work. By examining the rest of the
calculations in the proof of Theorem 1.1, we see that all of them are still applicable
here except (4.23), for which we make some adjustments. To this end, we set a=1,y=

LHS 3 =7; in (2.18) to obtain

21-08)_ 148 2 148 148
A=l VR P A

8(1—ﬁ)7ﬂ _ 48, 2 1-8 148

(1+/6)2u]2 ‘Vuj4 | +muj2 A’U,jz . (518)

Substitute this into the left-hand side of (4.23) to obtain

7'/ ws R |V At dadt
Qr

8(1— 1B 148
S(E_’_B@T/ﬂ a,? ||V, T Pdedt
T
2 1B 148
+m7’ o ﬂjz et 2|VEjAﬂj2 |d$dt
T

=A;+ As. (5.19)
We estimate Ay to yield

5 148 3
(/ |Aw; |2d:cdt>
Qr

1
2

<c< / T2uf+5‘3+2<”‘5)+5vuj|2dxdt> . (5.20)
Qr

Ay<e < / ranan el v |2d:cdt>
Qr

Thus if the exponent S+&—3+2(n— )+ <0, then there holds the inequality

|\ ~(Be=8)-[2(n—p)+e]
ﬂﬁ—&-s—&‘+2(n—6)+s _ ()
J

uj
1 —(B+e-3)
u;
= 0wt 4 ¢(0). (5.21)

Consequently, we can deduce from Lemma 5.1 that

limsup A <limsupc (5/ 72ﬂ?+5_3|Vﬂj \Qda:dt—&—c(é)Tz/ |V, |2dxdt>
QT QT

T—0 T7—0
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N

<co2. (5.22)

Since ¢ is arbitrary, we have lim,_,o A2 =0. If the exponent f+e—3+2(n—fF)+e>0,
then we use the inequality

_B+e—3+2(n—B)+e _ c—p—1
uf c (n=8) S0 +c(9).

This can be done because from our assumptions we always have S+e—3+2(n—)+e<
p—1. We can conclude from Lemma 3.3 that lim, ,gA;=0. The term A; can be
handled in exactly the same way. This completes the proof.
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